<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2004</td>
<td>Online only</td>
<td>New for Version 1.0 (Release 14SP1+)</td>
</tr>
<tr>
<td>March 2005</td>
<td>Online only</td>
<td>Revised for Version 1.0.1 (Release 14SP2)</td>
</tr>
<tr>
<td>September 2005</td>
<td>Online only</td>
<td>Revised for Version 1.0.2 (Release 14SP3)</td>
</tr>
<tr>
<td>November 2005</td>
<td>Online only</td>
<td>Revised for Version 2.0 (Release 14SP3+)</td>
</tr>
<tr>
<td>March 2006</td>
<td>Online only</td>
<td>Revised for Version 2.0.1 (Release 2006a)</td>
</tr>
<tr>
<td>September 2006</td>
<td>Online only</td>
<td>Revised for Version 3.0 (Release 2006b)</td>
</tr>
<tr>
<td>March 2007</td>
<td>Online only</td>
<td>Revised for Version 3.1 (Release 2007a)</td>
</tr>
<tr>
<td>September 2007</td>
<td>Online only</td>
<td>Revised for Version 3.2 (Release 2007b)</td>
</tr>
<tr>
<td>March 2008</td>
<td>Online only</td>
<td>Revised for Version 3.3 (Release 2008a)</td>
</tr>
<tr>
<td>October 2008</td>
<td>Online only</td>
<td>Revised for Version 4.0 (Release 2008b)</td>
</tr>
<tr>
<td>March 2009</td>
<td>Online only</td>
<td>Revised for Version 4.1 (Release 2009a)</td>
</tr>
<tr>
<td>September 2009</td>
<td>Online only</td>
<td>Revised for Version 4.2 (Release 2009b)</td>
</tr>
<tr>
<td>March 2010</td>
<td>Online only</td>
<td>Revised for Version 4.3 (Release 2010a)</td>
</tr>
<tr>
<td>September 2010</td>
<td>Online only</td>
<td>Revised for Version 5.0 (Release 2010b)</td>
</tr>
<tr>
<td>April 2011</td>
<td>Online only</td>
<td>Revised for Version 5.1 (Release 2011a)</td>
</tr>
<tr>
<td>September 2011</td>
<td>Online only</td>
<td>Revised for Version 5.2 (Release 2011b)</td>
</tr>
<tr>
<td>March 2012</td>
<td>Online only</td>
<td>Revised for Version 6.0 (Release 2012a)</td>
</tr>
<tr>
<td>September 2012</td>
<td>Online only</td>
<td>Revised for Version 6.1 (Release 2012b)</td>
</tr>
<tr>
<td>March 2013</td>
<td>Online only</td>
<td>Revised for Version 6.2 (Release 2013a)</td>
</tr>
<tr>
<td>September 2013</td>
<td>Online only</td>
<td>Revised for Version 6.3 (Release 2013b)</td>
</tr>
<tr>
<td>March 2014</td>
<td>Online only</td>
<td>Revised for Version 6.4 (Release 2014a)</td>
</tr>
<tr>
<td>October 2014</td>
<td>Online only</td>
<td>Revised for Version 6.5 (Release 2014b)</td>
</tr>
<tr>
<td>March 2015</td>
<td>Online only</td>
<td>Revised for Version 6.6 (Release 2015a)</td>
</tr>
<tr>
<td>September 2015</td>
<td>Online only</td>
<td>Revised for Version 6.7 (Release 2015b)</td>
</tr>
</tbody>
</table>
Getting Started

1

Parallel Computing Toolbox Product Description

Key Features

Parallel Computing with MathWorks Products

Key Problems Addressed by Parallel Computing

Run Parallel for-Loops (parfor)

Execute Batch Jobs in Parallel

Partition Large Data Sets

Introduction to Parallel Solutions

Interactively Run a Loop in Parallel

Run a Batch Job

Run a Batch Parallel Loop

Run Script as Batch Job from the Current Folder Browser

Distribute Arrays and Run SPMD

Determine Product Installation and Versions

Parallel for-Loops (parfor)

2

Introduction to parfor

parfor-Loops in MATLAB

Deciding When to Use parfor

Create a parfor-Loop

Comparing for-Loops and parfor-Loops

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reductions: Cumulative Values Updated by Each Iteration</td>
<td>2-8</td>
</tr>
<tr>
<td>parfor Programming Considerations</td>
<td>2-10</td>
</tr>
<tr>
<td>MATLAB Path</td>
<td>2-10</td>
</tr>
<tr>
<td>Error Handling</td>
<td>2-10</td>
</tr>
<tr>
<td>parfor Limitations</td>
<td>2-11</td>
</tr>
<tr>
<td>Inputs and Outputs in parfor-Loops</td>
<td>2-12</td>
</tr>
<tr>
<td>Functions with Interactive Inputs</td>
<td>2-12</td>
</tr>
<tr>
<td>Displaying Output</td>
<td>2-12</td>
</tr>
<tr>
<td>Objects and Handles in parfor-Loops</td>
<td>2-13</td>
</tr>
<tr>
<td>Using Objects in parfor-Loops</td>
<td>2-13</td>
</tr>
<tr>
<td>Handle Classes</td>
<td>2-13</td>
</tr>
<tr>
<td>Sliced Variables Referencing Function Handles</td>
<td>2-13</td>
</tr>
<tr>
<td>Nesting and Flow in parfor-Loops</td>
<td>2-15</td>
</tr>
<tr>
<td>Nested Functions</td>
<td>2-15</td>
</tr>
<tr>
<td>Nested Loops</td>
<td>2-15</td>
</tr>
<tr>
<td>Nested spmd Statements</td>
<td>2-17</td>
</tr>
<tr>
<td>Break and Return Statements</td>
<td>2-17</td>
</tr>
<tr>
<td>P-Code Scripts</td>
<td>2-17</td>
</tr>
<tr>
<td>Variables in parfor-Loops</td>
<td>2-19</td>
</tr>
<tr>
<td>Unambiguos Variable Names</td>
<td>2-19</td>
</tr>
<tr>
<td>Structure Arrays in parfor-Loops</td>
<td>2-19</td>
</tr>
<tr>
<td>Scalar Expansion with Sliced Outputs</td>
<td>2-20</td>
</tr>
<tr>
<td>Global and Persistent Variables</td>
<td>2-21</td>
</tr>
<tr>
<td>Classification of Variables in parfor-Loops</td>
<td>2-22</td>
</tr>
<tr>
<td>Notes about Required and Recommended Guidelines</td>
<td>2-23</td>
</tr>
<tr>
<td>Loop Variable</td>
<td>2-24</td>
</tr>
<tr>
<td>Sliced Variables</td>
<td>2-26</td>
</tr>
<tr>
<td>Characteristics of a Sliced Variable</td>
<td>2-26</td>
</tr>
<tr>
<td>Sliced Input and Output Variables</td>
<td>2-28</td>
</tr>
<tr>
<td>Broadcast Variables</td>
<td>2-30</td>
</tr>
<tr>
<td>Reduction Variables</td>
<td>2-31</td>
</tr>
<tr>
<td>Basic Rules for Reduction Variables</td>
<td>2-32</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Further Considerations with Reduction Variables</td>
<td>2-33</td>
</tr>
<tr>
<td>Example: Using a Custom Reduction Function</td>
<td>2-36</td>
</tr>
<tr>
<td>Temporary Variables</td>
<td>2-38</td>
</tr>
<tr>
<td>Uninitialized Temporaries</td>
<td>2-38</td>
</tr>
<tr>
<td>Temporary Variables Intended as Reduction Variables</td>
<td>2-39</td>
</tr>
<tr>
<td>Transparency</td>
<td>2-41</td>
</tr>
<tr>
<td>Improving parfor Performance</td>
<td>2-43</td>
</tr>
<tr>
<td>Where to Create Arrays</td>
<td>2-43</td>
</tr>
<tr>
<td>Slicing Arrays</td>
<td>2-43</td>
</tr>
<tr>
<td>Optimizing on Local vs. Cluster Workers</td>
<td>2-43</td>
</tr>
<tr>
<td>Parallel Pools</td>
<td>2-45</td>
</tr>
<tr>
<td>What Is a Parallel Pool?</td>
<td>2-45</td>
</tr>
<tr>
<td>Automatically Start and Stop a Parallel Pool</td>
<td>2-46</td>
</tr>
<tr>
<td>Alternative Ways to Start and Stop Pools</td>
<td>2-46</td>
</tr>
<tr>
<td>Pool Size and Cluster Selection</td>
<td>2-47</td>
</tr>
<tr>
<td>Convert Nested for-Loops to parfor</td>
<td>2-49</td>
</tr>
<tr>
<td>Repeat Random Numbers in parfor-Loops</td>
<td>2-51</td>
</tr>
</tbody>
</table>

Single Program Multiple Data (spmd)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execute Simultaneously on Multiple Data Sets</td>
<td>3-2</td>
</tr>
<tr>
<td>Introduction</td>
<td>3-2</td>
</tr>
<tr>
<td>When to Use spmd</td>
<td>3-2</td>
</tr>
<tr>
<td>Define an spmd Statement</td>
<td>3-3</td>
</tr>
<tr>
<td>Display Output</td>
<td>3-5</td>
</tr>
<tr>
<td>Access Worker Variables with Composites</td>
<td>3-6</td>
</tr>
<tr>
<td>Introduction to Composites</td>
<td>3-6</td>
</tr>
<tr>
<td>Create Composites in spmd Statements</td>
<td>3-6</td>
</tr>
<tr>
<td>Variable Persistence and Sequences of spmd</td>
<td>3-8</td>
</tr>
<tr>
<td>Create Composites Outside spmd Statements</td>
<td>3-9</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Distribute Arrays</td>
<td>3-10</td>
</tr>
<tr>
<td>Distributed Versus Codistributed Arrays</td>
<td>3-10</td>
</tr>
<tr>
<td>Create Distributed Arrays</td>
<td>3-10</td>
</tr>
<tr>
<td>Create Codistributed Arrays</td>
<td>3-11</td>
</tr>
<tr>
<td>Programming Tips</td>
<td>3-13</td>
</tr>
<tr>
<td>MATLAB Path</td>
<td>3-13</td>
</tr>
<tr>
<td>Error Handling</td>
<td>3-13</td>
</tr>
<tr>
<td>spmd Limitations</td>
<td>3-13</td>
</tr>
<tr>
<td>Interactive Parallel Computation with pmode</td>
<td>4-2</td>
</tr>
<tr>
<td>pmode Versus spmd</td>
<td>4-3</td>
</tr>
<tr>
<td>Run Communicating Jobs Interactively Using pmode</td>
<td>4-10</td>
</tr>
<tr>
<td>Parallel Command Window</td>
<td>4-10</td>
</tr>
<tr>
<td>Running pmode Interactive Jobs on a Cluster</td>
<td>4-15</td>
</tr>
<tr>
<td>Plotting Distributed Data Using pmode</td>
<td>4-16</td>
</tr>
<tr>
<td>pmode Limitations and Unexpected Results</td>
<td>4-18</td>
</tr>
<tr>
<td>Using Graphics in pmode</td>
<td>4-18</td>
</tr>
<tr>
<td>pmode Troubleshooting</td>
<td>4-19</td>
</tr>
<tr>
<td>Connectivity Testing</td>
<td>4-19</td>
</tr>
<tr>
<td>Hostname Resolution</td>
<td>4-19</td>
</tr>
<tr>
<td>Socket Connections</td>
<td>4-19</td>
</tr>
<tr>
<td>Math with Codistributed Arrays</td>
<td>5-2</td>
</tr>
<tr>
<td>Nondistributed Versus Distributed Arrays</td>
<td>5-2</td>
</tr>
<tr>
<td>Introduction</td>
<td>5-2</td>
</tr>
<tr>
<td>Nondistributed Arrays</td>
<td>5-2</td>
</tr>
</tbody>
</table>
Codistributed Arrays ... 5-4

Working with Codistributed Arrays 5-5
 How MATLAB Software Distributes Arrays 5-5
 Creating a Codistributed Array 5-7
 Local Arrays .. 5-10
 Obtaining information About the Array 5-11
 Changing the Dimension of Distribution 5-12
 Restoring the Full Array 5-13
 Indexing into a Codistributed Array 5-14
 2-Dimensional Distribution 5-16

Looping Over a Distributed Range (for-drang) 5-20
 Parallelizing a for-Loop 5-20
 Codistributed Arrays in a for-drang Loop 5-21

MATLAB Functions on Distributed and Codistributed
 Arrays .. 5-24

Programming Overview

6

How Parallel Computing Products Run a Job 6-2
 Overview .. 6-2
 Toolbox and Server Components 6-3
 Life Cycle of a Job 6-7

Create Simple Independent Jobs 6-10
 Program a Job on a Local Cluster 6-10

Parallel Preferences ... 6-12

Clusters and Cluster Profiles 6-14
 Cluster Profile Manager 6-14
 Discover Clusters 6-14
 Import and Export Cluster Profiles 6-16
 Create and Modify Cluster Profiles 6-17
 Validate Cluster Profiles 6-22
 Apply Cluster Profiles in Client Code 6-23
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply Callbacks to MJS Jobs and Tasks</td>
<td>6-25</td>
</tr>
<tr>
<td>Job Monitor</td>
<td>6-29</td>
</tr>
<tr>
<td>Job Monitor GUI</td>
<td>6-29</td>
</tr>
<tr>
<td>Manage Jobs Using the Job Monitor</td>
<td>6-30</td>
</tr>
<tr>
<td>Identify Task Errors Using the Job Monitor</td>
<td>6-30</td>
</tr>
<tr>
<td>Programming Tips</td>
<td>6-32</td>
</tr>
<tr>
<td>Program Development Guidelines</td>
<td>6-32</td>
</tr>
<tr>
<td>Current Working Directory of a MATLAB Worker</td>
<td>6-33</td>
</tr>
<tr>
<td>Writing to Files from Workers</td>
<td>6-34</td>
</tr>
<tr>
<td>Saving or Sending Objects</td>
<td>6-34</td>
</tr>
<tr>
<td>Using clear functions</td>
<td>6-34</td>
</tr>
<tr>
<td>Running Tasks That Call Simulink Software</td>
<td>6-35</td>
</tr>
<tr>
<td>Using the pause Function</td>
<td>6-35</td>
</tr>
<tr>
<td>Transmitting Large Amounts of Data</td>
<td>6-35</td>
</tr>
<tr>
<td>Interrupting a Job</td>
<td>6-35</td>
</tr>
<tr>
<td>Speeding Up a Job</td>
<td>6-35</td>
</tr>
<tr>
<td>Control Random Number Streams</td>
<td>6-37</td>
</tr>
<tr>
<td>Different Workers</td>
<td>6-37</td>
</tr>
<tr>
<td>Client and Workers</td>
<td>6-38</td>
</tr>
<tr>
<td>Client and GPU</td>
<td>6-39</td>
</tr>
<tr>
<td>Worker CPU and Worker GPU</td>
<td>6-41</td>
</tr>
<tr>
<td>Profiling Parallel Code</td>
<td>6-42</td>
</tr>
<tr>
<td>Introduction</td>
<td>6-42</td>
</tr>
<tr>
<td>Collecting Parallel Profile Data</td>
<td>6-42</td>
</tr>
<tr>
<td>Viewing Parallel Profile Data</td>
<td>6-43</td>
</tr>
<tr>
<td>Benchmarking Performance</td>
<td>6-51</td>
</tr>
<tr>
<td>HPC Challenge Benchmarks</td>
<td>6-51</td>
</tr>
<tr>
<td>Troubleshooting and Debugging</td>
<td>6-52</td>
</tr>
<tr>
<td>Object Data Size Limitations</td>
<td>6-52</td>
</tr>
<tr>
<td>File Access and Permissions</td>
<td>6-52</td>
</tr>
<tr>
<td>No Results or Failed Job</td>
<td>6-54</td>
</tr>
<tr>
<td>Connection Problems Between the Client and MJS</td>
<td>6-54</td>
</tr>
<tr>
<td>SFTP Error: Received Message Too Long</td>
<td>6-55</td>
</tr>
<tr>
<td>Run mapreduce on a Parallel Pool</td>
<td>6-57</td>
</tr>
<tr>
<td>Start Parallel Pool</td>
<td>6-57</td>
</tr>
<tr>
<td>Compare Parallel mapreduce</td>
<td>6-57</td>
</tr>
</tbody>
</table>
Run mapreduce on a Hadoop Cluster .. 6-61
 Cluster Preparation .. 6-61
 Output Format and Order .. 6-61
 Calculate Mean Delay .. 6-61

Partition a Datastore in Parallel 6-64

Program Independent Jobs

Program Independent Jobs ... 7-2

Program Independent Jobs on a Local Cluster 7-3
 Create and Run Jobs with a Local Cluster 7-3
 Local Cluster Behavior ... 7-6

Program Independent Jobs for a Supported Scheduler 7-8
 Create and Run Jobs .. 7-8
 Manage Objects in the Scheduler 7-13

Share Code with the Workers .. 7-16
 Workers Access Files Directly 7-16
 Pass Data to and from Worker Sessions 7-17
 Pass MATLAB Code for Startup and Finish 7-19

Program Independent Jobs for a Generic Scheduler 7-21
 Overview ... 7-21
 MATLAB Client Submit Function 7-22
 Example — Write the Submit Function 7-25
 MATLAB Worker Decode Function 7-27
 Example — Write the Decode Function 7-29
 Example — Program and Run a Job in the Client 7-29
 Supplied Submit and Decode Functions 7-33
 Manage Jobs with Generic Scheduler 7-34
 Summary ... 7-37
Program Communicating Jobs

- Program Communicating Jobs ... 8-2
 - Program Communicating Jobs for a Supported Scheduler 8-4
 - Schedulers and Conditions 8-4
 - Code the Task Function .. 8-4
 - Code in the Client .. 8-5
 - Program Communicating Jobs for a Generic Scheduler 8-7
 - Introduction .. 8-7
 - Code in the Client .. 8-7
- Further Notes on Communicating Jobs 8-10
 - Number of Tasks in a Communicating Job 8-10
 - Avoid Deadlock and Other Dependency Errors 8-10

GPU Computing

- GPU Capabilities and Performance 9-2
 - Capabilities .. 9-2
 - Performance Benchmarking ... 9-2
- Establish Arrays on a GPU .. 9-3
 - Transfer Arrays Between Workspace and GPU 9-3
 - Create GPU Arrays Directly 9-4
 - Examine gpuArray Characteristics 9-7
- Run Built-In Functions on a GPU 9-8
 - MATLAB Functions with gpuArray Arguments 9-8
 - Example: Functions with gpuArray Input and Output 9-10
 - Sparse Arrays on a GPU ... 9-10
 - Considerations for Complex Numbers 9-11
- Run Element-wise MATLAB Code on GPU 9-13
 - MATLAB Code vs. gpuArray Objects 9-13
 - Run Your MATLAB Functions on a GPU 9-13
Example: Run Your MATLAB Code ... 9-14
Supported MATLAB Code ... 9-15

Identify and Select a GPU Device ... 9-18
Example: Select a GPU .. 9-18

Run CUDA or PTX Code on GPU ... 9-20
Overview .. 9-20
Create a CUDAKernel Object .. 9-21
Run a CUDAKernel ... 9-26
Complete Kernel Workflow .. 9-28

Run MEX-Functions Containing CUDA Code 9-31
Write a MEX-File Containing CUDA Code 9-31
Compile a GPU MEX-File ... 9-32
Run the Resulting MEX-Functions ... 9-32
Comparison to a CUDA Kernel ... 9-33
Access Complex Data ... 9-33

Measure and Improve GPU Performance 9-35
Basic Workflow for Improving Performance 9-35
Advanced Tools for Improving Performance 9-36
Best Practices for Improving Performance 9-37
Measure Performance on the GPU ... 9-38
Vectorize for Improved GPU Performance 9-39

Objects — Alphabetical List ..
10

Functions — Alphabetical List ...
11

Glossary ..

xiii
Getting Started

• “Parallel Computing Toolbox Product Description” on page 1-2
• “Parallel Computing with MathWorks Products” on page 1-3
• “Key Problems Addressed by Parallel Computing” on page 1-4
• “Introduction to Parallel Solutions” on page 1-6
• “Determine Product Installation and Versions” on page 1-14
Parallel Computing Toolbox Product Description

Perform parallel computations on multicore computers, GPUs, and computer clusters

Parallel Computing Toolbox lets you solve computationally and data-intensive problems using multicore processors, GPUs, and computer clusters. High-level constructs—parallel for-loops, special array types, and parallelized numerical algorithms—let you parallelize MATLAB® applications without CUDA or MPI programming. You can use the toolbox with Simulink® to run multiple simulations of a model in parallel.

The toolbox lets you use the full processing power of multicore desktops by executing applications on workers (MATLAB computational engines) that run locally. Without changing the code, you can run the same applications on a computer cluster or a grid computing service (using MATLAB Distributed Computing Server™). You can run parallel applications interactively or in batch.

Key Features

- Parallel for-loops (parfor) for running task-parallel algorithms on multiple processors
- Support for CUDA-enabled NVIDIA GPUs
- Full use of multicore processors on the desktop via workers that run locally
- Computer cluster and grid support (with MATLAB Distributed Computing Server)
- Interactive and batch execution of parallel applications
- Distributed arrays and spmd (single-program-multiple-data) for large dataset handling and data-parallel algorithms
Parallel Computing with MathWorks Products

In addition to Parallel Computing Toolbox providing a local cluster of workers for your client machine, MATLAB Distributed Computing Server software allows you to run as many MATLAB workers on a remote cluster of computers as your licensing allows.

Most MathWorks products let you code in such a way as to run applications in parallel. For example, Simulink models can run simultaneously in parallel, as described in “Run Parallel Simulations”. MATLAB Compiler™ and MATLAB Compiler SDK™ software let you build and deploy parallel applications; for example, see the “Parallel Computing” section of MATLAB Compiler “Standalone Applications”.

Several MathWorks products now offer built-in support for the parallel computing products, without requiring extra coding. For the current list of these products and their parallel functionality, see:

Key Problems Addressed by Parallel Computing

In this section...

“Run Parallel for-Loops (parfor)” on page 1-4
“Execute Batch Jobs in Parallel” on page 1-5
“Partition Large Data Sets” on page 1-5

Run Parallel for-Loops (parfor)

Many applications involve multiple segments of code, some of which are repetitive. Often you can use for-loops to solve these cases. The ability to execute code in parallel, on one computer or on a cluster of computers, can significantly improve performance in many cases:

- Parameter sweep applications
 - Many iterations — A sweep might take a long time because it comprises many iterations. Each iteration by itself might not take long to execute, but to complete thousands or millions of iterations in serial could take a long time.
 - Long iterations — A sweep might not have a lot of iterations, but each iteration could take a long time to run.

Typically, the only difference between iterations is defined by different input data. In these cases, the ability to run separate sweep iterations simultaneously can improve performance. Evaluating such iterations in parallel is an ideal way to sweep through large or multiple data sets. The only restriction on parallel loops is that no iterations be allowed to depend on any other iterations.

- Test suites with independent segments — For applications that run a series of unrelated tasks, you can run these tasks simultaneously on separate resources. You might not have used a for-loop for a case such as this comprising distinctly different tasks, but a parfor-loop could offer an appropriate solution.

Parallel Computing Toolbox software improves the performance of such loop execution by allowing several MATLAB workers to execute individual loop iterations simultaneously. For example, a loop of 100 iterations could run on a cluster of 20 MATLAB workers, so that simultaneously, the workers each execute only five iterations of the loop. You might not get quite 20 times improvement in speed because of communications overhead and network traffic, but the speedup should be significant. Even running local workers all on
the same machine as the client, you might see significant performance improvement on a multicore/multiprocessor machine. So whether your loop takes a long time to run because it has many iterations or because each iteration takes a long time, you can improve your loop speed by distributing iterations to MATLAB workers.

Execute Batch Jobs in Parallel

When working interactively in a MATLAB session, you can offload work to a MATLAB worker session to run as a batch job. The command to perform this job is asynchronous, which means that your client MATLAB session is not blocked, and you can continue your own interactive session while the MATLAB worker is busy evaluating your code. The MATLAB worker can run either on the same machine as the client, or if using MATLAB Distributed Computing Server, on a remote cluster machine.

Partition Large Data Sets

If you have an array that is too large for your computer's memory, it cannot be easily handled in a single MATLAB session. Parallel Computing Toolbox software allows you to distribute that array among multiple MATLAB workers, so that each worker contains only a part of the array. Yet you can operate on the entire array as a single entity. Each worker operates only on its part of the array, and workers automatically transfer data between themselves when necessary, as, for example, in matrix multiplication. A large number of matrix operations and functions have been enhanced to work directly with these arrays without further modification; see “MATLAB Functions on Distributed and Codistributed Arrays” on page 5-24 and “Using MATLAB Constructor Functions” on page 5-9.
Introduction to Parallel Solutions

In this section...

“Interactively Run a Loop in Parallel” on page 1-6
“Run a Batch Job” on page 1-8
“Run a Batch Parallel Loop” on page 1-9
“Run Script as Batch Job from the Current Folder Browser” on page 1-11
“Distribute Arrays and Run SPMD” on page 1-12

Interactively Run a Loop in Parallel

This section shows how to modify a simple for-loop so that it runs in parallel. This loop does not have a lot of iterations, and it does not take long to execute, but you can apply the principles to larger loops. For these simple examples, you might not notice an increase in execution speed.

1 Suppose your code includes a loop to create a sine wave and plot the waveform:

```matlab
for i = 1:1024
    A(i) = sin(i*2*pi/1024);
end
plot(A)
```

2 You can modify your code to run your loop in parallel by using a parfor statement:

```matlab
parfor i = 1:1024
    A(i) = sin(i*2*pi/1024);
end
plot(A)
```

The only difference in this loop is the keyword parfor instead of for. When the loop begins, it opens a parallel pool of MATLAB sessions called workers for executing the iterations in parallel. After the loop runs, the results look the same as those generated from the previous for-loop.
Because the iterations run in parallel in other MATLAB sessions, each iteration must be completely independent of all other iterations. The worker calculating the value for \(A(100) \) might not be the same worker calculating \(A(500) \). There is no guarantee of sequence, so \(A(900) \) might be calculated before \(A(400) \). (The MATLAB Editor can help identify some problems with \texttt{parfor} code that might not contain independent iterations.) The only place where the values of all the elements of the array \(A \) are available is in your MATLAB client session, after the data returns from the MATLAB workers and the loop completes.

For more information on \texttt{parfor}-loops, see “Parallel for-Loops (parfor)”.

You can modify your cluster profiles to control how many workers run your loops, and whether the workers are local or on a cluster. For more information on profiles, see “Clusters and Cluster Profiles” on page 6-14.

Modify your parallel preferences to control whether a parallel pool is created automatically, and how long it remains available before timing out. For more information on preferences, see “Parallel Preferences” on page 6-12.

You can run Simulink models in parallel loop iterations with the \texttt{sim} command inside your loop. For more information and examples of using Simulink with \texttt{parfor}, see “Run Parallel Simulations” in the Simulink documentation.
Run a Batch Job

To offload work from your MATLAB session to run in the background in another session, you can use the `batch` command. This example uses the `for`-loop from the previous example, inside a script.

1. To create the script, type:
   ```matlab
edit mywave
```
2. In the MATLAB Editor, enter the text of the `for`-loop:
   ```matlab
   for i = 1:1024
     A(i) = sin(i*2*pi/1024);
   end
   ```
3. Save the file and close the Editor.
4. Use the `batch` command in the MATLAB Command Window to run your script on a separate MATLAB worker:
   ```matlab
   job = batch('mywave')
   ```
5. The `batch` command does not block MATLAB, so you must wait for the job to finish before you can retrieve and view its results:
   ```matlab
   wait(job)
   ```
6. The `load` command transfers variables created on the worker to the client workspace, where you can view the results:
   ```matlab
   load(job, 'A')
   plot(A)
   ```
7. When the job is complete, permanently delete its data and remove its reference from the workspace:
   ```matlab
   delete(job)
   clear job
   ```
batch runs your code on a local worker or a cluster worker, but does not require a parallel pool.

You can use **batch** to run either scripts or functions. For more details, see the **batch** reference page.

Run a Batch Parallel Loop

You can combine the abilities to offload a job and run a parallel loop. In the previous two examples, you modified a for-loop to make a **parfor**-loop, and you submitted a script with a for-loop as a batch job. This example combines the two to create a batch **parfor**-loop.

1. Open your script in the MATLAB Editor:
   ```matlab
   edit mywave
   ```
2. Modify the script so that the for statement is a **parfor** statement:
   ```matlab
   parfor i = 1:1024
     A(i) = sin(i*2*pi/1024);
   end
   ```
3. Save the file and close the Editor.
4. Run the script in MATLAB with the **batch** command as before, but indicate that the script should use a parallel pool for the loop:
   ```matlab
   job = batch('mywave', 'Pool', 3)
   ```

This command specifies that three workers (in addition to the one running the batch script) are to evaluate the loop iterations. Therefore, this example uses a total of four local workers, including the one worker running the batch script. Altogether, there are five MATLAB sessions involved, as shown in the following diagram.
5 To view the results:

```matlab
wait(job)
load(job, 'A')
plot(A)
```

The results look the same as before, however, there are two important differences in execution:

- The work of defining the `parfor`-loop and accumulating its results are offloaded to another MATLAB session by `batch`.
- The loop iterations are distributed from one MATLAB worker to another set of workers running simultaneously ('Pool' and `parfor`), so the loop might run faster than having only one worker execute it.

6 When the job is complete, permanently delete its data and remove its reference from the workspace:

```matlab
delete(job)
clear job
```
Run Script as Batch Job from the Current Folder Browser

From the Current Folder browser, you can run a MATLAB script as a batch job by browsing to the file’s folder, right-clicking the file, and selecting Run Script as Batch Job. The batch job runs on the cluster identified by the default cluster profile. The following figure shows the menu option to run the script file script1.m:

Running a script as a batch from the browser uses only one worker from the cluster. So even if the script contains a parfor loop or spmd block, it does not open an additional pool of workers on the cluster. These code blocks execute on the single worker used for the batch job. If your batch script requires opening an additional pool of workers, you can run it from the command line, as described in “Run a Batch Parallel Loop” on page 1-9.

When you run a batch job from the browser, this also opens the Job Monitor. The Job Monitor is a tool that lets you track your job in the scheduler queue. For more information about the Job Monitor and its capabilities, see “Job Monitor” on page 6-29.
Distribute Arrays and Run SPMD

Distributed Arrays

The workers in a parallel pool communicate with each other, so you can distribute an array among the workers. Each worker contains part of the array, and all the workers are aware of which portion of the array each worker has.

Use the distributed function to distribute an array among the workers:

```matlab
M = magic(4) % a 4-by-4 magic square in the client workspace
MM = distributed(M)
```

Now MM is a distributed array, equivalent to M, and you can manipulate or access its elements in the same way as any other array.

```matlab
M2 = 2*MM; % M2 is also distributed, calculation performed on workers
x = M2(1,1) % x on the client is set to first element of M2
```

Single Program Multiple Data (spmd)

The single program multiple data (spmd) construct lets you define a block of code that runs in parallel on all the workers in a parallel pool. The spmd block can run on some or all the workers in the pool.

```matlab
spmd % By default creates pool and uses all workers
    R = rand(4);
end
```

This code creates an individual 4-by-4 matrix, R, of random numbers on each worker in the pool.

Composites

Following an spmd statement, in the client context, the values from the block are accessible, even though the data is actually stored on the workers. On the client, these variables are called Composite objects. Each element of a composite is a symbol referencing the value (data) on a worker in the pool. Note that because a variable might not be defined on every worker, a Composite might have undefined elements.

Continuing with the example from above, on the client, the Composite R has one element for each worker:

```matlab
X = R{3}; % Set X to the value of R from worker 3.
```
The line above retrieves the data from worker 3 to assign the value of X. The following code sends data to worker 3:

```plaintext
X = X + 2;
R{3} = X; % Send the value of X from the client to worker 3.
```

If the parallel pool remains open between `spmd` statements and the same workers are used, the data on each worker persists from one `spmd` statement to another.

```plaintext
spmd
    R = R + labindex  % Use values of R from previous spmd.
end
```

A typical use for `spmd` is to run the same code on a number of workers, each of which accesses a different set of data. For example:

```plaintext
spmd
    INP = load(['somedatafile' num2str(labindex) '.mat']);
    RES = somefun(INP)
end
```

Then the values of `RES` on the workers are accessible from the client as `RES{1}` from worker 1, `RES{2}` from worker 2, etc.

There are two forms of indexing a Composite, comparable to indexing a cell array:

- `AA{n}` returns the values of `AA` from worker `n`.
- `AA(n)` returns a cell array of the content of `AA` from worker `n`.

Although data persists on the workers from one `spmd` block to another as long as the parallel pool remains open, data does not persist from one instance of a parallel pool to another. That is, if the pool is deleted and a new one created, all data from the first pool is lost.

For more information about using distributed arrays, `spmd`, and Composites, see “Distributed Arrays and SPMD”.
Determine Product Installation and Versions

To determine if Parallel Computing Toolbox software is installed on your system, type this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the version of MATLAB you are running, including a list of all toolboxes installed on your system and their version numbers.

If you want to run your applications on a cluster, see your system administrator to verify that the version of Parallel Computing Toolbox you are using is the same as the version of MATLAB Distributed Computing Server installed on your cluster.
Parallel for-Loops (parfor)

- “Introduction to parfor” on page 2-2
- “Create a parfor-Loop” on page 2-4
- “Comparing for-Loops and parfor-Loops” on page 2-6
- “Reductions: Cumulative Values Updated by Each Iteration” on page 2-8
- “parfor Programming Considerations” on page 2-10
- “parfor Limitations” on page 2-11
- “Inputs and Outputs in parfor-Loops” on page 2-12
- “Objects and Handles in parfor-Loops” on page 2-13
- “Nesting and Flow in parfor-Loops” on page 2-15
- “Variables in parfor-Loops” on page 2-19
- “Classification of Variables in parfor-Loops” on page 2-22
- “Loop Variable” on page 2-24
- “Sliced Variables” on page 2-26
- “Broadcast Variables” on page 2-30
- “Reduction Variables” on page 2-31
- “Temporary Variables” on page 2-38
- “Transparency” on page 2-41
- “Improving parfor Performance” on page 2-43
- “Parallel Pools” on page 2-45
- “Convert Nested for-Loops to parfor” on page 2-49
- “Repeat Random Numbers in parfor-Loops” on page 2-51
Introduction to parfor

In this section...

“parfor-Loops in MATLAB” on page 2-2
“Deciding When to Use parfor” on page 2-2

parfor-Loops in MATLAB

The basic concept of a parfor-loop in MATLAB software is the same as the standard MATLAB for-loop: MATLAB executes a series of statements (the loop body) over a range of values. The MATLAB client (where the parfor is issued) coordinates with MATLAB workers comprising a parallel pool, so that the loop iterations can be executed in parallel on the pool. The necessary data on which parfor operates is sent from the client to workers, where most of the computation happens, and the results are sent back to the client and pieced together.

Because several MATLAB workers can be computing concurrently on the same loop, a parfor-loop can provide significantly better performance than its analogous for-loop.

Each execution of the body of a parfor-loop is an iteration. MATLAB workers evaluate iterations in no particular order, and independently of each other. Because each iteration is independent, there is no guarantee that the iterations are synchronized in any way, nor is there any need for this. If the number of workers is equal to the number of loop iterations, each worker performs one iteration of the loop. If there are more iterations than workers, some workers perform more than one loop iteration; in this case, a worker might receive multiple iterations at once to reduce communication time.

Deciding When to Use parfor

A parfor-loop is useful in situations where you need many loop iterations of a simple calculation, such as a Monte Carlo simulation. parfor divides the loop iterations into groups so that each worker executes some portion of the total number of iterations. parfor-loops are also useful when you have loop iterations that take a long time to execute, because the workers can execute iterations simultaneously.

You cannot use a parfor-loop when an iteration in your loop depends on the results of other iterations. Each iteration must be independent of all others. Since there is a communications cost involved in a parfor-loop, there might be no advantage to using
one when you have only a small number of simple calculations. The examples of this section are only to illustrate the behavior of parfor-loops, not necessarily to show the applications best suited to them.

Related Examples

- “Create a parfor-Loop” on page 2-4

More About

- “Parallel Pools” on page 2-45
- “Comparing for-Loops and parfor-Loops” on page 2-6
- “Reductions: Cumulative Values Updated by Each Iteration” on page 2-8
- “parfor Programming Considerations” on page 2-10
- “Classification of Variables in parfor-Loops” on page 2-22
- “parfor Limitations” on page 2-11
Create a parfor-Loop

The safest approach when creating a `parfor`-loop is to assume that iterations are performed on different MATLAB workers in the parallel pool, so there is no sharing of information between iterations. If you have a `for`-loop in which all iterations are completely independent of each other, this loop is a good candidate for a `parfor`-loop. Basically, if one iteration depends on the results of another iteration, these iterations are not independent and cannot be evaluated in parallel, so you cannot easily reprogram the loop into a `parfor`-loop.

The following example produces equivalent results, with a `for`-loop on the left, and a `parfor`-loop on the right. Try typing each in your MATLAB Command Window:

```matlab
clear A
for i = 1:8
    A(i) = i;
end
A
```

```matlab
clear A
parfor i = 1:8
    A(i) = i;
end
A
```

Notice that each element of `A` is equal to its index. The `parfor`-loop works because each element depends only upon its iteration of the loop, and upon no other iterations. `for`-loops that merely repeat such independent tasks are ideally suited candidates for `parfor`-loops.

Note If a parallel pool is not running, `parfor` creates a pool using your default cluster profile, if your parallel preferences are set accordingly.

Related Examples

- “Run Parallel for-Loops (parfor)” on page 1-4
- “Run a Batch Parallel Loop” on page 1-9
- “Convert Nested for-Loops to parfor” on page 2-49

More About

- “Parallel Pools” on page 2-45
- “Introduction to parfor” on page 2-2
• “Comparing for-Loops and parfor-Loops” on page 2-6
• “Reductions: Cumulative Values Updated by Each Iteration” on page 2-8
• “parfor Programming Considerations” on page 2-10
• “parfor Limitations” on page 2-11
Comparing for-Loops and parfor-Loops

Because parfor-loops are not quite the same as for-loops, there are specific behaviors of each to be aware of. As seen from the example in the topic “Create a parfor-Loop” on page 2-4, when you assign to an array variable (such as A in that example) inside the loop by indexing with the loop variable, the elements of that array are available in the client workspace after the loop, much the same as with a for-loop.

However, suppose you use a nonindexed variable inside the loop, or a variable whose indexing does not depend on the loop variable i. Try these examples and notice the values of d and i afterward:

```matlab
clear A
d = 0; i = 0;
for i = 1:4
    d = i*2;
    A(i) = d;
end
A
d
i
```

```matlab
clear A
d = 0; i = 0;
parfor i = 1:4
    d = i*2;
    A(i) = d;
end
A
d
i
```

Although the elements of A come out the same in both of these examples, the value of d does not. In the for-loop above on the left, the iterations execute in sequence, so afterward d has the value it held in the last iteration of the loop. In the parfor-loop on the right, the iterations execute in parallel, not in sequence, so it would be impossible to assign d a definitive value at the end of the loop. This also applies to the loop variable, i. Therefore, parfor-loop behavior is defined so that it does not affect the values d and i outside the loop at all, and their values remain the same before and after the loop. So, a
parfor-loop requires that each iteration be independent of the other iterations, and that all code that follows the parfor-loop not depend on the loop iteration sequence.

Related Examples

- “Introduction to parfor” on page 2-2
- “Create a parfor-Loop” on page 2-4

More About

- “Reductions: Cumulative Values Updated by Each Iteration” on page 2-8
- “Classification of Variables in parfor-Loops” on page 2-22
Reductions: Cumulative Values Updated by Each Iteration

These two examples show `parfor`-loops using reduction assignments. A reduction is an accumulation across iterations of a loop. The example on the left uses `x` to accumulate a sum across 10 iterations of the loop. The example on the right generates a concatenated array, `1:10`. In both of these examples, the execution order of the iterations on the workers does not matter: while the workers calculate individual results for each iteration, the client properly accumulates and assembles the final loop result.

```matlab
x = 0;
parfor i = 1:10
    x = x + i;
end
x
```

```matlab
x2 = [];
n = 10;
parfor i = 1:n
    x2 = [x2, i];
end
x2
```

If the loop iterations operate in random sequence, you might expect the concatenation sequence in the example on the right to be nonconsecutive. However, MATLAB recognizes the concatenation operation and yields deterministic results.

The next example, which attempts to compute Fibonacci numbers, is not a valid `parfor`-loop because the value of an element of `f` in one iteration depends on the values of other elements of `f` calculated in other iterations.

```matlab
f = zeros(1,50);
f(1) = 1;
f(2) = 2;
parfor n = 3:50
    f(n) = f(n-1) + f(n-2);
end
```

When you are finished with your loop examples, clear your workspace and delete your parallel pool of workers:

```matlab
clear
delete(gcp)
```

Related Examples

- “Create a parfor-Loop” on page 2-4
More About

- “Introduction to parfor” on page 2-2
- “Comparing for-Loops and parfor-Loops” on page 2-6
- “Reduction Variables” on page 2-31
parfor Programming Considerations

In this section...
- “MATLAB Path” on page 2-10
- “Error Handling” on page 2-10

MATLAB Path

All workers executing a `parfor`-loop must have the same MATLAB search path as the client, so that they can execute any functions called in the body of the loop. Therefore, whenever you use `cd`, `addpath`, or `rmpath` on the client, it also executes on all the workers, if possible. For more information, see the `parpool` reference page. When the workers are running on a different platform than the client, use the function `pctRunOnAll` to properly set the MATLAB search path on all workers.

Functions files that contain `parfor`-loops must be available on the search path of the workers in the pool running the `parfor`, or made available to the workers by the `AttachedFiles` or `AdditionalPaths` setting of the parallel pool.

Error Handling

When an error occurs during the execution of a `parfor`-loop, all iterations that are in progress are terminated, new ones are not initiated, and the loop terminates.

Errors and warnings produced on workers are annotated with the worker ID and displayed in the client’s Command Window in the order in which they are received by the client MATLAB.

The behavior of `lastwarn` is unspecified at the end of the `parfor` if used within the loop body.

More About

- “Variables in parfor-Loops” on page 2-19
- “parfor Limitations” on page 2-11
- “Inputs and Outputs in parfor-Loops” on page 2-12
parfor Limitations

Most of these restrictions result from the need for loop iterations to be completely independent of each other, or the fact that the iterations run on MATLAB worker sessions instead of the client session.

• Inputs and Outputs
 • “Functions with Interactive Inputs” on page 2-12
 • “Displaying Output” on page 2-12
• Classes and Handles
 • “Using Objects in parfor-Loops” on page 2-13
 • “Handle Classes” on page 2-13
 • “Sliced Variables Referencing Function Handles” on page 2-13
• Nesting and Flow
 • “Nested Functions” on page 2-15
 • “Nested Loops” on page 2-15
 • “Nested spmd Statements” on page 2-17
 • “Break and Return Statements” on page 2-17
 • “P-Code Scripts” on page 2-17
• Variables and Transparency
 • “Unambiguous Variable Names” on page 2-19
 • “Structure Arrays in parfor-Loops” on page 2-19
 • “Scalar Expansion with Sliced Outputs” on page 2-20
 • “Global and Persistent Variables” on page 2-21
 • “Transparency” on page 2-41
Inputs and Outputs in parfor-Loops

In this section...

“Functions with Interactive Inputs” on page 2-12
“Displaying Output” on page 2-12

Functions with Interactive Inputs

If you use a function that is not strictly computational in nature (e.g., `input`, `keyboard`) in a `parfor`-loop or in any function called by a `parfor`-loop, the behavior of that function occurs on the worker. The behavior might include hanging the worker process or having no visible effect at all.

Displaying Output

When running a `parfor`-loop on a parallel pool, all command-line output from the workers displays in the client Command Window, except output from variable assignments. Because the workers are MATLAB sessions without displays, any graphical output (for example, figure windows from `plot`) from the pool does not display at all.

More About

• “parfor Limitations” on page 2-11
Objects and Handles in parfor-Loops

In this section...

“Using Objects in parfor-Loops” on page 2-13
“Handle Classes” on page 2-13
“Sliced Variables Referencing Function Handles” on page 2-13

Using Objects in parfor-Loops

If you are passing objects into or out of a parfor-loop, the objects must properly facilitate being saved and loaded. For more information, see “Save and Load Process”.

Handle Classes

You can send handle objects as inputs to the body of a parfor-loop, but any changes made to handle objects on the workers during loop iterations are not automatically propagated back to the client. That is, changes made inside the loop are not automatically reflected after the loop.

To get the changes back to the client after the loop, explicitly assign the modified handle objects to output variables of the parfor-loop. In the following example, maps is a sliced input/output variable:

```matlab
maps = {containers.Map(),containers.Map(),containers.Map()};
parfor ii = 1:numel(maps)
    mymap = maps{ii};  % input slice assigned to local copy
    for jj = 1:1000
        mymap(num2str(jj)) = rand;
    end
    maps{ii} = mymap;  % modified local copy assigned to output slice
end
```

Sliced Variables Referencing Function Handles

You cannot directly call a function handle with the loop index as an input argument, because this cannot be distinguished from a sliced input variable. If you need to call a function handle with the loop index variable as an argument, use feval.

For example, suppose you had a for-loop that performs:
B = @sin;
for ii = 1:100
 A(ii) = B(ii);
end

A corresponding \texttt{parfor}-loop does not allow \texttt{B} to reference a function handle. So you can work around the problem with \texttt{feval}:

B = @sin;
\texttt{parfor} ii = 1:100
 A(ii) = \texttt{feval}(B,ii);
end

\textbf{More About}

• “parfor Limitations” on page 2-11
• “Sliced Variables” on page 2-26
Nesting and Flow in parfor-Loops

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Nested Functions” on page 2-15</td>
</tr>
<tr>
<td>“Nested Loops” on page 2-15</td>
</tr>
<tr>
<td>“Nested spmd Statements” on page 2-17</td>
</tr>
<tr>
<td>“Break and Return Statements” on page 2-17</td>
</tr>
<tr>
<td>“P-Code Scripts” on page 2-17</td>
</tr>
</tbody>
</table>

Nested Functions

The body of a `parfor`-loop cannot make reference to a nested function. However, it can call a nested function by means of a function handle.

Nested Loops

The body of a `parfor`-loop cannot contain another `parfor`-loop. But it can call a function that contains another `parfor`-loop.

However, because a worker cannot open a parallel pool, a worker cannot run the inner nested `parfor`-loop in parallel. This means that only one level of nested `parfor`-loops can run in parallel. If the outer loop runs in parallel on a parallel pool, the inner loop runs serially on each worker. If the outer loop runs serially in the client (e.g., `parfor` specifying zero workers), the function that contains the inner loop can run the inner loop in parallel on workers in a pool.

The body of a `parfor`-loop can contain `for`-loops. You can use the inner loop variable for indexing the sliced array, but only if you use the variable in plain form, not part of an expression. For example:

```matlab
A = zeros(4,5);
parfor j = 1:4
    for k = 1:5
        A(j,k) = j + k;
    end
end
A
```

Further nesting of `for`-loops with a `parfor` is also allowed.
Limitations of Nested for-Loops

For proper variable classification, the range of a for-loop nested in a parfor must be defined by constant numbers or variables. In the following example, the code on the left does not work because the for-loop upper limit is defined by a function call. The code on the right works around this by defining a broadcast or constant variable outside the parfor first:

<table>
<thead>
<tr>
<th>Invalid</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = zeros(100, 200); parfor i = 1:size(A, 1)</td>
<td>A = zeros(100, 200);</td>
</tr>
<tr>
<td>for j = 1:size(A, 2)</td>
<td>n = size(A, 2);</td>
</tr>
<tr>
<td>A(i, j) = plus(i, j);</td>
<td>parfor i = 1:size(A,1)</td>
</tr>
<tr>
<td>end</td>
<td>for j = 1:n</td>
</tr>
<tr>
<td></td>
<td>A(i, j) = plus(i, j);</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
</tbody>
</table>

The index variable for the nested for-loop must never be explicitly assigned other than in its for statement. When using the nested for-loop variable for indexing the sliced array, you must use the variable in plain form, not as part of an expression. For example, the following code on the left does not work, but the code on the right does:

<table>
<thead>
<tr>
<th>Invalid</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = zeros(4, 11); parfor i = 1:4</td>
<td>A = zeros(4, 11);</td>
</tr>
<tr>
<td>for j = 1:10</td>
<td>parfor i = 1:4</td>
</tr>
<tr>
<td>A(i, j) + 1 = i + j;</td>
<td>for j = 2:11</td>
</tr>
<tr>
<td>end</td>
<td>A(i, j) = i + j - 1;</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
</tbody>
</table>

If you use a nested for-loop to index into a sliced array, you cannot use that array elsewhere in the parfor-loop. In the following example, the code on the left does not work because A is sliced and indexed inside the nested for-loop; the code on the right works because v is assigned to A outside the nested loop:

<table>
<thead>
<tr>
<th>Invalid</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = zeros(4, 10); parfor i = 1:4</td>
<td>A = zeros(4, 10);</td>
</tr>
<tr>
<td>for j = 1:10</td>
<td>parfor i = 1:4</td>
</tr>
<tr>
<td>A(i, j) = i + j;</td>
<td>v = zeros(1, 10);</td>
</tr>
<tr>
<td></td>
<td>for j = 1:10</td>
</tr>
<tr>
<td></td>
<td>v(j) = i + j;</td>
</tr>
</tbody>
</table>
Invalid & Valid

```
disp(A(i, 1))
end
end
```

```
disp(v(1))
A(i, :) = v;
end
```

Inside a parfor, if you use multiple for-loops (not nested inside each other) to index into a single sliced array, they must loop over the same range of values. Furthermore, a sliced output variable can be used in only one nested for-loop. In the following example, the code on the left does not work because j and k loop over different values; the code on the right works to index different portions of the sliced array A:

Invalid & Valid

```
A = zeros(4, 10);
parfor i = 1:4
    for j = 1:5
        A(i, j) = i + j;
    end
    for k = 6:10
        A(i, k) = pi;
    end
end
```

```
A = zeros(4, 10);
parfor i = 1:4
    for j = 1:10
        if j < 6
            A(i, j) = i + j;
        else
            A(i, j) = pi;
        end
    end
end
```

Nested spmd Statements

The body of a parfor-loop cannot contain an spmd statement, and an spmd statement cannot contain a parfor-loop.

Break and Return Statements

The body of a parfor-loop cannot contain break or return statements.

Consider instead using parfeval or parfevalOnAll.

P-Code Scripts

You can call P-code script files from within a parfor-loop, but P-code script cannot contain a parfor-loop.
More About

• “parfor Limitations” on page 2-11
• “Convert Nested for-Loops to parfor” on page 2-49
Variables in parfor-Loops

In this section...

“Unambiguous Variable Names” on page 2-19
“Structure Arrays in parfor-Loops” on page 2-19
“Scalar Expansion with Sliced Outputs” on page 2-20
“Global and Persistent Variables” on page 2-21

Unambiguous Variable Names

If you use a name that MATLAB cannot unambiguously distinguish as a variable inside a parfor-loop, at parse time MATLAB assumes you are referencing a function. Then at run-time, if the function cannot be found, MATLAB generates an error. (See “Variable Names” in the MATLAB documentation.) For example, in the following code \(f(5) \) could refer either to the fifth element of an array named \(f \), or to a function named \(f \) with an argument of 5. If \(f \) is not clearly defined as a variable in the code, MATLAB looks for the function \(f \) on the path when the code runs.

```matlab
parfor i = 1:n
  ...
  a = f(5);
  ...
end
```

Structure Arrays in parfor-Loops

Creating Structures as Temporaries

You cannot create a structure in a parfor-loop by using dot-notation assignment. For example, in the following code both lines inside the loop generate a classification error.

```matlab
parfor i = 1:4
  temp.myfield1 = rand();
  temp.myfield2 = i;
end
```

The workaround is to use the `struct` function to create the structure in the loop, or at least to create the first field. The following code shows two such solutions.

```matlab
parfor i = 1:4
```
temp = struct();
temp.myfield1 = rand();
temp.myfield2 = i;
end

parfor i = 1:4
 temp = struct('myfield1',rand(),'myfield2',i);
end

Slicing Structure Fields

You cannot use structure fields as sliced *input or output* arrays in a parfor-loop; that is, you cannot use the loop variable to index the elements of a structure field. For example, in the following code both lines in the loop generate a classification error because of the indexing:

```matlab
parfor i = 1:4
    outputData.outArray1(i) = 1/i;
    outputData.outArray2(i) = i^2;
end
```

The workaround for sliced output is to employ separate sliced arrays in the loop, and assign the structure fields after the loop is complete, as shown in the following code.

```matlab
parfor i = 1:4
    outArray1(i) = 1/i;
    outArray2(i) = i^2;
end
outputData = struct('outArray1',outArray1,'outArray2',outArray2);
```

The workaround for sliced input is to assign the structure field to a separate array before the loop, and use that new array for the sliced input.

```matlab
inArray1 = inputData.inArray1;
inArray2 = inputData.inArray2;
parfor i = 1:4
    temp1 = inArray1(i);
    temp2 = inArray2(i);
end
```

Scalar Expansion with Sliced Outputs

You cannot use scalar expansion to define a set of values assigned to a sliced output array. For example, the following code attempts to expand the value `idx` for assignment to each element of the vector defined by `x(:,idx)`; this generates an error.
x = zeros(10,12);
parfor idx = 1:12
 x(:,idx) = idx;
end

The following code offers a suggested workaround for this limitation.

x = zeros(10,12);
parfor idx = 1:12
 x(:,idx) = repmat(idx,10,1);
end

Global and Persistent Variables

The body of a parfor-loop cannot contain global or persistent variable declarations.

More About

- “parfor Limitations” on page 2-11
- “Classification of Variables in parfor-Loops” on page 2-22
Classification of Variables in parfor-Loops

When a name in a parfor-loop is recognized as referring to a variable, the variable is classified into one of several categories. A parfor-loop generates an error if it contains any variables that cannot be uniquely categorized or if any variables violate their category restrictions.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Loop Variable” on page 2-24</td>
<td>Loop index</td>
</tr>
<tr>
<td>“Sliced Variables” on page 2-26</td>
<td>Arrays whose segments are operated on by different iterations of the loop</td>
</tr>
<tr>
<td>“Broadcast Variables” on page 2-30</td>
<td>Variables defined before the loop whose value is required inside the loop, but never assigned inside the loop</td>
</tr>
<tr>
<td>“Reduction Variables” on page 2-31</td>
<td>Variables that accumulate a value across iterations of the loop, regardless of iteration order</td>
</tr>
<tr>
<td>“Temporary Variables” on page 2-38</td>
<td>Variables created inside the loop, and not accessed outside the loop</td>
</tr>
</tbody>
</table>

Each of these variable classifications appears in this code fragment:
Notes about Required and Recommended Guidelines

The detailed topics linked from the table above, include guidelines and restrictions in shaded boxes like the one shown below. Those labeled as Required result in an error if your parfor code does not adhere to them. MATLAB software catches some of these errors at the time it reads the code, and others when it executes the code. These are referred to here as static and dynamic errors, respectively, and are labeled as Required (static) or Required (dynamic). Guidelines that do not cause errors are labeled as Recommended. You can use MATLAB Code Analyzer to help make parfor-loops comply with the guidelines.

Required (static): Description of the guideline or restriction

More About

• “Variables in parfor-Loops” on page 2-19
• “Reductions: Cumulative Values Updated by Each Iteration” on page 2-8
• “parfor Programming Considerations” on page 2-10
• “parfor Limitations” on page 2-11
Loop Variable

The loop variable defines the loop index value for each iteration. It is set with the beginning line of a `parfor` statement:

```matlab
parfor p=1:12
```

For values across all iterations, the loop variable must evaluate to ascending consecutive integers. Each iteration is independent of all others, and each has its own loop index value.

The following restriction is required, because changing `p` in the `parfor` body cannot guarantee the independence of iterations.

Required (static): Assignments to the loop variable are not allowed.

This example attempts to modify the value of the loop variable `p` in the body of the loop, and thus is invalid:

```matlab
parfor p = 1:n
    p = p + 1;
    a(p) = i;
end
```

You cannot index or subscript the loop variable in any way. The following code attempts to reference a field (`b`) of the loop variable (`p`) as if it were a structure. Both lines within the loop are invalid:

```matlab
parfor p = 1:n
    p.b = 3
    x(p) = fun(p.b)
end
```

Similarly, the following code is invalid because it attempts to index the loop variable as a 1-by-1 matrix:

```matlab
parfor p = 1:n
    x = p(1)
end
```

See Also

`parfor`
More About

- “Classification of Variables in parfor-Loops” on page 2-22
Sliced Variables

A sliced variable is one whose value can be broken up into segments, or slices, which are then operated on separately by different workers. Each iteration of the loop works on a different slice of the array. Using sliced variables is important because this type of variable can reduce communication between the client and workers. Only those slices needed by a worker are sent to it, and only when it starts working on a particular range of indices.

In the this example, a slice of A consists of a single element of that array:

```plaintext
parfor i = 1:length(A)
    B(i) = f(A(i));
end
```

Characteristics of a Sliced Variable

A variable in a parfor-loop is sliced if it has all of the following characteristics. A description of each characteristic follows the list:

- Type of First-Level Indexing — The first level of indexing is either parentheses, (), or braces, {}.
- Fixed Index Listing — Within the first-level parenthesis or braces, the list of indices is the same for all occurrences of a given variable.
- Form of Indexing — Within the list of indices for the variable, exactly one index involves the loop variable.
- Shape of Array — The array maintains a constant shape. In assigning to a sliced variable, the right-hand side of the assignment cannot be [] or '', because these operators attempt to delete elements.

Type of First-Level Indexing. For a sliced variable, the first level of indexing is enclosed in either parentheses, (), or braces, { }.

This table lists the forms for the first level of indexing for arrays sliced and not sliced.

<table>
<thead>
<tr>
<th>Reference for Variable Not Sliced</th>
<th>Reference for Sliced Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.x</td>
<td>A(...)</td>
</tr>
<tr>
<td>A.(...)</td>
<td>A{...}</td>
</tr>
</tbody>
</table>
After the first level, you can use any type of valid MATLAB indexing in the second and further levels.

The variable A shown here on the left is not sliced; that shown on the right is sliced:

\[
\begin{align*}
A.q\{i,12\} & & A\{i,12\}.q
\end{align*}
\]

Fixed Index Listing. Within the first-level parentheses or braces of a sliced variable’s indexing, the list of indices is the same for all occurrences of a given variable.

The variable A shown here on the left is not sliced because A is indexed by i and i+1 in different places; the code on the right shown on the right slices A:

<table>
<thead>
<tr>
<th>Not sliced</th>
<th>Sliced</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{parfor i = 1:k}</td>
<td>\texttt{parfor i = 1:k}</td>
</tr>
<tr>
<td>\hspace{1em} B(:) = h(A(i), A(i+1));</td>
<td>\hspace{1em} B(:) = f(A(i));</td>
</tr>
<tr>
<td>\hspace{1em} end</td>
<td>\hspace{1em} C(:) = g(A{i});</td>
</tr>
<tr>
<td></td>
<td>\hspace{1em} end</td>
</tr>
</tbody>
</table>

The example above on the right shows some occurrences of a sliced variable with first-level parenthesis indexing and with first-level brace indexing in the same loop. This is acceptable.

The following example on the left does not slice A because the indexing of A is not the same in all places. The example on the right slices A and B. The indexing of A is not the same as the indexing of B, but all indexing of A is consistent, and all indexing of B is consistent.

<table>
<thead>
<tr>
<th>Not sliced</th>
<th>Sliced</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{parfor i=1:10}</td>
<td>\texttt{A = [1 2 3 4 5 6 7 8 9 10;}}</td>
</tr>
<tr>
<td>\hspace{1em} \hspace{1em} b = A(1,i) + A(2,i)</td>
<td>\hspace{1em} \hspace{1em} 10 20 30 40 50 60 70 80 90 100];</td>
</tr>
<tr>
<td>\hspace{1em} end</td>
<td>\hspace{1em} B = zeros(1,10);</td>
</tr>
<tr>
<td></td>
<td>\texttt{parfor i=1:10}</td>
</tr>
<tr>
<td></td>
<td>\texttt{\hspace{1em} for n=1:2}</td>
</tr>
<tr>
<td></td>
<td>\texttt{\hspace{1em} B(i) = B(i)+A(n,i)}</td>
</tr>
<tr>
<td></td>
<td>\texttt{\hspace{1em} end}</td>
</tr>
<tr>
<td></td>
<td>\texttt{\hspace{1em} end}</td>
</tr>
</tbody>
</table>

Form of Indexing. Within the list of indices for a sliced variable, one of these indices is of the form \(i\), \(i+k\), \(i-k\), \(k+i\), or \(k-i\), where \(i\) is the loop variable and \(k\) is a constant or
a simple (nonindexed) broadcast variable; and every other index is a scalar constant, a simple broadcast variable, a nested for-loop index, colon, or end.

With \(i \) as the loop variable, the \(A \) variables shown here on the left are not sliced; those on the right are sliced:

<table>
<thead>
<tr>
<th>Not sliced</th>
<th>Sliced</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(i+f(k),j,:,3)) % (f(k)) invalid for slicing</td>
<td>(A(i,j,:))</td>
</tr>
<tr>
<td>(A(i,20:30,end)) % 20:30 not scalar</td>
<td>(A(i,:,end))</td>
</tr>
<tr>
<td>(A(i,:,s.field1)) % (s.field1) not simple broadcast var</td>
<td>(A(i+k,j,:,3))</td>
</tr>
<tr>
<td>(A(i,:,end))</td>
<td>(A(i,:,k))</td>
</tr>
</tbody>
</table>

When you use other variables along with the loop variable to index an array, you cannot set these variables inside the loop. In effect, such variables are constant over the execution of the entire \texttt{parfor} statement. You cannot combine the loop variable with itself to form an index expression.

Shape of Array. A sliced variable must maintain a constant shape. The variable \(A \) shown here on either line is not sliced:

\[
A(i,:) = []; \quad \text{A[end + 1]} = i;
\]

The reason \(A \) is not sliced in either case is because changing the shape of a sliced array would violate assumptions governing communication between the client and workers.

Sliced Input and Output Variables

All sliced variables have the characteristics of being input or output. A sliced variable can sometimes have both characteristics. MATLAB transmits sliced input variables from the client to the workers, and sliced output variables from workers back to the client. If a variable is both input and output, it is transmitted in both directions.

In this \texttt{parfor}-loop, \(r \) is a sliced input variable and \(b \) is a sliced output variable:

\[
a = 0; \\
z = 0; \\
r = \text{rand}(1,10); \\
parfor \ ii = 1:10 \\
\quad a = \ii; \\
\quad z = z + \ii; \\
\quad b(\ii) = r(\ii); \\
end
\]
However, if it is clear that in every iteration, every reference to an array element is set before it is used, the variable is not a sliced input variable. In this example, all the elements of A are set, and then only those fixed values are used:

```matlab
parfor ii = 1:n
    if someCondition
        A(ii) = 32;
    else
        A(ii) = 17;
    end
    loop code that uses A(ii)
end
```

Even if a sliced variable is not explicitly referenced as an input, implicit usage might make it so. In the following example, not all elements of A are necessarily set inside the parfor-loop, so the original values of the array are received, held, and then returned from the loop, making A both a sliced input and output variable.

```matlab
A = 1:10;
parfor ii = 1:10
    if rand < 0.5
        A(ii) = 0;
    end
end
```

More About

- “Classification of Variables in parfor-Loops” on page 2-22
Broadcast Variables

A broadcast variable is any variable other than the loop variable or a sliced variable that is not affected by an assignment inside the loop. At the start of a `parfor`-loop, the values of any broadcast variables are sent to all workers. Although this type of variable can be useful or even essential, broadcast variables that are large can cause a lot of communication between client and workers. In some cases it might be more efficient to use temporary variables for this purpose, creating and assigning them inside the loop.

More About
- “Classification of Variables in parfor-Loops” on page 2-22
Reduction Variables

MATLAB supports an important exception, called reductions, to the rule that loop iterations must be independent. A reduction variable accumulates a value that depends on all the iterations together, but is independent of the iteration order. MATLAB allows reduction variables in parfor-loops.

Reduction variables appear on both side of an assignment statement, such as any of the following, where expr is a MATLAB expression.

<table>
<thead>
<tr>
<th>X = X + expr</th>
<th>X = expr + X</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = X - expr</td>
<td>See Associativity in Reduction Assignments in “Further Considerations with Reduction Variables” on page 2-33</td>
</tr>
<tr>
<td>X = X .* expr</td>
<td>X = expr .* X</td>
</tr>
<tr>
<td>X = X * expr</td>
<td>X = expr * X</td>
</tr>
<tr>
<td>X = X & expr</td>
<td>X = expr & X</td>
</tr>
<tr>
<td>X = X</td>
<td>expr</td>
</tr>
<tr>
<td>X = [X, expr]</td>
<td>X = [expr, X]</td>
</tr>
<tr>
<td>X = [X; expr]</td>
<td>X = [expr; X]</td>
</tr>
<tr>
<td>X = min(X, expr)</td>
<td>X = min(expr, X)</td>
</tr>
<tr>
<td>X = max(X, expr)</td>
<td>X = max(expr, X)</td>
</tr>
<tr>
<td>X = union(X, expr)</td>
<td>X = union(expr, X)</td>
</tr>
<tr>
<td>X = intersect(X, expr)</td>
<td>X = intersect(expr, X)</td>
</tr>
</tbody>
</table>

Each of the allowed statements listed in this table is referred to as a reduction assignment, and, by definition, a reduction variable can appear only in assignments of this type.

The following example shows a typical usage of a reduction variable X:

```matlab
X = ...; % Do some initialization of X
parfor i = 1:n
    X = X + d(i);
end
```
This loop is equivalent to the following, where each $d(i)$ is calculated by a different iteration:

$$X = X + d(1) + \ldots + d(n)$$

If the loop were a regular for-loop, the variable X in each iteration would get its value either before entering the loop or from the previous iteration of the loop. However, this concept does not apply to parfor-loops:

In a parfor-loop, the value of X is never transmitted from client to workers or from worker to worker. Rather, additions of $d(i)$ are done in each worker, with i ranging over the subset of $1:n$ being performed on that worker. The results are then transmitted back to the client, which adds the workers' partial sums into X. Thus, workers do some of the additions, and the client does the rest.

Basic Rules for Reduction Variables

The following requirements further define the reduction assignments associated with a given variable.

Required (static): For any reduction variable, the same reduction function or operation must be used in all reduction assignments for that variable.

The parfor-loop on the left is not valid because the reduction assignment uses $+$ in one instance, and $[,]$ in another. The parfor-loop on the right is valid:

<table>
<thead>
<tr>
<th>Invalid</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>parfor i = 1:n</code></td>
<td><code>parfor i = 1:n</code></td>
</tr>
<tr>
<td><code>if testLevel(k)</code></td>
<td><code>if testLevel(k)</code></td>
</tr>
<tr>
<td><code>A = A + i;</code></td>
<td><code>A = A + i;</code></td>
</tr>
<tr>
<td><code>else</code></td>
<td><code>else</code></td>
</tr>
<tr>
<td><code>A = [A, 4+i];</code></td>
<td><code>A = A + i + 5*k;</code></td>
</tr>
<tr>
<td><code>end</code></td>
<td><code>end</code></td>
</tr>
<tr>
<td><code>% loop body continued</code></td>
<td><code>% loop body continued</code></td>
</tr>
<tr>
<td><code>end</code></td>
<td><code>end</code></td>
</tr>
</tbody>
</table>

Required (static): If the reduction assignment uses $*$ or $[,]$, then in every reduction assignment for X, X must be consistently specified as the first argument or consistently specified as the second.
The `parfor`-loop on the left below is not valid because the order of items in the concatenation is not consistent throughout the loop. The `parfor`-loop on the right is valid:

<table>
<thead>
<tr>
<th>Invalid</th>
<th>Valid</th>
</tr>
</thead>
</table>
| parfor i = 1:n
 if testLevel(k)
 A = [A, 4+i];
 else
 A = [r(i), A];
 end
% loop body continued |
| parfor i = 1:n
 if testLevel(k)
 A = [A, 4+i];
 else
 A = [A, r(i)];
 end
% loop body continued |

Further Considerations with Reduction Variables

This section provides more detail about reduction assignments, associativity, commutativity, and overloading of reduction functions.

Reduction Assignments. In addition to the specific forms of reduction assignment listed in the table in “Reduction Variables” on page 2-31, the only other (and more general) form of a reduction assignment is

\[
X = f(X, \text{expr}) \quad \text{or} \quad X = f(\text{expr}, X)
\]

Required (static): \(f\) can be a function or a variable. If it is a variable, it must not be affected by the `parfor` body (in other words, it is a broadcast variable).

If \(f\) is a variable, then for all practical purposes its value at run time is a function handle. However, this is not strictly required; as long as the right-hand side can be evaluated, the resulting value is stored in \(X\).

The `parfor`-loop below on the left will not execute correctly because the statement \(f = @\times\) causes \(f\) to be classified as a temporary variable and therefore is cleared at the beginning of each iteration. The `parfor` on the right is correct, because it does not assign \(f\) inside the loop:

<table>
<thead>
<tr>
<th>Invalid</th>
<th>Valid</th>
</tr>
</thead>
</table>
| f = @(x,k)x * k;
parfor i = 1:n |
| f = @(x,k)x * k;
parfor i = 1:n |
<table>
<thead>
<tr>
<th>Invalid</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = f(a,i); % loop body continued f = @times; % Affects f end</td>
<td>a = f(a,i); % loop body continued end</td>
</tr>
</tbody>
</table>

Note that the operators `&&` and `||` are not listed in the table in “Reduction Variables” on page 2-31. Except for `&&` and `||`, all the matrix operations of MATLAB have a corresponding function `f`, such that `u op v` is equivalent to `f(u,v)`. For `&&` and `||`, such a function cannot be written because `u&&v` and `u||v` might or might not evaluate `v`, but `f(u,v)` always evaluates `v` before calling `f`. This is why `&&` and `||` are excluded from the table of allowed reduction assignments for a `parfor` loop.

Every reduction assignment has an associated function `f`. The properties of `f` that ensure deterministic behavior of a `parfor` statement are discussed in the following sections.

Associativity in Reduction Assignments. Concerning the function `f` as used in the definition of a reduction variable, the following practice is recommended, but does not generate an error if not adhered to. Therefore, it is up to you to ensure that your code meets this recommendation.

Recommended: To get deterministic behavior of `parfor`-loops, the reduction function `f` must be associative.

To be associative, the function `f` must satisfy the following for all `a`, `b`, and `c`:

\[f(a,f(b,c)) = f(f(a,b),c) \]

The classification rules for variables, including reduction variables, are purely syntactic. They cannot determine whether the `f` you have supplied is truly associative or not. Associativity is assumed, but if you violate this, different executions of the loop might result in different answers.

Note: While the addition of mathematical real numbers is associative, addition of floating-point numbers is only approximately associative, and different executions of this `parfor` statement might produce values of `X` with different round-off errors. This is an unavoidable cost of parallelism.

For example, the statement on the left yields 1, while the statement on the right returns `1 + eps`:

2 Parallel for-Loops (parfor)
\[(1 + \text{eps}/2) + \text{eps}/2 \quad 1 + (\text{eps}/2 + \text{eps}/2)\]

With the exception of the minus operator (-), all the special cases listed in the table in “Reduction Variables” on page 2-31 have a corresponding (perhaps approximately) associative function. MATLAB calculates the assignment \(X = X - \text{expr}\) by using \(X = X + (-\text{expr})\). (So, technically, the function for calculating this reduction assignment is plus, not minus.) However, the assignment \(X = \text{expr} - X\) cannot be written using an associative function, which explains its exclusion from the table.

Commutativity in Reduction Assignments. Some associative functions, including +, .*, min, and max, intersect, and union, are also commutative. That is, they satisfy the following for all \(a\) and \(b\):

\[f(a,b) = f(b,a)\]

Examples of noncommutative functions are * (because matrix multiplication is not commutative for matrices in which both dimensions have size greater than one), [,], and [;]. Noncommutativity is the reason that consistency in the order of arguments to these functions is required. As a practical matter, a more efficient algorithm is possible when a function is commutative as well as associative, and \texttt{parfor} is optimized to exploit commutativity.

Recommended: Except in the cases of *, [,], and [;], the function \(f\) of a reduction assignment should be commutative. If \(f\) is not commutative, different executions of the loop might result in different answers.

Violating the restriction on commutativity in a function used for reduction, could result in unexpected behavior, even if it does not generate an error.

Unless \(f\) is a known noncommutative built-in, it is assumed to be commutative. There is currently no way to specify a user-defined, noncommutative function in \texttt{parfor}.

Overloading in Reduction Assignments. Most associative functions \(f\) have an identity element \(e\), so that for any \(a\), the following holds true:

\[f(e,a) = a = f(a,e)\]

Examples of identity elements for some functions are listed in this table.

<table>
<thead>
<tr>
<th>Function</th>
<th>Identity Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>
MATLAB uses the identity elements of reduction functions when it knows them. So, in addition to associativity and commutativity, you should also keep identity elements in mind when overloading these functions.

Recommended: An overload of +, *, .*, [,], or [;] should be associative if it is used in a reduction assignment in a `parfor`. The overload must treat the respective identity element given above (all with class `double`) as an identity element.

Recommended: An overload of +, .*, `union`, or `intersect` should be commutative.

There is no way to specify the identity element for a function. In these cases, the behavior of `parfor` is a little less efficient than it is for functions with a known identity element, but the results are correct.

Similarly, because of the special treatment of `X = X - expr`, the following is recommended.

Recommended: An overload of the minus operator (-) should obey the mathematical law that `X - (y + z)` is equivalent to `(X - y) - z`.

Example: Using a Custom Reduction Function

Suppose each iteration of a loop performs some calculation, and you are interested in finding which iteration of a loop produces the maximum value. This is a reduction exercise that makes an accumulation across multiple iterations of a loop. Your reduction function must compare iteration results, until finally the maximum value can be determined after all iterations are compared.

First consider the reduction function itself. To compare an iteration's result against another's, the function requires as input the current iteration's result and the known maximum result from other iterations so far. Each of the two inputs is a vector containing an iteration's result data and iteration number.
function mc = comparemax(A, B)
% Custom reduction function for 2-element vector input

if A(1) >= B(1) % Compare the two input data values
 mc = A; % Return the vector with the larger result
else
 mc = B;
end

Inside the loop, each iteration calls the reduction function (comparemax), passing in a pair of 2-element vectors:

- The accumulated maximum and its iteration index (this is the reduction variable, cummax)
- The iteration’s own calculation value and index

If the data value of the current iteration is greater than the maximum in cummax, the function returns a vector of the new value and its iteration number. Otherwise, the function returns the existing maximum and its iteration number.

The code for the loop looks like the following, with each iteration calling the reduction function comparemax to compare its own data [dat i] to that already accumulated in cummax.

% First element of cummax is maximum data value
% Second element of cummax is where (iteration) maximum occurs
cummax = [0 0]; % Initialize reduction variable
parfor ii = 1:100
 dat = rand(); % Simulate some actual computation
 cummax = comparemax(cummax, [dat ii]);
end
disp(cummax);

More About
- "Classification of Variables in parfor-Loops” on page 2-22
- "Reductions: Cumulative Values Updated by Each Iteration” on page 2-8
Temporary Variables

A temporary variable is any variable that is the target of a direct, nonindexed assignment, but is not a reduction variable. In the following parfor-loop, a and d are temporary variables:

```matlab
a = 0;
z = 0;
r = rand(1,10);
parfor i = 1:10
    a = i;          % Variable a is temporary
    z = z + i;
    if i <= 5
        d = 2*a;     % Variable d is temporary
    end
end
```

In contrast to the behavior of a for-loop, MATLAB effectively clears any temporary variables before each iteration of a parfor-loop. To help ensure the independence of iterations, the values of temporary variables cannot be passed from one iteration of the loop to another. Therefore, temporary variables must be set inside the body of a parfor-loop, so that their values are defined separately for each iteration.

MATLAB does not send temporary variables back to the client. A temporary variable in the context of the parfor statement has no effect on a variable with the same name that exists outside the loop, again in contrast to ordinary for-loops.

Uninitialized Temporaries

Because temporary variables are cleared at the beginning of every iteration, MATLAB can detect certain cases in which any iteration through the loop uses the temporary variable before it is set in that iteration. In this case, MATLAB issues a static error rather than a run-time error, because there is little point in allowing execution to proceed if a run-time error is guaranteed to occur. This kind of error often arises because of confusion between for and parfor, especially regarding the rules of classification of variables. For example, suppose you write

```matlab
b = true;
parfor i = 1:n
    if b && some_condition(i)
        do_something(i);
    
```
b = false;
end
...
end

This loop is acceptable as an ordinary for-loop, but as a parfor-loop, b is a temporary variable because it occurs directly as the target of an assignment inside the loop. Therefore it is cleared at the start of each iteration, so its use in the condition of the if is guaranteed to be uninitialized. (If you change parfor to for, the value of b assumes sequential execution of the loop, so that do_something(i) is executed for only the lower values of i until b is set false.)

Temporary Variables Intended as Reduction Variables

Another common cause of uninitialized temporaries can arise when you have a variable that you intended to be a reduction variable, but you use it elsewhere in the loop, causing it technically to be classified as a temporary variable. For example:

s = 0;
parfor i = 1:n
 s = s + f(i);
 ...
 if (s > whatever)
 ...
 end
end

If the only occurrences of s were the two in the first statement of the body, it would be classified as a reduction variable. But in this example, s is not a reduction variable because it has a use outside of reduction assignments in the line s > whatever. Because s is the target of an assignment (in the first statement), it is a temporary, so MATLAB issues an error about this fact, but points out the possible connection with reduction.

Note that if you change parfor to for, the use of s outside the reduction assignment relies on the iterations being performed in a particular order. The point here is that in a parfor-loop, it matters that the loop “does not care” about the value of a reduction variable as it goes along. It is only after the loop that the reduction value becomes usable.

More About

• “Classification of Variables in parfor-Loops” on page 2-22
• “Reduction Variables” on page 2-31
• “Transparency” on page 2-41
Transparency

The body of a \texttt{parfor}-loop or \texttt{spmd} block must be \textit{transparent}, meaning that all references to variables must be “visible” (i.e., occur in the text of the program).

In the following examples, because X is not visible as an input variable in the loop or block body (only the string ‘X’ is passed to \texttt{eval}), it does not get transferred to the workers. As a result, MATLAB issues an error at run time:

\begin{verbatim}
X = 5;
parfor ii = 1:4
 eval('X');
end
\end{verbatim}

\begin{verbatim}
X = 5;
spmd
 eval('X');
end
\end{verbatim}

Similarly, you cannot clear variables from a worker’s workspace by executing \texttt{clear} inside a \texttt{parfor} or \texttt{spmd} statement:

\begin{verbatim}
parfor ii = 1:4
 <statements...>
 clear('X')
 % cannot clear: transparency violation
 <statements...>
end
\end{verbatim}

\begin{verbatim}
spmd; clear('X'); end
\end{verbatim}

As a workaround, you can free up most of the memory used by a variable by setting its value to empty, when it is no longer needed:

\begin{verbatim}
parfor ii = 1:4
 <statements...>
 X = [];
 <statements...>
end
\end{verbatim}

Or in the case of \texttt{spmd} blocks, you can clear its Composite from the client workspace.

In general, the requirement for transparency restricts all dynamic access to variables, because the entire variable might not be present in any given worker. Therefore, variable creation, deletion, modification, access, and querying that is not explicitly specified by the program is prohibited in a transparent workspace.

Examples of some other actions or functions that violate transparency are:

- \texttt{evalc}, \texttt{evalin}, and \texttt{assignin} with the \texttt{workspace} argument specified as ‘\texttt{caller}'
• **save** and **load**, unless the output of **load** is assigned to a variable.

• Running a script from within a **parfor**-loop can cause a transparency violation if the script attempts to access (read or write) variables of the parent workspace. To avoid this issue, convert the script to a function and call it with the necessary variables as input or output arguments.

MATLAB *does* successfully execute **eval** and **evalc** statements that appear in functions called from the **parfor** body.

See Also
parfor | spmd

More About

• “**parfor Limitations**” on page 2-11

• “**spmd Limitations**” on page 3-13
Improving parfor Performance

Where to Create Arrays

With a parfor-loop, it might be faster to have each MATLAB worker create its own arrays or portions of them in parallel, rather than to create a large array in the client before the loop and send it out to all the workers separately. Having each worker create its own copy of these arrays inside the loop saves the time of transferring the data from client to workers, because all the workers can be creating it at the same time. This might challenge your usual practice to do as much variable initialization before a for-loop as possible, so that you do not needlessly repeat it inside the loop.

Whether to create arrays before the parfor-loop or inside the parfor-loop depends on the size of the arrays, the time needed to create them, whether the workers need all or part of the arrays, the number of loop iterations that each worker performs, and other factors. While many for-loops can be directly converted to parfor-loops, even in these cases there might be other issues involved in optimizing your code.

Another option to consider is to use the parallel.pool.Constant function to establish variables on the pool workers before the loop. These variables remain on the workers after the loop finishes, and remain available for multiple parfor-loops.

Slicing Arrays

If a variable is initialized before a parfor-loop, then used inside the parfor-loop, it has to be passed to each MATLAB worker evaluating the loop iterations. Only those variables used inside the loop are passed from the client workspace. However, if all occurrences of the variable are indexed by the loop variable, each worker receives only the part of the array it needs.

Optimizing on Local vs. Cluster Workers

Running your code on local workers might offer the convenience of testing your application without requiring the use of cluster resources. However, there are certain drawbacks or limitations with using local workers. Because the transfer of data does not occur over the network, transfer behavior on local workers might not be indicative of how it will typically occur over a network.

With local workers, because all the MATLAB worker sessions are running on the same machine, you might not see any performance improvement from a parfor-loop regarding
execution time. This can depend on many factors, including how many processors and cores your machine has. You might experiment to see if it is faster to create the arrays before the loop (as shown on the left below), rather than have each worker create its own arrays inside the loop (as shown on the right).

Try the following examples running a parallel pool locally, and notice the difference in time execution for each loop. First open a local parallel pool:

```
parpool('local')
```

Then enter the following examples. (If you are viewing this documentation in the MATLAB help browser, highlight each segment of code below, right-click, and select Evaluate Selection in the context menu to execute the block in MATLAB. That way the time measurement will not include the time required to paste or type.)

```
tic;
n = 200;
M = magic(n);
R = rand(n);
parfor i = 1:n
    A(i) = sum(M(i,:).*R(n+1-i,:));
end
toc
```

```
tic;
n = 200;
parfor i = 1:n
    M = magic(n);
    R = rand(n);
    A(i) = sum(M(i,:).*R(n+1-i,:));
end
toc
```

Running on a remote cluster, you might find different behavior, as workers can simultaneously create their arrays, saving transfer time. Therefore, code that is optimized for local workers might not be optimized for cluster workers, and vice versa.

See Also

`parallel.pool.Constant`
Parallel Pools

In this section...

“What Is a Parallel Pool?” on page 2-45
“Automatically Start and Stop a Parallel Pool” on page 2-46
“Alternative Ways to Start and Stop Pools” on page 2-46
“Pool Size and Cluster Selection” on page 2-47

What Is a Parallel Pool?

A parallel pool is a set of MATLAB workers in a compute cluster or desktop, bound together by a special type of job so that they can be used interactively and can communicate with each other during the lifetime of the job. In one sense, a parallel pool describes this collection of workers, such as when referring to the pool size. In another sense, a parallel pool describes the special job running on these workers, such as when viewing your jobs in the “Job Monitor” on page 6-29. While these pool workers are reserved for your interactive use, they are not available to other users.

You can have only one parallel pool accessible at a time from a MATLAB client session. In MATLAB, the current parallel pool is represented by a parallel.Pool object.
Automatically Start and Stop a Parallel Pool

By default, a parallel pool starts automatically when needed by certain parallel language features. The following statements and functions can cause a pool to start:

- parfor
- spmd
- distributed
- Composite
- parallel.pool.Constant
- parfeval
- parfevalOnAll
- gcp
- mapreduce
- mapreducer

Your parallel preferences specify which cluster the pool runs on, and the preferred number of workers in the pool. To access your preferences, on the Home tab, in the Environment section, click Parallel > Parallel Preferences.

Alternative Ways to Start and Stop Pools

In your parallel preferences, you can turn off the option for the pool to open or close automatically. If you choose not to have the pool open automatically, you can control the pool with the following techniques.

Parallel Pool Desktop Menu

You can use the pool indicator in the lower-left corner of the desktop to manually start a parallel pool. Click the indicator icon, and select Start parallel pool. The pool size and cluster are specified by your parallel preferences and default cluster. Your default cluster is indicated by a check mark on the Parallel > Default Cluster menu.

The menu options are different when a pool is running; in this case you can select Shut down parallel pool.
Programming Interface

Start a Parallel Pool

You can start and stop a parallel pool programmatically, using default settings or specifying alternatives.

To open a parallel pool based on your preference settings:

```matlab
parpool
```

To open a pool of a specific size:

```matlab
parpool(4)
```

To use a cluster other than your default, to specify where the pool runs:

```matlab
parpool('MyCluster',4)
```

Shut Down a Parallel Pool

You can get the current parallel pool, and use that object when you want to shut down the pool:

```matlab
p = gcp;
delete(p)
```

Pool Size and Cluster Selection

There are several places to specify your pool size. Several factors might limit the size of your pool. The actual size of your parallel pool is determined by the combination of the following:

1. Licensing or cluster size

 The ultimate limit on the number of workers in a pool is restricted to the number of workers in your cluster. This might be determined by the number of MATLAB Distributed Computing Server licenses available, or in the case of MJS by the number of workers running in the cluster. A local cluster running on the client machine requires no licensing beyond the one for Parallel Computing Toolbox, and the limit on the number or workers is high enough to support the range of known desktop hardware.

2. Cluster profile number of workers (NumWorkers)
A cluster object can set a hard limit on the number of workers, which you can set in the cluster profile. Even if you request more workers at the command line or in your preferences, you cannot exceed the limit set in the applicable profile. Attempting to exceed this number generates an error.

3 Command-line argument

If you specify a pool size at the command line, this overrides the setting of your preferences. But this value must fall within the limits of the applicable cluster profile.

4 Parallel preferences

If you do not specify a pool size at the command line, MATLAB attempts to start a parallel pool with a size determined by your parallel preferences, provided that this value falls within the limits of the applicable cluster profile. Note that this is a preference, not a requirement or request for a specific number of workers. So if a pool cannot start with as many workers as called for in your preferences, you get a smaller pool, without any errors. If you need an exact number of workers, specify the number at the command line.

For selection of the cluster on which the pool runs, precedence is determined by:

1 The command-line cluster object argument. For example, this overrides the default profile setting, and uses the cluster identified by the profile 'MyProfile':

```matlab
c = parcluster('MyProfile');
p = parpool(c);
```

2 The cluster specified in the default profile:

```matlab
p = parpool;
```

See Also
delete | distributed | gcp | parcluster | parfeval | parfor | parpool | spmd

More About

- “How Parallel Computing Products Run a Job” on page 6-2
- “Introduction to parfor” on page 2-2
- “Parallel Preferences” on page 6-12
- “Clusters and Cluster Profiles” on page 6-14
Convert Nested for-Loops to parfor

A typical use case for nested loops is to step through an array using one loop variable to index through one dimension, and a nested loop variable to index another dimension. The basic form looks like this:

```matlab
X = zeros(n,m);
for a = 1:n
    for b = 1:m
        X(a,b) = fun(a,b)
    end
end
```

The following code shows an extremely simple example, with results you can easily view.

```matlab
M1 = magic(5);
for x = 1:5
    for y = 1:5
        M2(x,y) = x*10 + y + M1(x,y)/10000;
    end
end
M2
```

Although you can parallelize either of the nested loops, you cannot run both in parallel. This is because the workers in a parallel pool cannot start or access further parallel pools.

If the loop counted by `x` is converted to a `parfor`-loop, then each worker in the pool executes the nested loops using the `y` loop counter, and the `y` loops themselves cannot run as a `parfor` on each worker. So if you convert only the outer loop to a `parfor`, it looks like this:

```matlab
M1 = magic(5);
parfor a = 1:5
    for b = 1:5
        M2(a,b) = a*10 + b + M1(a,b)/10000;
    end
end
M2
```

Should you consider converting only the inner loop to a `parfor`? While it might be programmatically simpler in your case to do this, it might not be advisable. The converted code looks like this:
M1 = magic(5);
for a = 1:5
 parfor b = 1:5
 M2(a,b) = a*10 + b + M1(a,b)/10000;
 end
end
M2

In this case, each iteration of the outer loop in MATLAB, initiates a \texttt{parfor}-loop. That is, this code creates five \texttt{parfor}-loops. There is generally more overhead to a \texttt{parfor}-loop than a \texttt{for}-loop, so you might find that this approach does not perform optimally.

\textbf{More About}

- “Nesting and Flow in parfor-Loops” on page 2-15
Repeat Random Numbers in parfor-Loops

As described in “Control Random Number Streams” on page 6-37, each worker in a cluster has an independent random number generator stream. By default, therefore, each worker in a pool, and each iteration in a parfor-loop has a unique, independent set of random numbers. Subsequent runs of the parfor-loop generate different numbers.

In a parfor-loop, you cannot control what sequence the iterations execute in, nor can you control which worker runs which iterations. So even if you reset the random number generators, the parfor-loop can generate the same values in a different sequence.

To reproduce the same set of random numbers in a parfor-loop each time the loop runs, you must control random generation by assigning a particular substream for each iteration.

First, give each worker the same stream, one that supports substreams.

```matlab
parpool('local',4);
spmd
    rng(0,'combRecursive');
end
```

Inside the parfor-loop, set the substream index by the loop index. This ensures that each iteration uses its particular set of random numbers, regardless of which worker runs that iteration or what sequence iterations run in.

```matlab
r = zeros(1,16);
parfor i = 1:16
    stream = RandStream.getGlobalStream();
    stream.Substream = i;
    r(i) = rand;
end
r
```

```
r =
```

```
Columns 1 through 8
0.7270  0.5582  0.1666  0.3477  0.5671  0.5502  0.0130  0.9179

Columns 9 through 16
0.1567  0.7076  0.8577  0.8923  0.0891  0.2413  0.6074  0.2369
```
Single Program Multiple Data (spmd)

- “Execute Simultaneously on Multiple Data Sets” on page 3-2
- “Access Worker Variables with Composites” on page 3-6
- “Distribute Arrays” on page 3-10
- “Programming Tips” on page 3-13
Execute Simultaneously on Multiple Data Sets

In this section...

“Introduction” on page 3-2
“When to Use spmd” on page 3-2
“Define an spmd Statement” on page 3-3
“Display Output” on page 3-5

Introduction

The single program multiple data (spmd) language construct allows seamless interleaving of serial and parallel programming. The spmd statement lets you define a block of code to run simultaneously on multiple workers. Variables assigned inside the spmd statement on the workers allow direct access to their values from the client by reference via Composite objects.

This chapter explains some of the characteristics of spmd statements and Composite objects.

When to Use spmd

The “single program” aspect of spmd means that the identical code runs on multiple workers. You run one program in the MATLAB client, and those parts of it labeled as spmd blocks run on the workers. When the spmd block is complete, your program continues running in the client.

The “multiple data” aspect means that even though the spmd statement runs identical code on all workers, each worker can have different, unique data for that code. So multiple data sets can be accommodated by multiple workers.

Typical applications appropriate for spmd are those that require running simultaneous execution of a program on multiple data sets, when communication or synchronization is required between the workers. Some common cases are:

• Programs that take a long time to execute — spmd lets several workers compute solutions simultaneously.
• Programs operating on large data sets — spmd lets the data be distributed to multiple workers.
Define an spmd Statement

The general form of an spmd statement is:

```matlab
spmd
    <statements>
end
```

Note If a parallel pool is not running, spmd creates a pool using your default cluster profile, if your parallel preferences are set accordingly.

The block of code represented by `<statements>` executes in parallel simultaneously on all workers in the parallel pool. If you want to limit the execution to only a portion of these workers, specify exactly how many workers to run on:

```matlab
spmd (n)
    <statements>
end
```

This statement requires that \(n \) workers run the spmd code. \(n \) must be less than or equal to the number of workers in the open parallel pool. If the pool is large enough, but \(n \) workers are not available, the statement waits until enough workers are available. If \(n \) is 0, the spmd statement uses no workers, and runs locally on the client, the same as if there were not a pool currently running.

You can specify a range for the number of workers:

```matlab
spmd (m,n)
    <statements>
end
```

In this case, the spmd statement requires a minimum of \(m \) workers, and it uses a maximum of \(n \) workers.

If it is important to control the number of workers that execute your spmd statement, set the exact number in the cluster profile or with the spmd statement, rather than using a range.

For example, create a random matrix on three workers:

```matlab
spmd (3)
```
R = rand(4,4);
end

Note All subsequent examples in this chapter assume that a parallel pool is open and remains open between sequences of `spmd` statements.

Unlike a `parfor`-loop, the workers used for an `spmd` statement each have a unique value for `labindex`. This lets you specify code to be run on only certain workers, or to customize execution, usually for the purpose of accessing unique data.

For example, create different sized arrays depending on `labindex`:

```matlab
spmd (3)
    if labindex==1
        R = rand(9,9);
    else
        R = rand(4,4);
    end
end
```

Load unique data on each worker according to `labindex`, and use the same function on each worker to compute a result from the data:

```matlab
spmd (3)
    labdata = load(['datafile_' num2str(labindex) '.ascii'])
    result = MyFunction(labdata)
end
```

The workers executing an `spmd` statement operate simultaneously and are aware of each other. As with a communicating job, you are allowed to directly control communications between the workers, transfer data between them, and use codistributed arrays among them.

For example, use a codistributed array in an `spmd` statement:

```matlab
spmd (3)
    RR = rand(30, codistributor());
end
```

Each worker has a 30-by-10 segment of the codistributed array `RR`. For more information about codistributed arrays, see “Working with Codistributed Arrays” on page 5-5.
Display Output

When running an `spmd` statement on a parallel pool, all command-line output from the workers displays in the client Command Window. Because the workers are MATLAB sessions without displays, any graphical output (for example, figure windows) from the pool does not display at all.
Access Worker Variables with Composites

In this section...

“Introduction to Composites” on page 3-6
“Create Composites in spmd Statements” on page 3-6
“Variable Persistence and Sequences of spmd” on page 3-8
“Create Composites Outside spmd Statements” on page 3-9

Introduction to Composites

Composite objects in the MATLAB client session let you directly access data values on the workers. Most often you assigned these variables within spmd statements. In their display and usage, Composites resemble cell arrays. There are two ways to create Composites:

• Use the Composite function on the client. Values assigned to the Composite elements are stored on the workers.
• Define variables on workers inside an spmd statement. After the spmd statement, the stored values are accessible on the client as Composites.

Create Composites in spmd Statements

When you define or assign values to variables inside an spmd statement, the data values are stored on the workers.

After the spmd statement, those data values are accessible on the client as Composites. Composite objects resemble cell arrays, and behave similarly. On the client, a Composite has one element per worker. For example, suppose you create a parallel pool of three local workers and run an spmd statement on that pool:

parpool('local',3)

spmd % Uses all 3 workers
 MM = magic(labindex+2); % MM is a variable on each worker
end
MM{1} % In the client, MM is a Composite with one element per worker
 8 1 6
A variable might not be defined on every worker. For the workers on which a variable is not defined, the corresponding Composite element has no value. Trying to read that element throws an error.

```matlab
spmd
    if labindex > 1
        HH = rand(4);
    end
end
HH
```

Lab 1: No data
Lab 2: class = double, size = [4 4]
Lab 3: class = double, size = [4 4]

You can also set values of Composite elements from the client. This causes a transfer of data, storing the value on the appropriate worker even though it is not executed within an `spmd` statement:

```matlab
MM{3} = eye(4);
```

In this case, `MM` must already exist as a Composite, otherwise MATLAB interprets it as a cell array.

Now when you do enter an `spmd` statement, the value of the variable `MM` on worker 3 is as set:

```matlab
spmd
    if labindex == 3, MM, end
end
Lab 3:
    MM =
        1  0  0  0
        0  1  0  0
```

```
Data transfers from worker to client when you explicitly assign a variable in the client workspace using a Composite element:

\[ M = MM\{1\} \quad \% \text{Transfer data from worker 1 to variable M on the client} \]

Assigning an entire Composite to another Composite does not cause a data transfer. Instead, the client merely duplicates the Composite as a reference to the appropriate data stored on the workers:

\[ NN = MM \quad \% \text{Set entire Composite equal to another, without transfer} \]

However, accessing a Composite’s elements to assign values to other Composites \textit{does} result in a transfer of data from the workers to the client, even if the assignment then goes to the same worker. In this case, \( NN \) must already exist as a Composite:

\[ NN\{1\} = MM\{1\} \quad \% \text{Transfer data to the client and then to worker} \]

When finished, you can delete the pool:

\[ \text{delete(gcp)} \]

**Variable Persistence and Sequences of \texttt{spmd}**

The values stored on the workers are retained between \texttt{spmd} statements. This allows you to use multiple \texttt{spmd} statements in sequence, and continue to use the same variables defined in previous \texttt{spmd} blocks.

The values are retained on the workers until the corresponding Composites are cleared on the client, or until the parallel pool is deleted. The following example illustrates data value lifespan with \texttt{spmd} blocks, using a pool of four workers:

\[ \text{parpool('local',4)} \]

\[ \text{spmd} \]
\[ \quad AA = \text{labindex}; \quad \% \text{Initial setting} \]
\[ \text{end} \]
Access Worker Variables with Composites

AA(:)  % Composite

spmd
    AA = AA * 2; % Multiply existing value
end

AA(:)  % Composite

clear AA % Clearing in client also clears on workers

spmd; AA = AA * 2; end   % Generates error

delete(gcp)

Create Composites Outside spmd Statements

The Composite function creates Composite objects without using an spmd statement. This might be useful to prepopulate values of variables on workers before an spmd statement begins executing on those workers. Assume a parallel pool is already running:

PP = Composite()

By default, this creates a Composite with an element for each worker in the parallel pool. You can also create Composites on only a subset of the workers in the pool. See the Composite reference page for more details. The elements of the Composite can now be set as usual on the client, or as variables inside an spmd statement. When you set an element of a Composite, the data is immediately transferred to the appropriate worker:

for ii = 1: numel(PP)
    PP{ii} = ii;
end
Distribute Arrays

In this section...

“Distributed Versus Codistributed Arrays” on page 3-10
“Create Distributed Arrays” on page 3-10
“Create Codistributed Arrays” on page 3-11

Distributed Versus Codistributed Arrays

You can create a distributed array in the MATLAB client, and its data is stored on the workers of the open parallel pool. A distributed array is distributed in one dimension, along the last nonsingleton dimension, and as evenly as possible along that dimension among the workers. You cannot control the details of distribution when creating a distributed array.

You can create a codistributed array by executing on the workers themselves, either inside an `spmd` statement, in pmode, or inside a communicating job. When creating a codistributed array, you can control all aspects of distribution, including dimensions and partitions.

The relationship between distributed and codistributed arrays is one of perspective. Codistributed arrays are partitioned among the workers from which you execute code to create or manipulate them. Distributed arrays are partitioned among workers in the parallel pool. When you create a distributed array in the client, you can access it as a codistributed array inside an `spmd` statement. When you create a codistributed array in an `spmd` statement, you can access it as a distributed array in the client. Only `spmd` statements let you access the same array data from two different perspectives.

Create Distributed Arrays

You can create a distributed array in any of several ways:

• Use the `distributed` function to distribute an existing array from the client workspace to the workers of a parallel pool.
• Use any of the overloaded `distributed` object methods to directly construct a distributed array on the workers. This technique does not require that the array already exists in the client, thereby reducing client workspace memory...
requirements. These overloaded functions include `eye(___,'distributed'), rand(___,'distributed'),` etc. For a full list, see the `distributed` object reference page.

- Create a codistributed array inside an `spmd` statement, then access it as a distributed array outside the `spmd` statement. This lets you use distribution schemes other than the default.

The first two of these techniques do not involve `spmd` in creating the array, but you can see how `spmd` might be used to manipulate arrays created this way. For example:

Create an array in the client workspace, then make it a distributed array:

```matlab
parpool('local',2) % Create pool
W = ones(6,6);
W = distributed(W); % Distribute to the workers
spmd
 T = W*2; % Calculation performed on workers, in parallel.
 % T and W are both codistributed arrays here.
end
T % View results in client.
whos % T and W are both distributed arrays here.
delete(gcp) % Stop pool
```

### Create Codistributed Arrays

You can create a codistributed array in any of several ways:

- Use the `codistributed` function inside an `spmd` statement, a communicating job, or `pmode` to codistribute data already existing on the workers running that job.

- Use any of the overloaded `codistributed` object methods to directly construct a codistributed array on the workers. This technique does not require that the array already exists in the workers. These overloaded functions include `eye(___,'codistributed'), rand(___,'codistributed'),` etc. For a full list, see the `codistributed` object reference page.

- Create a distributed array outside an `spmd` statement, then access it as a codistributed array inside the `spmd` statement running on the same parallel pool.

In this example, you create a codistributed array inside an `spmd` statement, using a nondefault distribution scheme. First, define 1-D distribution along the third dimension, with 4 parts on worker 1, and 12 parts on worker 2. Then create a 3-by-3-by-16 array of zeros.
parpool('local',2) % Create pool
spmd
    codist = codistributor1d(3,[4,12]);
    Z = zeros(3,3,16,codist);
    Z = Z + labindex;
end
Z  % View results in client.
    % Z is a distributed array here.
delete(gcp) % Stop pool

For more details on codistributed arrays, see “Working with Codistributed Arrays” on page 5-5.
Programming Tips

In this section...

“MATLAB Path” on page 3-13
“Error Handling” on page 3-13
“spmd Limitations” on page 3-13

MATLAB Path

All workers executing an `spmd` statement must have the same MATLAB search path as the client, so that they can execute any functions called in their common block of code. Therefore, whenever you use `cd`, `addpath`, or `rmpath` on the client, it also executes on all the workers, if possible. For more information, see the `parpool` reference page. When the workers are running on a different platform than the client, use the function `pctRunOnAll` to properly set the MATLAB path on all workers.

Error Handling

When an error occurs on a worker during the execution of an `spmd` statement, the error is reported to the client. The client tries to interrupt execution on all workers, and throws an error to the user.

Errors and warnings produced on workers are annotated with the worker ID (`labindex`) and displayed in the client’s Command Window in the order in which they are received by the MATLAB client.

The behavior of `lastwarn` is unspecified at the end of an `spmd` if used within its body.

spmd Limitations

Nested Functions

Inside a function, the body of an `spmd` statement cannot make any direct reference to a nested function. However, it can call a nested function by means of a variable defined as a function handle to the nested function.

Because the `spmd` body executes on workers, variables that are updated by nested functions called inside an `spmd` statement do not get updated in the workspace of the outer function.
Anonymous Functions

The body of an \texttt{spmd} statement cannot define an anonymous function. However, it can reference an anonymous function by means of a function handle.

Nested \texttt{spmd} Statements

The body of an \texttt{spmd} statement cannot directly contain another \texttt{spmd}. However, it can call a function that contains another \texttt{spmd} statement. The inner \texttt{spmd} statement does not run in parallel in another parallel pool, but runs serially in a single thread on the worker running its containing function.

Nested \texttt{parfor}-Loops

The body of a \texttt{parfor}-loop cannot contain an \texttt{spmd} statement, and an \texttt{spmd} statement cannot contain a \texttt{parfor}-loop.

Break and Return Statements

The body of an \texttt{spmd} statement cannot contain \texttt{break} or \texttt{return} statements.

Global and Persistent Variables

The body of an \texttt{spmd} statement cannot contain \texttt{global} or \texttt{persistent} variable declarations.

More About

- “Transparency” on page 2-41
Interactive Parallel Computation with pmode

This chapter describes interactive pmode in the following sections:

• “pmode Versus spmd” on page 4-2
• “Run Communicating Jobs Interactively Using pmode” on page 4-3
• “Parallel Command Window” on page 4-10
• “Running pmode Interactive Jobs on a Cluster” on page 4-15
• “Plotting Distributed Data Using pmode” on page 4-16
• “pmode Limitations and Unexpected Results” on page 4-18
• “pmode Troubleshooting” on page 4-19
pmode Versus spmd

pmode lets you work interactively with a communicating job running simultaneously on several workers. Commands you type at the pmode prompt in the Parallel Command Window are executed on all workers at the same time. Each worker executes the commands in its own workspace on its own variables.

The way the workers remain synchronized is that each worker becomes idle when it completes a command or statement, waiting until all the workers working on this job have completed the same statement. Only when all the workers are idle, do they then proceed together to the next pmode command.

In contrast to spmd, pmode provides a desktop with a display for each worker running the job, where you can enter commands, see results, access each worker’s workspace, etc. What pmode does not let you do is to freely interleave serial and parallel work, like spmd does. When you exit your pmode session, its job is effectively destroyed, and all information and data on the workers is lost. Starting another pmode session always begins from a clean state.
Run Communicating Jobs Interactively Using pmode

This example uses a local scheduler and runs the workers on your local MATLAB client machine. It does not require an external cluster or scheduler. The steps include the pmode prompt (P>>) for commands that you type in the Parallel Command Window.

1. Start the pmode with the pmode command.

   pmode start local 4

   This starts four local workers, creates a communicating job to run on those workers, and opens the Parallel Command Window.

   ![Parallel Command Window]

   You can control where the command history appears. For this exercise, the position is set by clicking Window > History Position > Above Prompt, but you can set it according to your own preference.

2. To illustrate that commands at the pmode prompt are executed on all workers, ask for help on a function.

   P>> help magic

3. Set a variable at the pmode prompt. Notice that the value is set on all the workers.

   P>> x = pi
A variable does not necessarily have the same value on every worker. The `labindex` function returns the ID particular to each worker working on this communicating job. In this example, the variable `x` exists with a different value in the workspace of each worker.

\[ P>> x = \text{labindex} \]

Return the total number of workers working on the current communicating job with the `numlabs` function.

\[ P>> \text{all} = \text{numlabs} \]

Create a replicated array on all the workers.

\[ P>> \text{segment} = [1 \ 2; \ 3 \ 4; \ 5 \ 6] \]
Assign a unique value to the array on each worker, dependent on the worker number (labindex). With a different value on each worker, this is a variant array.

\[
P>> \text{segment} = \text{segment} + 10 \times \text{labindex}
\]
Until this point in the example, the variant arrays are independent, other than having the same name. Use the `codistributed.build` function to aggregate the array segments into a coherent array, distributed among the workers.

```
P>> codist = codistributor1d(2, [2 2 2], [3 8])
P>> whole = codistributed.build(segment, codist)
```

This combines four separate 3-by-2 arrays into one 3-by-8 codistributed array. The `codistributor1d` object indicates that the array is distributed along its second dimension (columns), with 2 columns on each of the four workers. On each worker, `segment` provided the data for the local portion of the `whole` array.

Now, when you operate on the codistributed array `whole`, each worker handles the calculations on only its portion, or segment, of the array, not the whole array.

```
P>> whole = whole + 1000
```

Although the codistributed array allows for operations on its entirety, you can use the `getLocalPart` function to access the portion of a codistributed array on a particular worker.

```
P>> section = getLocalPart(whole)
```

Thus, `section` is now a variant array because it is different on each worker.

If you need the entire array in one workspace, use the `gather` function.
P>> combined = gather(whole)
Notice, however, that this gathers the entire array into the workspaces of all the workers. See the `gather` reference page for the syntax to gather the array into the workspace of only one worker.

12 Because the workers ordinarily do not have displays, if you want to perform any graphical tasks involving your data, such as plotting, you must do this from the client workspace. Copy the array to the client workspace by typing the following commands in the MATLAB (client) Command Window.

```
pmode lab2client combined 1
```
Notice that `combined` is now a 3-by-8 array in the client workspace.

```
whos combined
```
To see the array, type its name.

```
combined
```

13 Many matrix functions that might be familiar can operate on codistributed arrays. For example, the `eye` function creates an identity matrix. Now you can create a codistributed identity matrix with the following commands in the Parallel Command Window.

```
P>> distobj = codistributor1d();
P>> I = eye(6, distobj)
P>> getLocalPart(I)
```
Calling the `codistributor1d` function without arguments specifies the default distribution, which is by columns in this case, distributed as evenly as possible.
If you require distribution along a different dimension, you can use the `redistribute` function. In this example, the argument 1 to `codistributor1d` specifies distribution of the array along the first dimension (rows).

```matlab
P>> distobj = codistributor1d();
P>> I = eye(6, distobj)
P>> getLocalPart(I)
```
Exit pmode and return to the regular MATLAB desktop.

P>> pmode exit
Parallel Command Window

When you start pmode on your local client machine with the command

```
pmode start local 4
```

four workers start on your local machine and a communicating job is created to run on
them. The first time you run pmode with these options, you get a tiled display of the four
workers.

The Parallel Command Window offers much of the same functionality as the MATLAB
desktop, including command line, output, and command history.

When you select one or more lines in the command history and right-click, you see the
following context menu.
You have several options for how to arrange the tiles showing your worker outputs. Usually, you will choose an arrangement that depends on the format of your data. For example, the data displayed until this point in this section, as in the previous figure, is distributed by columns. It might be convenient to arrange the tiles side by side.

Click tiling icon
Select layout

This arrangement results in the following figure, which might be more convenient for viewing data distributed by columns.

Alternatively, if the data is distributed by rows, you might want to stack the worker tiles vertically. For the following figure, the data is reformatted with the command
P>> distobj = codistributor('1d',1);
P>> I = redistribute(I, distobj)

When you rearrange the tiles, you see the following.

You can control the relative positions of the command window and the worker output. The following figure shows how to set the output to display beside the input, rather than above it.
You can choose to view the worker outputs by tabs.

You can have multiple workers send their output to the same tile or tab. This allows you to have fewer tiles or tabs than workers.

In this case, the window provides shading to help distinguish the outputs from the various workers.
Interactive Parallel Computation with pmode

Multiple labs in same tab

```
2 localPart(I) =
0 0 1 0 0 0
0 0 0 1 0 0

3 localPart(I) =
0 0 0 0 1 0
```

distobj = codistributor('1d',1);
I = redistribute(I, distobj)
```
Running pmode Interactive Jobs on a Cluster

When you run pmode on a cluster of workers, you are running a job that is much like any other communicating job, except it is interactive. The cluster can be heterogeneous, but with certain limitations described at http://www.mathworks.com/products/parallel-computing/requirements.html; carefully locate your scheduler on that page and note that pmode sessions run as jobs described as “parallel applications that use inter-worker communication.”

Many of the job’s properties are determined by the cluster profile. For more details about creating and using profiles, see “Clusters and Cluster Profiles” on page 6-14.

The general form of the command to start a pmode session is

```
pmode start <profile-name> <num-workers>
```

where `<profile-name>` is the name of the cluster profile you want to use, and `<num-workers>` is the number of workers you want to run the pmode job on. If `<num-workers>` is omitted, the number of workers is determined by the profile. Coordinate with your system administrator when creating or using a profile.

If you omit `<profile-name>`, pmode uses the default profile (see the `parallel.defaultClusterProfile` reference page).

For details on all the command options, see the `pmode` reference page.
Plotting Distributed Data Using pmode

Because the workers running a job in pmode are MATLAB sessions without displays, they cannot create plots or other graphic outputs on your desktop.

When working in pmode with codistributed arrays, one way to plot a codistributed array is to follow these basic steps:

1. Use the `gather` function to collect the entire array into the workspace of one worker.
2. Transfer the whole array from any worker to the MATLAB client with `pmode lab2client`.
3. Plot the data from the client workspace.

The following example illustrates this technique.

Create a 1-by-100 codistributed array of 0s. With four workers, each has a 1-by-25 segment of the whole array.

```matlab
P>> D = zeros(1,100,codistributor1d())
Lab 1: This lab stores D(1:25).
Lab 2: This lab stores D(26:50).
Lab 3: This lab stores D(51:75).
Lab 4: This lab stores D(76:100).
```

Use a `for`-loop over the distributed range to populate the array so that it contains a sine wave. Each worker does one-fourth of the array.

```matlab
P>> for i = drange(1:100)
    D(i) = sin(i*2*pi/100);
end;
```

Gather the array so that the whole array is contained in the workspace of worker 1.

```matlab
P>> P = gather(D, 1);
```

Transfer the array from the workspace of worker 1 to the MATLAB client workspace, then plot the array from the client. Note that both commands are entered in the MATLAB (client) Command Window.

```matlab
pmode lab2client P 1
plot(P)
```
This is not the only way to plot codistributed data. One alternative method, especially useful when running noninteractive communicating jobs, is to plot the data to a file, then view it from a later MATLAB session.
pmode Limitations and Unexpected Results

Using Graphics in pmode

Displaying a GUI

The workers that run the tasks of a communicating job are MATLAB sessions without displays. As a result, these workers cannot display graphical tools and so you cannot do things like plotting from within pmode. The general approach to accomplish something graphical is to transfer the data into the workspace of the MATLAB client using

```
pmode lab2client var labindex
```

Then use the graphical tool on the MATLAB client.

Using Simulink Software

Because the workers running a pmode job do not have displays, you cannot use Simulink software to edit diagrams or to perform interactive simulation from within pmode. If you type `simulink` at the pmode prompt, the Simulink Library Browser opens in the background on the workers and is not visible.

You can use the `sim` command to perform noninteractive simulations in parallel. If you edit your model in the MATLAB client outside of pmode, you must save the model before accessing it in the workers via pmode; also, if the workers had accessed the model previously, they must close and open the model again to see the latest saved changes.
pmode Troubleshooting

In this section...

“Connectivity Testing” on page 4-19
“Hostname Resolution” on page 4-19
“Socket Connections” on page 4-19

Connectivity Testing

For testing connectivity between the client machine and the machines of your compute cluster, you can use Admin Center. For more information about Admin Center, including how to start it and how to test connectivity, see “Start Admin Center” and “Test Connectivity” in the MATLAB Distributed Computing Server documentation.

Hostname Resolution

If a worker cannot resolve the hostname of the computer running the MATLAB client, use `pctconfig` to change the hostname by which the client machine advertises itself.

Socket Connections

If a worker cannot open a socket connection to the MATLAB client, try the following:

- Use `pctconfig` to change the hostname by which the client machine advertises itself.
- Make sure that firewalls are not preventing communication between the worker and client machines.
- Use `pctconfig` to change the client's `pmodeport` property. This determines the port that the workers will use to contact the client in the next pmode session.
Math with Codistributed Arrays

This chapter describes the distribution or partition of data across several workers, and the functionality provided for operations on that data in `spmd` statements, communicating jobs, and pmode. The sections are as follows.

- “Nondistributed Versus Distributed Arrays” on page 5-2
- “Working with Codistributed Arrays” on page 5-5
- “Looping Over a Distributed Range (for-drange)” on page 5-20
- “MATLAB Functions on Distributed and Codistributed Arrays” on page 5-24
Nondistributed Versus Distributed Arrays

In this section...

“Introduction” on page 5-2
“Nondistributed Arrays” on page 5-2
“Codistributed Arrays” on page 5-4

Introduction

All built-in data types and data structures supported by MATLAB software are also supported in the MATLAB parallel computing environment. This includes arrays of any number of dimensions containing numeric, character, logical values, cells, or structures; but not function handles or user-defined objects. In addition to these basic building blocks, the MATLAB parallel computing environment also offers different types of arrays.

Nondistributed Arrays

When you create a nondistributed array, MATLAB constructs a separate array in the workspace of each worker, using the same variable name on all workers. Any operation performed on that variable affects all individual arrays assigned to it. If you display from worker 1 the value assigned to this variable, all workers respond by showing the array of that name that resides in their workspace.

The state of a nondistributed array depends on the value of that array in the workspace of each worker:

• “Replicated Arrays” on page 5-2
• “Variant Arrays” on page 5-3
• “Private Arrays” on page 5-3

Replicated Arrays

A replicated array resides in the workspaces of all workers, and its size and content are identical on all workers. When you create the array, MATLAB assigns it to the same variable on all workers. If you display in spmd the value assigned to this variable, all workers respond by showing the same array.

spmd, A = magic(3), end
Nondistributed Versus Distributed Arrays

<table>
<thead>
<tr>
<th>WORKER 1</th>
<th>WORKER 2</th>
<th>WORKER 3</th>
<th>WORKER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 1 6</td>
<td>8 1 6</td>
<td>8 1 6</td>
<td>8 1 6</td>
</tr>
<tr>
<td>3 5 7</td>
<td>3 5 7</td>
<td>3 5 7</td>
<td>3 5 7</td>
</tr>
<tr>
<td>4 9 2</td>
<td>4 9 2</td>
<td>4 9 2</td>
<td>4 9 2</td>
</tr>
</tbody>
</table>

Variant Arrays

A variant array also resides in the workspaces of all workers, but its content differs on one or more workers. When you create the array, MATLAB assigns a different value to the same variable on all workers. If you display the value assigned to this variable, all workers respond by showing their version of the array.

```matlab
spmd, A = magic(3) + labindex - 1, end
```

<table>
<thead>
<tr>
<th>WORKER 1</th>
<th>WORKER 2</th>
<th>WORKER 3</th>
<th>WORKER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 1 6</td>
<td>9 2 7</td>
<td>10 3 8</td>
<td>11 4 9</td>
</tr>
<tr>
<td>3 5 7</td>
<td>4 6 9</td>
<td>5 7 9</td>
<td>6 8 10</td>
</tr>
<tr>
<td>4 9 2</td>
<td>5 10 3</td>
<td>6 11 4</td>
<td>7 12 5</td>
</tr>
</tbody>
</table>

A replicated array can become a variant array when its value becomes unique on each worker.

```matlab
spmd
    B = magic(3); %replicated on all workers
    B = B + labindex; %now a variant array, different on each worker
end
```

Private Arrays

A private array is defined on one or more, but not all workers. You could create this array by using `labindex` in a conditional statement, as shown here:

```matlab
spmd
    if labindex >= 3, A = magic(3) + labindex - 1, end
end
```

<table>
<thead>
<tr>
<th>WORKER 1</th>
<th>WORKER 2</th>
<th>WORKER 3</th>
<th>WORKER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is undefined</td>
<td>A is undefined</td>
<td>10 3 8</td>
<td>11 4 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 7 9</td>
<td>6 8 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 11 4</td>
<td>7 12 5</td>
</tr>
</tbody>
</table>
Codistributed Arrays

With replicated and variant arrays, the full content of the array is stored in the workspace of each worker. Codistributed arrays, on the other hand, are partitioned into segments, with each segment residing in the workspace of a different worker. Each worker has its own array segment to work with. Reducing the size of the array that each worker has to store and process means a more efficient use of memory and faster processing, especially for large data sets.

This example distributes a 3-by-10 replicated array A across four workers. The resulting array D is also 3-by-10 in size, but only a segment of the full array resides on each worker.

```matlab
spmd
    A = [11:20; 21:30; 31:40];
    D = codistributed(A);
    getLocalPart(D)
end
```

<table>
<thead>
<tr>
<th>WORKER 1</th>
<th>WORKER 2</th>
<th>WORKER 3</th>
<th>WORKER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>14</td>
<td>17</td>
<td>19 20</td>
</tr>
<tr>
<td>21</td>
<td>24</td>
<td>27</td>
<td>29 30</td>
</tr>
<tr>
<td>31</td>
<td>34</td>
<td>37</td>
<td>39 40</td>
</tr>
</tbody>
</table>

For more details on using codistributed arrays, see “Working with Codistributed Arrays” on page 5-5.
Working with Codistributed Arrays

In this section...

“How MATLAB Software Distributes Arrays” on page 5-5
“Creating a Codistributed Array” on page 5-7
“Local Arrays” on page 5-10
“Obtaining information About the Array” on page 5-11
“Changing the Dimension of Distribution” on page 5-12
“Restoring the Full Array” on page 5-13
“Indexing into a Codistributed Array” on page 5-14
“2-Dimensional Distribution” on page 5-16

How MATLAB Software Distributes Arrays

When you distribute an array to a number of workers, MATLAB software partitions the array into segments and assigns one segment of the array to each worker. You can partition a two-dimensional array horizontally, assigning columns of the original array to the different workers, or vertically, by assigning rows. An array with N dimensions can be partitioned along any of its N dimensions. You choose which dimension of the array is to be partitioned by specifying it in the array constructor command.

For example, to distribute an 80-by-1000 array to four workers, you can partition it either by columns, giving each worker an 80-by-250 segment, or by rows, with each worker getting a 20-by-1000 segment. If the array dimension does not divide evenly over the number of workers, MATLAB partitions it as evenly as possible.

The following example creates an 80-by-1000 replicated array and assigns it to variable A. In doing so, each worker creates an identical array in its own workspace and assigns it to variable A, where A is local to that worker. The second command distributes A, creating a single 80-by-1000 array D that spans all four workers. Worker 1 stores columns 1 through 250, worker 2 stores columns 251 through 500, and so on. The default distribution is by the last nonsingleton dimension, thus, columns in this case of a 2-dimensional array.

spmd
 A = zeros(80, 1000);
 D = codistributed(A)
end

Lab 1: This lab stores D(:,1:250).
Lab 2: This lab stores D(:,251:500).
Lab 3: This lab stores D(:,501:750).
Lab 4: This lab stores D(:,751:1000).

Each worker has access to all segments of the array. Access to the local segment is faster than to a remote segment, because the latter requires sending and receiving data between workers and thus takes more time.

How MATLAB Displays a Codistributed Array

For each worker, the MATLAB Parallel Command Window displays information about the codistributed array, the local portion, and the codistributor. For example, an 8-by-8 identity matrix codistributed among four workers, with two columns on each worker, displays like this:

```matlab
>> spmd
II = eye(8,'codistributed')
end
Lab 1:
   This lab stores II(:,1:2).
   LocalPart: [8x2 double]
   Codistributor: [1x1 codistributor1d]
Lab 2:
   This lab stores II(:,3:4).
   LocalPart: [8x2 double]
   Codistributor: [1x1 codistributor1d]
Lab 3:
   This lab stores II(:,5:6).
   LocalPart: [8x2 double]
   Codistributor: [1x1 codistributor1d]
Lab 4:
   This lab stores II(:,7:8).
   LocalPart: [8x2 double]
   Codistributor: [1x1 codistributor1d]
```

To see the actual data in the local segment of the array, use the `getLocalPart` function.

How Much Is Distributed to Each Worker

In distributing an array of \(N\) rows, if \(N\) is evenly divisible by the number of workers, MATLAB stores the same number of rows \((N/numlabs)\) on each worker. When this
number is not evenly divisible by the number of workers, MATLAB partitions the array as evenly as possible.

MATLAB provides codistributor object properties called **Dimension** and **Partition** that you can use to determine the exact distribution of an array. See “Indexing into a Codistributed Array” on page 5-14 for more information on indexing with codistributed arrays.

Distribution of Other Data Types

You can distribute arrays of any MATLAB built-in data type, and also numeric arrays that are complex or sparse, but not arrays of function handles or object types.

Creating a Codistributed Array

You can create a codistributed array in any of the following ways:

- “Partitioning a Larger Array” on page 5-7 — Start with a large array that is replicated on all workers, and partition it so that the pieces are distributed across the workers. This is most useful when you have sufficient memory to store the initial replicated array.

- “Building from Smaller Arrays” on page 5-8 — Start with smaller variant or replicated arrays stored on each worker, and combine them so that each array becomes a segment of a larger codistributed array. This method reduces memory requirements as it lets you build a codistributed array from smaller pieces.

- “Using MATLAB Constructor Functions” on page 5-9 — Use any of the MATLAB constructor functions like `rand` or `zeros` with the a codistributor object argument. These functions offer a quick means of constructing a codistributed array of any size in just one step.

Partitioning a Larger Array

If you have a large array already in memory that you want MATLAB to process more quickly, you can partition it into smaller segments and distribute these segments to all of the workers using the `codistributed` function. Each worker then has an array that is a fraction the size of the original, thus reducing the time required to access the data that is local to each worker.

As a simple example, the following line of code creates a 4-by-8 replicated matrix on each worker assigned to the variable `A`:
A =

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

The next line uses the codistributed function to construct a single 4-by-8 matrix D that is distributed along the second dimension of the array:

spmd
 D = codistributed(A);
 getLocalPart(D)
end

1: Local Part | 2: Local Part | 3: Local Part | 4: Local Part
11 12 | 13 14 | 15 16 | 17 18
21 22 | 23 24 | 25 26 | 27 28
31 32 | 33 34 | 35 36 | 37 38
41 42 | 43 44 | 45 46 | 47 48

Arrays A and D are the same size (4-by-8). Array A exists in its full size on each worker, while only a segment of array D exists on each worker.

spmd, size(A), size(D), end

Examining the variables in the client workspace, an array that is codistributed among the workers inside an spmd statement, is a distributed array from the perspective of the client outside the spmd statement. Variables that are not codistributed inside the spmd, are Composites in the client outside the spmd.

whos

Name Size Bytes Class
A 1x4 613 Composite
D 4x8 649 distributed

See the codistributed function reference page for syntax and usage information.

Building from Smaller Arrays

The codistributed function is less useful for reducing the amount of memory required to store data when you first construct the full array in one workspace and then partition it into distributed segments. To save on memory, you can construct the smaller pieces
Working with Codistributed Arrays

(local part) on each worker first, and then use
\texttt{codistributed.build} to combine them into a single array that is distributed across the workers.

This example creates a 4-by-250 variant array \(A \) on each of four workers and then uses \texttt{codistributor} to distribute these segments across four workers, creating a 4-by-1000 codistributed array. Here is the variant array, \(A \):

\begin{verbatim}
spmd
A = [1:250; 251:750; 751:1000] + 250 * (labindex - 1);
end
\end{verbatim}

\begin{verbatim}
WORKER 1 WORKER 2 WORKER 3
1 2 ... 250 | 251 252 ... 500 | 501 502 ... 750 | etc.
251 252 ... 500 | 501 502 ... 750 | 751 752 ...1000 | etc.
501 502 ... 750 | 751 752 ...1000 | 1001 1002 ...1250 | etc.
751 752 ...1000 | 1001 1002 ...1250 | 1251 1252 ...1500 | etc.
\end{verbatim}

Now combine these segments into an array that is distributed by the first dimension (rows). The array is now 16-by-250, with a 4-by-250 segment residing on each worker:

\begin{verbatim}
spmd
D = codistributed.build(A, codistributor1d(1,[4 4 4 4],[16 250]));
end
\end{verbatim}

\begin{verbatim}
Lab 1:
This lab stores D(1:4,:).
LocalPart: [4x250 double]
Codistributor: [1x1 codistributor1d]
\end{verbatim}

\begin{verbatim}
whos
Name Size Bytes Class
A 1x4 613 Composite
D 16x250 649 distributed
\end{verbatim}

You could also use replicated arrays in the same fashion, if you wanted to create a codistributed array whose segments were all identical to start with. See the \texttt{codistributed} function reference page for syntax and usage information.

Using MATLAB Constructor Functions

MATLAB provides several array constructor functions that you can use to build codistributed arrays of specific values, sizes, and classes. These functions operate in the same way as their nondistributed counterparts in the MATLAB language, except that they distribute the resultant array across the workers using the specified codistributor object, \texttt{codist}.
Math with Codistributed Arrays

Constructor Functions

The codistributed constructor functions are listed here. Use the codist argument (created by the codistributor function: codist=codistributor()) to specify over which dimension to distribute the array. See the individual reference pages for these functions for further syntax and usage information.

- eye(___codist)
- false(___codist)
- Inf(___codist)
- NaN(___codist)
- ones(___codist)
- rand(___codist)
- randi(___codist)
- randn(___codist)
- true(___codist)
- zeros(___codist)

- codistributed.cell(m,n,...,codist)
- codistributed.colon(a,d,b)
- codistributed.linspace(m,n,...,codist)
- codistributed.logspace(m,n,...,codist)
- sparse(m,n,codist)
- codistributed.speye(m,...,codist)
- codistributed.sprand(m,n,density,codist)
- codistributed.sprandn(m,n,density,codist)

Local Arrays

That part of a codistributed array that resides on each worker is a piece of a larger array. Each worker can work on its own segment of the common array, or it can make a copy of that segment in a variant or private array of its own. This local copy of a codistributed array segment is called a local array.

Creating Local Arrays from a Codistributed Array

The getLocalPart function copies the segments of a codistributed array to a separate variant array. This example makes a local copy L of each segment of codistributed array D. The size of L shows that it contains only the local part of D for each worker. Suppose you distribute an array across four workers:

```
spmd(4)
    A = [1:80; 81:160; 161:240];
    D = codistributed(A);
```
size(D)
 L = getLocalPart(D);
size(L)
end

returns on each worker:
3 80
3 20

Each worker recognizes that the codistributed array D is 3-by-80. However, notice that the size of the local part, L, is 3-by-20 on each worker, because the 80 columns of D are distributed over four workers.

Creating a Codistributed from Local Arrays

Use the `codistributed.build` function to perform the reverse operation. This function, described in “Building from Smaller Arrays” on page 5-8, combines the local variant arrays into a single array distributed along the specified dimension.

Continuing the previous example, take the local variant arrays L and put them together as segments to build a new codistributed array X.

```matlab
spmd
    codist = codistributor1d(2,[20 20 20 20],[3 80]);
    X = codistributed.build(L,codist);
    size(X)
end
```

returns on each worker:
3 80

Obtaining information About the Array

MATLAB offers several functions that provide information on any particular array. In addition to these standard functions, there are also two functions that are useful solely with codistributed arrays.

Determining Whether an Array Is Codistributed

The `iscodistributed` function returns a logical 1 (true) if the input array is codistributed, and logical 0 (false) otherwise. The syntax is

```matlab
spmd, TF = iscodistributed(D), end
```
where D is any MATLAB array.

Determining the Dimension of Distribution

The codistributor object determines how an array is partitioned and its dimension of distribution. To access the codistributor of an array, use the `getCodistributor` function. This returns two properties, Dimension and Partition:

```matlab
spmd, getCodistributor(X), end
    Dimension: 2
    Partition: [20 20 20 20]
end
```

The Dimension value of 2 means the array X is distributed by columns (dimension 2); and the Partition value of [20 20 20 20] means that twenty columns reside on each of the four workers.

To get these properties programmatically, return the output of `getCodistributor` to a variable, then use dot notation to access each property:

```matlab
spmd
    C = getCodistributor(X);
    part = C.Partition
    dim  = C.Dimension
end
```

Other Array Functions

Other functions that provide information about standard arrays also work on codistributed arrays and use the same syntax.

- `length` — Returns the length of a specific dimension.
- `ndims` — Returns the number of dimensions.
- `numel` — Returns the number of elements in the array.
- `size` — Returns the size of each dimension.
- `is*` — Many functions that have names beginning with 'is', such as `ischar` and `issparse`.

Changing the Dimension of Distribution

When constructing an array, you distribute the parts of the array along one of the array's dimensions. You can change the direction of this distribution on an existing array using the `redistribute` function with a different codistributor object.
Construct an 8-by-16 codistributed array D of random values distributed by columns on four workers:

```matlab
spmd
    D = rand(8,16,codistributor());
    size(getLocalPart(D))
end
```

returns on each worker:

```
8     4
```

Create a new codistributed array distributed by rows from an existing one already distributed by columns:

```matlab
spmd
    X = redistribute(D, codistributor1d(1));
    size(getLocalPart(X))
end
```

returns on each worker:

```
2    16
```

Restoring the Full Array

You can restore a codistributed array to its undistributed form using the `gather` function. `gather` takes the segments of an array that reside on different workers and combines them into a replicated array on all workers, or into a single array on one worker.

Distribute a 4-by-10 array to four workers along the second dimension:

```matlab
spmd
    A = [11:20; 21:30; 31:40; 41:50],
    end
A =  
11    12    13    14    15    16    17    18    19    20
21    22    23    24    25    26    27    28    29    30
31    32    33    34    35    36    37    38    39    40
41    42    43    44    45    46    47    48    49    50
```

```matlab
spmd
    D = codistributed(A),
    end
```

```
WORKER 1    WORKER 2    WORKER 3    WORKER 4
```
Math with Codistributed Arrays

spmd, size(getLocalPart(D)), end
Lab 1:
 4 3
Lab 2:
 4 3
Lab 3:
 4 2
Lab 4:
 4 2

Restore the undistributed segments to the full array form by gathering the segments:

spmd, X = gather(D), end
X =
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50

spmd, size(X), end
 4 10

Indexing into a Codistributed Array

While indexing into a nondistributed array is fairly straightforward, codistributed arrays require additional considerations. Each dimension of a nondistributed array is indexed within a range of 1 to the final subscript, which is represented in MATLAB by the `end` keyword. The length of any dimension can be easily determined using either the `size` or `length` function.

With codistributed arrays, these values are not so easily obtained. For example, the second segment of an array (that which resides in the workspace of worker 2) has a starting index that depends on the array distribution. For a 200-by-1000 array with a default distribution by columns over four workers, the starting index on worker 2 is 251. For a 1000-by-200 array also distributed by columns, that same index would be 51. As for the ending index, this is not given by using the `end` keyword, as `end` in this case refers
to the end of the entire array; that is, the last subscript of the final segment. The length of each segment is also not given by using the length or size functions, as they only return the length of the entire array.

The MATLAB colon operator and end keyword are two of the basic tools for indexing into nondistributed arrays. For codistributed arrays, MATLAB provides a version of the colon operator, called codistributed.colon. This actually is a function, not a symbolic operator like colon.

Note When using arrays to index into codistributed arrays, you can use only replicated or codistributed arrays for indexing. The toolbox does not check to ensure that the index is replicated, as that would require global communications. Therefore, the use of unsupported variants (such as labindex) to index into codistributed arrays might create unexpected results.

Example: Find a Particular Element in a Codistributed Array

Suppose you have a row vector of 1 million elements, distributed among several workers, and you want to locate its element number 225,000. That is, you want to know what worker contains this element, and in what position in the local part of the vector on that worker. The globalIndices function provides a correlation between the local and global indexing of the codistributed array.

```matlab
D = rand(1,1e6,'distributed'); %Distributed by columns
spmd
    globalInd = globalIndices(D,2);
    pos = find(globalInd == 225e3);
    if ~isempty(pos)
        fprintf(...
            'Element is in position %d on worker %d.
', pos, labindex);
    end
end
```

If you run this code on a pool of four workers you get this result:

Lab 1:

 Element is in position 225000 on worker 1.

If you run this code on a pool of five workers you get this result:

Lab 2:
Element is in position 25000 on worker 2.

Notice if you use a pool of a different size, the element ends up in a different location on a different worker, but the same code can be used to locate the element.

2-Dimensional Distribution

As an alternative to distributing by a single dimension of rows or columns, you can distribute a matrix by blocks using '2dbc' or two-dimensional block-cyclic distribution. Instead of segments that comprise a number of complete rows or columns of the matrix, the segments of the codistributed array are 2-dimensional square blocks.

For example, consider a simple 8-by-8 matrix with ascending element values. You can create this array in an spmd statement, communicating job, or pmode. This example uses pmode for a visual display.

P>> A = reshape(1:64, 8, 8)

The result is the replicated array:

<table>
<thead>
<tr>
<th>1</th>
<th>9</th>
<th>17</th>
<th>25</th>
<th>33</th>
<th>41</th>
<th>49</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>18</td>
<td>26</td>
<td>34</td>
<td>42</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>19</td>
<td>27</td>
<td>35</td>
<td>43</td>
<td>51</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>44</td>
<td>52</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>21</td>
<td>29</td>
<td>37</td>
<td>45</td>
<td>53</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>22</td>
<td>30</td>
<td>38</td>
<td>46</td>
<td>54</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>23</td>
<td>31</td>
<td>39</td>
<td>47</td>
<td>55</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
</tr>
</tbody>
</table>

Suppose you want to distribute this array among four workers, with a 4-by-4 block as the local part on each worker. In this case, the lab grid is a 2-by-2 arrangement of the workers, and the block size is a square of four elements on a side (i.e., each block is a 4-by-4 square). With this information, you can define the codistributor object:

P>> DIST = codistributor2dbc([2 2], 4)
Now you can use this codistributor object to distribute the original matrix:

```
P>> AA = codistributed(A, DIST)
```

This distributes the array among the workers according to this scheme:

![Distribution Scheme](image)

If the lab grid does not perfectly overlay the dimensions of the codistributed array, you can still use `'2dbc'` distribution, which is block cyclic. In this case, you can imagine the lab grid being repeatedly overlaid in both dimensions until all the original matrix elements are included.

Using the same original 8-by-8 matrix and 2-by-2 lab grid, consider a block size of 3 instead of 4, so that 3-by-3 square blocks are distributed among the workers. The code looks like this:

```
P>> DIST = codistributor2dbc([2 2], 3)
P>> AA = codistributed(A, DIST)
```

The first “row” of the lab grid is distributed to worker 1 and worker 2, but that contains only six of the eight columns of the original matrix. Therefore, the next two columns are distributed to worker 1. This process continues until all columns in the first rows are distributed. Then a similar process applies to the rows as you proceed down the matrix, as shown in the following distribution scheme:
The diagram above shows a scheme that requires four overlays of the lab grid to accommodate the entire original matrix. The following pmode session shows the code and resulting distribution of data to each of the workers:
The following points are worth noting:

- '2dbc' distribution might not offer any performance enhancement unless the block size is at least a few dozen. The default block size is 64.
- The lab grid should be as close to a square as possible.
- Not all functions that are enhanced to work on '1d' codistributed arrays work on '2dbc' codistributed arrays.
Looping Over a Distributed Range (for-dranger)

In this section...

“Parallelizing a for-Loop” on page 5-20
“Codistributed Arrays in a for-dranger Loop” on page 5-21

Note Using a `for`-loop over a distributed range (`drange`) is intended for explicit indexing of the distributed dimension of codistributed arrays (such as inside an `spmd` statement or a communicating job). For most applications involving parallel `for`-loops you should first try using `parfor` loops. See “Parallel for-Loops (parfor)”.

Parallelizing a for-Loop

If you already have a coarse-grained application to perform, but you do not want to bother with the overhead of defining jobs and tasks, you can take advantage of the ease-of-use that `pmode` provides. Where an existing program might take hours or days to process all its independent data sets, you can shorten that time by distributing these independent computations over your cluster.

For example, suppose you have the following serial code:

```matlab
results = zeros(1, numDataSets);
for i = 1:numDataSets
    load(['\central\myData\dataSet' int2str(i) '.mat'])
    results(i) = processDataSet(i);
end
plot(1:numDataSets, results);
save \central\myResults\today.mat results
```

The following changes make this code operate in parallel, either interactively in `spmd` or `pmode`, or in a communicating job:

```matlab
results = zeros(1, numDataSets, codistributor());
for i = drange(1:numDataSets)
    load(['\central\myData\dataSet' int2str(i) '.mat'])
    results(i) = processDataSet(i);
end
res = gather(results, 1);
if labindex == 1
```
plot(1:numDataSets, res);
print -dtiff -r300 fig.tiff;
save \central\myResults\today.mat res
end

Note that the length of the for iteration and the length of the codistributed array results need to match in order to index into results within a for drange loop. This way, no communication is required between the workers. If results was simply a replicated array, as it would have been when running the original code in parallel, each worker would have assigned into its part of results, leaving the remaining parts of results 0. At the end, results would have been a variant, and without explicitly calling labSend and labReceive or gcat, there would be no way to get the total results back to one (or all) workers.

When using the load function, you need to be careful that the data files are accessible to all workers if necessary. The best practice is to use explicit paths to files on a shared file system.

Correspondingly, when using the save function, you should be careful to only have one worker save to a particular file (on a shared file system) at a time. Thus, wrapping the code in if labindex == 1 is recommended.

Because results is distributed across the workers, this example uses gather to collect the data onto worker 1.

A worker cannot plot a visible figure, so the print function creates a viewable file of the plot.

Codistributed Arrays in a for-drange Loop

When a for-loop over a distributed range is executed in a communicating job, each worker performs its portion of the loop, so that the workers are all working simultaneously. Because of this, no communication is allowed between the workers while executing a for-drange loop. In particular, a worker has access only to its partition of a codistributed array. Any calculations in such a loop that require a worker to access portions of a codistributed array from another worker will generate an error.

To illustrate this characteristic, you can try the following example, in which one for loop works, but the other does not.

At the pmode prompt, create two codistributed arrays, one an identity matrix, the other set to zeros, distributed across four workers.
D = eye(8, 8, codistributor())
E = zeros(8, 8, codistributor())

By default, these arrays are distributed by columns; that is, each of the four workers contains two columns of each array. If you use these arrays in a for-drange loop, any calculations must be self-contained within each worker. In other words, you can only perform calculations that are limited within each worker to the two columns of the arrays that the workers contain.

For example, suppose you want to set each column of array E to some multiple of the corresponding column of array D:

```matlab
for j = drange(1:size(D,2)); E(:,j) = j*D(:,j); end
```

This statement sets the j-th column of E to j times the j-th column of D. In effect, while D is an identity matrix with 1s down the main diagonal, E has the sequence 1, 2, 3, etc., down its main diagonal.

This works because each worker has access to the entire column of D and the entire column of E necessary to perform the calculation, as each worker works independently and simultaneously on two of the eight columns.

Suppose, however, that you attempt to set the values of the columns of E according to different columns of D:

```matlab
for j = drange(1:size(D,2)); E(:,j) = j*D(:,j+1); end
```

This method fails, because when j is 2, you are trying to set the second column of E using the third column of D. These columns are stored in different workers, so an error occurs, indicating that communication between the workers is not allowed.

Restrictions

To use for-drange on a codistributed array, the following conditions must exist:

- The codistributed array uses a 1-dimensional distribution scheme (not 2dbc).
- The distribution complies with the default partition scheme.
- The variable over which the for-drange loop is indexing provides the array subscript for the distribution dimension.
- All other subscripts can be chosen freely (and can be taken from for-loops over the full range of each dimension).
To loop over all elements in the array, you can use `for-drange` on the dimension of distribution, and regular `for`-loops on all other dimensions. The following example executes in an `spmd` statement running on a parallel pool of 4 workers:

```matlab
spmd
    PP = zeros(6,8,12,'codistributed');
    RR = rand(6,8,12,codistributor())
    % Default distribution:
    %   by third dimension, evenly across 4 workers.
    for ii = 1:6
        for jj = 1:8
            for kk = drange(1:12)
                PP(ii,jj,kk) = RR(ii,jj,kk) + labindex;
            end
        end
    end
    % To view the contents of the array, type:
    PP
end
```
MATLAB Functions on Distributed and Codistributed Arrays

Many functions in MATLAB software are enhanced or overloaded so that they operate on codistributed arrays in much the same way that they operate on arrays contained in a single workspace.

In most cases, if any of the input arguments to these functions is a distributed or codistributed array, their output arrays are distributed or codistributed, respectively. If the output is always scalar, it is replicated on each worker. All these overloaded functions with codistributed array inputs must reference the same inputs at the same time on all workers; therefore, you cannot use variant arrays for input arguments.

The following table lists the enhanced MATLAB functions that operate on distributed or codistributed arrays.

A few of these functions might exhibit certain limitations when operating on a distributed or codistributed array. Click any function name to see specific help, including limitations.

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Function Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs</td>
<td>cart2sph</td>
</tr>
<tr>
<td>acos</td>
<td>cast</td>
</tr>
<tr>
<td>acosd</td>
<td>ceil</td>
</tr>
<tr>
<td>acosh</td>
<td>ceil2mat</td>
</tr>
<tr>
<td>acot</td>
<td>ceil2struct</td>
</tr>
<tr>
<td>acotd</td>
<td>celldisp</td>
</tr>
<tr>
<td>acoth</td>
<td>cellfun</td>
</tr>
<tr>
<td>acsch</td>
<td>char</td>
</tr>
<tr>
<td>acschd</td>
<td>chol</td>
</tr>
<tr>
<td>all</td>
<td>compan</td>
</tr>
<tr>
<td>and(&)</td>
<td>complex</td>
</tr>
<tr>
<td>angle</td>
<td>conj</td>
</tr>
<tr>
<td>any</td>
<td>corrcoef</td>
</tr>
<tr>
<td>arrayfun</td>
<td>cos</td>
</tr>
<tr>
<td>asec</td>
<td>cosd</td>
</tr>
<tr>
<td>asecd</td>
<td>cosh</td>
</tr>
<tr>
<td>asech</td>
<td>cot</td>
</tr>
<tr>
<td>asin</td>
<td>cotd</td>
</tr>
<tr>
<td>asind</td>
<td>coth</td>
</tr>
<tr>
<td>asinh</td>
<td>cov</td>
</tr>
<tr>
<td>atan</td>
<td>csc</td>
</tr>
<tr>
<td>atan2</td>
<td>cscd</td>
</tr>
<tr>
<td>atan2d</td>
<td>csch</td>
</tr>
<tr>
<td>abs</td>
<td>erfcx</td>
</tr>
<tr>
<td>acos</td>
<td>erfinv</td>
</tr>
<tr>
<td>acosd</td>
<td>exp</td>
</tr>
<tr>
<td>acosh</td>
<td>expm1</td>
</tr>
<tr>
<td>acot</td>
<td>eye</td>
</tr>
<tr>
<td>acotd</td>
<td>false</td>
</tr>
<tr>
<td>acoth</td>
<td>fieldnames</td>
</tr>
<tr>
<td>acsch</td>
<td>fft</td>
</tr>
<tr>
<td>acschd</td>
<td>fft2</td>
</tr>
<tr>
<td>all</td>
<td>find</td>
</tr>
<tr>
<td>and(&)</td>
<td>fix</td>
</tr>
<tr>
<td>angle</td>
<td>floor</td>
</tr>
<tr>
<td>any</td>
<td>full</td>
</tr>
<tr>
<td>arrayfun</td>
<td>gamma</td>
</tr>
<tr>
<td>asec</td>
<td>gammainc</td>
</tr>
<tr>
<td>asecd</td>
<td>gammaincinv</td>
</tr>
<tr>
<td>asech</td>
<td>gammaln</td>
</tr>
<tr>
<td>asin</td>
<td>ge(>=)</td>
</tr>
<tr>
<td>asind</td>
<td>gt(>)</td>
</tr>
<tr>
<td>asinh</td>
<td>hankel</td>
</tr>
<tr>
<td>atan</td>
<td>horzcat([])</td>
</tr>
<tr>
<td>atan2</td>
<td>hsv2rgb</td>
</tr>
<tr>
<td>atan2d</td>
<td>hypot</td>
</tr>
<tr>
<td>abs</td>
<td>isinteger</td>
</tr>
<tr>
<td>acos</td>
<td>islogical</td>
</tr>
<tr>
<td>acosd</td>
<td>isnan</td>
</tr>
<tr>
<td>acosh</td>
<td>isnumeric</td>
</tr>
<tr>
<td>acot</td>
<td>isreal</td>
</tr>
<tr>
<td>acotd</td>
<td>le(<=)</td>
</tr>
<tr>
<td>acoth</td>
<td>length</td>
</tr>
<tr>
<td>acsch</td>
<td>log</td>
</tr>
<tr>
<td>acschd</td>
<td>log2</td>
</tr>
<tr>
<td>all</td>
<td>log10</td>
</tr>
<tr>
<td>and(&)</td>
<td>log1p</td>
</tr>
<tr>
<td>angle</td>
<td>log2</td>
</tr>
<tr>
<td>any</td>
<td>logical</td>
</tr>
<tr>
<td>arrayfun</td>
<td>lt(<)</td>
</tr>
<tr>
<td>asec</td>
<td>lu</td>
</tr>
<tr>
<td>asecd</td>
<td>max</td>
</tr>
<tr>
<td>asech</td>
<td>mean</td>
</tr>
<tr>
<td>asin</td>
<td>median</td>
</tr>
<tr>
<td>asind</td>
<td>meshgrid</td>
</tr>
<tr>
<td>asinh</td>
<td>min</td>
</tr>
<tr>
<td>atan</td>
<td>minus(-)</td>
</tr>
<tr>
<td>atan2</td>
<td>mldivide()</td>
</tr>
<tr>
<td>atan2d</td>
<td>mrdivide()</td>
</tr>
<tr>
<td>abs</td>
<td>ones</td>
</tr>
<tr>
<td>acos</td>
<td>or([])</td>
</tr>
<tr>
<td>acosd</td>
<td>permute</td>
</tr>
<tr>
<td>acosh</td>
<td>planerot</td>
</tr>
<tr>
<td>acot</td>
<td>plus(+)</td>
</tr>
<tr>
<td>acotd</td>
<td>spfun</td>
</tr>
<tr>
<td>acoth</td>
<td>spones</td>
</tr>
<tr>
<td>acsch</td>
<td>sqrt</td>
</tr>
<tr>
<td>acschd</td>
<td>std</td>
</tr>
<tr>
<td>all</td>
<td>struct2cell</td>
</tr>
<tr>
<td>and(&)</td>
<td>sum</td>
</tr>
<tr>
<td>angle</td>
<td>svd</td>
</tr>
<tr>
<td>any</td>
<td>swapbytes</td>
</tr>
<tr>
<td>arrayfun</td>
<td>tan</td>
</tr>
<tr>
<td>asec</td>
<td>tand</td>
</tr>
<tr>
<td>asecd</td>
<td>tanh</td>
</tr>
<tr>
<td>asech</td>
<td>times(.*)</td>
</tr>
<tr>
<td>asin</td>
<td>toeplitz</td>
</tr>
<tr>
<td>asind</td>
<td>transpose(')</td>
</tr>
<tr>
<td>asinh</td>
<td>trapz</td>
</tr>
<tr>
<td>atan</td>
<td>tri</td>
</tr>
<tr>
<td>atan2</td>
<td>tril</td>
</tr>
<tr>
<td>atan2d</td>
<td>triu</td>
</tr>
<tr>
<td>abs</td>
<td>realsqrt</td>
</tr>
<tr>
<td>acos</td>
<td>realsqrt</td>
</tr>
<tr>
<td>acosd</td>
<td>realsqrt</td>
</tr>
<tr>
<td>acosh</td>
<td>realsqrt</td>
</tr>
<tr>
<td>acot</td>
<td>realsqrt</td>
</tr>
<tr>
<td>acotd</td>
<td>realsqrt</td>
</tr>
<tr>
<td>acoth</td>
<td>realsqrt</td>
</tr>
<tr>
<td>acsch</td>
<td>realsqrt</td>
</tr>
<tr>
<td>acschd</td>
<td>realsqrt</td>
</tr>
<tr>
<td>all</td>
<td>realsqrt</td>
</tr>
<tr>
<td>and(&)</td>
<td>realsqrt</td>
</tr>
<tr>
<td>angle</td>
<td>realsqrt</td>
</tr>
<tr>
<td>any</td>
<td>realsqrt</td>
</tr>
<tr>
<td>arrayfun</td>
<td>realsqrt</td>
</tr>
<tr>
<td>asec</td>
<td>realsqrt</td>
</tr>
<tr>
<td>asecd</td>
<td>realsqrt</td>
</tr>
<tr>
<td>asech</td>
<td>realsqrt</td>
</tr>
<tr>
<td>asin</td>
<td>realsqrt</td>
</tr>
<tr>
<td>asind</td>
<td>realsqrt</td>
</tr>
<tr>
<td>asinh</td>
<td>realsqrt</td>
</tr>
<tr>
<td>atan</td>
<td>realsqrt</td>
</tr>
<tr>
<td>atan2</td>
<td>realsqrt</td>
</tr>
<tr>
<td>atan2d</td>
<td>realsqrt</td>
</tr>
<tr>
<td>abs</td>
<td>true</td>
</tr>
<tr>
<td>acos</td>
<td>true</td>
</tr>
<tr>
<td>acosd</td>
<td>true</td>
</tr>
<tr>
<td>acosh</td>
<td>true</td>
</tr>
<tr>
<td>acot</td>
<td>true</td>
</tr>
<tr>
<td>acotd</td>
<td>true</td>
</tr>
<tr>
<td>acoth</td>
<td>true</td>
</tr>
<tr>
<td>acsch</td>
<td>true</td>
</tr>
<tr>
<td>acschd</td>
<td>true</td>
</tr>
<tr>
<td>all</td>
<td>true</td>
</tr>
<tr>
<td>and(&)</td>
<td>true</td>
</tr>
<tr>
<td>angle</td>
<td>true</td>
</tr>
<tr>
<td>any</td>
<td>true</td>
</tr>
<tr>
<td>arrayfun</td>
<td>true</td>
</tr>
<tr>
<td>asec</td>
<td>true</td>
</tr>
<tr>
<td>asecd</td>
<td>true</td>
</tr>
<tr>
<td>asech</td>
<td>true</td>
</tr>
<tr>
<td>asin</td>
<td>true</td>
</tr>
<tr>
<td>asind</td>
<td>true</td>
</tr>
<tr>
<td>asinh</td>
<td>true</td>
</tr>
<tr>
<td>atan</td>
<td>true</td>
</tr>
<tr>
<td>atan2</td>
<td>true</td>
</tr>
<tr>
<td>atan2d</td>
<td>true</td>
</tr>
<tr>
<td>MATLAB Function</td>
<td>MATLAB Function</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>atand</td>
<td>ctranspose(')</td>
</tr>
<tr>
<td>atanh</td>
<td>cummax</td>
</tr>
<tr>
<td>besselh</td>
<td>cummin</td>
</tr>
<tr>
<td>besseli</td>
<td>cumprod</td>
</tr>
<tr>
<td>besselj</td>
<td>cumsum</td>
</tr>
<tr>
<td>besselk</td>
<td>deg2rad</td>
</tr>
<tr>
<td>bessely</td>
<td>diag</td>
</tr>
<tr>
<td>beta</td>
<td>diff</td>
</tr>
<tr>
<td>betainc</td>
<td>dot</td>
</tr>
<tr>
<td>betaincinv</td>
<td>double</td>
</tr>
<tr>
<td>betaln</td>
<td>eig</td>
</tr>
<tr>
<td>bicc</td>
<td>end</td>
</tr>
<tr>
<td>bitand</td>
<td>eps</td>
</tr>
<tr>
<td>bitor</td>
<td>eq(==)</td>
</tr>
<tr>
<td>bitxor</td>
<td>erf</td>
</tr>
<tr>
<td>bsxfun</td>
<td>erfc</td>
</tr>
<tr>
<td>cart2pol</td>
<td>erfcinv</td>
</tr>
</tbody>
</table>
Programming Overview

This chapter provides information you need for programming with Parallel Computing Toolbox software. Further details of evaluating functions in a cluster, programming independent jobs, and programming communicating jobs are covered in later chapters. This chapter describes features common to programming all kinds of jobs. The sections are as follows.

- “How Parallel Computing Products Run a Job” on page 6-2
- “Create Simple Independent Jobs” on page 6-10
- “Parallel Preferences” on page 6-12
- “Clusters and Cluster Profiles” on page 6-14
- “Apply Callbacks to MJS Jobs and Tasks” on page 6-25
- “Job Monitor” on page 6-29
- “Programming Tips” on page 6-32
- “Control Random Number Streams” on page 6-37
- “Profiling Parallel Code” on page 6-42
- “Benchmarking Performance” on page 6-51
- “Troubleshooting and Debugging” on page 6-52
- “Run mapreduce on a Parallel Pool” on page 6-57
- “Run mapreduce on a Hadoop Cluster” on page 6-61
- “Partition a Datastore in Parallel” on page 6-64
How Parallel Computing Products Run a Job

Overview

Parallel Computing Toolbox and MATLAB Distributed Computing Server software let you solve computationally and data-intensive problems using MATLAB and Simulink on multicore and multiprocessor computers. Parallel processing constructs such as parallel for-loops and code blocks, distributed arrays, parallel numerical algorithms, and message-passing functions let you implement task-parallel and data-parallel algorithms at a high level in MATLAB without programming for specific hardware and network architectures.

A job is some large operation that you need to perform in your MATLAB session. A job is broken down into segments called tasks. You decide how best to divide your job into tasks. You could divide your job into identical tasks, but tasks do not have to be identical.

The MATLAB session in which the job and its tasks are defined is called the client session. Often, this is on the machine where you program MATLAB. The client uses Parallel Computing Toolbox software to perform the definition of jobs and tasks and to run them on a cluster local to your machine. MATLAB Distributed Computing Server software is the product that performs the execution of your job on a cluster of machines.

The MATLAB job scheduler (MJS) is the process that coordinates the execution of jobs and the evaluation of their tasks. The MJS distributes the tasks for evaluation to the server's individual MATLAB sessions called workers. Use of the MJS to access a cluster is optional; the distribution of tasks to cluster workers can also be performed by a third-party scheduler, such as Microsoft® Windows® HPC Server (including CCS) or Platform LSF®.

See the Glossary for definitions of the parallel computing terms used in this manual.
Basic Parallel Computing Setup

Toolbox and Server Components

- “MJS, Workers, and Clients” on page 6-3
- “Local Cluster” on page 6-5
- “Third-Party Schedulers” on page 6-5
- “Components on Mixed Platforms or Heterogeneous Clusters” on page 6-6
- “mdce Service” on page 6-7
- “Components Represented in the Client” on page 6-7

MJS, Workers, and Clients

The MJS can be run on any machine on the network. The MJS runs jobs in the order in which they are submitted, unless any jobs in its queue are promoted, demoted, canceled, or deleted.

Each worker is given a task from the running job by the MJS, executes the task, returns the result to the MJS, and then is given another task. When all tasks for a running job have been assigned to workers, the MJS starts running the next job on the next available worker.
A MATLAB Distributed Computing Server software setup usually includes many workers that can all execute tasks simultaneously, speeding up execution of large MATLAB jobs. It is generally not important which worker executes a specific task. In an independent job, the workers evaluate tasks one at a time as available, perhaps simultaneously, perhaps not, returning the results to the MJS. In a communicating job, the workers evaluate tasks simultaneously. The MJS then returns the results of all the tasks in the job to the client session.

Note For testing your application locally or other purposes, you can configure a single computer as client, worker, and MJS host. You can also have more than one worker session or more than one MJS session on a machine.

Interactions of Parallel Computing Sessions

A large network might include several MJSs as well as several client sessions. Any client session can create, run, and access jobs on any MJS, but a worker session is registered with and dedicated to only one MJS at a time. The following figure shows a configuration with multiple MJSs.
Cluster with Multiple Clients and MJSs

Local Cluster

A feature of Parallel Computing Toolbox software is the ability to run a local cluster of workers on the client machine, so that you can run jobs without requiring a remote cluster or MATLAB Distributed Computing Server software. In this case, all the processing required for the client, scheduling, and task evaluation is performed on the same computer. This gives you the opportunity to develop, test, and debug your parallel applications before running them on your network cluster.

Third-Party Schedulers

As an alternative to using the MJS, you can use a third-party scheduler. This could be a Microsoft Windows HPC Server (including CCS), Platform LSF scheduler, PBS Pro® scheduler, TORQUE scheduler, or a generic scheduler.

Choosing Between a Third-Party Scheduler and an MJS

You should consider the following when deciding to use a third-party scheduler or the MATLAB job scheduler (MJS) for distributing your tasks:

- Does your cluster already have a scheduler?

 If you already have a scheduler, you may be required to use it as a means of controlling access to the cluster. Your existing scheduler might be just as easy to use as an MJS, so there might be no need for the extra administration involved.
• Is the handling of parallel computing jobs the only cluster scheduling management you need?

The MJS is designed specifically for MathWorks® parallel computing applications. If other scheduling tasks are not needed, a third-party scheduler might not offer any advantages.

• Is there a file sharing configuration on your cluster already?

The MJS can handle all file and data sharing necessary for your parallel computing applications. This might be helpful in configurations where shared access is limited.

• Are you interested in batch mode or managed interactive processing?

When you use an MJS, worker processes usually remain running at all times, dedicated to their MJS. With a third-party scheduler, workers are run as applications that are started for the evaluation of tasks, and stopped when their tasks are complete. If tasks are small or take little time, starting a worker for each one might involve too much overhead time.

• Are there security concerns?

Your own scheduler might be configured to accommodate your particular security requirements.

• How many nodes are on your cluster?

If you have a large cluster, you probably already have a scheduler. Consult your MathWorks representative if you have questions about cluster size and the MJS.

• Who administers your cluster?

The person administering your cluster might have a preference for how jobs are scheduled.

• Do you need to monitor your job's progress or access intermediate data?

A job run by the MJS supports events and callbacks, so that particular functions can run as each job and task progresses from one state to another.

Components on Mixed Platforms or Heterogeneous Clusters

Parallel Computing Toolbox software and MATLAB Distributed Computing Server software are supported on Windows, UNIX®, and Macintosh operating systems. Mixed platforms are supported, so that the clients, MJS, and workers do not have to be on the
same platform. Other limitations are described at http://www.mathworks.com/products/parallel-computing/requirements.html.

In a mixed-platform environment, system administrators should be sure to follow the proper installation instructions for the local machine on which you are installing the software.

mdce Service

If you are using the MJS, every machine that hosts a worker or MJS session must also run the mdce service.

The mdce service controls the worker and MJS sessions and recovers them when their host machines crash. If a worker or MJS machine crashes, when the mdce service starts up again (usually configured to start at machine boot time), it automatically restarts the MJS and worker sessions to resume their sessions from before the system crash. More information about the mdce service is available in the MATLAB Distributed Computing Server documentation.

Components Represented in the Client

A client session communicates with the MJS by calling methods and configuring properties of an *MJS cluster object*. Though not often necessary, the client session can also access information about a worker session through a *worker object*.

When you create a job in the client session, the job actually exists in the MJS job storage location. The client session has access to the job through a *job object*. Likewise, tasks that you define for a job in the client session exist in the MJS data location, and you access them through *task objects*.

Life Cycle of a Job

When you create and run a job, it progresses through a number of stages. Each stage of a job is reflected in the value of the job object’s *State* property, which can be *pending*, *queued*, *running*, or *finished*. Each of these stages is briefly described in this section.

The figure below illustrates the stages in the life cycle of a job. In the MJS (or other scheduler), the jobs are shown categorized by their state. Some of the functions you use for managing a job are ***createJob***, ***submit***, and ***fetchOutputs***.
Stages of a Job

The following table describes each stage in the life cycle of a job.

<table>
<thead>
<tr>
<th>Job Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pending</td>
<td>You create a job on the scheduler with the <code>createJob</code> function in your client session of Parallel Computing Toolbox software. The job's first state is <code>pending</code>. This is when you define the job by adding tasks to it.</td>
</tr>
<tr>
<td>Queued</td>
<td>When you execute the <code>submit</code> function on a job, the MJS or scheduler places the job in the queue, and the job's state is <code>queued</code>. The scheduler executes jobs in the queue in the sequence in which they are submitted, all jobs moving up the queue as the jobs before them are finished. You can change the sequence of the jobs in the queue with the <code>promote</code> and <code>demote</code> functions.</td>
</tr>
<tr>
<td>Running</td>
<td>When a job reaches the top of the queue, the scheduler distributes the job's tasks to worker sessions for evaluation. The job's state is now <code>running</code>. If more workers are available than are required for a job's tasks, the scheduler begins executing the next job. In this way, there can be more than one job running at a time.</td>
</tr>
<tr>
<td>Finished</td>
<td>When all of a job's tasks have been evaluated, the job is moved to the <code>finished</code> state. At this time, you can retrieve the results from all the tasks in the job with the function <code>fetchOutputs</code>.</td>
</tr>
</tbody>
</table>
Job Stage | Description
--- | ---
Failed | When using a third-party scheduler, a job might fail if the scheduler encounters an error when attempting to execute its commands or access necessary files.
Deleted | When a job’s data has been removed from its data location or from the MJS with the `delete` function, the state of the job in the client is deleted. This state is available only as long as the job object remains in the client.

Note that when a job is finished, its data remains in the MJS's `JobStorageLocation` folder, even if you clear all the objects from the client session. The MJS or scheduler keeps all the jobs it has executed, until you restart the MJS in a clean state. Therefore, you can retrieve information from a job later or in another client session, so long as the MJS has not been restarted with the `-clean` option.

You can permanently remove completed jobs from the MJS or scheduler's storage location using the Job Monitor GUI or the `delete` function.
Create Simple Independent Jobs

Program a Job on a Local Cluster

In some situations, you might need to define the individual tasks of a job, perhaps because they might evaluate different functions or have uniquely structured arguments. To program a job like this, the typical Parallel Computing Toolbox client session includes the steps shown in the following example.

This example illustrates the basic steps in creating and running a job that contains a few simple tasks. Each task evaluates the \texttt{sum} function for an input array.

1. Identify a cluster. Use \texttt{parallel.defaultClusterProfile} to indicate that you are using the local cluster; and use \texttt{parcluster} to create the object \texttt{c} to represent this cluster. (For more information, see “Create a Cluster Object” on page 7-4.)

\begin{verbatim}
parallel.defaultClusterProfile('local');
c = parcluster();
\end{verbatim}

2. Create a job. Create job \texttt{j} on the cluster. (For more information, see “Create a Job” on page 7-4.)

\begin{verbatim}
j = createJob(c)
\end{verbatim}

3. Create three tasks within the job \texttt{j}. Each task evaluates the \texttt{sum} of the array that is passed as an input argument. (For more information, see “Create Tasks” on page 7-5.)

\begin{verbatim}
createTask(j, @sum, 1, {[1 1]});
createTask(j, @sum, 1, {[2 2]});
createTask(j, @sum, 1, {[3 3]});
\end{verbatim}

4. Submit the job to the queue for evaluation. The scheduler then distributes the job’s tasks to MATLAB workers that are available for evaluating. The local cluster might now start MATLAB worker sessions. (For more information, see “Submit a Job to the Cluster” on page 7-5.)

\begin{verbatim}
submit(j);
\end{verbatim}

5. Wait for the job to complete, then get the results from all the tasks of the job. (For more information, see “Fetch the Job’s Results” on page 7-6.)

\begin{verbatim}
wait(j)
results = fetchOutputs(j)
\end{verbatim}
results =
 [2]
 [4]
 [6]

6 Delete the job. When you have the results, you can permanently remove the job from
the scheduler's storage location.

delete(j)
Parallel Preferences

You can access parallel preferences in the general preferences for MATLAB. To open the Preferences dialog box, use any one of the following:

- On the Home tab in the Environment section, click Parallel > Parallel Preferences
- Click the desktop pool indicator icon, and select Parallel preferences.
- In the command window, type preferences

In the navigation tree of the Preferences dialog box, click Parallel Computing Toolbox.

The parallel preferences dialog box looks something like this:

![Parallel Preferences Dialog Box]

You can control the following with your preference settings:

- Default Cluster — This is the default on which a pool is opened when you do not otherwise specify a cluster.
- Preferred number of workers — This specifies the number of workers to form a pool, if possible. The actual pool size might be limited by licensing, cluster size, and cluster profile settings. See “Pool Size and Cluster Selection” on page 2-47.
• Automatically create a parallel pool — This setting causes a pool to automatically start if one is not already running at the time a parallel language is encountered that runs on a pool, such as:
 • `parfor`
 • `spmd`
 • `distributed`
 • `Composite`
 • `parfeval`
 • `parfevalOnAll`
 • `gcp`
 • `mapreduce`
 • `mapreducer`

With this setting, you never need to manually open a pool using the `parpool` function. If a pool automatically opens, you can still access the pool object with `gcp`.

• Shut down and delete a parallel pool — The pool’s `IdleTimeout` property setting causes a parallel pool to automatically shut down if the pool has been idle for the specified amount of time. Whenever the pool is used (for example, with a `parfor` or `parfeval`), the timeout counter is reset. When the timeout is about to expire, a tooltip on the desktop pool indicator warns you and allows you to reset the timer.
Clusters and Cluster Profiles

<table>
<thead>
<tr>
<th>In this section…</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Cluster Profile Manager” on page 6-14</td>
</tr>
<tr>
<td>“Discover Clusters” on page 6-14</td>
</tr>
<tr>
<td>“Import and Export Cluster Profiles” on page 6-16</td>
</tr>
<tr>
<td>“Create and Modify Cluster Profiles” on page 6-17</td>
</tr>
<tr>
<td>“Validate Cluster Profiles” on page 6-22</td>
</tr>
<tr>
<td>“Apply Cluster Profiles in Client Code” on page 6-23</td>
</tr>
</tbody>
</table>

Cluster Profile Manager

Cluster profiles let you define certain properties for your cluster, then have these properties applied when you create cluster, job, and task objects in the MATLAB client. Some of the functions that support the use of cluster profiles are

- batch
- parpool
- parcluster

To create, edit, and import cluster profiles, you can do this from the Cluster Profile Manager. To open the Cluster Profile Manager, on the Home tab in the Environment section, click Parallel > Manage Cluster Profiles.

Discover Clusters

You can let MATLAB discover clusters for you. Use either of the following techniques to discover those clusters which are available for you to use:

- On the Home tab in the Environment section, click Parallel > Discover Clusters.
- In the Cluster Profile Manager, click Discover Clusters.
This opens the Discover Clusters dialog box, where you select the location of your clusters. As clusters are discovered, they populate a list for your selection:

If you already have a profile for any of the listed clusters, those profile names are included in the list. If you want to create a new profile for one of the discovered clusters, select the name of the cluster you want to use, and click **Next**. The subsequent dialog box lets you choose if you want to set the new profile as your default.

Requirements for Cluster Discovery

Cluster discovery is supported only for MATLAB job schedulers (MJS), Microsoft Windows HPC Server, and Amazon EC2 cloud clusters. The following requirements apply to these clusters.

- **MJS** — MJS clusters support two different means of discovery:
 - Multicast: The discover clusters functionality uses the multicast networking protocol from the client to search for head nodes where an MJS is running. This requires that the multicast networking protocol is enabled and working on the network that connects the MJS head nodes (where the schedulers are running) and the client machines. This form of discovery might be limited to the client local subnet, and therefore not always able to discover an MJS elsewhere in your network.
 - DNS SRV: An alternative discovery technique is to search for clusters by DNS service records.

The Domain Name System (DNS) is a standard for identifying host names with IP addresses, either on the Internet or in a private network. Using DNS allows
discovery of MJS clusters by identifying specific hosts rather than broadcasting across your network.

A DNS service (SRV) record defines the location of hosts and ports of services, such as those related to the clusters you want to discover. Your system administrator creates DNS SRV records in your organization’s DNS infrastructure. For a description of the required record, and validation information, see “DNS SRV Record”.

- HPC Server — Discover clusters functionality uses Active Directory Domain Services to discover head nodes. HPC Server head nodes are added to the Active Directory during installation of the HPC Server software.

- Amazon EC2 — Discover clusters functionality requires a working network connection between the client and the Cloud Center web services running in mathworks.com.

Import and Export Cluster Profiles

Cluster profiles are stored as part of your MATLAB preferences, so they are generally available on an individual user basis. To make a cluster profile available to someone else, you can export it to a separate .settings file. In this way, a repository of profiles can be created so that all users of a computing cluster can share common profiles.

To export a cluster profile:

1. In the Profile Clusters Manager, select (highlight) the profile you want to export.
2. Click Export > Export. (Alternatively, you can right-click the profile in the listing and select Export.)

 If you want to export all your profiles to a single file, click Export > Export All.
3. In the Export profiles to file dialog box, specify a location and name for the file. The default file name is the same as the name of the profile it contains, with a .settings extension appended; you can alter the names if you want to.

Profiles saved in this way can then be imported by other MATLAB users:

1. In the Cluster Profile Manager, click Import.
2. In the Import profiles from file dialog box, browse to find the .settings file for the profile you want to import. Select the file and click Open.
The imported profile appears in your Cluster Profile Manager list. Note that the list contains the profile name, which is not necessarily the file name. If you already have a profile with the same name as the one you are importing, the imported profile gets an extension added to its name so you can distinguish it.

You can also export and import profiles programmatically with the `parallel.exportProfile` and `parallel.importProfile` functions.

Export Profiles for MATLAB Compiler

You can use an exported profile with MATLAB Compiler and MATLAB Compiler SDK to identify cluster setup information for running compiled applications on a cluster. For example, the `setmcruserdata` function can use the exported profile file name to set the value for the key `ParallelProfile`. For more information and examples of deploying parallel applications, see “Pass Parallel Computing Toolbox Profile at Run Time” in the MATLAB Compiler documentation, and “Use Parallel Computing Toolbox in Deployed Applications” in the MATLAB Compiler SDK documentation.

A compiled application has the same default profile and the same list of alternative profiles that the compiling user had when the application was compiled. This means that in many cases the profile file is not needed, as might be the case when using the `local` profile for local workers. If an exported file is used, the first profile in the file becomes the default when imported. If any of the imported profiles have the same name as any of the existing profiles, they are renamed during import (though their names in the file remain unchanged).

Create and Modify Cluster Profiles

The first time you open the Cluster Profile Manager, it lists only one profile called `local`, which is the initial default profile having only default settings at this time.
The following example provides instructions on how to create and modify profiles using the Cluster Profile Manager.

Suppose you want to create a profile to set several properties for jobs to run in an MJS cluster. The following example illustrates a possible workflow, where you create two profiles differentiated only by the number of workers they use.

1. In the Cluster Profile Manager, select **Add > Custom > MATLAB Job Scheduler (MJS)**. This specifies that you want a new profile for an MJS cluster.
This creates and displays a new profile, called MJSProfile1.

2 Double-click the new profile name in the listing, and modify the profile name to be MyMJSProfile1.

3 Click **Edit** in the tool strip so that you can set your profile property values.

In the Description field, enter the text **MJS with 4 workers**, as shown in the following figure. Enter the host name for the machine on which the MJS is running, and the name of the MJS. If you are entering information for an actual MJS already running on your network, enter the appropriate text. If you are unsure about the MJS (formerly known as a job manager) names and locations on your network, ask your system administrator for help.

Note If the MJS is using a nondefault **BASE_PORT** setting as defined in the mdce_def file, the **Host** property in the cluster profile must be appended with this **BASE_PORT** number. For example, **MJS-Host:40000**.

4 Scroll down to the Workers section, and for the Range of number of workers, enter the two-element vector **[4, 4]**. This specifies that jobs using this profile require at least four workers and no more than four workers. Therefore, a job using this profile runs on exactly four workers, even if it has to wait until four workers are available before starting.
You might want to edit other properties depending on your particular network and cluster situation.

5 Click **Done** to save the profile settings.

To create a similar profile with just a few differences, you can duplicate an existing profile and modify only the parts you need to change, as follows:

1 In the Cluster Profile Manager, right-click the profile name **MyMJSprofile1** in the list and select **Duplicate**.

 This creates a duplicate profile with a name based on the original profile name appended with **_Copy**.

2 Double-click the new profile name and edit its name to be **MyMJSprofile2**.

3 Click **Edit** to allow you to change the profile property values.

4 Edit the description field to change its text to **MJS with any workers**.
5 Scroll down to the Workers section, and for the Range of number of workers, clear the [4 4] and leave the field blank, as highlighted in the following figure:

6 Click **Done** to save the profile settings and to close the properties editor.

You now have two profiles that differ only in the number of workers required for running a job.

When creating a job, you can apply either profile to that job as a way of specifying how many workers it should run on.
You can see examples of profiles for different kinds of supported schedulers in the MATLAB Distributed Computing Server installation instructions at “Configure Your Cluster”.

Validate Cluster Profiles

The Cluster Profile Manager includes the ability to validate profiles. Validation assures that the MATLAB client session can access the cluster, and that the cluster can run the various types of jobs with the settings of your profile.

To validate a profile, follow these steps:

1. Open the Cluster Profile Manager on the **Home** tab in the **Environment** section, by clicking **Parallel > Manage Cluster Profiles**.
2. In the Cluster Profile Manager, click the name of the profile you want to test. You can highlight a profile without changing the selected default profile. So a profile selected for validation does not need to be your default profile.
3. Click **Validate**.

Profile validation includes five stages:

1. Connects to the cluster (**parcluster**)
2. Runs an independent job (**createJob**) on the cluster using the profile
3. Runs an SPMD-type communicating job on the cluster using the profile
4. Runs a pool-type communicating job on the cluster using the profile
5. Runs a parallel pool job on the cluster using the profile

While the tests are running, the Cluster Profile Manager displays their progress as shown here:
Validation will fail if you already have a parallel pool open.

When the tests are complete, you can click **Show Details** to get more information about test results. This information includes any error messages, debug logs, and other data that might be useful in diagnosing problems or helping to determine proper network settings.

The Validation Results tab keeps the test results available until the current MATLAB session closes.

Apply Cluster Profiles in Client Code

In the MATLAB client where you create and define your parallel computing cluster, job, and task objects, you can use cluster profiles when creating these objects.

Select a Default Cluster Profile

Some functions support default profiles, so that if you do not specify a profile for them, they automatically apply the default. There are several ways to specify which of your profiles should be used as the default profile:

- On the **Home** tab in the **Environment** section, click **Parallel > Default Cluster**, and from there, all your profiles are available. The default profile is indicated. You can select any profile in the list as the default.
• The Cluster Profile Manager indicates which is the default profile. You can select any profile in the list, then click **Set as Default**.

• You can get or set the default profile programmatically by using the `parallel.defaultClusterProfile` function. The following sets of commands achieve the same thing:

```matlab
parallel.defaultClusterProfile('MyMJSprofile1')
parpool
```

or

```matlab
parpool('MyMJSprofile1')
```

Create Cluster Object

The `parcluster` function creates a cluster object in your workspace according to the specified profile. The profile identifies a particular cluster and applies property values. For example,

```matlab
c = parcluster('myMJSprofile')
```

This command finds the cluster defined by the settings of the profile named `myMJSprofile` and sets property values on the cluster object based on settings in the profile. By applying different profiles, you can alter your cluster choices without changing your MATLAB application code.

Create Jobs and Tasks

Because the properties of cluster, job, and task objects can be defined in a profile, you do not have to explicitly define them in your application. Therefore, your code can accommodate any type of cluster without being modified. For example, the following code uses one profile to set properties on cluster, job, and task objects:

```matlab
c = parcluster('myProfile1');
job1 = createJob(c); % Uses profile of cluster object c.
createTask(job1,@rand,1,{3}) % Uses profile of cluster object c.
```
Apply Callbacks to MJS Jobs and Tasks

The MATLAB job scheduler (MJS) has the ability to trigger callbacks in the client session whenever jobs or tasks in the MJS cluster change to specific states.

Client objects representing jobs and tasks in an MJS cluster include the following properties:

<table>
<thead>
<tr>
<th>Callback Property</th>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QueuedFcn</td>
<td>Job only</td>
<td>Specifies the function to execute in the client when a job is submitted to the MJS queue</td>
</tr>
<tr>
<td>RunningFcn</td>
<td>Job or task</td>
<td>Specifies the function to execute in the client when a job or task begins its execution</td>
</tr>
<tr>
<td>FinishedFcn</td>
<td>Job or task</td>
<td>Specifies the function to execute in the client when a job or task completes its execution</td>
</tr>
</tbody>
</table>

Each of these properties can be set to any valid MATLAB callback value. The callback follows the same behavior for Handle Graphics®, passing into the callback function the object (job or task) that makes the call and an empty argument of event data.

These properties apply only in the client MATLAB session in which they are set. Later sessions that access the same job or task objects do not inherit the settings from previous sessions. You can apply the properties to existing jobs and tasks at the command-line, but the cluster profile settings apply only at the time these objects are first created.

Note The callback properties are available only when using an MJS cluster.

Create Callbacks at the Command Line

This example shows how to create job and task callbacks at the client session command line.

Create and save a callback function `clientTaskCompleted.m` on the path of the MATLAB client, with the following content:

```matlab
function clientTaskCompleted(task,eventdata)
```
Create a job and set its QueuedFcn, RunningFcn, and FinishedFcn properties, using a function handle to an anonymous function that sends information to the display.

c = parcluster('MyMJS');
j = createJob(c,'Name','Job_52a');
j.QueuedFcn = @(job,eventdata) disp([job.Name ' now ' job.State]);
j.RunningFcn = @(job,eventdata) disp([job.Name ' now ' job.State]);
j.FinishedFcn = @(job,eventdata) disp([job.Name ' now ' job.State]);

Create a task whose FinishedFcn is a function handle to the separate function.

createTask(j,@rand,1,{2,4}, ...
 'FinishedFcn',@clientTaskCompleted);

Run the job and note the output messages from both the job and task callbacks.

submit(j)

Job_52a now queued
Job_52a now running
Finished task: 1
Job_52a now finished

To use the same callbacks for any jobs and tasks on a given cluster, you should set these properties in the cluster profile. For details on editing profiles in the profile manager, see “Clusters and Cluster Profiles” on page 6-14. These property settings apply to any jobs and tasks created using a cluster derived from this profile. The sequence is important, and must occur in this order:

1. Set the callback property values for the profile in the profile manager.
2. Use the cluster profile to create a cluster object in MATLAB.
3. Use the cluster object to create jobs and then tasks.

Set Callbacks in a Cluster Profile

This example shows how to set several job and task callback properties using the profile manager.

Edit your MJS cluster profile in the profile manager so that you can set the callback properties to the same values in the previous example. The saves profile looks like this:
Create and save a callback function `clientTaskCompleted.m` on the path of the MATLAB client, with the following content. (If you created this function for the previous example, you can use that.)

```matlab
function clientTaskCompleted(task,eventdata)
    disp(['Finished task: ' num2str(task.ID)])
```

Create objects for the cluster, job, and task. Then submit the job. All the callback properties are set from the profile when the objects are created.

```matlab
c = parcluster(‘MyMJS’);
j = createJob(c,’Name’,’Job_52a’);
createTask(j,@rand,1,{2,4});
submit(j)
```

Job_52a now queued
Job_52a now running
Finished task: 1
Job_52a now finished

Tips

- You should avoid running code in your callback functions that might cause conflicts. For example, if every task in a job has a callback that plots its results, there is no
guarantee to the order in which the tasks finish, so the plots might overwrite each other. Likewise, the FinishFcn callback for a job might be triggered to start before the FinishFcn callbacks for all its tasks are complete.

- Submissions made with `batch` use applicable job and task callbacks. Parallel pools can trigger job callbacks defined by their cluster profile.
Job Monitor

In this section...

“Job Monitor GUI” on page 6-29
“Manage Jobs Using the Job Monitor” on page 6-30
“Identify Task Errors Using the Job Monitor” on page 6-30

Job Monitor GUI

The Job Monitor displays the jobs in the queue for the scheduler determined by your selection of a cluster profile. Open the Job Monitor from the MATLAB desktop on the Home tab in the Environment section, by clicking Parallel > Monitor Jobs.

The job monitor lists all the jobs that exist for the cluster specified in the selected profile. You can choose any one of your profiles (those available in your current session Cluster Profile Manager), and whether to display jobs from all users or only your own jobs.
Typical Use Cases

The Job Monitor lets you accomplish many different goals pertaining to job tracking and queue management. Using the Job Monitor, you can:

- Discover and monitor all jobs submitted by a particular user
- Determine the status of a job
- Determine the cause of errors in a job
- Delete old jobs you no longer need
- Create a job object in MATLAB for access to a particular job in the queue

Manage Jobs Using the Job Monitor

Using the Job Monitor you can manage the listed jobs for your cluster. Right-click on any job in the list, and select any of the following options from the context menu. The available options depend on the type of job.

- **Cancel** — Stops a running job and changes its state to 'finished'. If the job is pending or queued, the state changes to 'finished' without its ever running. This is the same as the command-line `cancel` function for the job.
- **Delete** — Deletes the job data and removes the job from the queue. This is the same as the command-line `delete` function for the job. Also closes and deletes an interactive pool job.
- **Show details** — This displays detailed information about the job in the Command Window.
- **Show errors** — This displays all the tasks that generated an error in that job, with their error properties.
- **Fetch outputs** — This collects all the task output arguments from the job into the client workspace.

Identify Task Errors Using the Job Monitor

Because the Job Monitor indicates if a job had a run-time error, you can use it to identify the tasks that generated the errors in that job. For example, the following script generates an error because it attempts to perform a matrix inverse on a vector:

```matlab
A = [2 4 6 8];
B = inv(A);
```
If you save this script in a file named `invert_me.m`, you can try to run the script as a batch job on the default cluster:

```matlab
batch('invert_me')
```

When updated after the job runs, the Job Monitor includes the job created by the `batch` command, with an error icon (⚠️) for this job. Right-click the job in the list, and select **Show Errors**. For all the tasks with an error in that job, the task information, including properties related to the error, display in the MATLAB command window:

```
Task ID 1 from Job ID 2 Information
===================================
State : finished
Function : @parallel.internal.cluster.executeScript
Running Duration : 0 days 0h 0m 1s

- Task Result Properties
  ErrorIdentifier : MATLAB:square
  ErrorMessage : Matrix must be square.
  Error Stack : invert_me (line 2)
```
Programming Tips

Program Development Guidelines

When writing code for Parallel Computing Toolbox software, you should advance one step at a time in the complexity of your application. Verifying your program at each step prevents your having to debug several potential problems simultaneously. If you run into any problems at any step along the way, back up to the previous step and reverify your code.

The recommended programming practice for distributed or parallel computing applications is

1 **Run code normally on your local machine.** First verify all your functions so that as you progress, you are not trying to debug the functions and the distribution at the same time. Run your functions in a single instance of MATLAB software on your local computer. For programming suggestions, see “Techniques to Improve Performance” in the MATLAB documentation.

2 **Decide whether you need an independent or communicating job.** If your application involves large data sets on which you need simultaneous calculations performed, you might benefit from a communicating job with distributed arrays. If your application involves looped or repetitive calculations that can be performed independently of each other, an independent job might be appropriate.
3 **Modify your code for division.** Decide how you want your code divided. For an independent job, determine how best to divide it into tasks; for example, each iteration of a for-loop might define one task. For a communicating job, determine how best to take advantage of parallel processing; for example, a large array can be distributed across all your workers.

4 **Use pmode to develop parallel functionality.** Use pmode with the local scheduler to develop your functions on several workers in parallel. As you progress and use pmode on the remote cluster, that might be all you need to complete your work.

5 **Run the independent or communicating job with a local scheduler.** Create an independent or communicating job, and run the job using the local scheduler with several local workers. This verifies that your code is correctly set up for batch execution, and in the case of an independent job, that its computations are properly divided into tasks.

6 **Run the independent job on only one cluster node.** Run your independent job with one task to verify that remote distribution is working between your client and the cluster, and to verify proper transfer of additional files and paths.

7 **Run the independent or communicating job on multiple cluster nodes.** Scale up your job to include as many tasks as you need for an independent job, or as many workers as you need for a communicating job.

Note The client session of MATLAB must be running the Java® Virtual Machine (JVM™) to use Parallel Computing Toolbox software. Do not start MATLAB with the `-nojvm` flag.

Current Working Directory of a MATLAB Worker

The current directory of a MATLAB worker at the beginning of its session is

```
CHECKPOINTBASE\HOSTNAME_WORKERNAME_mlworker_log\work
```

where CHECKPOINTBASE is defined in the `mdce_def` file, HOSTNAME is the name of the node on which the worker is running, and WORKERNAME is the name of the MATLAB worker session.

For example, if the worker named `worker22` is running on host `nodeA52`, and its `CHECKPOINTBASE` value is `C:\TEMP\MDCE\Checkpoint`, the starting current directory for that worker session is
Writing to Files from Workers

When multiple workers attempt to write to the same file, you might end up with a race condition, clash, or one worker might overwrite the data from another worker. This might be likely to occur when:

- There is more than one worker per machine, and they attempt to write to the same file.
- The workers have a shared file system, and use the same path to identify a file for writing.

In some cases an error can result, but sometimes the overwriting can occur without error. To avoid an issue, be sure that each worker or parfor iteration has unique access to any files it writes or saves data to. There is no problem when multiple workers read from the same file.

Saving or Sending Objects

Do not use the save or load function on Parallel Computing Toolbox objects. Some of the information that these objects require is stored in the MATLAB session persistent memory and would not be saved to a file.

Similarly, you cannot send a parallel computing object between parallel computing processes by means of an object's properties. For example, you cannot pass an MJS, job, task, or worker object to MATLAB workers as part of a job's JobData property.

Also, system objects (e.g., Java classes, .NET classes, shared libraries, etc.) that are loaded, imported, or added to the Java search path in the MATLAB client, are not available on the workers unless explicitly loaded, imported, or added on the workers, respectively. Other than in the task function code, typical ways of loading these objects might be in taskStartup, jobStartup, and in the case of workers in a parallel pool, in poolStartup and using pctRunOnAll.

Using clear functions

Executing

clear functions
clears all Parallel Computing Toolbox objects from the current MATLAB session. They still remain in the MJS. For information on recreating these objects in the client session, see “Recover Objects” on page 7-14.

Running Tasks That Call Simulink Software

The first task that runs on a worker session that uses Simulink software can take a long time to run, as Simulink is not automatically started at the beginning of the worker session. Instead, Simulink starts up when first called. Subsequent tasks on that worker session will run faster, unless the worker is restarted between tasks.

Using the pause Function

On worker sessions running on Macintosh or UNIX operating systems, `pause(Inf)` returns immediately, rather than pausing. This is to prevent a worker session from hanging when an interrupt is not possible.

Transmitting Large Amounts of Data

Operations that involve transmitting many objects or large amounts of data over the network can take a long time. For example, getting a job’s `Tasks` property or the results from all of a job’s tasks can take a long time if the job contains many tasks. See also “Object Data Size Limitations” on page 6-52.

Interrupting a Job

Because jobs and tasks are run outside the client session, you cannot use `Ctrl+C (^C)` in the client session to interrupt them. To control or interrupt the execution of jobs and tasks, use such functions as `cancel`, `delete`, `demote`, `promote`, `pause`, and `resume`.

Speeding Up a Job

You might find that your code runs slower on multiple workers than it does on one desktop computer. This can occur when task startup and stop time is significant relative to the task run time. The most common mistake in this regard is to make the tasks too small, i.e., too fine-grained. Another common mistake is to send large amounts of input or output data with each task. In both of these cases, the time it takes to transfer data and
initialize a task is far greater than the actual time it takes for the worker to evaluate the task function.
Control Random Number Streams

In this section...

“Different Workers” on page 6-37
“Client and Workers” on page 6-38
“Client and GPU” on page 6-39
“Worker CPU and Worker GPU” on page 6-41

Different Workers

By default, each worker in a cluster working on the same job has a unique random number stream. This example uses two workers in a parallel pool to show they generate unique random number sequences.

```matlab
p = parpool(2);
spmd
    R = rand(1,4); % Different on each worker
end
R{1},R{2}
```

```
0.3246  0.6618  0.6349  0.6497
0.2646  0.0968  0.5052  0.4866
```

delete(p)

If you need all workers to generate the same sequence of numbers, you can seed their generators all the same.

```matlab
p = parpool(2);
spmd
    s = RandStream('twister'); % Default seed 0.
    RandStream.setGlobalStream(s);
    R = rand(1,4); % Same on all workers
end
R{1},R{2}
```

```
0.8147  0.9058  0.1270  0.9134
0.8147  0.9058  0.1270  0.9134
```
delete(p)

Note Because `rng('shuffle')` seeds the random number generator based on the current time, you should not use this command to set the random number stream on different workers if you want to assure independent streams. This is especially true when the command is sent to multiple workers simultaneously, such as inside a `parfor`, `spmd`, or a communicating job. For independent streams on the workers, use the default behavior; or if that is not sufficient for your needs, consider using a unique substream on each worker.

For instructions on how to generate a reproducible set of random numbers in a `parfor`-loop, see “Repeat Random Numbers in parfor-Loops” on page 2-51.

Client and Workers

By default, the MATLAB client and MATLAB workers use different random number generators, even if the workers are part of a local cluster on the same machine with the client. For the client, the default is the Mersenne Twister generator (`'twister'`), and for the workers the default is the Combined Multiple Recursive generator (`'CombRecursive'` or `'mrg32k3a'`). If it is necessary to generate the same stream of numbers in the client and workers, you can set one to match the other.

For example, you might run a script as a batch job on a worker, and need the same generator or sequence as the client. Suppose you start with a script file named `randScript1.m` that contains the line:

```matlab
R = rand(1,4);
```

You can run this script in the client, and then as a batch job on a worker. Notice that the default generated random number sequences in the results are different.

```matlab
randScript1; % In client
R
```

```
R =
0.8147    0.9058    0.1270    0.9134
```

```matlab
parallel.defaultClusterProfile('local')
c = parcluster();
j = batch(c,'randScript1'); % On worker
```
wait(j); load(j);
R
R =
0.3246 0.6618 0.6349 0.6497

For identical results, you can set the client and worker to use the same generator and seed. Here the file `randScript2.m` contains the following code:

```matlab
s = RandStream('CombRecursive','Seed',1);
RandStream.setGlobalStream(s);
R = rand(1,4);
```

Now, run the new script in the client and on a worker:

```matlab
randScript2; % In client
R
R =
0.4957  0.2243  0.2073  0.6823
j = batch(c,'randScript2'); % On worker
wait(j); load(j);
R
R =
0.4957  0.2243  0.2073  0.6823
```

Client and GPU

By default MATLAB clients use different random generators than code running on a GPU. GPUs are more like workers in this regard, and use the Combined Multiple Recursive generator ('CombRecursive' or 'mrg32k3a') unless otherwise specified.

This example shows a default generation of random numbers comparing CPU and GPU in a fresh session.

```matlab
Rc = rand(1,4)
Rc =
0.8147  0.9058  0.1270  0.9134
Rg = rand(1,4,'gpuArray')
Rg =
```

6-39
Be aware that the GPU supports only three generators (\texttt{'CombRecursive'}, \texttt{'Philox4x32-10'}, and \texttt{'Threefry4x64-20'}). The following table lists the algorithms for these generators and their properties.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Generator</th>
<th>Multiple Stream and Substream Support</th>
<th>Approximate Period In Full Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{'CombRecursive'} or \texttt{'mrg32k3a'}</td>
<td>Combined multiple recursive generator</td>
<td>Yes</td>
<td>2^{127}</td>
</tr>
<tr>
<td>\texttt{'Philox4x32-10'}</td>
<td>Philox 4x32 generator with 10 rounds</td>
<td>Yes</td>
<td>2^{129}</td>
</tr>
<tr>
<td>\texttt{'Threefry4x64-20'}</td>
<td>Threefry 4x64 generator with 20 rounds</td>
<td>Yes</td>
<td>2^{258}</td>
</tr>
</tbody>
</table>

None of these is the default client generator for the CPU. To generate the same sequence on CPU and GPU, you must use the only generator supported by both: \texttt{'CombRecursive'}.

```matlab
sc = RandStream('CombRecursive','Seed',1);
RandStream.setGlobalStream(sc);
Rc = rand(1,4)
Rc =
  0.4957   0.2243   0.2073   0.6823

sg = parallel.gpu.RandStream('CombRecursive','Seed',1);
parallel.gpu.RandStream.setGlobalStream(sg);
Rg = rand(1,4,'gpuArray')
Rg =
  0.4957   0.2243   0.2073   0.6823
```

For normally distributed random numbers created by \texttt{randn}, CPU code by default uses a random stream with a NormalTransform setting of Ziggurat, while GPU code uses a setting of Inversion. You can set CPU and GPU generators the same to get the same \texttt{randn} sequence. The GPU supports only Inversion, so set the CPU to match:

```matlab
sc = RandStream('CombRecursive','NormalTransform','Inversion','Seed',1);
RandStream.setGlobalStream(sc)

sg = parallel.gpu.RandStream('CombRecursive','NormalTransform','Inversion','Seed',1);
```
parallel.gpu.RandStream.setGlobalStream(sg);
Rc = randn(1,4)

Rc =
 -0.0108 -0.7577 -0.8159 0.4742

Rg = randn(1,4,'gpuArray')

Rg =
 -0.0108 -0.7577 -0.8159 0.4742

Worker CPU and Worker GPU

Code running on a worker’s CPU uses the same generator to create random numbers as code running on a worker’s GPU, but they do not share the same stream. You can use a common seed to generate the same sequence of numbers, as shown in this example, where each worker creates the same sequence on GPU and CPU, but different from the sequence on the other worker.

p = parpool(2);
spmd
 sc = RandStream('CombRecursive','Seed',labindex);
 RandStream.setGlobalStream(sc);
 Rc = rand(1,4)

 sg = parallel.gpu.RandStream('CombRecursive','Seed',labindex);
 parallel.gpu.RandStream.setGlobalStream(sg);
 Rg = rand(1,4,'gpuArray')
end
delete(p)

For normally distributed random numbers from `randn`, by default a worker CPU uses a `NormalTransform` setting of Ziggurat while a worker GPU uses a setting of Inversion. You can set them both to use Inversion if you need the same sequence from CPU and GPU.
Profiling Parallel Code

In this section...

“Introduction” on page 6-42
“Collecting Parallel Profile Data” on page 6-42
“Viewing Parallel Profile Data” on page 6-43

Introduction

The parallel profiler provides an extension of the profile command and the profile viewer specifically for communicating jobs, to enable you to see how much time each worker spends evaluating each function and how much time communicating or waiting for communications with the other workers. Before using the parallel profiler, familiarize yourself with the standard profiler and its views, as described in “Profile to Improve Performance”.

Note The parallel profiler works on communicating jobs, including inside pmode. It does not work on parfor-loops.

Collecting Parallel Profile Data

For parallel profiling, you use the mpiprofile command within your communicating job (often within pmode) in a similar way to how you use profile.

To turn on the parallel profiler to start collecting data, enter the following line in your communicating job task code file, or type at the pmode prompt in the Parallel Command Window:

mpiprofile on

Now the profiler is collecting information about the execution of code on each worker and the communications between the workers. Such information includes:

• Execution time of each function on each worker
• Execution time of each line of code in each function
• Amount of data transferred between each worker
• Amount of time each worker spends waiting for communications

With the parallel profiler on, you can proceed to execute your code while the profiler collects the data.

In the pmode Parallel Command Window, to find out if the profiler is on, type:

P>> mpiprofile status

For a complete list of options regarding profiler data details, clearing data, etc., see the mpiprofile reference page.

Viewing Parallel Profile Data

To open the parallel profile viewer from pmode, type in the Parallel Command Window:

P>> mpiprofile viewer

The remainder of this section is an example that illustrates some of the features of the parallel profile viewer. This example executes in a pmode session running on four local workers. Initiate pmode by typing in the MATLAB Command Window:

pmode start local 4

When the Parallel Command Window (pmode) starts, type the following code at the pmode prompt:

P>> R1 = rand(16, codistributor())
P>> R2 = rand(16, codistributor())
P>> mpiprofile on
P>> P = R1*R2
P>> mpiprofile off
P>> mpiprofile viewer

The last command opens the Profiler window, first showing the Parallel Profile Summary (or function summary report) for worker (lab) 1.
The function summary report displays the data for each function executed on a worker in sortable columns with the following headers:

<table>
<thead>
<tr>
<th>Column Header</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calls</td>
<td>How many times the function was called on this worker</td>
</tr>
<tr>
<td>Total Time</td>
<td>The total amount of time this worker spent executing this function</td>
</tr>
<tr>
<td>Self Time</td>
<td>The time this worker spent inside this function, not within children or local functions</td>
</tr>
<tr>
<td>Total Comm Time</td>
<td>The total time this worker spent transferring data with other workers, including waiting time to receive data</td>
</tr>
<tr>
<td>Self Comm Waiting Time</td>
<td>The time this worker spent during this function waiting to receive data from other workers</td>
</tr>
<tr>
<td>Total Interlab Data</td>
<td>The amount of data transferred to and from this worker for this function</td>
</tr>
<tr>
<td>Computation Time Ratio</td>
<td>The ratio of time spent in computation for this function vs. total time (which includes communication time) for this function</td>
</tr>
</tbody>
</table>
Click the name of any function in the list for more details about the execution of that function. The function detail report for `codistributed.mtimes` includes this listing:

The code that is displayed in the report is taken from the client. If the code has changed on the client since the communicating job ran on the workers, or if the workers are running a different version of the functions, the display might not accurately reflect what actually executed.

You can display information for each worker, or use the comparison controls to display information for several workers simultaneously. Two buttons provide **Automatic Comparison Selection**, allowing you to compare the data from the workers that took the most versus the least amount of time to execute the code, or data from the workers that spent the most versus the least amount of time in performing interworker
communication. **Manual Comparison Selection** allows you to compare data from specific workers or workers that meet certain criteria.

The following listing from the summary report shows the result of using the **Automatic Comparison Selection of Compare (max vs. min TotalTime)**. The comparison shows data from worker (lab) 3 compared to worker (lab) 1 because these are the workers that spend the most versus least amount of time executing the code.

![Summary Report](image)

The following figure shows a summary of all the functions executed during the profile collection time. The **Manual Comparison Selection of max Time Aggregate** means that data is considered from all the workers for all functions to determine which worker spent the maximum time on each function. Next to each function's name is the worker that took the longest time to execute that function. The other columns list the data from that worker.
The next figure shows a summary report for the workers that spend the most versus least time for each function. A Manual Comparison Selection of max Time Aggregate against min Time >0 Aggregate generated this summary. Both aggregate settings indicate that the profiler should consider data from all workers for all functions, for both maximum and minimum. This report lists the data for codistributed.mtimes from workers 3 and 1, because they spent the maximum and minimum times on this function. Similarly, other functions are listed.
Click on a function name in the summary listing of a comparison to get a detailed comparison. The detailed comparison for `codistributed.mtimes` looks like this, displaying line-by-line data from both workers:

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Calls</th>
<th>Total Time</th>
<th>Self Time</th>
<th>Total Comm Time</th>
<th>Total Interlab Data</th>
<th>Computation Time Ratio</th>
<th>Total Time Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>codistributed.mtimes (lab 3)</code></td>
<td>1</td>
<td>0.209 s</td>
<td>0.129 s</td>
<td>0.124 s</td>
<td>3.42 Kb</td>
<td>40.8%</td>
<td>****</td>
</tr>
<tr>
<td><code>codistributed.mtimes (lab 1)</code></td>
<td>1</td>
<td>0.124 s</td>
<td>0.078 s</td>
<td>0.084 s</td>
<td>3.42 Kb</td>
<td>32.4%</td>
<td>****</td>
</tr>
<tr>
<td><code>codistributed.codistributed (lab 2)</code></td>
<td>1</td>
<td>0.077 s</td>
<td>0.061 s</td>
<td>0 s</td>
<td>0 b</td>
<td>100.0%</td>
<td>****</td>
</tr>
<tr>
<td><code>codistributed.codistributed (lab 1)</code></td>
<td>1</td>
<td>0.014 s</td>
<td>0.014 s</td>
<td>0 s</td>
<td>0 b</td>
<td>100.0%</td>
<td>****</td>
</tr>
<tr>
<td><code>partitionIndices (lab 3)</code></td>
<td>4</td>
<td>0.032 s</td>
<td>0.032 s</td>
<td>0 s</td>
<td>0 b</td>
<td>100.0%</td>
<td>****</td>
</tr>
</tbody>
</table>
To see plots of communication data, select **Plot All PerLab Communication** in the **Show Figures** menu. The top portion of the plot view report plots how much data each worker receives from each other worker for all functions.

To see only a plot of interworker communication times, select **Plot CommTimePerLab** in the **Show Figures** menu.
Plots like those in the previous two figures can help you determine the best way to balance work among your workers, perhaps by altering the partition scheme of your codistributed arrays.
Benchmarking Performance

HPC Challenge Benchmarks

Several MATLAB files are available to illustrate HPC Challenge benchmark performance. You can find the files in the folder `matlabroot/toolbox/distcomp/examples/benchmark/hpcchallenge`. Each file is self-documented with explanatory comments. These files are not self-contained examples, but rather require that you know enough about your cluster to be able to provide the necessary information when using these files.
Troubleshooting and Debugging

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Object Data Size Limitations” on page 6-52</td>
</tr>
<tr>
<td>“File Access and Permissions” on page 6-52</td>
</tr>
<tr>
<td>“No Results or Failed Job” on page 6-54</td>
</tr>
<tr>
<td>“Connection Problems Between the Client and MJS” on page 6-54</td>
</tr>
<tr>
<td>“SFTP Error: Received Message Too Long” on page 6-55</td>
</tr>
</tbody>
</table>

Object Data Size Limitations

The size limit of data transfers among parallel computing objects is limited by the Java Virtual Machine (JVM) memory allocation to approximately 2 GB. This limit applies to single transfers of data between client and workers in any job using an MJS cluster.

File Access and Permissions

Ensuring That Workers on Windows Operating Systems Can Access Files

By default, a worker on a Windows operating system is installed as a service running as LocalSystem, so it does not have access to mapped network drives.

Often a network is configured to not allow services running as LocalSystem to access UNC or mapped network shares. In this case, you must run the mdce service under a different user with rights to log on as a service. See the section “Set the User” in the MATLAB Distributed Computing Server System Administrator's Guide.

Task Function Is Unavailable

If a worker cannot find the task function, it returns the error message

```
Error using ==> feval
Undefined command/function 'function_name'.
```

The worker that ran the task did not have access to the function function_name. One solution is to make sure the location of the function’s file, function_name.m, is included
in the job’s AdditionalPaths property. Another solution is to transfer the function file to the worker by adding `function_name.m` to the AttachedFiles property of the job.

Load and Save Errors

If a worker cannot save or load a file, you might see the error messages

```plaintext
??? Error using ==> save
Unable to write file myfile.mat: permission denied.
??? Error using ==> load
Unable to read file myfile.mat: No such file or directory.
```

In determining the cause of this error, consider the following questions:

- What is the worker’s current folder?
- Can the worker find the file or folder?
- What user is the worker running as?
- Does the worker have permission to read or write the file in question?

Tasks or Jobs Remain in Queued State

A job or task might get stuck in the queued state. To investigate the cause of this problem, look for the scheduler’s logs:

- Platform LSF schedulers might send emails with error messages.
- Microsoft Windows HPC Server (including CCS), LSF®, PBS Pro, and TORQUE save output messages in a debug log. See the `getDebugLog` reference page.
- If using a generic scheduler, make sure the submit function redirects error messages to a log file.

Possible causes of the problem are:

- The MATLAB worker failed to start due to licensing errors, the executable is not on the default path on the worker machine, or is not installed in the location where the scheduler expected it to be.
- MATLAB could not read/write the job input/output files in the scheduler’s job storage location. The storage location might not be accessible to all the worker nodes, or the user that MATLAB runs as does not have permission to read/write the job files.
- If using a generic scheduler:
• The environment variable `MDCE_DECODE_FUNCTION` was not defined before the MATLAB worker started.
• The decode function was not on the worker’s path.

No Results or Failed Job

Task Errors

If your job returned no results (i.e., `fetchOutputs(job)` returns an empty cell array), it is probable that the job failed and some of its tasks have their `Error` properties set.

You can use the following code to identify tasks with error messages:

```matlab
errmsgs = get(yourjob.Tasks, {'ErrorMessage'});
onempty = ~cellfun(@isempty, errmsgs);
celldisp(errmsgs(nonempty));
```

This code displays the nonempty error messages of the tasks found in the job object `yourjob`.

Debug Logs

If you are using a supported third-party scheduler, you can use the `getDebugLog` function to read the debug log from the scheduler for a particular job or task.

For example, find the failed job on your LSF scheduler, and read its debug log:

```matlab
c = parcluster('my_lsf_profile')
failedjob = findJob(c, 'State', 'failed');
message = getDebugLog(c, failedjob(1))
```

Connection Problems Between the Client and MJS

For testing connectivity between the client machine and the machines of your compute cluster, you can use Admin Center. For more information about Admin Center, including how to start it and how to test connectivity, see “Start Admin Center” and “Test Connectivity” in the MATLAB Distributed Computing Server documentation.

Detailed instructions for other methods of diagnosing connection problems between the client and MJS can be found in some of the Bug Reports listed on the MathWorks Web site.
The following sections can help you identify the general nature of some connection problems.

Client Cannot See the MJS

If you cannot locate or connect to your MJS with `parcluster`, the most likely reasons for this failure are:

- The MJS is currently not running.
- Firewalls do not allow traffic from the client to the MJS.
- The client and the MJS are not running the same version of the software.
- The client and the MJS cannot resolve each other’s short hostnames.
- The MJS is using a nondefault `BASE_PORT` setting as defined in the `mdce_def` file, and the `Host` property in the cluster profile does not specify this port.

MJS Cannot See the Client

If a warning message says that the MJS cannot open a TCP connection to the client computer, the most likely reasons for this are

- Firewalls do not allow traffic from the MJS to the client.
- The MJS cannot resolve the short hostname of the client computer. Use `pctconfig` to change the hostname that the MJS will use for contacting the client.

SFTP Error: Received Message Too Long

The example code for generic schedulers with non-shared file systems contacts an sftp server to handle the file transfer to and from the cluster’s file system. This use of sftp is subject to all the normal sftp vulnerabilities. One problem that can occur results in an error message similar to this:

Caused by:

```plaintext
Error using ==> RemoteClusterAccess>RemoteClusterAccess.waitForChoreToFinishOrError at 780
The following errors occurred in the
   com.mathworks.toolbox.distcomp.clusteraccess.UploadFilesChore:
   Could not send Job3.common.mat for job 3:
   One of your shell's init files contains a command that is writing to stdout,
       interfering with sftp. Access help
   com.mathworks.toolbox.distcomp.remote.spi.plugin.SftpExtraBytesFromShellException:
   One of your shell's init files contains a command that is writing to stdout,
       interfering with sftp.
   Find and wrap the command with a conditional test, such as
   if ($?TERM != 0) then
   if ('$TERM' != 'dumb') then
```

if ($?TERM != 0) then
if ('$TERM' != 'dumb') then
The telling symptom is the phrase "Received message is too long:" followed by a very large number.

The sftp server starts a shell, usually bash or tcsh, to set your standard read and write permissions appropriately before transferring files. The server initializes the shell in the standard way, calling files like .bashrc and .cshrc. This problem happens if your shell emits text to standard out when it starts. That text is transferred back to the sftp client running inside MATLAB, and is interpreted as the size of the sftp server’s response message.

To work around this error, locate the shell startup file code that is emitting the text, and either remove it or bracket it within if statements to see if the sftp server is starting the shell:

```bash
if ($?TERM != 0) then
  if ("$TERM" != "dumb") then
    /your command/
  endif
endif
endif
```

You can test this outside of MATLAB with a standard UNIX or Windows sftp command-line client before trying again in MATLAB. If the problem is not fixed, the error message persists:

```bash
> sftp yourSubmitMachine
Connecting to yourSubmitMachine...
Received message too long 1718579042
```

If the problem is fixed, you should see:

```bash
> sftp yourSubmitMachine
Connecting to yourSubmitMachine...
```
Run `mapreduce` on a Parallel Pool

In this section...

“Start Parallel Pool” on page 6-57
“Compare Parallel `mapreduce`” on page 6-57

Start Parallel Pool

If you have Parallel Computing Toolbox installed, execution of `mapreduce` can open a parallel pool on the cluster specified by your default profile, for use as the execution environment.

You can set your parallel preferences so that a pool does not automatically open. In this case, you must explicitly start a pool if you want `mapreduce` to use it for parallelization of its work. See “Parallel Preferences” on page 6-12.

For example, the following conceptual code starts a pool, and some time later uses that open pool for the `mapreducer` configuration.

```matlab
p = parpool('local',n);
mr = mapreducer(p);
outds = mapreduce(tds,@MeanDistMapFun,@MeanDistReduceFun,mr)
```

Note `mapreduce` can run on any cluster that supports parallel pools. The examples in this topic use a local cluster, which works for all Parallel Computing Toolbox installations.

Compare Parallel `mapreduce`

The following example calculates the mean arrival delay from a datastore of airline data. First it runs `mapreduce` in the MATLAB client session, then it runs in parallel on a local cluster. The `mapreducer` function explicitly controls the execution environment.

Begin by starting a parallel pool on a local cluster.

```matlab
p = parpool('local',4);
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
Create two MapReducer objects for specifying the different execution environments for mapreduce.

```matlab
inMatlab = mapreducer(0);
inPool = mapreducer(p);
```

Create and preview the datastore. The data set used in this example is available in `matlabroot/toolbox/matlab/demos`.

```matlab
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
    'SelectedVariableNames','ArrDelay','ReadSize',1000);
preview(ds)
```

```
ArrDelay
   _______
     8
     8
    21
    13
     4
    59
     3
    11
```

Next, run the `mapreduce` calculation in the MATLAB client session. The map and reduce functions are available in `matlabroot/toolbox/matlab/demos`.

```matlab
meanDelay = mapreduce(ds,@meanArrivalDelayMapper,@meanArrivalDelayReducer,inMatlab);
```

```
* ************************************************** *
* MAPREDUCE   PROGRESS   *
* ************************************************** *
Map  0% Reduce  0%
Map 10% Reduce  0%
Map 20% Reduce  0%
Map 30% Reduce  0%
Map 40% Reduce  0%
Map 50% Reduce  0%
Map 60% Reduce  0%
Map 70% Reduce  0%
Map 80% Reduce  0%
Map 90% Reduce  0%
Map 100% Reduce 100%
```
readall(meanDelay)

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'MeanArrivalDelay'</td>
<td>[7.1201]</td>
</tr>
</tbody>
</table>

Then, run the calculation on the current parallel pool. Note that the output text indicates a parallel `mapreduce`.

```
meanDelay = mapreduce(ds,@meanArrivalDelayMapper,@meanArrivalDelayReducer,inPool);
```

Parallel mapreduce execution on the parallel pool:
```
************** MAPREduce Progress **************
Map 0% Reduce 0%
Map 100% Reduce 50%
Map 100% Reduce 100%
```

readall(meanDelay)

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'MeanArrivalDelay'</td>
<td>[7.1201]</td>
</tr>
</tbody>
</table>

With this relatively small data set, a performance improvement with the parallel pool is not likely. This example is to show the mechanism for running `mapreduce` on a parallel pool. As the data set grows, or the map and reduce functions themselves become more computationally intensive, you might expect to see improved performance with the parallel pool, compared to running `mapreduce` in the MATLAB client session.

Note When running parallel `mapreduce` on a cluster, the order of the key-value pairs in the output is different compared to running `mapreduce` in MATLAB. If your application depends on the arrangement of data in the output, you must sort the data according to your own requirements.

See Also

Functions

datastore | mapreduce | mapreducer
Related Examples

- “Getting Started with MapReduce”
- “Run mapreduce on a Hadoop Cluster” on page 6-61

More About

- “MapReduce”
- “Datastore”
Run mapreduce on a Hadoop Cluster

In this section...

“Cluster Preparation” on page 6-61
“Output Format and Order” on page 6-61
“Calculate Mean Delay” on page 6-61

Cluster Preparation

Before you can run mapreduce on a Hadoop® cluster, make sure that the cluster and client machine are properly configured. Consult your system administrator, or see “Configure a Hadoop Cluster”.

Output Format and Order

When running mapreduce on a Hadoop cluster with binary output (the default), the resulting KeyValueDatastore points to Hadoop Sequence files, instead of binary MAT-files as generated by mapreduce in other environments. For more information, see the 'OutputType' argument description on the mapreduce reference page.

When running mapreduce on a Hadoop cluster, the order of the key-value pairs in the output is different compared to running mapreduce in other environments. If your application depends on the arrangement of data in the output, you must sort the data according to your own requirements.

Calculate Mean Delay

This example shows how modify the MATLAB example for calculating mean airline delays to run on a Hadoop cluster.

First, you must set environment variables and cluster properties as appropriate for your specific Hadoop configuration. See your system administrator for the values for these and other properties necessary for submitting jobs to your cluster.

setenv('HADOOP_HOME','/share/hadoop/a2.2.0');
cluster = parallel.cluster.Hadoop;
cluster.HadoopProperties('mapred.job.tracker') = 'hadoophost1:50031';
cluster.HadoopProperties('fs.default.name') = 'hdfs://hadoophost2:8020';
outputFolder = '/home/user/logs/hadooplog';

Note The specified outputFolder must not already exist. The mapreduce output from a Hadoop cluster cannot overwrite an existing folder.

Create a MapReducer object to specify that mapreduce should use your Hadoop cluster.

```matlab
mr = mapreducer(cluster);
```

Create and preview the datastore. The data set is available in `matlabroot/toolbox/matlab/demos`.

```matlab
ds = datastore('airlinesmall.csv',' TreatAsMissing','NA',
    'SelectedVariableNames','ArrDelay','ReadSize',1000);
```

```matlab
preview(ds)
```

<table>
<thead>
<tr>
<th>ArrDelay</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

Call mapreduce to execute on the Hadoop cluster specified by `mr`. The map and reduce functions are available in `matlabroot/toolbox/matlab/demos`.

```matlab
meanDelay = mapreduce(ds,@meanArrivalDelayMapper,@meanArrivalDelayReducer,mr,...
    'OutputFolder',outputFolder)
```

Parallel mapreduce execution on the Hadoop cluster:

```
********************
* MAPREDUCE PROGRESS *
********************
Map  0% Reduce  0%
Map  66% Reduce  0%
Map  100% Reduce 66%
Map  100% Reduce 100%
```
meanDelay =

 KeyValueDatastore with properties:

 Files: {
 '/tmp/alafleur/tpc00621b1_4eef_4abc_8078_646aa916e7d9/part0.seq'
 }
 ReadSize: 1 key-value pairs
 FileType: 'seq'

Read the result.

readall(meanDelay)

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'MeanArrivalDelay'</td>
<td>[7.1201]</td>
</tr>
</tbody>
</table>

Although for demonstration purposes this example uses a local data set, it is likely when using Hadoop that your data set is stored in an HDFS™ file system. Likewise, you might be required to store the `mapreduce` output in HDFS. For details about accessing HDFS in MATLAB, see “Read from HDFS”.

See Also

Functions
datastore | mapreduce | mapreducer | parallel.cluster.Hadoop

Related Examples

- “Getting Started with MapReduce”
- “Run mapreduce on a Parallel Pool” on page 6-57

More About

- “MapReduce”
- “Datastore”
Partition a Datastore in Parallel

Partitioning a datastore in parallel, with a portion of the datastore on each worker in a parallel pool, can provide benefits in many cases:

- Perform some action on only one part of the whole datastore, or on several defined parts simultaneously.
- Search for specific values in the data store, with all workers acting simultaneously on their own partitions.
- Perform a reduction calculation on the workers across all partitions.

This example shows how to use partition to parallelize the reading of data from a datastore. It uses a small datastore of airline data provided in MATLAB, and finds the mean of the non-NaN values from its 'ArrDelay' column.

A simple way to calculate the mean is to divide the sum of all the non-NaN values by the number of non-NaN values. The following code does this for the datastore first in a non-parallel way. To begin, you define a function to amass the count and sum. If you want to run this example, copy and save this function in a folder on the MATLAB command search path.

```plaintext
% Copyright 2015 The MathWorks, Inc.

function [total,count] = sumAndCountArrivalDelay(ds)
    total = 0;
    count = 0;
    while hasdata(ds)
        data = read(ds);
        total = total + sum(data.ArrDelay,1,'OmitNaN');
        count = count + sum(~isnan(data.ArrDelay));
    end
end
```

The following code creates a datastore, calls the function, and calculates the mean without any parallel execution. The tic and toc functions are used to time the execution, here and in the later parallel cases.

```plaintext
ds = datastore(repmat({'airlinesmall.csv'},20,1),'TreatAsMissing','NA');
ds.SelectedVariableNames = 'ArrDelay';
```
reset(ds);
tic
	[total,count] = sumAndCountArrivalDelay(ds)
sumtime = toc
mean = total/count

total = 17211680

count = 2417320

sumtime = 14.1478

mean = 7.1201

The `partition` function allows you to partition the datastore into smaller parts, each represented as a datastore itself. These smaller datastores work completely independently of each other, so that you can work with them inside of parallel language features such as `parfor` loops and `spmd` blocks.

The number of partitions in the following code is set by the `numpartitions` function, based on the datastore itself (`ds`) and the parallel pool (`gcp`) size. This does not necessarily equal the number of workers in the pool. In this case, the number of loop iterations is then set to the number of partitions (`N`).

The following code starts a parallel pool on a local cluster, then partitions the datastore among workers for iterating over the loop. Again, a separate function is called, which includes the `parfor` loop to amass the count and sum totals. Copy and save this function if you want to run the example.
function [total, count] = parforSumAndCountArrivalDelay(ds)

N = numpartitions(ds,gcp);
total = 0;
count = 0;
parfor ii = 1:N
 % Get partition ii of the datastore.
 subds = partition(ds,N,ii);
 [localTotal,localCount] = sumAndCountArrivalDelay(subds);
 total = total + localTotal;
 count = count + localCount;
end
end

Now the MATLAB code calls this new function, so that the counting and summing of the non-NAN values can occur in parallel loop iterations.

p = parpool('local',4);
reset(ds);
tic
tic
 [total,count] = parforSumAndCountArrivalDelay(ds)
parfortime = toc
mean = total/count

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
Analyzing and transferring files to the workers ... done.

total =
 17211680

count =
 2417320

parfortime =
Rather than let the software calculate the number of partitions, you can explicitly set this value, so that the data can be appropriately partitioned to fit your algorithm. For example, to parallelize data from within an spmd block, you can specify the number of workers (numlabs) as the number of partitions to use. The following function uses an spmd block to perform a parallel read, and explicitly sets the number of partitions equal to the number of workers. To run this example, copy and save the function.

```matlab
% Copyright 2015 The MathWorks, Inc.

function [total,count] = spmdSumAndCountArrivalDelay(ds)
    spmd
        subds = partition(ds,numlabs,labindex);
        [total,count] = sumAndCountArrivalDelay(subds);
    end
    total = sum([total{:}]);
    count = sum([count{:}]);
end
```

Now the MATLAB code calls the function that uses an spmd block.

```matlab
reset(ds);
tic
    [total,count] = spmdSumAndCountArrivalDelay(ds)
spmdtime = toc
mean = total/count
```

Analyzing and transferring files to the workers ...done.

```matlab
total =
    17211680
```
count =
2417320

spmdtime =
6.2568

mean =
7.1201

delete(p);

Parallel pool using the 'local' profile is shutting down.

You might get some idea of modest performance improvements by comparing the times recorded in the variables `sumtime`, `parfortime`, and `spmdtime`. Your results might vary, as the performance can be affected by the datastore size, parallel pool size, hardware configuration, and other factors.
Program Independent Jobs

- “Program Independent Jobs” on page 7-2
- “Program Independent Jobs on a Local Cluster” on page 7-3
- “Program Independent Jobs for a Supported Scheduler” on page 7-8
- “Share Code with the Workers” on page 7-16
- “Program Independent Jobs for a Generic Scheduler” on page 7-21
Program Independent Jobs

An Independent job is one whose tasks do not directly communicate with each other, that is, the tasks are independent of each other. The tasks do not need to run simultaneously, and a worker might run several tasks of the same job in succession. Typically, all tasks perform the same or similar functions on different data sets in an embarrassingly parallel configuration.

Some of the details of a job and its tasks might depend on the type of scheduler you are using:

- “Program Independent Jobs on a Local Cluster” on page 7-3
- “Program Independent Jobs for a Supported Scheduler” on page 7-8
- “Program Independent Jobs for a Generic Scheduler” on page 7-21
Program Independent Jobs on a Local Cluster

In this section...

“Create and Run Jobs with a Local Cluster” on page 7-3
“Local Cluster Behavior” on page 7-6

Create and Run Jobs with a Local Cluster

For jobs that require more control than the functionality offered by such high level constructs as `spmd` and `parfor`, you have to program all the steps for creating and running the job. Using the local cluster (or local scheduler) on your machine lets you create and test your jobs without using the resources of your network cluster. Distributing tasks to workers that are all running on your client machine might not offer any performance enhancement, so this feature is provided primarily for code development, testing, and debugging.

Note: Workers running in a local cluster on a Microsoft Windows operating system can display Simulink graphics as well as the output from certain functions such as `uigetfile` and `uigetdir`. (With other platforms or schedulers, workers cannot display any graphical output.) This behavior is subject to removal in a future release.

This section details the steps of a typical programming session with Parallel Computing Toolbox software using a local cluster:

- “Create a Cluster Object” on page 7-4
- “Create a Job” on page 7-4
- “Create Tasks” on page 7-5
- “Submit a Job to the Cluster” on page 7-5
- “Fetch the Job’s Results” on page 7-6

Note that the objects that the client session uses to interact with the cluster are only references to data that is actually contained in the cluster’s job storage location, not in the client session. After jobs and tasks are created, you can close your client session and restart it, and your job still resides in the storage location. You can find existing jobs using the `findJob` function or the `Jobs` property of the cluster object.
Create a Cluster Object

You use the `parcluster` function to create an object in your local MATLAB session representing the local scheduler.

```matlab
parallel.defaultClusterProfile('local');
c = parcluster();
```

Create a Job

You create a job with the `createJob` function. This statement creates a job in the cluster's job storage location, creates the job object `job1` in the client session, and if you omit the semicolon at the end of the command, displays some information about the job.

```matlab
job1 = createJob(c)
```

```
Job

Properties:

  ID: 2
  Type: Independent
  Username: eng864
  State: pending
  SubmitTime:
  StartTime:
  Running Duration: 0 days 0h 0m 0s

  AutoAttachFiles: true
  Auto Attached Files: List files
  AttachedFiles: {}
  AdditionalPaths: {}

Associated Tasks:

  Number Pending: 0
  Number Running: 0
  Number Finished: 0
  Task ID of Errors: []
```

Note that the job's `State` property is `pending`. This means the job has not yet been submitted (queued) for running, so you can now add tasks to it.

The scheduler's display now indicates the existence of your job, which is the pending one, as appears in this partial listing:
Create Tasks

After you have created your job, you can create tasks for the job using the createTask function. Tasks define the functions to be evaluated by the workers during the running of the job. Often, the tasks of a job are all identical. In this example, five tasks will each generate a 3-by-3 matrix of random numbers.

```plaintext
createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});
```

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

```plaintext
job1.Tasks
```

```
<table>
<thead>
<tr>
<th>ID</th>
<th>State</th>
<th>FinishTime</th>
<th>Function</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
</tbody>
</table>
```

Submit a Job to the Cluster

To run your job and have its tasks evaluated, you submit the job to the cluster with the submit function.

```plaintext
submit(job1)
```

The local scheduler starts the workers on your machine, and distributes the tasks of job1 to these workers for evaluation.
Fetch the Job’s Results

The results of each task’s evaluation are stored in the task object’s `OutputArguments` property as a cell array. After waiting for the job to complete, use the function `fetchOutputs` to retrieve the results from all the tasks in the job.

```matlab
wait(job1)
results = fetchOutputs(job1);
```

Display the results from each task.

```matlab
results{1:5}
```

```
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214
0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
```

Local Cluster Behavior

The local scheduler runs in the MATLAB client session, so you do not have to start any separate scheduler or MJS process for the local scheduler. When you submit a job for
evaluation to the local cluster, the scheduler starts a MATLAB worker for each task in the job, but only up to as many workers as allowed by the local profile. If your job has more tasks than allowed workers, the scheduler waits for one of the current tasks to complete before starting another MATLAB worker to evaluate the next task. You can modify the number of allowed workers in the local cluster profile. If not specified, the default is to run only as many workers as computational cores on the machine.

The local cluster has no interaction with any other scheduler or MJS, nor with any other workers that might also be running on your client machine under the mdce service. Multiple MATLAB sessions on your computer can each start its own local scheduler with its own workers, but these groups do not interact with each other.

When you end your MATLAB client session, its local scheduler and any workers that happen to be running at that time also stop immediately.
Program Independent Jobs for a Supported Scheduler

In this section...

“Create and Run Jobs” on page 7-8
“Manage Objects in the Scheduler” on page 7-13

Create and Run Jobs

This section details the steps of a typical programming session with Parallel Computing Toolbox software using a supported job scheduler on a cluster. Supported schedulers include the MATLAB job scheduler (MJS), Platform LSF (Load Sharing Facility), Microsoft Windows HPC Server (including CCS), PBS Pro, or a TORQUE scheduler.

This section assumes you have an MJS, LSF, PBS Pro, TORQUE, or Windows HPC Server (including CCS and HPC Server 2008) scheduler installed and running on your network. For more information about LSF, see http://www.platform.com/Products/. For more information about Windows HPC Server, see http://www.microsoft.com/hpc. With all of these cluster types, the basic job programming sequence is the same:

• “Define and Select a Profile” on page 7-8
• “Find a Cluster” on page 7-9
• “Create a Job” on page 7-10
• “Create Tasks” on page 7-11
• “Submit a Job to the Job Queue” on page 7-12
• “Retrieve Job Results” on page 7-12

Note that the objects that the client session uses to interact with the MJS are only references to data that is actually contained in the MJS, not in the client session. After jobs and tasks are created, you can close your client session and restart it, and your job is still stored in the MJS. You can find existing jobs using the findJob function or the Jobs property of the MJS cluster object.

Define and Select a Profile

A cluster profile identifies the type of cluster to use and its specific properties. In a profile, you define how many workers a job can access, where the job data is stored,
where MATLAB is accessed and many other cluster properties. The exact properties are
determined by the type of cluster.

The step in this section all assume the profile with the name MyProfile identifies the
cluster you want to use, with all necessary property settings. With the proper use of a
profile, the rest of the programming is the same, regardless of cluster type. After you
define or import your profile, you can set it as the default profile in the Profile Manager
GUI, or with the command:

```
parallel.defaultClusterProfile('MyProfile')
```

A few notes regarding different cluster types and their properties:

Notes In a shared file system, all nodes require access to the folder specified in the
cluster object's `JobStorageLocation` property.

Because Windows HPC Server requires a shared file system, all nodes require access to
the folder specified in the cluster object's `JobStorageLocation` property.

In a shared file system, MATLAB clients on many computers can access the same job
data on the network. Properties of a particular job or task should be set from only one
client computer at a time.

When you use an LSF scheduler in a nonshared file system, the scheduler might report
that a job is in the finished state even though the LSF scheduler might not yet have
completed transferring the job's files.

Find a Cluster

You use the `parcluster` function to identify a cluster and to create an object
representing the cluster in your local MATLAB session.

To find a specific cluster, user the cluster profile to match the properties of the cluster
you want to use. In this example, `MyProfile` is the name of the profile that defines the
specific cluster.

```
c = parcluster('MyProfile');
```

MJS Cluster

```
Properties
   Name: my_mjs
   Profile: MyProfile
```
Create a Job

You create a job with the `createJob` function. Although this command executes in the client session, it actually creates the job on the cluster, `c`, and creates a job object, `job1`, in the client session.

```
job1 = createJob(c)
```

```
ID: 1
Type: Independent
Username: mylogin
State: pending
SubmitTime:
StartTime:
Running Duration: 0 days 0h 0m 0s
```

AutoAttachFiles: true
Auto Attached Files: List files
AttachedFiles: {}
AdditionalPaths: {}

Associated Tasks:

Number Pending: 0
Note that the job’s **State** property is **pending**. This means the job has not been queued for running yet, so you can now add tasks to it.

The cluster’s display now includes one pending job, as shown in this partial listing:

```
c
```

Associated Jobs

```
Number Pending: 1
Number Queued: 0
Number Running: 0
Number Finished: 0
```

You can transfer files to the worker by using the `AttachedFiles` property of the job object. For details, see “Share Code with the Workers” on page 7-16.

Create Tasks

After you have created your job, you can create tasks for the job using the `createTask` function. Tasks define the functions to be evaluated by the workers during the running of the job. Often, the tasks of a job are all identical. In this example, each task will generate a 3-by-3 matrix of random numbers.

```
createTask(job1, @rand, 1, {3,3});
```

The `Tasks` property of `job1` is now a 5-by-1 matrix of task objects.

```
job1.Tasks
```

```
<table>
<thead>
<tr>
<th>ID</th>
<th>State</th>
<th>FinishTime</th>
<th>Function</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
</tbody>
</table>
```
Alternatively, you can create the five tasks with one call to `createTask` by providing a cell array of five cell arrays defining the input arguments to each task.

\[T = \text{createTask}(\text{job1}, \text{@rand}, 1, \{\{3,3\} \{3,3\} \{3,3\} \{3,3\} \{3,3\}}); \]

In this case, \(T \) is a 5-by-1 matrix of task objects.

Submit a Job to the Job Queue

To run your job and have its tasks evaluated, you submit the job to the job queue with the `submit` function.

```
submit(job1)
```

The job manager distributes the tasks of `job1` to its registered workers for evaluation.

Each worker performs the following steps for task evaluation:

1. Receive `AttachedFiles` and `AdditionalPaths` from the job. Place files and modify the path accordingly.
2. Run the `jobStartup` function the first time evaluating a task for this job. You can specify this function in `AttachedFiles` or `AdditionalPaths`. When using an MJS, if the same worker evaluates subsequent tasks for this job, `jobStartup` does not run between tasks.
3. Run the `taskStartup` function. You can specify this function in `AttachedFiles` or `AdditionalPaths`. This runs before every task evaluation that the worker performs, so it could occur multiple times on a worker for each job.
4. If the worker is part of forming a new parallel pool, run the `poolStartup` function. (This occurs when executing `parpool` or when running other types of jobs that form and use a parallel pool, such as `batch`.)
5. Receive the task function and arguments for evaluation.
6. Evaluate the task function, placing the result in the task’s `OutputArguments` property. Any error information goes in the task’s `Error` property.
7. Run the `taskFinish` function.

Retrieve Job Results

The results of each task’s evaluation are stored in that task object’s `OutputArguments` property as a cell array. Use the function `fetchOutputs` to retrieve the results from all the tasks in the job.
wait(job1)
results = fetchOutputs(job1);

Display the results from each task.
results{1:5}

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9501</td>
<td>0.4860</td>
<td>0.4565</td>
</tr>
<tr>
<td>0.2311</td>
<td>0.8913</td>
<td>0.0185</td>
</tr>
<tr>
<td>0.6068</td>
<td>0.7621</td>
<td>0.8214</td>
</tr>
<tr>
<td>0.4447</td>
<td>0.9218</td>
<td>0.4057</td>
</tr>
<tr>
<td>0.6154</td>
<td>0.7382</td>
<td>0.9355</td>
</tr>
<tr>
<td>0.7919</td>
<td>0.1763</td>
<td>0.9169</td>
</tr>
<tr>
<td>0.4103</td>
<td>0.3529</td>
<td>0.1389</td>
</tr>
<tr>
<td>0.8936</td>
<td>0.8132</td>
<td>0.2028</td>
</tr>
<tr>
<td>0.0579</td>
<td>0.0099</td>
<td>0.1987</td>
</tr>
<tr>
<td>0.6038</td>
<td>0.0153</td>
<td>0.9318</td>
</tr>
<tr>
<td>0.2722</td>
<td>0.7468</td>
<td>0.4660</td>
</tr>
<tr>
<td>0.1988</td>
<td>0.4451</td>
<td>0.4186</td>
</tr>
<tr>
<td>0.8462</td>
<td>0.6721</td>
<td>0.6813</td>
</tr>
<tr>
<td>0.5252</td>
<td>0.8381</td>
<td>0.3795</td>
</tr>
<tr>
<td>0.2026</td>
<td>0.0196</td>
<td>0.8318</td>
</tr>
</tbody>
</table>

Manage Objects in the Scheduler

Because all the data of jobs and tasks resides in the cluster job storage location, these objects continue to exist even if the client session that created them has ended. The following sections describe how to access these objects and how to permanently remove them:

- “What Happens When the Client Session Ends” on page 7-13
- “Recover Objects” on page 7-14
- “Reset Callback Properties (MJS Only)” on page 7-14
- “Remove Objects Permanently” on page 7-15

What Happens When the Client Session Ends

When you close the client session of Parallel Computing Toolbox software, all of the objects in the workspace are cleared. However, the objects in MATLAB Distributed

7-13
Computing Server software or other cluster resources remain in place. When the client session ends, only the local reference objects are lost, not the actual job and task data in the cluster.

Therefore, if you have submitted your job to the cluster job queue for execution, you can quit your client session of MATLAB, and the job will be executed by the cluster. You can retrieve the job results later in another client session.

Recover Objects

A client session of Parallel Computing Toolbox software can access any of the objects in MATLAB Distributed Computing Server software, whether the current client session or another client session created these objects.

You create cluster objects in the client session by using the `parcluster` function.

```matlab
c = parcluster('MyProfile');
```

When you have access to the cluster by the object `c`, you can create objects that reference all those job contained in that cluster. The jobs are accessible in cluster object’s `Jobs` property, which is an array of job objects:

```matlab
all_jobs = c.Jobs
```

You can index through the array `all_jobs` to locate a specific job.

Alternatively, you can use the `findJob` function to search in a cluster for any jobs or a particular job identified by any of its properties, such as its `State`.

```matlab
all_jobs = findJob(c);
finished_jobs = findJob(c,'State','finished')
```

This command returns an array of job objects that reference all finished jobs on the cluster `c`.

Reset Callback Properties (MJS Only)

When restarting a client session, you lose the settings of any callback properties (for example, the `FinishedFcn` property) on jobs or tasks. These properties are commonly used to get notifications in the client session of state changes in their objects. When you create objects in a new client session that reference existing jobs or tasks, you must reset these callback properties if you intend to use them.
Remove Objects Permanently

Jobs in the cluster continue to exist even after they are finished, and after the MJS is stopped and restarted. The ways to permanently remove jobs from the cluster are explained in the following sections:

- “Delete Selected Objects” on page 7-15
- “Start an MJS from a Clean State” on page 7-15

Delete Selected Objects

From the command line in the MATLAB client session, you can call the `delete` function for any job or task object. If you delete a job, you also remove all tasks contained in that job.

For example, find and delete all finished jobs in your cluster that belong to the user joep.

```matlab
c = parcluster('MyProfile')
finished_jobs = findJob(c,'State','finished','Username','joep')
delete(finished_jobs)
clear finished_jobs
```

The `delete` function permanently removes these jobs from the cluster. The `clear` function removes the object references from the local MATLAB workspace.

Start an MJS from a Clean State

When an MJS starts, by default it starts so that it resumes its former session with all jobs intact. Alternatively, an MJS can start from a clean state with all its former history deleted. Starting from a clean state permanently removes all job and task data from the MJS of the specified name on a particular host.

As a network administration feature, the `-clean` flag of the `startjobmanager` script is described in “Start in a Clean State” in the MATLAB Distributed Computing Server System Administrator's Guide.
Share Code with the Workers

Because the tasks of a job are evaluated on different machines, each machine must have access to all the files needed to evaluate its tasks. The basic mechanisms for sharing code are explained in the following sections:

In this section...

“Workers Access Files Directly” on page 7-16
“Pass Data to and from Worker Sessions” on page 7-17
“Pass MATLAB Code for Startup and Finish” on page 7-19

Workers Access Files Directly

If the workers all have access to the same drives on the network, they can access the necessary files that reside on these shared resources. This is the preferred method for sharing data, as it minimizes network traffic.

You must define each worker session’s search path so that it looks for files in the right places. You can define the path:

• By using the job’s AdditionalPaths property. This is the preferred method for setting the path, because it is specific to the job.

AdditionalPaths identifies folders to be added to the top of the command search path of worker sessions for this job. If you also specify AttachedFiles, the AttachedFiles are above AdditionalPaths on the workers’ path.

When you specify AdditionalPaths at the time of creating a job, the settings are combined with those specified in the applicable cluster profile. Setting AdditionalPaths on a job object after it is created does not combine the new setting with the profile settings, but overwrites existing settings for that job.

AdditionalPaths is empty by default. For a mixed-platform environment, the strings can specify both UNIX and Microsoft Windows style paths; those setting that are not appropriate or not found for a particular machine generate warnings and are ignored.

This example sets the MATLAB worker path in a mixed-platform environment to use functions in both the central repository /central/funcs and the department archive /dept1/funcs, which each also have a Windows UNC path.
c = parcluster(); % Use default
job1 = createJob(c);
ap = {'/central/funcs','/dept1/funcs', ...
 '\OurDomain\central\funcs','\\OurDomain\dept1\funcs'};
job1.AdditionalPaths = ap;

• By putting the path command in any of the appropriate startup files for the worker:

 • matlabroot\toolbox\local\startup.m
 • matlabroot\toolbox\distcomp\user\jobStartup.m
 • matlabroot\toolbox\distcomp\user\taskStartup.m

Access to these files can be passed to the worker by the job’s AttachedFiles or AdditionalPaths property. Otherwise, the version of each of these files that is used is the one highest on the worker’s path.

Access to files among shared resources can depend upon permissions based on the user name. You can set the user name with which the MJS and worker services of MATLAB Distributed Computing Server software run by setting the MDCEUSER value in the mdce_def file before starting the services. For Microsoft Windows operating systems, there is also MDCEPASS for providing the account password for the specified user. For an explanation of service default settings and the mdce_def file, see “Define Script Defaults” in the MATLAB Distributed Computing Server System Administrator's Guide.

Pass Data to and from Worker Sessions

A number of properties on task and job objects are designed for passing code or data from client to scheduler to worker, and back. This information could include MATLAB code necessary for task evaluation, or the input data for processing or output data resulting from task evaluation. The following properties facilitate this communication:

• **InputArguments** — This property of each task contains the input data you specified when creating the task. This data gets passed into the function when the worker performs its evaluation.

• **OutputArguments** — This property of each task contains the results of the function’s evaluation.

• **JobData** — This property of the job object contains data that gets sent to every worker that evaluates tasks for that job. This property works efficiently because the data is passed to a worker only once per job, saving time if that worker is evaluating
more than one task for the job. (Note: Do not confuse this property with the **UserData** property on any objects in the MATLAB client. Information in **UserData** is available only in the client, and is not available to the scheduler or workers.)

- **AttachedFiles** — This property of the job object is a cell array in which you manually specify all the folders and files that get sent to the workers. On the worker, the files are installed and the entries specified in the property are added to the search path of the worker session.

AttachedFiles contains a list of folders and files that the worker need to access for evaluating a job’s tasks. The value of the property (empty by default) is defined in the cluster profile or in the client session. You set the value for the property as a cell array of strings. Each string is an absolute or relative pathname to a folder or file. (Note: If these files or folders change while they are being transferred, or if any of the folders are empty, a failure or error can result. If you specify a pathname that does not exist, an error is generated.)

The first time a worker evaluates a task for a particular job, the scheduler passes to the worker the files and folders in the **AttachedFiles** property. On the worker machine, a folder structure is created that is exactly the same as that accessed on the client machine where the property was set. Those entries listed in the property value are added to the top of the command search path in the worker session. (Subfolders of the entries are not added to the path, even though they are included in the folder structure.) To find out where the files are placed on the worker machine, use the function `getAttachedFilesFolder` in code that runs on the worker.

When the worker runs subsequent tasks for the same job, it uses the folder structure already set up by the job’s **AttachedFiles** property for the first task it ran for that job.

When you specify **AttachedFiles** at the time of creating a job, the settings are combined with those specified in the applicable profile. Setting **AttachedFiles** on a job object after it is created does not combine the new setting with the profile settings, but overwrites the existing settings for that job.

The transfer of **AttachedFiles** occurs for each worker running a task for that particular job on a machine, regardless of how many workers run on that machine. Normally, the attached files are deleted from the worker machine when the job is completed, or when the next job begins.

- **AutoAttachFiles** — This property of the job object uses a logical value to specify that you want MATLAB to perform an analysis on the task functions in the job and on
manually attached files to determine which code files are necessary for the workers, and to automatically send those files to the workers. You can set this property value in a cluster profile using the Profile Manager, or you can set it programmatically on a job object at the command line.

```matlab
c = parcluster();
j = createJob(c);
j.AutoAttachFiles = true;
```

The supported code file formats for automatic attachment are MATLAB files (.m extension), P-code files (.p), and MEX-files (.mex). Note that `AutoAttachFiles` does not include data files for your job; use the `AttachedFiles` property to explicitly transfer these files to the workers.

Use `listAutoAttachedFiles` to get a listing of the code files that are automatically attached to a job.

If the `AutoAttachFiles` setting is true for the cluster profile used when starting a parallel pool, MATLAB performs an analysis on `spmd` blocks, `parfor`-loops, and other attached files to determine what other code files are necessary for execution, then automatically attaches those files to the parallel pool so that the code is available to the workers.

Note There is a default maximum amount of data that can be sent in a single call for setting properties. This limit applies to the `OutputArguments` property as well as to data passed into a job as input arguments or `AttachedFiles`. If the limit is exceeded, you get an error message. For more information about this data transfer size limit, see “Object Data Size Limitations” on page 6-52.

Pass MATLAB Code for Startup and Finish

As a session of MATLAB, a worker session executes its `startup.m` file each time it starts. You can place the `startup.m` file in any folder on the worker’s MATLAB search path, such as `toolbox/distcomp/user`.

These additional files can initialize and clean up a worker session as it begins or completes evaluations of tasks for a job:

- `jobStartup.m` automatically executes on a worker when the worker runs its first task of a job.
- **taskStartup.m** automatically executes on a worker each time the worker begins evaluation of a task.
- **poolStartup.m** automatically executes on a worker each time the worker is included in a newly started parallel pool.
- **taskFinish.m** automatically executes on a worker each time the worker completes evaluation of a task.

Empty versions of these files are provided in the folder:

```
matlabroot/toolbox/distcomp/user
```

You can edit these files to include whatever MATLAB code you want the worker to execute at the indicated times.

Alternatively, you can create your own versions of these files and pass them to the job as part of the **AttachedFiles** property, or include the path names to their locations in the **AdditionalPaths** property.

The worker gives precedence to the versions provided in the **AttachedFiles** property, then to those pointed to in the **AdditionalPaths** property. If any of these files is not included in these properties, the worker uses the version of the file in the `toolbox/distcomp/user` folder of the worker’s MATLAB installation.
Program Independent Jobs for a Generic Scheduler

In this section...

- “Overview” on page 7-21
- “MATLAB Client Submit Function” on page 7-22
- “Example — Write the Submit Function” on page 7-25
- “MATLAB Worker Decode Function” on page 7-27
- “Example — Write the Decode Function” on page 7-29
- “Example — Program and Run a Job in the Client” on page 7-29
- “Supplied Submit and Decode Functions” on page 7-33
- “Manage Jobs with Generic Scheduler” on page 7-34
- “Summary” on page 7-37

Overview

Parallel Computing Toolbox software provides a generic interface that lets you interact with third-party schedulers, or use your own scripts for distributing tasks to other nodes on the cluster for evaluation.

Because each job in your application is comprised of several tasks, the purpose of your scheduler is to allocate a cluster node for the evaluation of each task, or to distribute each task to a cluster node. The scheduler starts remote MATLAB worker sessions on the cluster nodes to evaluate individual tasks of the job. To evaluate its task, a MATLAB worker session needs access to certain information, such as where to find the job and task data. The generic scheduler interface provides a means of getting tasks from your Parallel Computing Toolbox client session to your scheduler and thereby to your cluster nodes.

To evaluate a task, a worker requires five parameters that you must pass from the client to the worker. The parameters can be passed any way you want to transfer them, but because a particular one must be an environment variable, the examples in this section pass all parameters as environment variables.
Note Whereas the MJS keeps MATLAB workers running between tasks, a third-party scheduler runs MATLAB workers for only as long as it takes each worker to evaluate its one task.

MATLAB Client Submit Function

When you submit a job to a cluster, the function identified by the cluster object's `IndependentSubmitFcn` property executes in the MATLAB client session. You set the cluster's `IndependentSubmitFcn` property to identify the submit function and any arguments you might want to send to it. For example, to use a submit function called `mysubmitfunc`, you set the property with the command:

```matlab
c.IndependentSubmitFcn = @mysubmitfunc
```

where `c` is the cluster object in the client session, created with the `parcluster` function. In this case, the submit function gets called with its three default arguments: cluster, job, and properties object, in that order. The function declaration line of the function might look like this:

```matlab
function mysubmitfunc(cluster, job, props)
```

Inside the function of this example, the three argument objects are known as `cluster`, `job`, and `props`.

You can write a submit function that accepts more than the three default arguments, and then pass those extra arguments by including them in the definition of the `IndependentSubmitFcn` property.

```matlab
time_limit = 300
```
testlocation = 'Plant30'
c.IndependentSubmitFcn = {@mysubmitfunc, time_limit, testlocation}

In this example, the submit function requires five arguments: the three defaults, along with the numeric value of `time_limit` and the string value of `testlocation`. The function's declaration line might look like this:

```
function mysubmitfunc(cluster, job, props, localtimeout, plant)
```

The following discussion focuses primarily on the minimum requirements of the submit and decode functions.

This submit function has three main purposes:

- To identify the decode function that MATLAB workers run when they start
- To make information about job and task data locations available to the workers via their decode function
- To instruct your scheduler how to start a MATLAB worker on the cluster for each task of your job

Identify the Decode Function

The client’s submit function and the worker’s decode function work together as a pair. Therefore, the submit function must identify its corresponding decode function. The submit function does this by setting the environment variable `MDCE_DECODE_FUNCTION`. The value of this variable is a string identifying the name of the decode function on the path of the MATLAB worker. Neither the decode function itself nor its name can be passed to the worker in a job or task property; the file must already
exist before the worker starts. For more information on the decode function, see “MATLAB Worker Decode Function” on page 7-27. Standard decode functions for independent and communicating jobs are provided with the product. If your submit functions make use of the definitions in these decode functions, you do not have to provide your own decode functions. For example, to use the standard decode function for independent jobs, in your submit function set `MDCE_DECODE_FUNCTION` to '
parallel.cluster.generic.independentDecodeFcn'.

Pass Job and Task Data

The third input argument (after cluster and job) to the submit function is the object with the properties listed in the following table.

You do not set the values of any of these properties. They are automatically set by the toolbox so that you can program your submit function to forward them to the worker nodes.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StorageConstructor</td>
<td>String. Used internally to indicate that a file system is used to contain job and task data.</td>
</tr>
<tr>
<td>StorageLocation</td>
<td>String. Derived from the cluster JobStorageLocation property.</td>
</tr>
<tr>
<td>JobLocation</td>
<td>String. Indicates where this job's data is stored.</td>
</tr>
<tr>
<td>TaskLocations</td>
<td>Cell array. Indicates where each task's data is stored. Each element of this array is passed to a separate worker.</td>
</tr>
<tr>
<td>NumberOfTasks</td>
<td>Double. Indicates the number of tasks in the job. You do not need to pass this value to the worker, but you can use it within your submit function.</td>
</tr>
</tbody>
</table>

With these values passed into your submit function, the function can pass them to the worker nodes by any of several means. However, because the name of the decode function must be passed as an environment variable, the examples that follow pass all the other necessary property values also as environment variables.

The submit function writes the values of these object properties out to environment variables with the `setenv` function.
Define Scheduler Command to Run MATLAB Workers

The submit function must define the command necessary for your scheduler to start MATLAB workers. The actual command is specific to your scheduler and network configuration. The commands for some popular schedulers are listed in the following table. This table also indicates whether or not the scheduler automatically passes environment variables with its submission. If not, your command to the scheduler must accommodate these variables.

<table>
<thead>
<tr>
<th>Scheduler</th>
<th>Scheduler Command</th>
<th>Passes Environment Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSF</td>
<td>bsub</td>
<td>Yes, by default.</td>
</tr>
<tr>
<td>PBS</td>
<td>qsub</td>
<td>Command must specify which variables to pass.</td>
</tr>
<tr>
<td>Sun™ Grid Engine</td>
<td>qsub</td>
<td>Command must specify which variables to pass.</td>
</tr>
</tbody>
</table>

Your submit function might also use some of these properties and others when constructing and invoking your scheduler command. `cluster`, `job`, and `props` (so named only for this example) refer to the first three arguments to the submit function.

<table>
<thead>
<tr>
<th>Argument Object</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster</td>
<td>MatlabCommandToRun</td>
</tr>
<tr>
<td>cluster</td>
<td>ClusterMatlabRoot</td>
</tr>
<tr>
<td>job</td>
<td>NumWorkersRange</td>
</tr>
<tr>
<td>props</td>
<td>NumberOfTasks</td>
</tr>
</tbody>
</table>

Example — Write the Submit Function

The submit function in this example uses environment variables to pass the necessary information to the worker nodes. Each step below indicates the lines of code you add to your submit function.

1. Create the function declaration. There are three objects automatically passed into the submit function as its first three input arguments: the cluster object, the job object, and the props object.

   ```matlab
   function mysubmitfunc(cluster, job, props)
   ```
This example function uses only the three default arguments. You can have additional arguments passed into your submit function, as discussed in “MATLAB Client Submit Function” on page 7-22.

2 Identify the values you want to send to your environment variables. For convenience, you define local variables for use in this function.

```
decodeFcn = 'mydecodefunc';
jobLocation = get(props, 'JobLocation');
taskLocations = get(props, 'TaskLocations'); %This is a cell array
storageLocation = get(props, 'StorageLocation');
storageConstructor = get(props, 'StorageConstructor');
```

The name of the decode function that must be available on the MATLAB worker path is `mydecodefunc`.

3 Set the environment variables, other than the task locations. All the MATLAB workers use these values when evaluating tasks of the job.

```
setenv('MDCE_DECODE_FUNCTION', decodeFcn);
setenv('MDCE_JOB_LOCATION', jobLocation);
setenv('MDCE_STORAGE_LOCATION', storageLocation);
setenv('MDCE_STORAGE_CONSTRUCTOR', storageConstructor);
```

Your submit function can use any names you choose for the environment variables, with the exception of `MDCE_DECODE_FUNCTION`; the MATLAB worker looks for its decode function identified by this variable. If you use alternative names for the other environment variables, be sure that the corresponding decode function also uses your alternative variable names. You can see the variable names used in the standard decode function by typing:

```
edit parallel.cluster.generic.independentDecodeFcn
```

4 Set the task-specific variables and scheduler commands. This is where you instruct your scheduler to start MATLAB workers for each task.

```
for i = 1:props.NumberOfTasks
    setenv('MDCE_TASK_LOCATION', taskLocations{i});
    constructSchedulerCommand;
end
```

The line `constructSchedulerCommand` represents the code you write to construct and execute your scheduler’s submit command. This command is typically a string that combines the scheduler command with necessary flags, arguments, and values.
derived from the values of your object properties. This command is inside the for-loop so that your scheduler gets a command to start a MATLAB worker on the cluster for each task.

Note If you are not familiar with your network scheduler, ask your system administrator for help.

MATLAB Worker Decode Function

The sole purpose of the MATLAB worker’s decode function is to read certain job and task information into the MATLAB worker session. This information could be stored in disk files on the network, or it could be available as environment variables on the worker node. Because the discussion of the submit function illustrated only the usage of environment variables, so does this discussion of the decode function.

When working with the decode function, you must be aware of the

- Name and location of the decode function itself
- Names of the environment variables this function must read

![Diagram of MATLAB worker decode function]

Note Standard decode functions are now included in the product. If your submit functions make use of the definitions in these decode functions, you do not have to provide your own decode functions. For example, to use the standard decode function for independent jobs, in your submit function set MDCE_DECODE_FUNCTION to
'parallel.cluster.generic.independentDecodeFcn'. The remainder of this section is useful only if you use names and settings other than the standards used in the provided decode functions.

Identify File Name and Location

The client’s submit function and the worker’s decode function work together as a pair. For more information on the submit function, see “MATLAB Client Submit Function” on page 7-22. The decode function on the worker is identified by the submit function as the value of the environment variable `MDCE_DECODE_FUNCTION`. The environment variable must be copied from the client node to the worker node. Your scheduler might perform this task for you automatically; if it does not, you must arrange for this copying.

The value of the environment variable `MDCE_DECODE_FUNCTION` defines the filename of the decode function, but not its location. The file cannot be passed as part of the job `AdditionalPaths` or `AttachedFiles` property, because the function runs in the MATLAB worker before that session has access to the job. Therefore, the file location must be available to the MATLAB worker as that worker starts.

Note The decode function must be available on the MATLAB worker's path.

You can get the decode function on the worker’s path by either moving the file into a folder on the path (for example, `matlabroot/toolbox/local`), or by having the scheduler use `cd` in its command so that it starts the MATLAB worker from within the folder that contains the decode function.

In practice, the decode function might be identical for all workers on the cluster. In this case, all workers can use the same decode function file if it is accessible on a shared drive.

When a MATLAB worker starts, it automatically runs the file identified by the `MDCE_DECODE_FUNCTION` environment variable. This decode function runs before the worker does any processing of its task.

Read the Job and Task Information

When the environment variables have been transferred from the client to the worker nodes (either by the scheduler or some other means), the decode function of the MATLAB worker can read them with the `getenv` function.
With those values from the environment variables, the decode function must set the appropriate property values of the object that is its argument. The property values that must be set are the same as those in the corresponding submit function, except that instead of the cell array `TaskLocations`, each worker has only the individual string `TaskLocation`, which is one element of the `TaskLocations` cell array. Therefore, the properties you must set within the decode function on its argument object are as follows:

- `StorageConstructor`
- `StorageLocation`
- `JobLocation`
- `TaskLocation`

Example — Write the Decode Function

The decode function must read four environment variables and use their values to set the properties of the object that is the function’s output.

In this example, the decode function’s argument is the object `props`.

```matlab
function props = workerDecodeFunc(props)
    storageConstructor = getenv('MDCE_STORAGE_CONSTRUCTOR');
    storageLocation = getenv('MDCE_STORAGE_LOCATION');
    jobLocation = getenv('MDCE_JOB_LOCATION');
    taskLocation = getenv('MDCE_TASK_LOCATION');

    % Set props object properties from the local variables:
    set(props, 'StorageConstructor', storageConstructor);
    set(props, 'StorageLocation', storageLocation);
    set(props, 'JobLocation', jobLocation);
    set(props, 'TaskLocation', taskLocation);
```

When the object is returned from the decode function to the MATLAB worker session, its values are used internally for managing job and task data.

Example — Program and Run a Job in the Client

1. **Create a Scheduler Object**

You use the `parcluster` function to create an object representing the cluster in your local MATLAB client session. Use a profile based on the generic type of cluster.
c = parcluster('MyGenericProfile')

If your cluster uses a shared file system for workers to access job and task data, set the `JobStorageLocation` and `HasSharedFilesystem` properties to specify where the job data is stored and that the workers should access job data directly in a shared file system.

c.JobStorageLocation = '\share\scratch\jobdata'
c.HasSharedFilesystem = true

Note All nodes require access to the folder specified in the cluster object’s `JobStorageLocation` property.

If `JobStorageLocation` is not set, the default location for job data is the current working directory of the MATLAB client the first time you use `parcluster` to create an object for this type of cluster, which might not be accessible to the worker nodes.

If MATLAB is not on the worker’s system path, set the `ClusterMatlabRoot` property to specify where the workers are to find the MATLAB installation.

c.ClusterMatlabRoot = '\\apps\matlab\'

You can look at all the property settings on the scheduler object. If no jobs are in the `JobStorageLocation` folder, the `Jobs` property is a 0-by-1 array. All settable property values on a scheduler object are local to the MATLAB client, and are lost when you close the client session or when you remove the object from the client workspace with `delete` or `clear all`.

c

You must set the `IndependentSubmitFcn` property to specify the submit function for this cluster.

c.IndependentSubmitFcn = @mysubmitfunc

With the scheduler object and the user-defined submit and decode functions defined, programming and running a job is now similar to doing so with any other type of supported scheduler.
2. Create a Job

You create a job with the `createJob` function, which creates a job object in the client session. The job data is stored in the folder specified by the cluster object's `JobStorageLocation` property.

```matlab
j = createJob(c)
```

This statement creates the job object `j` in the client session.

Note Properties of a particular job or task should be set from only one computer at a time.

This generic scheduler job has somewhat different properties than a job that uses an MJS. For example, this job has no callback functions.

The job’s `State` property is `pending`. This state means the job has not been queued for running yet. This new job has no tasks, so its `Tasks` property is a 0-by-1 array.

The cluster’s `Jobs` property is now a 1-by-1 array of job objects, indicating the existence of your job.

```matlab
c
```

3. Create Tasks

After you have created your job, you can create tasks for the job. Tasks define the functions to be evaluated by the workers during the running of the job. Often, the tasks of a job are identical except for different arguments or data. In this example, each task generates a 3-by-3 matrix of random numbers.

```matlab
createTask(j, @rand, 1, {3,3});
```

The `Tasks` property of `j` is now a 5-by-1 matrix of task objects.

```matlab
j.Tasks
```

Alternatively, you can create the five tasks with one call to `createTask` by providing a cell array of five cell arrays defining the input arguments to each task.
T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

In this case, T is a 5-by-1 matrix of task objects.

4. Submit a Job to the Job Queue

To run your job and have its tasks evaluated, you submit the job to the scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of j to MATLAB workers for evaluation.

The job runs asynchronously. If you need to wait for it to complete before you continue in your MATLAB client session, you can use the wait function.

wait(j)

This function pauses MATLAB until the State property of j is 'finished' or 'failed'.

5. Retrieve the Job's Results

The results of each task's evaluation are stored in that task object’s OutputArguments property as a cell array. Use fetchOutputs to retrieve the results from all the tasks in the job.

results = fetchOutputs(j);

Display the results from each task.

results{1:5}

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9501</td>
<td>0.4860</td>
<td>0.4565</td>
</tr>
<tr>
<td>0.2311</td>
<td>0.8913</td>
<td>0.0185</td>
</tr>
<tr>
<td>0.6068</td>
<td>0.7621</td>
<td>0.8214</td>
</tr>
<tr>
<td>0.4447</td>
<td>0.9218</td>
<td>0.4057</td>
</tr>
<tr>
<td>0.6154</td>
<td>0.7382</td>
<td>0.9355</td>
</tr>
<tr>
<td>0.7919</td>
<td>0.1763</td>
<td>0.9169</td>
</tr>
<tr>
<td>0.4103</td>
<td>0.3529</td>
<td>0.1389</td>
</tr>
<tr>
<td>0.8936</td>
<td>0.8132</td>
<td>0.2028</td>
</tr>
<tr>
<td>0.0579</td>
<td>0.0099</td>
<td>0.1987</td>
</tr>
</tbody>
</table>
Supplied Submit and Decode Functions

There are several submit and decode functions provided with the toolbox for your use with the generic scheduler interface. These files are in the folder

```
matlabroot/toolbox/distcomp/examples/integration
```

In this folder are subdirectories for each of several types of scheduler.

Depending on your network and cluster configuration, you might need to modify these files before they will work in your situation. Ask your system administrator for help.

At the time of publication, there are folders for PBS (pbs), and Platform LSF (lsf) schedulers, generic UNIX-based scripts (ssh), and Sun Grid Engine (sge). In addition, the pbs, lsf, and sge folders have subfolders called shared, nonshared, and remoteSubmission, which contain scripts for use in particular cluster configurations. Each of these subfolders contains a file called README, which provides instruction on where and how to use its scripts.

For each scheduler type, the folder (or configuration subfolder) contains wrappers, submit functions, and other job management scripts for independent and communicating jobs. For example, the folder `matlabroot/toolbox/distcomp/examples/integration/pbs/shared` contains the following files for use with a PBS scheduler:

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>independentSubmitFcn.m</td>
<td>Submit function for a independent job</td>
</tr>
<tr>
<td>communicatingSubmitFcn.m</td>
<td>Submit function for a communicating job</td>
</tr>
<tr>
<td>independentJobWrapper.sh</td>
<td>Script that is submitted to PBS to start workers that evaluate the tasks of an independent job</td>
</tr>
<tr>
<td>communicatingJobWrapper.sh</td>
<td>Script that is submitted to PBS to start workers that evaluate the tasks of a communicating job</td>
</tr>
<tr>
<td>Filename</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>deleteJobFcn.m</td>
<td>Script to delete a job from the scheduler</td>
</tr>
<tr>
<td>extractJobId.m</td>
<td>Script to get the job’s ID from the scheduler</td>
</tr>
<tr>
<td>getJobStateFcn.m</td>
<td>Script to get the job's state from the scheduler</td>
</tr>
<tr>
<td>getSubmitString.m</td>
<td>Script to get the submission string for the scheduler</td>
</tr>
</tbody>
</table>

These files are all programmed to use the standard decode functions provided with the product, so they do not have specialized decode functions.

The folders for other scheduler types contain similar files.

As more files or solutions for more schedulers might become available at any time, visit the product page at http://www.mathworks.com/products/distriben/. This Web page provides links to updates, supported schedulers, requirements, and contact information in case you have any questions.

Manage Jobs with Generic Scheduler

While you can use the `cancel` and `delete` methods on jobs that use the generic scheduler interface, by default these methods access or affect only the job data where it is stored on disk. To cancel or delete a job or task that is currently running or queued, you must provide instructions to the scheduler directing it what to do and when to do it. To accomplish this, the toolbox provides a means of saving data associated with each job or task from the scheduler, and a set of properties to define instructions for the scheduler upon each cancel or destroy request.

Save Job Scheduler Data

The first requirement for job management is to identify the job from the cluster’s perspective. When you submit a job to the cluster, the command to do the submission in your submit function can return from the scheduler some data about the job. This data typically includes a job ID. By storing that job ID with the job, you can later refer to the job by this ID when you send management commands to the scheduler. Similarly, you can store information, such as an ID, for each task. The toolbox function that stores this cluster data is `setJobClusterData`.

If your scheduler accommodates submission of entire jobs (collection of tasks) in a single command, you might get back data for the whole job and/or for each task. Part of your submit function might be structured like this:
for ii = 1:props.NumberOfTasks
 define scheduler command per task
end
submit job to scheduler
data_array = parse data returned from scheduler %possibly NumberOfTasks-by-2 matrix
setJobClusterData(cluster, job, data_array)

If your scheduler accepts only submissions of individual tasks, you might get return data pertaining to only each individual tasks. In this case, your submit function might have code structured like this:

for ii = 1:props.NumberOfTasks
 submit task to scheduler
 %Per-task settings:
 data_array(1,ii) = ... parse string returned from scheduler
 data_array(2,ii) = ... save ID returned from scheduler
 etc
end
setJobClusterData(scheduler, job, data_array)

Define Scheduler Commands in User Functions

With the scheduler data (such as the scheduler’s ID for the job or task) now stored on disk along with the rest of the job data, you can write code to control what the scheduler should do when that particular job or task is canceled or destroyed.

For example, you might create these four functions:

• myCancelJob.m
• myDeleteJob.m
• myCancelTask.m
• myDeleteTask.m

Your myCancelJob.m function defines what you want to communicate to your scheduler in the event that you use the cancel function on your job from the MATLAB client. The toolbox takes care of the job state and any data management with the job data on disk, so your myCancelJob.m function needs to deal only with the part of the job currently running or queued with the scheduler. The toolbox function that retrieves scheduler data from the job is getJobClusterData. Your cancel function might be structured something like this:

function myCancelTask(sched, job)
 array_data = getJobClusterData(clust, job)
 job_id = array_data(...) % Extract the ID from the data, depending on how
 % it was stored in the submit function above.
command to scheduler canceling job job_id

In a similar way, you can define what to do for deleting a job, and what to do for canceling and deleting tasks.

Delete or Cancel a Running Job

After your functions are written, you set the appropriate properties of the cluster object with handles to your functions. The corresponding cluster properties are:

- CancelJobFcn
- DeleteJobFcn
- CancelTaskFcn
- DeleteTaskFcn

You can set the properties in the Cluster Profile Manager for your cluster, or on the command line:

```plaintext
C = parcluster('MyGenericProfile');
% set required properties
C.CancelJobFcn = @myCancelJob
C.DeleteJobFcn = @myDeleteJob
C.CancelTaskFcn = @myCancelTask
C.DeleteTaskFcn = @myDeleteTask
```

Continue with job creation and submission as usual.

```plaintext
j1 = createJob(c);
for ii = 1:n
    t(ii) = createTask(j1,...)
end
submit(j1)
```

While the job is running or queued, you can cancel or delete the job or a task.

This command cancels the task and moves it to the finished state, and triggers execution of `myCancelTask`, which sends the appropriate commands to the scheduler:

```plaintext
cancel(t(4))
```

This command deletes job data for `j1`, and triggers execution of `myDeleteJob`, which sends the appropriate commands to the scheduler:
delete(j1)

Get State Information About a Job or Task

When using a third-party scheduler, it is possible that the scheduler itself can have more up-to-date information about your jobs than what is available to the toolbox from the job storage location. To retrieve that information from the scheduler, you can write a function to do that, and set the value of the `GetJobStateFcn` property as a handle to your function.

Whenever you use a toolbox function such as `wait`, etc., that accesses the state of a job on the generic scheduler, after retrieving the state from storage, the toolbox runs the function specified by the `GetJobStateFcn` property, and returns its result in place of the stored state. The function you write for this purpose must return a valid string value for the `State` of a job object.

When using the generic scheduler interface in a nonshared file system environment, the remote file system might be slow in propagating large data files back to your local data location. Therefore, a job’s `State` property might indicate that the job is finished some time before all its data is available to you.

Summary

The following list summarizes the sequence of events that occur when running a job that uses the generic scheduler interface:

1. Provide a submit function and a decode function. Be sure the decode function is on all the MATLAB workers’ search paths.

The following steps occur in the MATLAB client session:

1. Define the `IndependentSubmitFcn` property of your scheduler object to point to the submit function.

2. Send your job to the scheduler.

 `submit(job)`

3. The client session runs the submit function.

4. The submit function sets environment variables with values derived from its arguments.

5. The submit function makes calls to the scheduler — generally, a call for each task (with environment variables identified explicitly, if necessary).
The following step occurs in your network:

1. For each task, the scheduler starts a MATLAB worker session on a cluster node.

The following steps occur in each MATLAB worker session:

1. The MATLAB worker automatically runs the decode function, finding it on the path.
2. The decode function reads the pertinent environment variables.
3. The decode function sets the properties of its argument object with values from the environment variables.
4. The MATLAB worker uses these object property values in processing its task without your further intervention.
Program Communicating Jobs

- “Program Communicating Jobs” on page 8-2
- “Program Communicating Jobs for a Supported Scheduler” on page 8-4
- “Program Communicating Jobs for a Generic Scheduler” on page 8-7
- “Further Notes on Communicating Jobs” on page 8-10
Program Communicating Jobs

Communicating jobs are those in which the workers can communicate with each other during the evaluation of their tasks. A communicating job consists of only a single task that runs simultaneously on several workers, usually with different data. More specifically, the task is duplicated on each worker, so each worker can perform the task on a different set of data, or on a particular segment of a large data set. The workers can communicate with each other as each executes its task. The function that the task runs can take advantage of a worker’s awareness of how many workers are running the job, which worker this is among those running the job, and the features that allow workers to communicate with each other.

In principle, you create and run communicating jobs similarly to the way you “Program Independent Jobs” on page 7-2:

1. Define and select a cluster profile.
2. Find a cluster.
3. Create a communicating job.
4. Create a task.
5. Submit the job for running. For details about what each worker performs for evaluating a task, see “Submit a Job to the Job Queue” on page 7-12.
6. Retrieve the results.

The differences between independent jobs and communicating jobs are summarized in the following table.

<table>
<thead>
<tr>
<th>Independent Job</th>
<th>Communicating Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATLAB workers perform the tasks but do not communicate with each other.</td>
<td>MATLAB workers can communicate with each other during the running of their tasks.</td>
</tr>
<tr>
<td>You define any number of tasks in a job.</td>
<td>You define only one task in a job. Duplicates of that task run on all workers running the communicating job.</td>
</tr>
<tr>
<td>Tasks need not run simultaneously. Tasks are distributed to workers as the workers become available, so a worker can perform several of the tasks in a job.</td>
<td>Tasks run simultaneously, so you can run the job only on as many workers as are available at run time. The start of the job might be delayed until the required number of workers is available.</td>
</tr>
</tbody>
</table>
Some of the details of a communicating job and its tasks might depend on the type of scheduler you are using. The following sections discuss different schedulers and explain programming considerations:

- “Program Communicating Jobs for a Supported Scheduler” on page 8-4
- “Program Communicating Jobs for a Generic Scheduler” on page 8-7
- “Further Notes on Communicating Jobs” on page 8-10
Program Communicating Jobs for a Supported Scheduler

In this section...

“Schedulers and Conditions” on page 8-4
“Code the Task Function” on page 8-4
“Code in the Client” on page 8-5

Schedulers and Conditions

You can run a communicating job using any type of scheduler. This section illustrates how to program communicating jobs for supported schedulers (MJS, local scheduler, Microsoft Windows HPC Server (including CCS), Platform LSF, PBS Pro, or TORQUE).

To use this supported interface for communicating jobs, the following conditions must apply:

• You must have a shared file system between client and cluster machines
• You must be able to submit jobs directly to the scheduler from the client machine

Note When using any third-party scheduler for running a communicating job, if all these conditions are not met, you must use the generic scheduler interface. (Communicating jobs also include pmode, parpool, spmd, and parfor.) See “Program Communicating Jobs for a Generic Scheduler” on page 8-7.

Code the Task Function

In this section a simple example illustrates the basic principles of programming a communicating job with a third-party scheduler. In this example, the worker whose labindex value is 1 creates a magic square comprised of a number of rows and columns that is equal to the number of workers running the job (numlabs). In this case, four workers run a communicating job with a 4-by-4 magic square. The first worker broadcasts the matrix with labBroadcast to all the other workers, each of which calculates the sum of one column of the matrix. All of these column sums are combined with the gplus function to calculate the total sum of the elements of the original magic square.
The function for this example is shown below.

```matlab
function total_sum = colsum
if labindex == 1
    % Send magic square to other workers
    A = labBroadcast(1,magic(numlabs))
else
    % Receive broadcast on other workers
    A = labBroadcast(1)
end

% Calculate sum of column identified by labindex for this worker
column_sum = sum(A(:,labindex))

% Calculate total sum by combining column sum from all workers
total_sum = gplus(column_sum)
```

This function is saved as the file `colsum.m` on the path of the MATLAB client. It will be sent to each worker by the job’s `AttachedFiles` property.

While this example has one worker create the magic square and broadcast it to the other workers, there are alternative methods of getting data to the workers. Each worker could create the matrix for itself. Alternatively, each worker could read its part of the data from a file on disk, the data could be passed in as an argument to the task function, or the data could be sent in a file contained in the job’s `AttachedFiles` property. The solution to choose depends on your network configuration and the nature of the data.

Code in the Client

As with independent jobs, you choose a profile and create a cluster object in your MATLAB client by using the `parcluster` function. There are slight differences in the profiles, depending on the scheduler you use, but using profiles to define as many properties as possible minimizes coding differences between the scheduler types.

You can create and configure the cluster object with this code:

```matlab
c = parcluster('MyProfile')
```

where `'MyProfile'` is the name of a cluster profile for the type of scheduler you are using. Any required differences for various cluster options are controlled in the profile. You can have one or more separate profiles for each type of scheduler. For complete details, see “Clusters and Cluster Profiles” on page 6-14. Create or modify profiles according to the instructions of your system administrator.
When your cluster object is defined, you create the job object with the `createCommunicatingJob` function. The job `Type` property must be set as `'SPMD'` when you create the job.

```matlab
cjob = createCommunicatingJob(c,'Type','SPMD');
```

The function file `colsum.m` (created in “Code the Task Function” on page 8-4) is on the MATLAB client path, but it has to be made available to the workers. One way to do this is with the job’s `AttachedFiles` property, which can be set in the profile you used, or by:

```matlab
cjob.AttachedFiles = {'colsum.m'}
```

Here you might also set other properties on the job, for example, setting the number of workers to use. Again, profiles might be useful in your particular situation, especially if most of your jobs require many of the same property settings. To run this example on four workers, you can established this in the profile, or by the following client code:

```matlab
cjob.NumWorkersRange = 4
```

You create the job’s one task with the usual `createTask` function. In this example, the task returns only one argument from each worker, and there are no input arguments to the `colsum` function.

```matlab
t = createTask(cjob, @colsum, 1, {})
```

Use `submit` to run the job.

```matlab
submit(cjob)
```

Make the MATLAB client wait for the job to finish before collecting the results. The results consist of one value from each worker. The `gplus` function in the task shares data between the workers, so that each worker has the same result.

```matlab
wait(cjob)
results = fetchOutputs(cjob)
results =
    [136]
    [136]
    [136]
    [136]
Program Communicating Jobs for a Generic Scheduler

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Introduction” on page 8-7</td>
</tr>
<tr>
<td>“Code in the Client” on page 8-7</td>
</tr>
</tbody>
</table>

Introduction

This section discusses programming communicating jobs using the generic scheduler interface. This interface lets you execute jobs on your cluster with any scheduler you might have.

The principles of using the generic scheduler interface for communicating jobs are the same as those for independent jobs. The overview of the concepts and details of submit and decode functions for independent jobs are discussed fully in “Program Independent Jobs for a Generic Scheduler” on page 7-21.

The basic steps follow.

Code in the Client

Configure the Scheduler Object

Coding a communicating job for a generic scheduler involves the same procedure as coding an independent job.

1. Create an object representing your cluster with `parcluster`.

2. Set the appropriate properties on the cluster object if they are not defined in the profile. Because the scheduler itself is often common to many users and applications, it is probably best to use a profile for programming these properties. See “Clusters and Cluster Profiles” on page 6-14.

Among the properties required for a communicating job is `CommunicatingSubmitFcn`. You can write your own communicating submit and decode functions, or use those come with the product for various schedulers and platforms; see the following section, “Supplied Submit and Decode Functions” on page 8-8.
3 Use `createCommunicatingJob` to create a communicating job object for your cluster.

4 Create a task, run the job, and retrieve the results as usual.

**Supplied Submit and Decode Functions**

There are several submit and decode functions provided with the toolbox for your use with the generic scheduler interface. These files are in the folder

`matlabroot/toolbox/distcomp/examples/integration`

In this folder are subfolders for each of several types of scheduler.

Depending on your network and cluster configuration, you might need to modify these files before they will work in your situation. Ask your system administrator for help.

At the time of publication, there are folders for PBS (`pbs`), and Platform LSF (`lsf`) schedulers, generic UNIX-based scripts (`ssh`), and Sun Grid Engine (`sge`). In addition, the `pbs`, `lsf`, and `sge` folders have subfolders called `shared`, `nonshared`, and `remoteSubmission`, which contain scripts for use in particular cluster configurations. Each of these subfolders contains a file called `README`, which provides instruction on where and how to use its scripts.

For each scheduler type, the folder (or configuration subfolder) contains wrappers, submit functions, and other job management scripts for independent and communicating jobs. For example, the folder `matlabroot/toolbox/distcomp/examples/integration/pbs/shared` contains the following files for use with a PBS scheduler:

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>independentSubmitFcn.m</td>
<td>Submit function for an independent job</td>
</tr>
<tr>
<td>communicatingSubmitFcn.m</td>
<td>Submit function for a communicating job</td>
</tr>
<tr>
<td>independentJobWrapper.sh</td>
<td>Script that is submitted to PBS to start workers that evaluate the tasks of an independent job</td>
</tr>
<tr>
<td>communicatingJobWrapper.sh</td>
<td>Script that is submitted to PBS to start workers that evaluate the tasks of a communicating job</td>
</tr>
<tr>
<td>deleteJobFcn.m</td>
<td>Script to delete a job from the scheduler</td>
</tr>
<tr>
<td>extractJobId.m</td>
<td>Script to get the job’s ID from the scheduler</td>
</tr>
<tr>
<td>getJobStateFcn.m</td>
<td>Script to get the job’s state from the scheduler</td>
</tr>
<tr>
<td>Filename</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>getSubmitString.m</td>
<td>Script to get the submission string for the scheduler</td>
</tr>
</tbody>
</table>

These files are all programmed to use the standard decode functions provided with the product, so they do not have specialized decode functions. For communicating jobs, the standard decode function provided with the product is `parallel.cluster.generic.communicatingDecodeFcn`. You can view the required variables in this file by typing

```
edit parallel.cluster.generic.communicatingDecodeFcn
```

The folders for other scheduler types contain similar files.

As more files or solutions for more schedulers might become available at any time, visit the product page at http://www.mathworks.com/products/distriben/. This Web page provides links to updates, supported schedulers, requirements, and contact information in case you have any questions.
Further Notes on Communicating Jobs

In this section...

“Number of Tasks in a Communicating Job” on page 8-10
“Avoid Deadlock and Other Dependency Errors” on page 8-10

Number of Tasks in a Communicating Job

Although you create only one task for a communicating job, the system copies this task for each worker that runs the job. For example, if a communicating job runs on four workers, the Tasks property of the job contains four task objects. The first task in the job’s Tasks property corresponds to the task run by the worker whose labindex is 1, and so on, so that the ID property for the task object and labindex for the worker that ran that task have the same value. Therefore, the sequence of results returned by the fetchOutputs function corresponds to the value of labindex and to the order of tasks in the job’s Tasks property.

Avoid Deadlock and Other Dependency Errors

Because code running in one worker for a communicating job can block execution until some corresponding code executes on another worker, the potential for deadlock exists in communicating jobs. This is most likely to occur when transferring data between workers or when making code dependent upon the labindex in an if statement. Some examples illustrate common pitfalls.

Suppose you have a codistributed array D, and you want to use the gather function to assemble the entire array in the workspace of a single worker.

```matlab
if labindex == 1
 assembled = gather(D);
end
```

The reason this fails is because the gather function requires communication between all the workers across which the array is distributed. When the if statement limits execution to a single worker, the other workers required for execution of the function are not executing the statement. As an alternative, you can use gather itself to collect the data into the workspace of a single worker: assembled = gather(D, 1).
In another example, suppose you want to transfer data from every worker to the next worker on the right (defined as the next higher `labindex`). First you define for each worker what the workers on the left and right are.

```
from_lab_left = mod(labindex - 2, numlabs) + 1;
from_lab_right = mod(labindex, numlabs) + 1;
```

Then try to pass data around the ring.

```
labSend (outdata, to_lab_right);
indata = labReceive(from_lab_left);
```

The reason this code might fail is because, depending on the size of the data being transferred, the `labSend` function can block execution in a worker until the corresponding receiving worker executes its `labReceive` function. In this case, all the workers are attempting to send at the same time, and none are attempting to receive while `labSend` has them blocked. In other words, none of the workers get to their `labReceive` statements because they are all blocked at the `labSend` statement. To avoid this particular problem, you can use the `labSendReceive` function.
GPU Computing

- “GPU Capabilities and Performance” on page 9-2
- “Establish Arrays on a GPU” on page 9-3
- “Run Built-In Functions on a GPU” on page 9-8
- “Run Element-wise MATLAB Code on GPU” on page 9-13
- “Identify and Select a GPU Device” on page 9-18
- “Run CUDA or PTX Code on GPU” on page 9-20
- “Run MEX-Functions Containing CUDA Code” on page 9-31
- “Measure and Improve GPU Performance” on page 9-35
GPU Capabilities and Performance

In this section...

“Capabilities” on page 9-2
“Performance Benchmarking” on page 9-2

Capabilities

Parallel Computing Toolbox enables you to program MATLAB to use your computer’s graphics processing unit (GPU) for matrix operations. In many cases, execution in the GPU is faster than in the CPU, so this feature might offer improved performance.

Toolbox capabilities with the GPU let you:

• “Identify and Select a GPU Device” on page 9-18
• “Transfer Arrays Between Workspace and GPU” on page 9-3
• “Run Built-In Functions on a GPU” on page 9-8
• “Run Element-wise MATLAB Code on GPU” on page 9-13
• “Run CUDA or PTX Code on GPU” on page 9-20
• “Run MEX-Functions Containing CUDA Code” on page 9-31

Performance Benchmarking

You can use gputimeit to measure the execution time of functions that run on the GPU. For more details, see “Measure and Improve GPU Performance” on page 9-35.

The MATLAB Central file exchange offers a function called gpuBench, which measures the execution time for various MATLAB GPU tasks and estimates the peak performance of your GPU. See http://www.mathworks.com/matlabcentral/fileexchange/34080-gpubench.
Establish Arrays on a GPU

Transfer Arrays Between Workspace and GPU

Send Arrays to the GPU

A gpuArray in MATLAB represents an array that is stored on the GPU. Use the gpuArray function to transfer an array from MATLAB to the GPU:

```matlab
N = 6;
M = magic(N);
G = gpuArray(M);
```

G is now a MATLAB gpuArray object that represents the magic square stored on the GPU. The input provided to gpuArray must be numeric (for example: single, double, int8, etc.) or logical. (See also “Considerations for Complex Numbers” on page 9-11.)

Retrieve Arrays from the GPU

Use the gather function to retrieve arrays from the GPU to the MATLAB workspace. This takes an array that is on the GPU represented by a gpuArray object, and transfers it to the MATLAB workspace as a regular MATLAB array. You can use isequal to verify that you get the correct values back:

```matlab
G = gpuArray(ones(100,'uint32'));
D = gather(G);
OK = isequal(D,ones(100,'uint32'))
```

Examples: Transfer Array

Transfer Array to the GPU

Create a 1000-by-1000 random matrix in MATLAB, and then transfer it to the GPU:

```matlab
X = rand(1000);
G = gpuArray(X);
```
Transfer Array of a Specified Precision

Create a matrix of double-precision random values in MATLAB, and then transfer the matrix as single-precision from MATLAB to the GPU:

\[
X = \text{rand}(1000);
G = \text{gpuArray}(\text{single}(X));
\]

Construct an Array for Storing on the GPU

Construct a 100-by-100 matrix of \texttt{uint32} ones and transfer it to the GPU. You can accomplish this with a single line of code:

\[
G = \text{gpuArray}(\text{ones}(100, '\texttt{uint32}'));
\]

Create GPU Arrays Directly

A number of methods on the \texttt{gpuArray} class allow you to directly construct arrays on the GPU without having to transfer arrays from the MATLAB workspace. These constructors require only array size and data class information, so they can construct an array without any elements from the workspace. Use any of the following to directly create an array on the GPU:

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{eye}</td>
<td>\texttt{eye(___,'gpuArray')}</td>
</tr>
<tr>
<td>\texttt{rand}</td>
<td>\texttt{rand(___,'gpuArray')}</td>
</tr>
<tr>
<td>\texttt{false}</td>
<td>\texttt{false(___,'gpuArray')}</td>
</tr>
<tr>
<td>\texttt{randi}</td>
<td>\texttt{randi(___,'gpuArray')}</td>
</tr>
<tr>
<td>\texttt{Inf}</td>
<td>\texttt{Inf(___,'gpuArray')}</td>
</tr>
<tr>
<td>\texttt{NaN}</td>
<td>\texttt{NaN(___,'gpuArray')}</td>
</tr>
<tr>
<td>\texttt{ones}</td>
<td>\texttt{ones(___,'gpuArray')}</td>
</tr>
<tr>
<td>\texttt{true}</td>
<td>\texttt{true(___,'gpuArray')}</td>
</tr>
<tr>
<td>\texttt{zeros}</td>
<td>\texttt{zeros(___,'gpuArray')}</td>
</tr>
<tr>
<td>\texttt{gpuArray.freqspace}</td>
<td>\texttt{gpuArray.freqspace}</td>
</tr>
<tr>
<td>\texttt{gpuArray.linspace}</td>
<td>\texttt{gpuArray.linspace}</td>
</tr>
<tr>
<td>\texttt{gpuArray.logspace}</td>
<td>\texttt{gpuArray.logspace}</td>
</tr>
</tbody>
</table>

For a complete list of available static methods in any release, type

\texttt{methods('gpuArray')}

The constructors appear at the bottom of the output from this command.

For help on any one of the constructors, type

\texttt{help \texttt{gpuArray/functionname}}
For example, to see the help on the `colon` constructor, type

```
help gpuArray/colon
```

**Example: Construct an Identity Matrix on the GPU**

To create a 1024-by-1024 identity matrix of type `int32` on the GPU, type

```
II = eye(1024,'int32','gpuArray');
```

```
size(II)
```

```
1024 1024
```

With one numerical argument, you create a 2-dimensional matrix.

**Example: Construct a Multidimensional Array on the GPU**

To create a 3-dimensional array of ones with data class `double` on the GPU, type

```
G = ones(100,100,50,'gpuArray');
```

```
size(G)
```

```
100 100 50
```

```
classUnderlying(G)
```

```
double
```

The default class of the data is `double`, so you do not have to specify it.

**Example: Construct a Vector on the GPU**

To create a 8192-element column vector of zeros on the GPU, type

```
Z = zeros(8192,1,'gpuArray');
```

```
size(Z)
```

```
8192 1
```

For a column vector, the size of the second dimension is 1.

**Control the Random Stream for gpuArray**

The following functions control the random number stream on the GPU:

```
parallel.gpu.rng
```
These functions perform in the same way as `rng` and `RandStream` in MATLAB, but with certain limitations on the GPU. For more information on the use and limits of these functions, type

```
help parallel.gpu.rng
help parallel.gpu.RandStream
```

The GPU uses the combined multiplicative recursive generator by default to create uniform random values, and uses inversion for creating normal values. This is not the default stream in a client MATLAB session on the CPU, but is the equivalent of

```
RandStream('CombRecursive','NormalTransform','Inversion');
```

However, a MATLAB worker session has the same default stream as its GPU, even if it is a worker in a local cluster on the same machine. That is, a MATLAB client and workers do not have the same default stream.

In most cases, it does not matter that the default random stream on the GPU is not the same as the default stream in MATLAB on the CPU. But if you need to reproduce the same stream on both GPU and CPU, you can set the CPU random stream accordingly, and use the same seed to set both streams:

```
seed=0; n=4;

cpu_stream = RandStream('CombRecursive','Seed',seed,'NormalTransform','Inversion');
RandStream.setGlobalStream(cpu_stream);

gpu_stream = parallel.gpu.RandStream('CombRecursive','Seed',seed);
parallel.gpu.RandStream.setGlobalStream(gpu_stream);

r = rand(n); % On CPU
R = rand(n,'gpuArray'); % On GPU
OK = isequal(r,R)
```

There are three supported random generators on the GPU. The combined multiplicative recursive generator (MRG32K3A) is the default because it is a popular and reliable industry standard generator for parallel computing. You can choose the GPU random generator with any of the following commands:

```
parallel.gpu.RandStream('combRecursive')
parallel.gpu.RandStream('Philox4x32-10')
parallel.gpu.RandStream('Threefry4x64-20')
```
For more information about generating random numbers on a GPU, and a comparison between GPU and CPU generation, see “Control Random Number Streams” on page 6-37. For an example that shows performance comparisons for different random generators, see Generating Random Numbers on a GPU.

**Examine gpuArray Characteristics**

There are several functions available for examining the characteristics of a gpuArray object:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>classUnderlying</td>
<td>Class of the underlying data in the array</td>
</tr>
<tr>
<td>existsOnGPU</td>
<td>Indication if array exists on the GPU and is accessible</td>
</tr>
<tr>
<td>isreal</td>
<td>Indication if array data is real</td>
</tr>
<tr>
<td>length</td>
<td>Length of vector or largest array dimension</td>
</tr>
<tr>
<td>ndims</td>
<td>Number of dimensions in the array</td>
</tr>
<tr>
<td>size</td>
<td>Size of array dimensions</td>
</tr>
</tbody>
</table>

For example, to examine the size of the gpuArray object `G`, type:

```matlab
G = rand(100, 'gpuArray');
s = size(G)
```

```
100 100
```
Run Built-In Functions on a GPU

In this section...

“MATLAB Functions with gpuArray Arguments” on page 9-8
“Example: Functions with gpuArray Input and Output” on page 9-10
“Sparse Arrays on a GPU” on page 9-10
“Considerations for Complex Numbers” on page 9-11

MATLAB Functions with gpuArray Arguments

Many MATLAB built-in functions support gpuArray input arguments. Whenever any of these functions is called with at least one gpuArray as an input argument, the function executes on the GPU and generates a gpuArray as the result. You can mix inputs using both gpuArray and MATLAB arrays in the same function call; the MATLAB arrays are transferred to the GPU for the function execution. Supporting functions include the discrete Fourier transform (fft), matrix multiplication (mtimes), and left matrix division (mldivide).

The following functions and their symbol operators are enhanced to accept gpuArray input arguments so that they execute on the GPU:

abs acos acosd acosh acot acotd acoth acsc acsch acscd acschc accumarray all and angle any arrayfun asec asecd asech asin asind classUnderlying coloncompancomplexcondconjconvconv2convn

fftshift filter filter2 find fix fliflip fliprflipudfloorismemberisnansingle sinh size sort sortrows sph2cart squash squeeze std sub2ind subsasgn subsindex subspace subsref
Run Built-In Functions on a GPU

See the release notes for information about updates to individual functions.

To get information about any restrictions or limitations concerning the support of any of these functions for gpuArray objects, type:

```matlab
help gpuArray/functionname
```

For example, to see the help on the overload of `lu`, type

```matlab
help gpuArray/lu
```

In most cases, if any of the input arguments to these functions is a gpuArray, any output arrays are gpuArrays. If the output is always scalar, it returns as MATLAB data in the workspace. If the result is a gpuArray of complex data and all the imaginary parts are zero, these parts are retained and the data remains complex. This could have an impact when using `sort`, `isreal`, etc.
Example: Functions with gpuArray Input and Output

This example uses the `fft` and `real` functions, along with the arithmetic operators `+` and `*`. All the calculations are performed on the GPU, then `gather` retrieves the data from the GPU back to the MATLAB workspace.

```matlab
Ga = rand(1000,'single','gpuArray');
Gfft = fft(Ga);
Gb = (real(Gfft) + Ga) * 6;
G = gather(Gb);
```

The `whos` command is instructive for showing where each variable's data is stored.

```matlab
whos
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>1000x1000</td>
<td>4000000</td>
<td>single</td>
</tr>
<tr>
<td>Ga</td>
<td>1000x1000</td>
<td>108</td>
<td>gpuArray</td>
</tr>
<tr>
<td>Gb</td>
<td>1000x1000</td>
<td>108</td>
<td>gpuArray</td>
</tr>
<tr>
<td>Gfft</td>
<td>1000x1000</td>
<td>108</td>
<td>gpuArray</td>
</tr>
</tbody>
</table>

Notice that all the arrays are stored on the GPU (`gpuArray`), except for `G`, which is the result of the `gather` function.

Sparse Arrays on a GPU

The following functions support sparse gpuArrays.

```matlab
abs angle ceil classUnderlying conj ctranspose deg2rad end expm1 find fix floor full gmres isempty isequal isequaln isfloat isinteger islogical isnumeric isreal issparse length log1p minus mtimes ndims numel nzmax plus rad2deg real realsqrt round sign size sparse spfun spones sqrt sum
```
You can create a sparse gpuArray either by calling \texttt{sparse} with a gpuArray input, or by calling \texttt{gpuArray} with a sparse input. For example,

\begin{verbatim}
x = [0 1 0 0 0; 0 0 0 0 1]
0 1 0 0 0
0 0 0 0 1

s = sparse(x)
(1,2) 1
(2,5) 1

g = gpuArray(s);   % g is a sparse gpuArray
gt = transpose(g); % gt is a sparse gpuArray
f = full(gt)       % f is a full gpuArray
\end{verbatim}

\textbf{Considerations for Complex Numbers}

If the output of a function running on the GPU could potentially be complex, you must explicitly specify its input arguments as complex. This applies to \texttt{gpuArray} or to functions called in code run by \texttt{arrayfun}.

For example, if creating a gpuArray which might have negative elements, use \texttt{G = gpuArray(complex(p))}, then you can successfully execute \texttt{sqrt(G)}.

Or, within a function passed to \texttt{arrayfun}, if \texttt{x} is a vector of real numbers, and some elements have negative values, \texttt{sqrt(x)} will generate an error; instead you should call \texttt{sqrt(complex(x))}.

The following table lists the functions that might return complex data, along with the input range over which the output remains real.

\begin{verbatim}
gpuArray.speye nextpow2 transpose
imag nnz uminus
isaUnderlying nonzeros uplus
\end{verbatim}
<table>
<thead>
<tr>
<th>Function</th>
<th>Input Range for Real Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>acos(x)</td>
<td>abs(x) &lt;= 1</td>
</tr>
<tr>
<td>acosh(x)</td>
<td>x &gt;= 1</td>
</tr>
<tr>
<td>acoth(x)</td>
<td>abs(x) &gt;= 1</td>
</tr>
<tr>
<td>acsc(x)</td>
<td>abs(x) &gt;= 1</td>
</tr>
<tr>
<td>asec(x)</td>
<td>abs(x) &gt;= 1</td>
</tr>
<tr>
<td>asech(x)</td>
<td>0 &lt;= x &lt;= 1</td>
</tr>
<tr>
<td>asin(x)</td>
<td>abs(x) &lt;= 1</td>
</tr>
<tr>
<td>atanh</td>
<td>abs(x) &lt;= 1</td>
</tr>
<tr>
<td>log(x)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>log1p(x)</td>
<td>x &gt;= -1</td>
</tr>
<tr>
<td>log10(x)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>log2(x)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>power(x,y)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>reallog(x)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>realsqrt(x)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>sqrt(x)</td>
<td>x &gt;= 0</td>
</tr>
</tbody>
</table>
Run Element-wise MATLAB Code on GPU

In this section...

“MATLAB Code vs. gpuArray Objects” on page 9-13

“Run Your MATLAB Functions on a GPU” on page 9-13

“Example: Run Your MATLAB Code” on page 9-14

“Supported MATLAB Code” on page 9-15

MATLAB Code vs. gpuArray Objects

You have options for performing MATLAB calculations on the GPU:

• You can transfer or create data on the GPU, and use the resulting gpuArray as input to enhanced built-in functions that support them. For more information and a list of functions that support gpuArray as inputs, see “Run Built-In Functions on a GPU” on page 9-8.

• You can run your own MATLAB function of element-wise operations on a GPU.

Your decision on which solution to adopt depends on whether the functions you require are enhanced to support gpuArray, and the performance impact of transferring data to/from the GPU.

Run Your MATLAB Functions on a GPU

To execute your MATLAB function on a GPU, call arrayfun or bsxfun with a function handle to the MATLAB function as the first input argument:

result = arrayfun(@myFunction,arg1,arg2);

Subsequent arguments provide inputs to the MATLAB function. These input arguments can be workspace data or gpuArray. If any of the input arguments is a gpuArray, the function executes on the GPU and returns a gpuArray. (If none of the inputs is a gpuArray, then arrayfun and bsxfun execute in the CPU.)

Note arrayfun and bsxfun support only element-wise operations on a GPU.

See the arrayfun and bsxfun reference pages for descriptions of their available options.
Example: Run Your MATLAB Code

In this example, a small function applies correction data to an array of measurement data. The function defined in the file myCal.m is:

```matlab
def function c = myCal(rawdata, gain, offst)
 c = (rawdata .* gain) + offst;
end
```

The function performs only element-wise operations when applying a gain factor and offset to each element of the `rawdata` array.

Create some nominal measurement:

```matlab
meas = ones(1000)*3; % 1000-by-1000 matrix
```

The function allows the gain and offset to be arrays of the same size as `rawdata`, so that unique corrections can be applied to individual measurements. In a typical situation, you might keep the correction data on the GPU so that you do not have to transfer it for each application:

```matlab
gn = rand(1000,'gpuArray')/100 + 0.995;
offs = rand(1000,'gpuArray')/50 - 0.01;
```

Run your calibration function on the GPU:

```matlab
corrected = arrayfun(@myCal,meas,gn,offs);
```

This runs on the GPU because the input arguments `gn` and `offs` are already in GPU memory.

Retrieve the corrected results from the GPU to the MATLAB workspace:

```matlab
results = gather(corrected);
```
Supported MATLAB Code

The function you pass into arrayfun or bsxfun can contain the following built-in MATLAB functions and operators:

```
abs double log10 sinh Scalar expansion versions
and eps log1p sqrt of the following:
acos eq logical tan
acosh erf lt tanh
acot erfc max times
acoth erfcinv min true
acsc erfcx minus uint8
acsch erfinv mod uint16
asec exp NaN uint32
asech expm1 ne uint64
asin false not xor
asinh fix or
atan floor pi
atan2 gamma plus +
atanh gammaln pow2 -
beta ge power .* Branching instructions:
betain gtn rand ./
bitand hypot randi \n
bitcmp imag randn ^
bitget Inf rdivide ==
bitor int8 real =~
biset int16 reallog <
bitshift int32 realmax <=
bitxor int64 realmin >
ceil intmax realpow >=
complx intmin realsqrt &
conj isfinite rem |
cos isinf round ~
cosh isnan sec &&
cot ldivide sech ||
coth le sign

csc log sin

csch log2 single
```
Generate Random Numbers on a GPU

The function you pass to arrayfun or bsxfun for execution on a GPU can contain the random number generator functions rand, randi, and randn. However, the GPU does not support the complete functionality that MATLAB does.

arrayfun and bsxfun support the following functions for random matrix generation on the GPU:

```
rand
rand() randi
rand('single') randi()
rand('double') randi(IMAX, ...)
randn randi([IMIN IMAX], ...)
randn() randi(..., 'single')
randn('single') randi(..., 'double')
rndn('double') randi(..., 'int32')
rndn('uint32')
```

You do not specify the array size for random generation. Instead, the number of generated random values is determined by the sizes of the input variables to your function. In effect, there will be enough random number elements to satisfy the needs of any input or output variables.

For example, suppose your function myfun.m contains the following code that includes generating and using the random matrix \( R \):

```
function Y = myfun(X)
 R = rand();
 Y = R.*X;
end
```

If you use arrayfun to run this function with an input variable that is a gpuArray, the function runs on the GPU, where the number of random elements for \( R \) is determined by the size of \( X \), so you do not need to specify it. The following code passes the gpuArray matrix \( G \) to myfun on the GPU.

```
G = 2*ones(4,4,'gpuArray')
H = arrayfun(@myfun, G)
```

Because \( G \) is a 4-by-4 gpuArray, myfun generates 16 random value scalar elements for \( R \), one for each calculation with an element of \( G \).

Random number generation by arrayfun and bsxfun on the GPU uses the same global stream as gpuArray random generation as described in “Control the Random Stream
for gpuArray” on page 9-5. For more information about generating random numbers on a GPU, and a comparison between GPU and CPU generation, see “Control Random Number Streams” on page 6-37. For an example that shows performance comparisons for different random generators, see Generating Random Numbers on a GPU.

Tips and Restrictions

The following limitations apply to the code within the function that arrayfun or bsxfun is evaluating on a GPU.

• Like arrayfun in MATLAB, matrix exponential power, multiplication, and division (\(^, *, /, \)\) perform element-wise calculations only.
• Operations that change the size or shape of the input or output arrays (cat, reshape, etc.), are not supported.
• When generating random matrices with rand, randi, or randn, you do not need to specify the matrix size, and each element of the matrix has its own random stream. See “Generate Random Numbers on a GPU” on page 9-16.
• arrayfun and bsxfun support read-only indexing (subsref) and access to variables of the parent (outer) function workspace from within nested functions, i.e., those variables that exist in the function before the arrayfun/bsxfun evaluation on the GPU. Assignment or subsasgn indexing of these variables from within the nested function is not supported. For an example of the supported usage see Stencil Operations on a GPU
• Anonymous functions do not have access to their parent function workspace.
• Overloading the supported functions is not allowed.
• The code cannot call scripts.
• There is no ans variable to hold unassigned computation results. Make sure to explicitly assign to variables the results of all calculations that you need to access.
• The following language features are not supported: persistent or global variables, parfor, spmd, switch, and try/catch.
• P-code files cannot contain a call to arrayfun or bsxfun with gpuArray data.
Identify and Select a GPU Device

If you have only one GPU in your computer, that GPU is the default. If you have more than one GPU device in your computer, you can use the following functions to identify and select which device you want to use:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpuDeviceCount</td>
<td>The number of GPU devices in your computer</td>
</tr>
<tr>
<td>gpuDevice</td>
<td>Select which device to use, or see which device is selected and view its properties</td>
</tr>
</tbody>
</table>

Example: Select a GPU

This example shows how to identify and select a GPU for your computations.

1. Determine how many GPU devices are in your computer:

   ```matlab
gpuDeviceCount
   ```

2. With two devices, the first is the default. You can examine its properties to determine if that is the one you want to use:

   ```matlab
d = gpuDevice
   ```

   ```matlab
d = CUDADevice with properties:
 Name: 'Tesla K20c'
 Index: 1
 ComputeCapability: '3.5'
 SupportsDouble: 1
 DriverVersion: 7
 ToolkitVersion: 7
 MaxThreadsPerBlock: 1024
 MaxShmemPerBlock: 49152
 MaxThreadBlockSize: [1024 1024 64]
 MaxGridSize: [2.1475e+09 65535 65535]
 SIMDWidth: 32
 TotalMemory: 5.0327e+09
   ```
AvailableMemory: 4.9190e+09
MultiprocessorCount: 13
    ClockRateKHz: 705500
    ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 0
CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1

If this is the device you want to use, you can proceed.

3 To use another device, call `gpuDevice` with the index of the other device, and view its properties to verify that it is the one you want. For example, this step chooses and views the second device (indexing is 1-based):

```
gpuDevice(2)
```

**Note** If you select a device that does not have sufficient compute capability, you get a warning and you will not be able to use that device.
Run CUDA or PTX Code on GPU

In this section...

“Overview” on page 9-20
“Create a CUDAKernel Object” on page 9-21
“Run a CUDAKernel” on page 9-26
“Complete Kernel Workflow” on page 9-28

Overview

This topic explains how to create an executable kernel from CU or PTX (parallel thread execution) files, and run that kernel on a GPU from MATLAB. The kernel is represented in MATLAB by a CUDAKernel object, which can operate on MATLAB array or gpuArray variables.

The following steps describe the CUDAKernel general workflow:

1 Use compiled PTX code to create a CUDAKernel object, which contains the GPU executable code.
2 Set properties on the CUDAKernel object to control its execution on the GPU.
3 Call feval on the CUDAKernel with the required inputs, to run the kernel on the GPU.

MATLAB code that follows these steps might look something like this:

```matlab
% 1. Create CUDAKernel object.
k = parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu','entryPt1');

% 2. Set object properties.
k.GridSize = [8 1];
k.ThreadBlockSize = [16 1];

% 3. Call feval with defined inputs.
g1 = gpuArray(in1); % Input gpuArray.
g2 = gpuArray(in2); % Input gpuArray.
result = feval(k,g1,g2);
```
The following sections provide details of these commands and workflow steps.

**Create a CUDAKernel Object**

- “Compile a PTX File from a CU File” on page 9-21
- “Construct CUDAKernel Object with CU File Input” on page 9-21
- “Construct CUDAKernel Object with C Prototype Input” on page 9-21
- “Supported Data Types” on page 9-22
- “Argument Restrictions” on page 9-23
- “CUDAKernel Object Properties” on page 9-24
- “Specify Entry Points” on page 9-24
- “Specify Number of Threads” on page 9-25

**Compile a PTX File from a CU File**

If you have a CU file you want to execute on the GPU, you must first compile it to create a PTX file. One way to do this is with the `nvcc` compiler in the NVIDIA® CUDA® Toolkit. For example, if your CU file is called `myfun.cu`, you can create a compiled PTX file with the shell command:

```
nvcc -ptx myfun.cu
```

This generates the file named `myfun.ptx`.

**Construct CUDAKernel Object with CU File Input**

With a `.cu` file and a `.ptx` file you can create a CUDAKernel object in MATLAB that you can then use to evaluate the kernel:

```
k = parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu');
```

**Note** You cannot save or load CUDAKernel objects.

**Construct CUDAKernel Object with C Prototype Input**

If you do not have the CU file corresponding to your PTX file, you can specify the C prototype for your C kernel instead of the CU file. For example:
Another use for C prototype input is when your source code uses an unrecognized renaming of a supported data type. (See the supported types below.) Suppose your kernel comprises the following code.

```c
typedef float ArgType;
__global__ void add3(ArgType * v1, const ArgType * v2)
{
 int idx = threadIdx.x;
 v1[idx] += v2[idx];
}
```

ArgType itself is not recognized as a supported data type, so the CU file that includes it cannot be directly used as input when creating the CUDAKernel object in MATLAB. However, the supported input types to the add3 kernel can be specified as C prototype input to the CUDAKernel constructor. For example:

```matlab
k = parallel.gpu.CUDAKernel('test.ptx','float *, const float *','add3');
```

### Supported Data Types

The supported C/C++ standard data types are listed in the following table.

<table>
<thead>
<tr>
<th>Float Types</th>
<th>Integer Types</th>
<th>Boolean and Character Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>double, double2</td>
<td>short, unsigned short, short2, ushort2</td>
<td>bool</td>
</tr>
<tr>
<td>float, float2</td>
<td>int, unsigned int, int2, uint2</td>
<td>char, unsigned char, char2, uchar2</td>
</tr>
<tr>
<td></td>
<td>long, unsigned long, long2, ulong2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>long, long, unsigned long, longlong2, ulonglong2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ptrdiff_t, size_t</td>
<td></td>
</tr>
</tbody>
</table>

Also, the following integer types are supported when you include the `tmwtypes.h` header file in your program.
**Integer Types**

<table>
<thead>
<tr>
<th>Integer Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>int8_T, int16_T, int32_T, int64_T</td>
</tr>
<tr>
<td>uint8_T, uint16_T, uint32_T, uint64_T</td>
</tr>
</tbody>
</table>

The header file is shipped as `matlabroot/extern/include/tmwtypes.h`. You include the file in your program with the line:

```
#include "tmwtypes.h"
```

**Argument Restrictions**

All inputs can be scalars or pointers, and can be labeled `const`.

The C declaration of a kernel is always of the form:

```c
__global__ void aKernel(inputs ...)
```

- The kernel must return nothing, and operate only on its input arguments (scalars or pointers).
- A kernel is unable to allocate any form of memory, so all outputs must be pre-allocated before the kernel is executed. Therefore, the sizes of all outputs must be known before you run the kernel.
- In principle, all pointers passed into the kernel that are not `const` could contain output data, since the many threads of the kernel could modify that data.

When translating the definition of a kernel in C into MATLAB:

- All scalar inputs in C (`double`, `float`, `int`, etc.) must be scalars in MATLAB, or scalar (i.e., single-element) gpuArray variables.
- All `const` pointer inputs in C (`const double *`, etc.) can be scalars or matrices in MATLAB. They are cast to the correct type, copied onto the device, and a pointer to the first element is passed to the kernel. No information about the original size is passed to the kernel. It is as though the kernel has directly received the result of `mxGetData` on an `mxArray`.
- All nonconstant pointer inputs in C are transferred to the kernel exactly as nonconstant pointers. However, because a nonconstant pointer could be changed by the kernel, this will be considered as an output from the kernel.
- Inputs from MATLAB workspace scalars and arrays are cast into the requested type and then passed to the kernel. However, gpuArray inputs are not automatically cast, so their type and complexity must exactly match those expected.
These rules have some implications. The most notable is that every output from a kernel must necessarily also be an input to the kernel, since the input allows the user to define the size of the output (which follows from being unable to allocate memory on the GPU).

**CUDA Kernel Object Properties**

When you create a kernel object without a terminating semicolon, or when you type the object variable at the command line, MATLAB displays the kernel object properties. For example:

```matlab
k = parallel.gpu.CUDAKernel('conv.ptx','conv.cu')
k =
 parallel.gpu.CUDAKernel handle
 Package: parallel.gpu

Properties:
 ThreadBlockSize: [1 1 1]
 MaxThreadsPerBlock: 512
 GridSize: [1 1 1]
 SharedMemorySize: 0
 EntryPoint: '_Z8theEntryPf'
 MaxNumLHSArguments: 1
 NumRHSArguments: 2
 ArgumentTypes: {'in single vector' 'inout single vector'}
```

The properties of a kernel object control some of its execution behavior. Use dot notation to alter those properties that can be changed.

For a descriptions of the object properties, see the **CUDA Kernel** object reference page. A typical reason for modifying the settable properties is to specify the number of threads, as described below.

**Specify Entry Points**

If your PTX file contains multiple entry points, you can identify the particular kernel in `myfun.ptx` that you want the kernel object `k` to refer to:

```matlab
k = parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu','myKernel1');
```

A single PTX file can contain multiple entry points to different kernels. Each of these entry points has a unique name. These names are generally mangled (as in C++ mangling). However, when generated by `nvcc` the PTX name always contains the original function name from the CU file. For example, if the CU file defines the kernel function as
__global__ void simplestKernelEver( float * x, float val )

then the PTX code contains an entry that might be called
_Z18simplestKernelEverPff.

When you have multiple entry points, specify the entry name for the particular kernel
when calling CUDAKernel to generate your kernel.

**Note** The CUDAKernel function searches for your entry name in the PTX file, and
matches on any substring occurrences. Therefore, you should not name any of your
entries as substrings of any others.

You might not have control over the original entry names, in which case you must be
aware of the unique mangled derived for each. For example, consider the following
function template.

template <typename T>
__global__ void add4( T * v1, const T * v2 )
{
    int idx = threadIdx.x;
    v1[idx] += v2[idx];
}

When the template is expanded out for float and double, it results in two entry points,
both of which contain the substring `add4`.

template __global__ void add4<float>(float *, const float *);
template __global__ void add4<double>(double *, const double *);

The PTX has corresponding entries:

_Z4add4IfEvPT_PKSO_
_Z4add4IdEvPT_PKSO_

Use entry point `add4If` for the float version, and `add4Id` for the double version.

k = parallel.gpu.CUDAKernel('test.ptx','double *, const double *','add4Id');

**Specify Number of Threads**

You specify the number of computational threads for your CUDAKernel by setting two of
its object properties:
• **GridSize** — A vector of three elements, the product of which determines the number of blocks.

• **ThreadBlockSize** — A vector of three elements, the product of which determines the number of threads per block. (Note that the product cannot exceed the value of the property `MaxThreadsPerBlock`.)

The default value for both of these properties is `[1 1 1]`, but suppose you want to use 500 threads to run element-wise operations on vectors of 500 elements in parallel. A simple way to achieve this is to create your CUDAKernel and set its properties accordingly:

```matlab
k = parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu');
k.ThreadBlockSize = [500,1,1];
```

Generally, you set the grid and thread block sizes based on the sizes of your inputs. For information on thread hierarchy, and multiple-dimension grids and blocks, see the NVIDIA CUDA C Programming Guide.

### Run a CUDAKernel

- “Use Workspace Variables” on page 9-26
- “Use gpuArray Variables” on page 9-27
- “Determine Input and Output Correspondence” on page 9-27

Use the `feval` function to evaluate a CUDAKernel on the GPU. The following examples show how to execute a kernel using MATLAB workspace variables and `gpuArray` variables.

#### Use Workspace Variables

Assume that you have already written some kernels in a native language and want to use them in MATLAB to execute on the GPU. You have a kernel that does a convolution on two vectors; load and run it with two random input vectors:

```matlab
k = parallel.gpu.CUDAKernel('conv.ptx','conv.cu');
result = feval(k,rand(100,1),rand(100,1));
```

Even if the inputs are constants or variables for MATLAB workspace data, the output is `gpuArray`. 
**Use gpuArray Variables**

It might be more efficient to use `gpuArray` objects as input when running a kernel:

```matlab
k = parallel.gpu.CUDAKernel('conv.ptx','conv.cu');

i1 = gpuArray(rand(100,1,'single'));
i2 = gpuArray(rand(100,1,'single'));

result1 = feval(k,i1,i2);
```

Because the output is a `gpuArray`, you can now perform other operations using this input or output data without further transfers between the MATLAB workspace and the GPU. When all your GPU computations are complete, gather your final result data into the MATLAB workspace:

```matlab
result2 = feval(k,i1,i2);

r1 = gather(result1);
r2 = gather(result2);
```

**Determine Input and Output Correspondence**

When calling `[out1, out2] = feval(kernel, in1, in2, in3)`, the inputs `in1`, `in2`, and `in3` correspond to each of the input arguments to the C function within your CU file. The outputs `out1` and `out2` store the values of the first and second non-const pointer input arguments to the C function after the C kernel has been executed.

For example, if the C kernel within a CU file has the following signature:

```c
void reallySimple(float * pInOut, float c)
```

the corresponding kernel object (k) in MATLAB has the following properties:

```matlab
MaxNumLHSArguments: 1
NumRHSArguments: 2
ArgumentTypes: {'inout single vector' 'in single scalar'}
```

Therefore, to use the kernel object from this code with `feval`, you need to provide `feval` two input arguments (in addition to the kernel object), and you can use one output argument:

```matlab
y = feval(k,x1,x2)
```
The input values \( x_1 \) and \( x_2 \) correspond to \( \text{pInOut} \) and \( c \) in the C function prototype. The output argument \( y \) corresponds to the value of \( \text{pInOut} \) in the C function prototype after the C kernel has executed.

The following is a slightly more complicated example that shows a combination of const and non-const pointers:

```c
void moreComplicated(const float * pIn, float * pInOut1, float * pInOut2)
```

The corresponding kernel object in MATLAB then has the properties:

- MaxNumLHSArguments: 2
- NumRHSArguments: 3
- ArgumentTypes: \{'in single vector' 'inout single vector' 'inout single vector'\}

You can use `feval` on this code’s kernel (\( k \)) with the syntax:

\[ [y_1,y_2] = \text{feval}(k,x_1,x_2,x_3) \]

The three input arguments \( x_1 \), \( x_2 \), and \( x_3 \), correspond to the three arguments that are passed into the C function. The output arguments \( y_1 \) and \( y_2 \), correspond to the values of \( \text{pInOut1} \) and \( \text{pInOut2} \) after the C kernel has executed.

### Complete Kernel Workflow

- “Add Two Numbers” on page 9-28
- “Add Two Vectors” on page 9-29
- “Example with CU and PTX Files” on page 9-30

### Add Two Numbers

This example adds two doubles together in the GPU. You should have the NVIDIA CUDA Toolkit installed, and have CUDA-capable drivers for your device.

1 The CU code to do this is as follows.

```c
__global__ void add1(double * pi, double c)
{
 *pi += c;
}
```

The directive `__global__` indicates that this is an entry point to a kernel. The code uses a pointer to send out the result in \( \pi \), which is both an input and an output. Put this code in a file called `test.cu` in the current directory.
2 Compile the CU code at the shell command line to generate a PTX file called `test.ptx`.

```
nvcc -ptx test.cu
```

3 Create the kernel in MATLAB. Currently this PTX file only has one entry so you do not need to specify it. If you were to put more kernels in, you would specify `add1` as the entry.

```
k = parallel.gpu.CUDAKernel('test.ptx','test.cu');
```

4 Run the kernel with two numeric inputs. By default, a kernel runs on one thread.

```
result = feval(k,2,3)
```

```
result = 5
```

**Add Two Vectors**

This example extends the previous one to add two vectors together. For simplicity, assume that there are exactly the same number of threads as elements in the vectors and that there is only one thread block.

1 The CU code is slightly different from the last example. Both inputs are pointers, and one is constant because you are not changing it. Each thread will simply add the elements at its thread index. The thread index must work out which element this thread should add. (Getting these thread- and block-specific values is a very common pattern in CUDA programming.)

```
__global__ void add2(double * v1, const double * v2)
{
 int idx = threadIdx.x;
 v1[idx] += v2[idx];
}
```

Save this code in the file `test.cu`.

2 Compile as before using `nvcc`.

```
nvcc -ptx test.cu
```

3 If this code was put in the same CU file along with the code of the first example, you need to specify the entry point name this time to distinguish it.

```
k = parallel.gpu.CUDAKernel('test.ptx','test.cu','add2');
```
Before you run the kernel, set the number of threads correctly for the vectors you want to add.

\[
N = 128; \\
k.ThreadBlockSize = N; \\
in1 = ones(N,1,'gpuArray'); \\
in2 = ones(N,1,'gpuArray'); \\
result = feval(k,in1,in2);
\]

**Example with CU and PTX Files**

For an example that shows how to work with CUDA, and provides CU and PTX files for you to experiment with, see Illustrating Three Approaches to GPU Computing: The Mandelbrot Set.
Run MEX-Functions Containing CUDA Code

In this section...

“Write a MEX-File Containing CUDA Code” on page 9-31
“Compile a GPU MEX-File” on page 9-32
“Run the Resulting MEX-Functions” on page 9-32
“Comparison to a CUDA Kernel” on page 9-33
“Access Complex Data” on page 9-33

Write a MEX-File Containing CUDA Code

As with any MEX-files, those containing CUDA code have a single entry point, known as `mexFunction`. The MEX-function contains the host-side code that interacts with `gpuArray` objects from MATLAB and launches the CUDA code. The CUDA code in the MEX-file must conform to the CUDA runtime API.

You should call the function `mxInitGPU` at the entry to your MEX-file. This ensures that the GPU device is properly initialized and known to MATLAB.

The interface you use to write a MEX-file for `gpuArray` objects is different from the MEX interface for standard MATLAB arrays.

You can see an example of a MEX-file containing CUDA code at:

```
matlabroot/toolbox/distcomp/gpu/extern/src/mex/mexGPUExample.cu
```

This file contains the following CUDA device function:

```c
void __global__ TimesTwo(double const * const A,
 double * const B,
 int const N)
{
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 if (i < N)
 B[i] = 2.0 * A[i];
}
```

It contains the following lines to determine the array size and launch a grid of the proper size:
N = (int)(mxGPUGetNumberOfElements(A));
blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
TimesTwo<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, N);

**Compile a GPU MEX-File**

To compile CUDA code you must have installed the CUDA toolkit version consistent with
the **ToolkitVersion** property of the GPUDevice object.

Use the *mexcuda* command in MATLAB to compile a MEX-file containing the CUDA
code. You can compile the example file using the command:

```matlab
mexcuda mexGPUExample.cu
```

If *mexcuda* has trouble locating the NVIDIA compiler (*nvcc*), it might be installed in a
non-default location. You can specify the location of *nvcc* on your system by storing it in
the environment variable *MW_NVCC_PATH*. You can set this variable using the MATLAB
*setenv* command. For example,

```matlab
setenv('MW_NVCC_PATH','/usr/local/CUDA/bin')
```

**Run the Resulting MEX-Functions**

The MEX-function in this example multiplies every element in the input array by 2 to get
the values in the output array. To test it, start with a gpuArray in which every element is 1:

```matlab
x = ones(4,4,'gpuArray');
y = mexGPUExample(x)
```

```matlab
y =

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
```

Both the input and output arrays are gpuArray objects:

```matlab
disp(['class(x) = ',class(x),', class(y) = ',class(y)])
```

```
class(x) = gpuArray, class(y) = gpuArray
```
Comparison to a CUDA Kernel

Parallel Computing Toolbox also supports CUDAKernel objects that can be used to integrate CUDA code with MATLAB. Consider the following when choosing the MEX-file approach versus the CUDAKernel approach:

- MEX-files can interact with host-side libraries, such as the NVIDIA Performance Primitives (NPP) or CUFFT libraries, and can also contain calls from the host to functions in the CUDA runtime library.
- MEX-files can analyze the size of the input and allocate memory of a different size, or launch grids of a different size, from C or C++ code. In comparison, MATLAB code that calls CUDAKernel objects must pre-allocated output memory and determine the grid size.

Access Complex Data

Complex data on a GPU device is stored in interleaved complex format. That is, for a complex gpuArray A, the real and imaginary parts of element i are stored in consecutive addresses. MATLAB uses CUDA built-in vector types to store complex data on the device (see the NVIDIA CUDA C Programming Guide).

Depending on the needs of your kernel, you can cast the pointer to complex data either as the real type or as the built-in vector type. For example, in MATLAB, suppose you create a matrix:

\[
\mathbf{a} = \text{complex}(\text{ones}(4, 'gpuArray'), \text{ones}(4, 'gpuArray'))
\]

If you pass a gpuArray to a MEX-function as the first argument (prhs[0]), then you can get a pointer to the complex data by using the calls:

```matlab
mxGPUArray const * A = mxGPUCreateFromMxArray(prhs[0]);
mwSize numel_complex = mxGPUGetNumberOfElements(A);
double2 * d_A = (double2 const *)(mxGPUGetDataReadOnly(A));
```

To treat the array as a real double-precision array of twice the length, you could do it this way:

```matlab
mxGPUArray const * A = mxGPUCreateFromMxArray(prhs[0]);
mwSize numel_real = 2*mxGPUGetNumberOfElements(A);
double * d_A = (double const *)(mxGPUGetDataReadOnly(A));
```

Various functions exist to convert data between complex and real formats on the GPU. These operations require a copy to interleave the data. The function
mxGPUCreateComplexGPUArray takes two real mxGPUArrays and interleaves their elements to produce a single complex mxGPUArray of the same length. The functions mxGPUCopyReal and mxGPUCopyImag each copy either the real or the imaginary elements into a new real mxGPUArray. (There is no equivalent of the mxGetImagData function for mxGPUArray objects.)
Measure and Improve GPU Performance

In this section...

“Basic Workflow for Improving Performance” on page 9-35
“Advanced Tools for Improving Performance” on page 9-36
“Best Practices for Improving Performance” on page 9-37
“Measure Performance on the GPU” on page 9-38
“Vectorize for Improved GPU Performance” on page 9-39

Basic Workflow for Improving Performance

The purpose of GPU computing in MATLAB is to speed up your applications. This topic discusses fundamental concepts and practices that can help you achieve better performance on the GPU, such as the configuration of the GPU hardware and best practices within your code. It discusses the trade-off between implementation difficulty and performance, and describes the criteria you might use to choose between using gpuArray functions, `arrayfun`, MEX-files, or CUDA kernels. Finally, it describes how to accurately measure performance on the GPU.

When converting MATLAB code to run on the GPU, it is best to start with MATLAB code that already performs well. While the GPU and CPU have different performance characteristics, the general guidelines for writing good MATLAB code also help you write good MATLAB code for the GPU. The first step is almost always to profile your CPU code. The lines of code that the profiler shows taking the most time on the CPU will likely be ones that you must concentrate on when you code for the GPU.

It is easiest to start converting your code using MATLAB built-in functions that support gpuArray data. These functions take gpuArray inputs, perform calculations on the GPU, and return gpuArray outputs. A list of the MATLAB functions that support gpuArray data is found in “Run Built-In Functions on a GPU” on page 9-8. In general these functions support the same arguments and data types as standard MATLAB functions that are calculated in the CPU. Any limitations in these overloaded functions for gpuArrays are described in their command-line help (e.g., `help gpuArray/qr`).

If all the functions that you want to use are supported on the GPU, running code on the GPU may be as simple as calling `gpuArray` to transfer input data to the GPU, and calling `gather` to retrieve the output data from the GPU when finished. In many cases,
you might need to vectorize your code, replacing looped scalar operations with MATLAB matrix and vector operations. While vectorizing is generally a good practice on the CPU, it is usually critical for achieving high performance on the GPU. For more information, see “Vectorize for Improved GPU Performance” on page 9-39.

**Advanced Tools for Improving Performance**

It is possible that even after converting inputs to gpuArrays and vectorizing your code, there are operations in your algorithm that are either not built-in functions, or that are not fast enough to meet your application’s requirements. In such situations you have three main options: use `arrayfun` to precompile element-wise parts of your application, make use of GPU library functions, or write a custom CUDA kernel.

If you have a purely element-wise function, you can improve its performance by calling it with `arrayfun`. The `arrayfun` function on the GPU turns an element-wise MATLAB function into a custom CUDA kernel, thus reducing the overhead of performing the operation. Often, there is a subset of your application that can be used with `arrayfun` even if the entire application cannot be. The example Improve Performance of Element-wise MATLAB Functions on the GPU using ARRAYFUN shows the basic concepts of this approach; and the example Using ARRAYFUN for Monte-Carlo Simulations shows how this can be done in simulations for a finance application.

MATLAB provides an extensive library of GPU-enabled functions in Parallel Computing Toolbox, Image Processing Toolbox™, Signal Processing Toolbox™, and other products. However, there are many libraries of additional functions that do not have direct built-in analogs in MATLAB’s GPU support. Examples include the NVIDIA Performance Primitives library and the CURAND library, which are included in the CUDA toolkit that ships with MATLAB. If you need to call a function in one of these libraries, you can do so using the GPU MEX interface. This interface allows you to extract the pointers to the device data from MATLAB gpuArrays so that you can pass these pointers to GPU functions. You can convert the returned values into gpuArrays for return to MATLAB. For more information see “Run MEX-Functions Containing CUDA Code” on page 9-31.

Finally, you have the option of writing a custom CUDA kernel for the operation that you need. Such kernels can be directly integrated into MATLAB using the CUDAKernel object.

The example Illustrating Three Approaches to GPU Computing: The Mandelbrot Set shows how to implement a simple calculation using three of the approaches mentioned in this section. This example begins with MATLAB code that is easily converted to run...
on the GPU, rewrites the code to use `arrayfun` for element-wise operations, and finally shows how to integrate a custom CUDA kernel for the same operation.

Alternately, you can write a CUDA kernel as part of a MEX-file and call it using the CUDA Runtime API inside the MEX-file. Either of these approaches might let you work with low-level features of the GPU, such as shared memory and texture memory, that are not directly available in MATLAB code. For more details, see the example Accessing Advanced CUDA Features Using MEX.

**Best Practices for Improving Performance**

**Hardware Configuration**

In general you can achieve the best performance when your GPU is dedicated to computing. It is usually not practical to use the same GPU device for both computations and graphics, because of the amount of memory taken up for problems of reasonable size and the constant use of the device by the system for graphics. If possible, obtain a separate device for graphics. Details of configuring your device for compute or graphics depend on the operating system and driver version.

On Windows systems, a GPU device can be in one of two modes: Windows Display Driver Model (WDDM) or Tesla Compute Cluster (TCC) mode. For best performance, any devices used for computing should be in TCC mode. Consult NVIDIA documentation for more details.

NVIDIA’s highest-performance compute devices, the Tesla line, support error correcting codes (ECC) when reading and writing GPU memory. The purpose of ECC is to correct for occasional bit-errors that occur normally when reading or writing dynamic memory. One technique to improve performance is to turn off ECC to increase the achievable memory bandwidth. While the hardware can be configured this way, MathWorks does not recommend this practice. The potential loss of accuracy due to silent errors can be more harmful than the performance benefit.

**MATLAB Coding Practices**

This topic describes general techniques that help you achieve better performance on the GPU. Some of these tips apply when writing MATLAB code for the CPU as well.

Data in MATLAB arrays is stored in column-major order. Therefore, it is beneficial to operate along the first or column dimension of your array. If one dimension of your data is significantly longer than others, you might achieve better performance
if you make that the first dimension. Similarly, if you frequently operate along a
particular dimension, it is usually best to have it as the first dimension. In some cases, if
consecutive operations target different dimensions of an array, it might be beneficial to
transpose or permute the array between these operations.

GPUs achieve high performance by calculating many results in parallel. Thus, matrix
and higher-dimensional array operations typically perform much better than operations
on vectors or scalars. You can achieve better performance by rewriting your loops to
make use of higher-dimensional operations. The process of revising loop-based, scalar-
oriented code to use MATLAB matrix and vector operations is called vectorization. For
more details, see “Using Vectorization”.

By default, all operations in MATLAB are performed in double-precision floating-point
arithmetic. However, most operations support a variety of data types, including integer
and single-precision floating-point. Today’s GPUs and CPUs typically have much higher
throughput when performing single-precision operations, and single-precision floating-
point data occupies less memory. If your application’s accuracy requirements allow the
use of single-precision floating-point, it can greatly improve the performance of your
MATLAB code.

The GPU sits at the end of a data transfer mechanism known as the PCI bus. While this
bus is an efficient, high-bandwidth way to transfer data from the PC host memory to
various extension cards, it is still much slower than the overall bandwidth to the global
memory of the GPU device or of the CPU (for more details, see the example Measuring
GPU Performance). In addition, transfers from the GPU device to MATLAB host memory
cause MATLAB to wait for all pending operations on the device to complete before
executing any other statements. This can significantly hurt the performance of your
application. In general, you should limit the number of times you transfer data between
the MATLAB workspace and the GPU. If you can transfer data to the GPU once at the
start of your application, perform all the calculations you can on the GPU, and then
transfer the results back into MATLAB at the end, that generally results in the best
performance. Similarly, when possible it helps to create arrays directly on the GPU,
using either the 'gpuArray' or the 'like' option for functions such as zeros (e.g., \( Z = \)
zeros(____,'gpuArray') or \( Z = \) zeros(N,'like',g) for existing gpuArray g).

**Measure Performance on the GPU**

The best way to measure performance on the GPU is to use gputimeit. This function
takes as input a function handle with no input arguments, and returns the measured
execution time of that function. It takes care of such benchmarking considerations as
repeating the timed operation to get better resolution, executing the function before measurement to avoid initialization overhead, and subtracting out the overhead of the timing function. Also, gputimeit ensures that all operations on the GPU have completed before the final timing.

For example, consider measuring the time taken to compute the lu factorization of a random matrix A of size N-by-N. You can do this by defining a function that does the lu factorization and passing the function handle to gputimeit:

\[
A = \text{rand}(N, 'gpuArray'); \\
fh = @() \text{lu}(A); \\
gputimeit(fh, 2); \text{ % 2nd arg indicates number of outputs}
\]

You can also measure performance with tic and toc. However, to get accurate timing on the GPU, you must wait for operations to complete before calling toc. There are two ways to do this. You can call gather on the final GPU output before calling toc: this forces all computations to complete before the time measurement is taken. Alternately, you can use the wait function with a GPUDevice object as its input. For example, if you wanted to measure the time taken to compute the lu factorization of matrix A using tic, toc, and wait, you can do it as follows:

\[
gd = \text{gpuDevice}(); \\
tic(); \\
\{l, u\} = \text{lu}(A); \\
wait(gd); \\
tLU = toc();
\]

You can also use the MATLAB profiler to show how computation time is distributed in your GPU code. Note, that to accomplish timing measurements, the profiler runs each line of code independently, so it cannot account for overlapping (asynchronous) execution such as might occur during normal operation. For timing whole algorithms, you should use tic and toc, or gputimeit, as described above. Also, the profile might not yield correct results for user-defined MEX functions if they run asynchronously.

### Vectorize for Improved GPU Performance

This example shows you how to improve performance by running a function on the GPU instead of the CPU, and by vectorizing the calculations.

Consider a function that performs fast convolution on the columns of a matrix. Fast convolution, which is a common operation in signal processing applications, transforms each column of data from the time domain to the frequency domain, multiplies it by the
transform of a filter vector, transforms back to the time domain, and stores the result in an output matrix.

```matlab
function y = fastConvolution(data,filter)
[m,n] = size(data);
% Zero-pad filter to the column length of data, and transform
filter_f = fft(filter,m);

% Create an array of zeros of the same size and class as data
y = zeros(m,n,'like',data);

% Transform each column of data
for ix = 1:n
 af = fft(data(:,ix));
 y(:,ix) = ifft(af .* filter_f);
end
end
```

Execute this function in the CPU on data of a particular size, and measure the execution time using the MATLAB `timeit` function. The `timeit` function takes care of common benchmarking considerations, such as accounting for startup and overhead.

```matlab
a = complex(randn(4096,100),randn(4096,100)); % Data input
b = randn(16,1); % Filter input
c = fastConvolution(a,b); % Calculate output
citime = timeit(@()fastConvolution(a,b)); % Measure CPU time

disp(['Execution time on CPU = ',num2str(citime)]);
```

On a sample machine, this code displays the output:

```
Execution time on CPU = 0.019335
```

Now execute this function on the GPU. You can do this easily by changing the input data to be gpuArrays rather than normal MATLAB arrays. The 'like' syntax used when creating the output inside the function ensures that y will be a gpuArray if data is a gpuArray.

```matlab
ga = gpuArray(a); % Move array to GPU
gb = gpuArray(b); % Move filter to GPU
gc = fastConvolution(ga,gb); % Calculate on GPU
gtime = gputimeit(@()fastConvolution(ga,gb)); % Measure GPU time

gerr = max(max(abs(gather(gc)-c))); % Calculate error

disp(['Execution time on GPU = ',num2str(gtime)]);
disp(['Maximum absolute error = ',num2str(gerr)]);
```

```matlab```
On the same machine, this code displays the output:

```matlab
Execution time on CPU = 0.019335
Execution time on GPU = 0.027235
Maximum absolute error = 1.1374e-14
```

Unfortunately, the GPU is slower than the CPU for this problem. The reason is that the `for`-loop is executing the FFT, multiplication, and inverse FFT operations on individual columns of length 4096. The best way to increase the performance is to vectorize the code, so that a single MATLAB function call performs more calculation. The FFT and IFFT operations are easy to vectorize: `fft(A)` computes the FFT of each column of a matrix `A`. You can perform a multiply of the filter with every column in a matrix at once using the MATLAB binary scalar expansion function `bsxfun`. The vectorized function looks like this:

```matlab
function y = fastConvolution_v2(data,filter)
    m = size(data,1);
    % Zero-pad filter to the length of data, and transform
    filter_f = fft(filter,m);

    % Transform each column of the input
    af = fft(data);

    % Multiply each column by filter and compute inverse transform
    y = ifft(bsxfun(@times,af,filter_f));
end
```

Perform the same experiment using the vectorized function:

```matlab
a = complex(randn(4096,100),randn(4096,100));   % Data input
b = randn(16,1);                                % Filter input
c = fastConvolution_v2(a,b);                    % Calculate output
c = measureCPUtime(@()fastConvolution_v2(a,b));% Measure CPU time
disp(['Execution time on CPU = ',num2str(ctime)]);

ga = gpuArray(a);                               % Move data to GPU
gb = gpuArray(b);                                % Move filter to GPU
gc = fastConvolution_v2(ga, gb);                % Calculate on GPU
gtime = gputimeit(@()fastConvolution_v2(ga,gb));% Measure GPU time
gerr = max(max(abs(gather(gc)-c)));             % Calculate error
disp(['Execution time on GPU = ',num2str(gtime)]);
disp(['Maximum absolute error = ',num2str(gerr)]);
```

Execution time on CPU = 0.010393
Execution time on GPU = 0.0020537
Maximum absolute error = 1.1374e-14

In conclusion, vectorizing the code helps both the CPU and GPU versions to run faster. However, vectorization helps the GPU version much more than the CPU. The improved CPU version is nearly twice as fast as the original; the improved GPU version is 13 times faster than the original. The GPU code went from being 40% slower than the CPU in the original version, to about five times faster in the revised version.
Objects — Alphabetical List
codistributed

Access elements of arrays distributed among workers in parallel pool

Constructor

codistributed, codistributed.build

You can also create a codistributed array explicitly from spmd code or a communicating job task with any of several overloaded MATLAB functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eye(___,'codistributed')</td>
<td>eye(___,'codistributed')</td>
</tr>
<tr>
<td>false(___,'codistributed')</td>
<td>false(___,'codistributed')</td>
</tr>
<tr>
<td>Inf(___,'codistributed')</td>
<td>Inf(___,'codistributed')</td>
</tr>
<tr>
<td>NaN(___,'codistributed')</td>
<td>NaN(___,'codistributed')</td>
</tr>
<tr>
<td>ones(___,'codistributed')</td>
<td>ones(___,'codistributed')</td>
</tr>
<tr>
<td>true(___,'codistributed')</td>
<td>true(___,'codistributed')</td>
</tr>
<tr>
<td>zeros(___,'codistributed')</td>
<td>zeros(___,'codistributed')</td>
</tr>
<tr>
<td>codistributed.cell</td>
<td>codistributed.cell</td>
</tr>
<tr>
<td>codistributed.spalloc</td>
<td>codistributed.spalloc</td>
</tr>
<tr>
<td>codistributed.speye</td>
<td>codistributed.speye</td>
</tr>
<tr>
<td>codistributed.sprand</td>
<td>codistributed.sprand</td>
</tr>
<tr>
<td>codistributed.sprandn</td>
<td>codistributed.sprandn</td>
</tr>
</tbody>
</table>

Description

Arrays partitioned among the workers in a pool, are accessible from the workers as codistributed array objects.

Codistributed arrays on workers that you create inside spmd statements or from within task functions of communicating job can be accessed as distributed arrays on the client.

Methods

The overloaded methods for codistributed arrays are too numerous to list here. Most resemble and behave the same as built-in MATLAB functions. See “MATLAB Functions on Distributed and Codistributed Arrays” on page 5-24.
Also among the methods there are several for examining the characteristics of the array itself. Most behave like the MATLAB functions of the same name:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>classUnderlying</code></td>
<td>Class (data type) of the elements in the array</td>
</tr>
<tr>
<td><code>iscodistributed</code></td>
<td>Indication if array is codistributed</td>
</tr>
<tr>
<td><code>isreal</code></td>
<td>Indication if array elements are real</td>
</tr>
<tr>
<td><code>length</code></td>
<td>Length of vector or largest array dimension</td>
</tr>
<tr>
<td><code>ndims</code></td>
<td>Number of dimensions in the array</td>
</tr>
<tr>
<td><code>size</code></td>
<td>Size of array dimensions</td>
</tr>
</tbody>
</table>
codistributor1d

1-D distribution scheme for codistributed array

Constructor

```
codistributor1d
```

Description

A `codistributor1d` object defines the 1-D distribution scheme for a codistributed array. The 1-D codistributor distributes arrays along a single specified dimension, the distribution dimension, in a noncyclic, partitioned manner.

For help on `codistributor1d`, including a list of links to individual help for its methods and properties, type

```
helper codistributor1d
```

Methods

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>Distributed dimension of <code>codistributor1d</code> object</td>
</tr>
<tr>
<td>Partition</td>
<td>Partition scheme of <code>codistributor1d</code> object</td>
</tr>
</tbody>
</table>
codistributor2dbc

2-D block-cyclic distribution scheme for codistributed array

Constructor

codistributor2dbc

Description

A codistributor2dbc object defines the 2-D block-cyclic distribution scheme for a codistributed array. The 2-D block-cyclic codistributor can only distribute two-dimensional matrices. It distributes matrices along two subscripts over a rectangular computational grid of labs in a blocked, cyclic manner. The parallel matrix computation software library called ScaLAPACK uses the 2-D block-cyclic codistributor.

For help on codistributor2dbc, including a list of links to individual help for its methods and properties, type

```
help codistributor2dbc
```

Methods

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlockSize</td>
<td>Block size of codistributor2dbc object</td>
</tr>
<tr>
<td>LabGrid</td>
<td>Lab grid of codistributor2dbc object</td>
</tr>
<tr>
<td>Orientation</td>
<td>Orientation of codistributor2dbc object</td>
</tr>
</tbody>
</table>
Composite

Access nondistributed variables on multiple workers from client

Constructor

Composite

Description

Variables that exist on the workers running an `spmd` statement are accessible on the client as a Composite object. A Composite resembles a cell array with one element for each worker. So for Composite `C`:

- `C{1}` represents value of `C` on worker1
- `C{2}` represents value of `C` on worker2
- etc.

`spmd` statements create Composites automatically, which you can access after the statement completes. You can also create a Composite explicitly with the `Composite` function.

Methods

Other methods of a Composite object behave similarly to these MATLAB array functions:

- `disp, display` - Display Composite
- `end` - Indicate last Composite index
- `isempty` - Determine whether Composite is empty
- `length` - Length of Composite
- `ndims` - Number of Composite dimensions
- `numel` - Number of elements in Composite
- `size` - Composite dimensions
CUDAKernel

Kernel executable on GPU

Constructor

parallel.gpu.CUDAKernel

Description

A CUDAKernel object represents a CUDA kernel, that can execute on a GPU. You create the kernel when you compile PTX or CU code, as described in “Run CUDA or PTX Code on GPU” on page 9-20.

Methods

Properties

A CUDAKernel object has the following properties:

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThreadBlockSize</td>
<td>Size of block of threads on the kernel. This can be an integer vector of length 1, 2, or 3 (since thread blocks can be up to 3-dimensional). The product of the elements of ThreadBlockSize must not exceed the MaxThreadsPerBlock for this kernel, and no element of ThreadBlockSize can exceed the corresponding element of the GPUDevice property MaxThreadBlockSize.</td>
</tr>
<tr>
<td>MaxThreadsPerBlock</td>
<td>Maximum number of threads permissible in a single block for this CUDA kernel. The product of the elements of ThreadBlockSize must not exceed this value.</td>
</tr>
<tr>
<td>GridSize</td>
<td>Size of grid (effectively the number of thread blocks that will be launched independently by the GPU). This is an integer vector of length 3. None of the elements of this vector can exceed the</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>corresponding element in the vector of the <code>MaxGridSize</code> property of the <code>GPUDevice</code> object.</td>
</tr>
<tr>
<td>SharedMemorySize</td>
<td>The amount of dynamic shared memory (in bytes) that each thread block can use. Each thread block has an available shared memory region. The size of this region is limited in current cards to ~16 kB, and is shared with registers on the multiprocessors. As with all memory, this needs to be allocated before the kernel is launched. It is also common for the size of this shared memory region to be tied to the size of the thread block. Setting this value on the kernel ensures that each thread in a block can access this available shared memory region.</td>
</tr>
<tr>
<td>EntryPoint</td>
<td>(read-only) A string containing the actual entry point name in the PTX code that this kernel is going to call. An example might look like <code>'_Z13returnPointerPKfPy'</code>.</td>
</tr>
<tr>
<td>MaxNumLHSArguments</td>
<td>(read-only) The maximum number of left hand side arguments that this kernel supports. It cannot be greater than the number of right hand side arguments, and if any inputs are constant or scalar it will be less.</td>
</tr>
<tr>
<td>NumRHSArguments</td>
<td>(read-only) The required number of right hand side arguments needed to call this kernel. All inputs need to define either the scalar value of an input, the elements for a vector input/output, or the size of an output argument.</td>
</tr>
<tr>
<td>ArgumentTypes</td>
<td>(read-only) Cell array of strings, the same length as <code>NumRHSArguments</code>. Each of the strings indicates what the expected MATLAB type for that input is (a numeric type such as <code>uint8</code>, <code>single</code>, or <code>double</code> followed by the word <code>scalar</code> or <code>vector</code> to indicate if we are passing by reference or value). In addition, if that argument is only an input to the kernel, it is prefixed by <code>in</code>; and if it is an input/output, it is prefixed by <code>inout</code>. This allows you to decide how to efficiently call the kernel with both MATLAB arrays and <code>gpuArray</code>, and to see which of the kernel inputs are being treated as outputs.</td>
</tr>
</tbody>
</table>
See Also

gpuArray, GPUDevice
distributed

Access elements of distributed arrays from client

Constructor

distributed

You can also create a distributed array explicitly from the client with any of several overloaded MATLAB functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Distributed Array</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>eye(___,'distributed')</code></td>
<td><code>rand(___,'distributed')</code></td>
</tr>
<tr>
<td><code>false(___,'distributed')</code></td>
<td><code>randi(___,'distributed')</code></td>
</tr>
<tr>
<td><code>Inf(___,'distributed')</code></td>
<td><code>randn(___,'distributed')</code></td>
</tr>
<tr>
<td><code>NaN(___,'distributed')</code></td>
<td><code>distributed.cell</code></td>
</tr>
<tr>
<td><code>ones(___,'distributed')</code></td>
<td><code>distributed.spalloc</code></td>
</tr>
<tr>
<td><code>true(___,'distributed')</code></td>
<td><code>distributed.speye</code></td>
</tr>
<tr>
<td><code>zeros(___,'distributed')</code></td>
<td><code>distributed.sprand</code></td>
</tr>
<tr>
<td></td>
<td><code>distributed.sprandn</code></td>
</tr>
</tbody>
</table>

Description

Distributed arrays represent those arrays which are partitioned out among the workers in a parallel pool. A distributed array resembles a normal MATLAB array in the way you index and manipulate its elements, but none of its elements exists on the client.

Codistributed arrays that you create inside `spmd` statements are accessible as distributed arrays from the client.

Use the `gather` function to retrieve distributed arrays into the client work space.
Methods

The overloaded methods for distributed arrays are too numerous to list here. Most resemble and behave the same as built-in MATLAB functions. See “MATLAB Functions on Distributed and Codistributed Arrays” on page 5-24.

Also among the methods are several for examining the characteristics of the array itself. Most behave like the MATLAB functions of the same name:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>classUnderlying</td>
<td>Class (data type) of the elements in the array</td>
</tr>
<tr>
<td>isdistributed</td>
<td>Indication if array is distributed</td>
</tr>
<tr>
<td>isreal</td>
<td>Indication if array elements are real</td>
</tr>
<tr>
<td>length</td>
<td>Length of vector or largest array dimension</td>
</tr>
<tr>
<td>ndims</td>
<td>Number of dimensions in the array</td>
</tr>
<tr>
<td>size</td>
<td>Size of array dimensions</td>
</tr>
</tbody>
</table>
gpuArray

Array stored on GPU

Constructor

gpuArray converts an array in the MATLAB workspace into a gpuArray with elements stored on the GPU device.

Also, the following create gpuArrays:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>eye(___,'gpuArray')</code></td>
<td></td>
</tr>
<tr>
<td><code>false(___,'gpuArray')</code></td>
<td></td>
</tr>
<tr>
<td><code>Inf(___,'gpuArray')</code></td>
<td></td>
</tr>
<tr>
<td><code>NaN(___,'gpuArray')</code></td>
<td></td>
</tr>
<tr>
<td><code>ones(___,'gpuArray')</code></td>
<td></td>
</tr>
<tr>
<td><code>true(___,'gpuArray')</code></td>
<td></td>
</tr>
<tr>
<td><code>zeros(___,'gpuArray')</code></td>
<td></td>
</tr>
<tr>
<td><code>rand(___,'gpuArray')</code></td>
<td></td>
</tr>
<tr>
<td><code>randi(___,'gpuArray')</code></td>
<td></td>
</tr>
<tr>
<td><code>randn(___,'gpuArray')</code></td>
<td></td>
</tr>
<tr>
<td><code>gpuArray.colon</code></td>
<td></td>
</tr>
<tr>
<td><code>gpuArray.freqspace</code></td>
<td></td>
</tr>
<tr>
<td><code>gpuArray.linspace</code></td>
<td></td>
</tr>
<tr>
<td><code>gpuArray.speye</code></td>
<td></td>
</tr>
</tbody>
</table>

For class specific help on the three methods with the `gpuArray` prefix, type

```
help gpuArray.methodname
```

where `methodname` is the name of the method. For example, to get help on `colon`, type

```
help gpuArray.colon
```

The following methods control the random number stream on the GPU:

```
parallel.gpu.RandStream
parallel.gpu.rng
```
Description

A gpuArray object represents an array stored on the GPU. You can use the array for direct calculations, or in CUDA kernels that execute on the GPU. You can return the array to the MATLAB workspace with the gather function.

Methods

Other overloaded methods for a gpuArray object are too numerous to list here. Most resemble and behave the same as built-in MATLAB functions. See “Run Built-In Functions on a GPU” on page 9-8.

Among the gpuArray methods there are several for examining the characteristics of a gpuArray object. Most behave like the MATLAB functions of the same name:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>classUnderlying</td>
<td>Class (data type) of the elements in the array</td>
</tr>
<tr>
<td>existsOnGPU</td>
<td>Indication if array exists on the GPU and is accessible</td>
</tr>
<tr>
<td>isreal</td>
<td>Indication if array elements are real</td>
</tr>
<tr>
<td>length</td>
<td>Length of vector or largest array dimension</td>
</tr>
<tr>
<td>ndims</td>
<td>Number of dimensions in the array</td>
</tr>
<tr>
<td>size</td>
<td>Size of array dimensions</td>
</tr>
</tbody>
</table>

See Also

CUDAKernel, GPUDevice
GPUDevice

Graphics processing unit (GPU)

Constructor

gpuDevice

Description

A GPUDevice object represents a graphic processing unit (GPU) in your computer. You can use the GPU to execute CUDA kernels or MATLAB code.

Methods

The following functions let you identify, select, reset, or wait for a GPU device:

Methods of the class include the following:

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel.gpu.GPUDevice.isAvailable(idx)</td>
<td>True if the GPU specified by index idx is supported and capable of being selected. idx can be an integer or a vector of integers; the default index is the current device.</td>
</tr>
<tr>
<td>parallel.gpu.GPUDevice.getDevice(idx)</td>
<td>Returns a GPUDevice object without selecting it.</td>
</tr>
</tbody>
</table>

For the complete list, use the methods function on the GPUDevice class:

methods('parallel.gpu.GPUDevice')

You can get help on any of the class methods with the command

help parallel.gpu.GPUDevice.methodname
where `methodname` is the name of the method. For example, to get help on `isAvailable`, type

```
help parallel.gpu.GPUDevice.isAvailable
```

Properties

A `GPUDevice` object has the following read-only properties:

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the CUDA device.</td>
</tr>
<tr>
<td>Index</td>
<td>Index by which you can select the device.</td>
</tr>
<tr>
<td>ComputeCapability</td>
<td>Computational capability of the CUDA device. Must meet required specification.</td>
</tr>
<tr>
<td>SupportsDouble</td>
<td>Indicates if this device can support double precision operations.</td>
</tr>
<tr>
<td>DriverVersion</td>
<td>The CUDA device driver version currently in use. Must meet required specification.</td>
</tr>
<tr>
<td>ToolkitVersion</td>
<td>Version of the CUDA toolkit used by the current release of MATLAB.</td>
</tr>
<tr>
<td>MaxThreadsPerBlock</td>
<td>Maximum supported number of threads per block during CUDAKernel execution.</td>
</tr>
<tr>
<td>MaxShmemPerBlock</td>
<td>Maximum supported amount of shared memory that can be used by a thread block during CUDAKernel execution.</td>
</tr>
<tr>
<td>MaxThreadBlockSize</td>
<td>Maximum size in each dimension for thread block. Each dimension of a thread block must not exceed these dimensions. Also, the product of the thread block size must not exceed <code>MaxThreadsPerBlock</code>.</td>
</tr>
<tr>
<td>MaxGridSize</td>
<td>Maximum size of grid of thread blocks.</td>
</tr>
<tr>
<td>SIMDWidth</td>
<td>Number of simultaneously executing threads.</td>
</tr>
<tr>
<td>TotalMemory</td>
<td>Total memory (in bytes) on the device.</td>
</tr>
<tr>
<td>AvailableMemory</td>
<td>Total amount of memory (in bytes) available for data. This property is available only for the currently selected device.</td>
</tr>
<tr>
<td>MultiprocessorCount</td>
<td>The number of vector processors present on the device.</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ClockRateKHz</td>
<td>Peak clock rate of the GPU in kHz.</td>
</tr>
<tr>
<td>ComputeMode</td>
<td>The compute mode of the device, according to the following values: 'Default' — The device is not restricted and can be used by multiple applications simultaneously. MATLAB can share the device with other applications, including other MATLAB sessions or workers. 'Exclusive thread' or 'Exclusive process' — The device can be used by only one application at a time. While the device is selected in MATLAB, it cannot be used by other applications, including other MATLAB sessions or workers. 'Prohibited' — The device cannot be used.</td>
</tr>
<tr>
<td>GPUOverlapsTransfers</td>
<td>Indicates if the device supports overlapped transfers.</td>
</tr>
<tr>
<td>KernelExecutionTimeout</td>
<td>Indicates if the device can abort long-running kernels. If_true_, the operating system places an upper bound on the time allowed for the CUDA kernel to execute, after which the CUDA driver times out the kernel and returns an error.</td>
</tr>
<tr>
<td>CanMapHostMemory</td>
<td>Indicates if the device supports mapping host memory into the CUDA address space.</td>
</tr>
<tr>
<td>DeviceSupported</td>
<td>Indicates if toolbox can use this device. Not all devices are supported; for example, if their ComputeCapability is insufficient, the toolbox cannot use them.</td>
</tr>
<tr>
<td>DeviceSelected</td>
<td>Indicates if this is the currently selected device.</td>
</tr>
</tbody>
</table>

See Also

CUDAKernel, gpuArray
mxGPUArray

Type for MATLAB gpuArray

Description

mxGPUArray is an opaque C language type that allows a MEX function access to the elements in a MATLAB gpuArray. Using the mxGPU API, you can perform calculations on a MATLAB gpuArray, and return gpuArray results to MATLAB.

All MEX functions receive inputs and pass outputs as mxArrays. A gpuArray in MATLAB is a special kind of mxArray that represents an array stored on the GPU. In your MEX function, you use mxGPUArray objects to access an array stored on the GPU: these objects correspond to MATLAB gpuArrays.

The mxGPU API contains functions that manipulate mxGPUArray objects. These functions allow you to extract mxGPUArrays from input mxArrays, to wrap output mxGPUArrays as mxArrays for return to MATLAB, to determine the characteristics of the arrays, and to get pointers to the underlying elements. You can perform calculations by passing the pointers to CUDA functions that you write or that are available in external libraries.

The basic structure of a GPU MEX function is:

1. Call mxInitGPU to initialize MathWorks GPU library.
2. Determine which mxArray inputs contain GPU data.
3. Create mxGPUArray objects from the input mxArray arguments, and get pointers to the input elements on the device.
4. Create mxGPUArray objects to hold the outputs, and get the pointers to the output elements on the device.
5. Call a CUDA function, passing it the device pointers.
6. Wrap the output mxGPUArray as an mxArray for return to MATLAB.
7. Destroy the mxGPUArray objects you created.

The header file that contains this type is mxGPUArray.h. You include it with the line:

#include "gpu/mxGPUArray.h"
See Also

gpuArray, mxArray
parallel.Cluster

Access cluster properties and behaviors

Constructors

parcluster

getCurrentCluster (in the workspace of the MATLAB worker)

Container Hierarchy

Parent None
Children parallel.Job, parallel.Pool

Description

A parallel.Cluster object provides access to a cluster, which controls the job queue, and distributes tasks to workers for execution.

Types

The two categories of clusters are the MATLAB job scheduler (MJS) and common job scheduler (CJS). The MJS is available in the MATLAB Distributed Computer Server. The CJS clusters encompass all other types, including the local, generic, and third-party schedulers.

The following table describes the available types of cluster objects.

<table>
<thead>
<tr>
<th>Cluster Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel.cluster.MJS</td>
<td>Interact with MATLAB job scheduler (MJS) cluster on-premises</td>
</tr>
<tr>
<td>parallel.cluster.Local</td>
<td>Interact with CJS cluster running locally on client machine</td>
</tr>
<tr>
<td>Cluster Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>parallel.cluster.HPCServer</td>
<td>Interact with CJS cluster running Windows Microsoft HPC Server</td>
</tr>
<tr>
<td>parallel.cluster.LSF</td>
<td>Interact with CJS cluster running Platform LSF</td>
</tr>
<tr>
<td>parallel.cluster.PBSPro</td>
<td>Interact with CJS cluster running Altair PBS Pro</td>
</tr>
<tr>
<td>parallel.cluster.Torque</td>
<td>Interact with CJS cluster running TORQUE</td>
</tr>
<tr>
<td>parallel.cluster.Generic</td>
<td>Interact with CJS cluster using the generic interface</td>
</tr>
</tbody>
</table>

Methods

Common to All Cluster Types

MJS

HPC Server, PBS Pro, LSF, TORQUE, and Local Clusters

Generic

Properties

Common to All Cluster Types

The following properties are common to all cluster object types.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterMatlabRoot</td>
<td>Specifies path to MATLAB for workers to use</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Host</td>
<td>Host name of the cluster head node</td>
</tr>
<tr>
<td>JobStorageLocation</td>
<td>Location where cluster stores job and task information</td>
</tr>
<tr>
<td>Jobs</td>
<td>List of jobs contained in this cluster</td>
</tr>
<tr>
<td>Modified</td>
<td>True if any properties in this cluster have been modified</td>
</tr>
<tr>
<td>NumWorkers</td>
<td>Number of workers available for this cluster</td>
</tr>
<tr>
<td>OperatingSystem</td>
<td>Operating system of nodes used by cluster</td>
</tr>
<tr>
<td>Profile</td>
<td>Profile used to build this cluster</td>
</tr>
<tr>
<td>Type</td>
<td>Type of this cluster</td>
</tr>
<tr>
<td>UserData</td>
<td>Information associated with cluster object within client session</td>
</tr>
</tbody>
</table>

MJS

MJS cluster objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AllHostAddresses</td>
<td>IP addresses of the cluster host</td>
</tr>
<tr>
<td>BusyWorkers</td>
<td>Workers currently running tasks</td>
</tr>
<tr>
<td>IdleWorkers</td>
<td>Workers currently available for running tasks</td>
</tr>
<tr>
<td>HasSecureCommunication</td>
<td>True if cluster is using secure communication</td>
</tr>
<tr>
<td>Name</td>
<td>Name of this cluster</td>
</tr>
<tr>
<td>NumBusyWorkers</td>
<td>Number of workers currently running tasks</td>
</tr>
<tr>
<td>NumIdleWorkers</td>
<td>Number of workers available for running tasks</td>
</tr>
<tr>
<td>PromptForPassword</td>
<td>True if system should prompt for password when authenticating user</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>SecurityLevel</td>
<td>Degree of security applied to cluster and its jobs. For descriptions of security levels, see “Set MJS Cluster Security”.</td>
</tr>
<tr>
<td>State</td>
<td>Current state of cluster</td>
</tr>
<tr>
<td>Username</td>
<td>User accessing cluster</td>
</tr>
</tbody>
</table>

Local

Local cluster objects have no editable properties beyond the properties common to all clusters.

HPC Server

HPC Server cluster objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterVersion</td>
<td>Version of Microsoft Windows HPC Server running on the cluster</td>
</tr>
<tr>
<td>JobDescriptionFile</td>
<td>Name of XML job description file to use when creating jobs</td>
</tr>
<tr>
<td>JobTemplate</td>
<td>Name of job template to use for jobs submitted to HPC Server</td>
</tr>
<tr>
<td>HasSharedFilesystem</td>
<td>Specify whether client and cluster nodes share JobStorageLocation</td>
</tr>
<tr>
<td>UseSOAJobSubmission</td>
<td>Allow service-oriented architecture (SOA) submission on HPC Server</td>
</tr>
</tbody>
</table>

PBS Pro and TORQUE

PBS Pro and TORQUE cluster objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommunicatingJobWrapper</td>
<td>Script that cluster runs to start workers</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>RcpCommand</td>
<td>Command to copy files to and from client</td>
</tr>
<tr>
<td>ResourceTemplate</td>
<td>Define resources to request for communicating jobs</td>
</tr>
<tr>
<td>RshCommand</td>
<td>Remote execution command used on worker nodes during communicating job</td>
</tr>
<tr>
<td>HasSharedFilesystem</td>
<td>Specify whether client and cluster nodes share JobStorageLocation</td>
</tr>
<tr>
<td>SubmitArguments</td>
<td>Specify additional arguments to use when submitting jobs</td>
</tr>
</tbody>
</table>

LSF

LSF cluster objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterName</td>
<td>Name of Platform LSF cluster</td>
</tr>
<tr>
<td>CommunicatingJobWrapper</td>
<td>Script cluster runs to start workers</td>
</tr>
<tr>
<td>HasSharedFilesystem</td>
<td>Specify whether client and cluster nodes share JobStorageLocation</td>
</tr>
<tr>
<td>SubmitArguments</td>
<td>Specify additional arguments to use when submitting jobs</td>
</tr>
</tbody>
</table>

Generic

Generic cluster objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CancelJobFcn</td>
<td>Function to run when cancelling job</td>
</tr>
<tr>
<td>CancelTaskFcn</td>
<td>Function to run when cancelling task</td>
</tr>
<tr>
<td>CommunicatingSubmitFcn</td>
<td>Function to run when submitting communicating job</td>
</tr>
<tr>
<td>DeleteJobFcn</td>
<td>Function to run when deleting job</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>DeleteTaskFcn</td>
<td>Function to run when deleting task</td>
</tr>
<tr>
<td>GetJobStateFcn</td>
<td>Function to run when querying job state</td>
</tr>
<tr>
<td>IndependentSubmitFcn</td>
<td>Function to run when submitting independent job</td>
</tr>
<tr>
<td>HasSharedFilesystem</td>
<td>Specify whether client and cluster nodes share JobStorageLocation</td>
</tr>
</tbody>
</table>

Help

For further help on cluster objects, including links to help for specific cluster types and object properties, type:

```matlab
help parallel.Cluster
```

See Also

```
```
parallel.cluster.Hadoop

Hadoop cluster for mapreduce

Constructors

`parallel.cluster.Hadoop`

Description

A `parallel.cluster.Hadoop` object provides access to a cluster for configuring mapreduce to use a Hadoop cluster for the computation environment.

Properties

A `parallel.cluster.Hadoop` object has the following properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>AdditionalPaths</code></td>
<td>Paths to be added to MATLAB command search path on workers</td>
</tr>
<tr>
<td><code>AttachedFiles</code></td>
<td>Files transferred to the workers during a <code>mapreduce</code> call</td>
</tr>
<tr>
<td><code>AutoAttachFiles</code></td>
<td>Specifies whether automatically attach files</td>
</tr>
<tr>
<td><code>ClusterMatlabRoot</code></td>
<td>Specifies path to MATLAB for workers to use</td>
</tr>
<tr>
<td><code>HadoopConfigurationFile</code></td>
<td>Application configuration file to be given to Hadoop</td>
</tr>
<tr>
<td><code>HadoopInstallFolder</code></td>
<td>Installation location of Hadoop on the local machine</td>
</tr>
<tr>
<td><code>HadoopProperties</code></td>
<td>Map of name-value property pairs to be given to Hadoop</td>
</tr>
<tr>
<td><code>LicenseNumber</code></td>
<td>License number to use with MathWorks hosted licensing</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RequiresMathWorksHostedLicensing</td>
<td>Specify whether cluster uses MathWorks hosted licensing</td>
</tr>
</tbody>
</table>

Help

For further help, type:

```
help parallel.cluster.Hadoop
```

See Also

`parallel.Cluster`, `parallel.Pool`

Related Examples

- “Run mapreduce on a Hadoop Cluster” on page 6-61
parallel.Future

Request function execution on parallel pool workers

Constructors

parfeval, parfevalOnAll

Container Hierarchy

Parent parallel.Pool.FevalQueue

Types

The following table describes the available types of future objects.

<table>
<thead>
<tr>
<th>Future Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel.FevalFuture</td>
<td>Single parfeval future instance</td>
</tr>
<tr>
<td>parallel.FevalOnAllFuture</td>
<td>parfevalOnAll future instance</td>
</tr>
</tbody>
</table>

Description

A parallel.FevalFuture represents a single instance of a function to be executed on a worker in a parallel pool. It is created when you call the parfeval function. To create multiple FevalFutures, call parfeval multiple times; for example, you can create a vector of FevalFutures in a for-loop.

An FevalOnAllFuture represents a function to be executed on every worker in a parallel pool. It is created when you call the parfevalOnAll function.

Methods

Future objects have the following methods. Note that some exist only for parallel.FevalFuture objects, not parallel.FevalOnAllFuture objects.
Method

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cancel</td>
<td>Cancel queued or running future</td>
</tr>
<tr>
<td>fetchNext</td>
<td>Retrieve next available unread future outputs (FevalFuture only)</td>
</tr>
<tr>
<td>fetchOutputs</td>
<td>Retrieve all outputs of future</td>
</tr>
<tr>
<td>isequal</td>
<td>True if futures have same ID (FevalFuture only)</td>
</tr>
<tr>
<td>wait</td>
<td>Wait for futures to complete</td>
</tr>
</tbody>
</table>

Properties

Future objects have the following properties. Note that some exist only for parallel.FevalFuture objects, not parallel.FevalOnAllFuture objects.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diary</td>
<td>Text produced by execution of function</td>
</tr>
<tr>
<td>Error</td>
<td>Error information</td>
</tr>
<tr>
<td>Function</td>
<td>Function to evaluate</td>
</tr>
<tr>
<td>ID</td>
<td>Numeric identifier for this future</td>
</tr>
<tr>
<td>InputArguments</td>
<td>Input arguments to function</td>
</tr>
<tr>
<td>NumOutputArguments</td>
<td>Number of arguments returned by function</td>
</tr>
<tr>
<td>OutputArguments</td>
<td>Output arguments from running function</td>
</tr>
<tr>
<td>Parent</td>
<td>FevalQueue containing this future</td>
</tr>
<tr>
<td>Read</td>
<td>Indication if outputs have been read by fetchNext or fetchOutputs (FevalFuture only)</td>
</tr>
<tr>
<td>State</td>
<td>Current state of future</td>
</tr>
</tbody>
</table>

Help

To get further help on either type of parallel.Future object, including a list of links to help for its properties, type:
help parallel.FevalFuture
help parallel.FevalOnAllFuture

See Also

parallel.Pool
parallel.Job

Access job properties and behaviors

Constructors

`createCommunicatingJob`, `createJob`, `findJob`, `recreate`

`getCurrentJob` (in the workspace of the MATLAB worker)

Container Hierarchy

Parent: `parallel.Cluster`
Children: `parallel.Task`

Description

A `parallel.Job` object provides access to a job, which you create, define, and submit for execution.

Types

The following table describes the available types of job objects. The job type is determined by the type of cluster, and whether the tasks must communicate with each other during execution.

<table>
<thead>
<tr>
<th>Job Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>parallel.job.MJSIndependentJob</code></td>
<td>Job of independent tasks on MJS cluster</td>
</tr>
<tr>
<td><code>parallel.job.MJSCommunicatingJob</code></td>
<td>Job of communicating tasks on MJS cluster</td>
</tr>
<tr>
<td><code>parallel.job.CJSIndependentJob</code></td>
<td>Job of independent tasks on CJS cluster</td>
</tr>
<tr>
<td><code>parallel.job.CJSCommunicatingJob</code></td>
<td>Job of communicating tasks on CJS cluster</td>
</tr>
</tbody>
</table>
Methods

All job type objects have the same methods, described in the following table.

Properties

Common to All Job Types

The following properties are common to all job object types.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdditionalPaths</td>
<td>Folders to add to MATLAB search path of workers</td>
</tr>
<tr>
<td>AttachedFiles</td>
<td>Files and folders that are sent to workers</td>
</tr>
<tr>
<td>AutoAttachFiles</td>
<td>Specifies if dependent code files are automatically sent to workers</td>
</tr>
<tr>
<td>CreateTime</td>
<td>Time at which job was created</td>
</tr>
<tr>
<td>FinishTime</td>
<td>Time at which job finished running</td>
</tr>
<tr>
<td>ID</td>
<td>Job’s numeric identifier</td>
</tr>
<tr>
<td>JobData</td>
<td>Information made available to all workers for job’s tasks</td>
</tr>
<tr>
<td>Name</td>
<td>Name of job</td>
</tr>
<tr>
<td>Parent</td>
<td>Cluster object containing this job</td>
</tr>
<tr>
<td>StartTime</td>
<td>Time at which job started running</td>
</tr>
<tr>
<td>State</td>
<td>State of job: 'pending', 'queued', 'running', 'finished', or 'failed'</td>
</tr>
<tr>
<td>SubmitTime</td>
<td>Time at which job was submitted to queue</td>
</tr>
<tr>
<td>Tag</td>
<td>Label associated with job</td>
</tr>
<tr>
<td>Tasks</td>
<td>Array of task objects contained in job</td>
</tr>
<tr>
<td>Type</td>
<td>Job type: 'independent', 'pool', or 'spmd'</td>
</tr>
</tbody>
</table>
Objects — Alphabetical List

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserData</td>
<td>Information associated with job object</td>
</tr>
<tr>
<td>Username</td>
<td>Name of user who owns job</td>
</tr>
</tbody>
</table>

MJS Jobs

MJS independent job objects and MJS communicating job objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuthorizedUsers</td>
<td>Users authorized to access job</td>
</tr>
<tr>
<td>FinishedFcn</td>
<td>Callback function executed on client when this job finishes</td>
</tr>
<tr>
<td>NumWorkersRange</td>
<td>Minimum and maximum limits for number of workers to run job</td>
</tr>
<tr>
<td>QueuedFcn</td>
<td>Callback function executed on client when this job is submitted to queue</td>
</tr>
<tr>
<td>RestartWorker</td>
<td>True if workers are restarted before evaluating first task for this job</td>
</tr>
<tr>
<td>RunningFcn</td>
<td>Callback function executed on client when this job starts running</td>
</tr>
<tr>
<td>Timeout</td>
<td>Time limit, in seconds, to complete job</td>
</tr>
</tbody>
</table>

CJS Jobs

CJS independent job objects do not have any properties beyond the properties common to all job types.

CJS communicating job objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumWorkersRange</td>
<td>Minimum and maximum limits for number of workers to run job</td>
</tr>
</tbody>
</table>
Help

To get further help on a particular type of parallel.Job object, including a list of links to help for its properties, type `help parallel.job.<job-type>`. For example:

`help parallel.job.MJSIndependentJob`

See Also

`parallel.Cluster, parallel.Task, parallel.Worker`
parallel.Pool

Access parallel pool

Constructors

parpool, gcp

Description

A parallel.Pool object provides access to a parallel pool running on a cluster.

Methods

A parallel pool object has the following methods.

Properties

A parallel pool object has the following properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AttachedFiles</td>
<td>Files and folders that are sent to workers</td>
</tr>
<tr>
<td>Cluster</td>
<td>Cluster on which the parallel pool is running</td>
</tr>
<tr>
<td>Connected</td>
<td>False if the parallel pool has shut down</td>
</tr>
<tr>
<td>FevalQueue</td>
<td>Queue of FevalFutures to run on the parallel pool</td>
</tr>
<tr>
<td>IdleTimeout</td>
<td>Time duration in minutes before idle parallel pool will shut down</td>
</tr>
<tr>
<td>NumWorkers</td>
<td>Number of workers comprising the parallel pool</td>
</tr>
<tr>
<td>SpmdEnabled</td>
<td>Indication if pool can run SPMD code</td>
</tr>
</tbody>
</table>
Help

To get further help on parallel.Pool objects, including a list of links to help for specific properties, type:

help parallel.Pool

See Also

parallel.Cluster, parallel.Future

Tutorials

• “Parallel Pools” on page 2-45
parallel.Task

Access task properties and behaviors

Constructors

`createTask`, `findTask`

`getCurrentTask` (in the workspace of the MATLAB worker)

Container Hierarchy

Parent: `parallel.Job`

Children: none

Description

A `parallel.Task` object provides access to a task, which executes on a worker as part of a job.

Types

The following table describes the available types of task objects, determined by the type of cluster.

<table>
<thead>
<tr>
<th>Task Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>parallel.task.MJSTask</code></td>
<td>Task on MJS cluster</td>
</tr>
<tr>
<td><code>parallel.task.CJSTask</code></td>
<td>Task on CJS cluster</td>
</tr>
</tbody>
</table>

Methods

All task type objects have the same methods, described in the following table.
Properties

Common to All Task Types

The following properties are common to all task object types.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaptureDiary</td>
<td>Specify whether to return diary output</td>
</tr>
<tr>
<td>CreateTime</td>
<td>When task was created</td>
</tr>
<tr>
<td>Diary</td>
<td>Text produced by execution of task object’s function</td>
</tr>
<tr>
<td>Error</td>
<td>Task error information</td>
</tr>
<tr>
<td>ErrorIdentifier</td>
<td>Task error identifier</td>
</tr>
<tr>
<td>ErrorMessage</td>
<td>Message from task error</td>
</tr>
<tr>
<td>FinishTime</td>
<td>When task finished running</td>
</tr>
<tr>
<td>Function</td>
<td>Function called when evaluating task</td>
</tr>
<tr>
<td>ID</td>
<td>Task's numeric identifier</td>
</tr>
<tr>
<td>InputArguments</td>
<td>Input arguments to task function</td>
</tr>
<tr>
<td>Name</td>
<td>Name of this task</td>
</tr>
<tr>
<td>NumOutputArguments</td>
<td>Number of arguments returned by task function</td>
</tr>
<tr>
<td>OutputArguments</td>
<td>Output arguments from running task function on worker</td>
</tr>
<tr>
<td>Parent</td>
<td>Job object containing this task</td>
</tr>
<tr>
<td>StartTime</td>
<td>When task started running</td>
</tr>
<tr>
<td>State</td>
<td>Current state of task</td>
</tr>
<tr>
<td>UserData</td>
<td>Information associated with this task object</td>
</tr>
<tr>
<td>Warnings</td>
<td>Warning information issued during execution of the task, captured in a struct array with the fields message, identifier, and stack</td>
</tr>
</tbody>
</table>
Objects — Alphabetical List

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker</td>
<td>Object representing worker that ran this task</td>
</tr>
</tbody>
</table>

MJS Tasks

MJS task objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FailureInfo</td>
<td>Information returned from failed task</td>
</tr>
<tr>
<td>FinishedFcn</td>
<td>Callback executed in client when task finishes</td>
</tr>
<tr>
<td>MaximumRetries</td>
<td>Maximum number of times to rerun failed task</td>
</tr>
<tr>
<td>NumFailures</td>
<td>Number of times tasked failed</td>
</tr>
<tr>
<td>RunningFcn</td>
<td>Callback executed in client when task starts running</td>
</tr>
<tr>
<td>Timeout</td>
<td>Time limit, in seconds, to complete task</td>
</tr>
</tbody>
</table>

CJS Tasks

CJS task objects have no properties beyond the properties common to all clusters.

Help

To get further help on either type of parallel.Task object, including a list of links to help for its properties, type:

```matlab
help parallel.task.MJSTask
help parallel.task.CJSTask
```

See Also

parallel.Worker

Access worker that ran task

Constructors

getCurrentWorker in the workspace of the MATLAB worker.

In the client workspace, a parallel.Worker object is available from the Worker property of a parallel.Task object.

Container Hierarchy

<table>
<thead>
<tr>
<th>Parent</th>
<th>parallel.cluster.MJS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
<td>none</td>
</tr>
</tbody>
</table>

Description

A parallel.Worker object provides access to the MATLAB worker session that executed a task as part of a job.

Types

<table>
<thead>
<tr>
<th>Worker Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel.cluster.MJSWorker</td>
<td>MATLAB worker on MJS cluster</td>
</tr>
<tr>
<td>parallel.cluster.CJSWorker</td>
<td>MATLAB worker on CJS cluster</td>
</tr>
</tbody>
</table>

Methods

There are no methods for a parallel.Worker object other than generic methods for any objects in the workspace, such as delete, etc.
Properties

MJS Worker

The following table describes the properties of an MJS worker.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AllHostAddresses</td>
<td>IP addresses of worker host</td>
</tr>
<tr>
<td>Name</td>
<td>Name of worker, set when worker session started</td>
</tr>
<tr>
<td>Parent</td>
<td>MJS cluster to which this worker belongs</td>
</tr>
</tbody>
</table>

CJS Worker

The following table describes the properties of an CJS worker.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComputerType</td>
<td>Type of computer on which worker ran; the value of the MATLAB function (\text{computer}) executed on the worker</td>
</tr>
<tr>
<td>Host</td>
<td>Host name where worker executed task</td>
</tr>
<tr>
<td>ProcessId</td>
<td>Process identifier for worker</td>
</tr>
</tbody>
</table>

Help

To get further help on either type of parallel.Worker object, including a list of links to help for its properties, type:

```matlab
help parallel.cluster.MJSWorker
help parallel.cluster.CJSWorker
```

See Also

RemoteClusterAccess

Connect to schedulers when client utilities are not available locally

Constructor

\[
r = parallel.cluster.RemoteClusterAccess(username) \\
r = parallel.cluster.RemoteClusterAccess(username,P1,V1,...,Pn,Vn)
\]

Description

parallel.cluster.RemoteClusterAccess allows you to establish a connection and run commands on a remote host. This class is intended for use with the generic scheduler interface when using remote submission of jobs or on nonshared file systems.

\[
r = parallel.cluster.RemoteClusterAccess(username)
\]
uses the supplied username when connecting to the remote host, and returns a RemoteClusterAccess object \(r \). You will be prompted for a password when establishing the connection.

\[
r = parallel.cluster.RemoteClusterAccess(username,P1,V1,...,Pn,Vn)
\]
allows additional parameter-value pairs that modify the behavior of the connection. The accepted parameters are:

- 'IdentityFilename' — A string containing the full path to the identity file to use when connecting to a remote host. If 'IdentityFilename' is not specified, you are prompted for a password when establishing the connection.
- 'IdentityFileHasPassphrase' — A logical indicating whether or not the identity file requires a passphrase. If true, you are prompted for a password when establishing a connection. If an identity file is not supplied, this property is ignored. This value is false by default.

For more information and detailed examples, see the integration scripts provided in \texttt{matlabroot/toolbox/distcomp/examples/integration}. For example, the scripts for PBS in a nonshared file system are in \texttt{matlabroot/toolbox/distcomp/examples/integration/pbs/nonshared}.
Methods

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connect</td>
<td>connect(r,clusterHost) establishes a connection to the specified host using the user credential options supplied in the constructor. File mirroring is not supported.</td>
</tr>
<tr>
<td></td>
<td>connect(r,clusterHost,remoteDataLocation) establishes a connection to the specified host using the user credential options supplied in the constructor. remoteDataLocation identifies a folder on the clusterHost that is used for file mirroring. The user credentials supplied in the constructor must have write access to this folder.</td>
</tr>
<tr>
<td>disconnect</td>
<td>disconnect(r) disconnects the existing remote connection. The connect method must have already been called.</td>
</tr>
<tr>
<td>doLastMirrorForJob</td>
<td>doLastMirrorForJob(r,job) performs a final copy of changed files from the remote DataLocation to the local DataLocation for the supplied job. Any running mirrors for the job also stop and the job files are removed from the remote DataLocation. The startMirrorForJob or resumeMirrorForJob method must have already been called.</td>
</tr>
<tr>
<td>getRemoteJobLocation</td>
<td>getRemoteJobLocation(r,jobID,remoteOS) returns the full path to the remote job location for the supplied jobID. Valid values for remoteOS are 'pc' and 'unix'.</td>
</tr>
<tr>
<td>isJobUsingConnection</td>
<td>isJobUsingConnection(r,jobID) returns true if the job is currently being mirrored.</td>
</tr>
<tr>
<td>resumeMirrorForJob</td>
<td>resumeMirrorForJob(r,job) resumes the mirroring of files from the remote DataLocation to the local DataLocation for the supplied job. This is similar to the startMirrorForJob method, but does not first copy the files from the local DataLocation to the remote DataLocation. The connect method must have already been called. This is useful if the original client MATLAB session has ended, and you are accessing the same files from a new client session.</td>
</tr>
<tr>
<td>Method Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>runCommand</td>
<td>[status,result] = runCommand(r,command) runs the supplied command on the remote host and returns the resulting status and standard output. The connect method must have already been called.</td>
</tr>
<tr>
<td>startMirrorForJob</td>
<td>startMirrorForJob(r,job) copies all the job files from the local DataLocation to the remote DataLocation, and starts mirroring files so that any changes to the files in the remote DataLocation are copied back to the local DataLocation. The connect method must have already been called.</td>
</tr>
<tr>
<td>stopMirrorForJob</td>
<td>stopMirrorForJob(r,job) immediately stops the mirroring of files from the remote DataLocation to the local DataLocation for the specified job. The startMirrorForJob or resumeMirrorForJob method must have already been called. This cancels the running mirror and removes the files for the job from the remote location. This is similar to doLastMirrorForJob, except that stopMirrorForJob makes no attempt to ensure that the local job files are up to date. For normal mirror stoppage, use doLastMirrorForJob.</td>
</tr>
</tbody>
</table>

Properties

A RemoteClusterAccess object has the following read-only properties. Their values are set when you construct the object or call its connect method.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>Name of the remote host to access.</td>
</tr>
<tr>
<td>IdentityFileHasPassphrase</td>
<td>Indicates if the identity file requires a passphrase.</td>
</tr>
<tr>
<td>IdentityFilename</td>
<td>Full path to the identity file used when connecting to the remote host.</td>
</tr>
<tr>
<td>IsConnected</td>
<td>Indicates if there is an active connection to the remote host.</td>
</tr>
<tr>
<td>IsFileMirrorSupported</td>
<td>Indicates if file mirroring is supported for this connection. This is false if no remote DataLocation is supplied to the connect() method.</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>JobStorageLocation</td>
<td>Location on the remote host for files that are being mirrored.</td>
</tr>
<tr>
<td>UseIdentityFile</td>
<td>Indicates if an identity file should be used when connecting to the remote host.</td>
</tr>
<tr>
<td>Username</td>
<td>User name for connecting to the remote host.</td>
</tr>
</tbody>
</table>

Examples

Mirror files from the remote data location. Assume the object job represents a job on your generic scheduler.

```matlab
remoteConnection = parallel.cluster.RemoteClusterAccess('testname');
connect(remoteConnection,'headnode1','/tmp/filemirror');
startMirrorForJob(remoteConnection,job);
submit(job)
% Wait for the job to finish
wait(job);

% Ensure that all the local files are up to date, and remove the
% remote files
doLastMirrorForJob(remoteConnection,job);

% Get the output arguments for the job
results = fetchOutputs(job)
```

For more detailed examples, see the integration scripts provided in `matlabroot/toolbox/distcomp/examples/integration`. For example, the scripts for PBS in a nonshared file system are in

`matlabroot/toolbox/distcomp/examples/integration/pbs/nonshared`
Functions — Alphabetical List
addAttachedFiles

Attach files or folders to parallel pool

Syntax

addAttachedFiles(poolobj,files)

Description

addAttachedFiles(poolobj,files) adds extra attached files to the specified parallel pool. These files are transferred to each worker and are treated exactly the same as if they had been set at the time the pool was opened — specified by the parallel profile or the 'AttachedFiles' argument of the parpool function.

Examples

Add Attached Files to Current Parallel Pool

Add two attached files to the current parallel pool.

```matlab
poolobj = gcp;
addAttachedFiles(poolobj,{'myFun1.m','myFun2.m'})
```

Input Arguments

- **poolobj** — Pool to which files attach

 Pool object

 Pool to which files attach, specified as a pool object.

 Example: ```poolobj = gcp;```

- **files** — Files or folders to attach

 string | cell array

 Files or folders to attach.
Files or folders to attach, specified as a string or cell array of strings. Each string can specify either an absolute or relative path to a file or folder.

Example: {'myFun1.m', 'myFun2.m'}

More About

- “Create and Modify Cluster Profiles” on page 6-17

See Also
gcp | getAttachedFilesFolder | listAutoAttachedFiles | parpool | updateAttachedFiles

Introduced in R2013b
arrayfun

Apply function to each element of array on GPU

Syntax

A = arrayfun(FUN, B)
A = arrayfun(FUN,B,C,...)
[A,B,...] = arrayfun(FUN,C,...)

Description

This method of a gpuArray object is very similar in behavior to the MATLAB function
arrayfun, except that the actual evaluation of the function happens on the GPU, not on
the CPU. Thus, any required data not already on the GPU is moved to GPU memory, the
MATLAB function passed in for evaluation is compiled for the GPU, and then executed
on the GPU. All the output arguments return as gpuArray objects, whose data you can
retrieve with the gather method.

A = arrayfun(FUN, B) applies the function specified by FUN to each element of
the gpuArray B, and returns the results in gpuArray A. A is the same size as B, and
A(i,j,...) is equal to FUN(B(i,j,...)). FUN is a function handle to a function that
takes one input argument and returns a scalar value. FUN must return values of the
same class each time it is called. The input data must be an array of one of the following
types: numeric, logical, or gpuArray. The order in which arrayfun computes elements of
A is not specified and should not be relied on.

FUN must be a handle to a function that is written in the MATLAB language (i.e., not a
MEX-function).

For more detailed information, see “Run Element-wise MATLAB Code on GPU” on page
9-13. For the subset of the MATLAB language that is currently supported by arrayfun
on the GPU, see “Supported MATLAB Code” on page 9-15.

A = arrayfun(FUN,B,C,...) evaluates FUN using elements of arrays B, C, ... as
input arguments with singleton expansion enabled. The resulting gpuArray element
A(i,j,...) is equal to FUN(B(i,j,...),C(i,j,...),...). The inputs B, C, ... must
all have the same size or be scalar. Any scalar inputs are scalar expanded before being input to the function FUN.

One or more of the inputs B, C, ... must be a gpuArray; any of the others can reside in CPU memory. Each array that is held in CPU memory is converted to a gpuArray before calling the function on the GPU. If you plan to use an array in several different arrayfun calls, it is more efficient to convert that array to a gpuArray before making the series of calls to arrayfun.

\[[A, B, \ldots] = \text{arrayfun}(\text{FUN}, C, \ldots) \], where FUN is a function handle to a function that returns multiple outputs, returns gpuArrays A, B, ..., each corresponding to one of the output arguments of FUN. arrayfun calls FUN each time with as many outputs as there are in the call to arrayfun. FUN can return output arguments having different classes, but the class of each output must be the same each time FUN is called. This means that all elements of A must be the same class; B can be a different class from A, but all elements of B must be of the same class, etc.

Although the MATLAB arrayfun function allows you to specify optional parameter name/value pairs, the gpuArray arrayfun method does not support these options.

Tips

- The first time you call arrayfun to run a particular function on the GPU, there is some overhead time to set up the function for GPU execution. Subsequent calls of arrayfun with the same function can run significantly faster.

- Nonsingleton dimensions of input arrays must match each other. In other words, the corresponding dimensions of arguments B, C, etc., must be equal to each other, or equal to one. Whenever a dimension of an input array is singleton (equal to 1), arrayfun uses singleton expansion to virtually replicate the array along that dimension to match the largest of the other arrays in that dimension. In the case where a dimension of an input array is singleton and the corresponding dimension in another argument array is zero, arrayfun virtually diminishes the singleton dimension to 0.

 The size of the output array A is such that each dimension is the largest of the input arrays in that dimension for nonzero size, or zero otherwise. Notice in the following code how dimensions of size 1 are scaled up or down to match the size of the corresponding dimension in the other argument:

  ```
  R1 = rand(2,5,4,'gpuArray');
  ```
R2 = rand(2,1,4,3,'gpuArray');
R3 = rand(1,5,4,3,'gpuArray');
R = arrayfun(@(x,y,z)(x+y.*z),R1,R2,R3);
size(R)
 2 5 4 3
R1 = rand(2,2,0,4,'gpuArray');
R2 = rand(2,1,1,4,'gpuArray');
R = arrayfun(@plus,R1,R2);
size(R)
 2 2 0 4

• Because the operations supported by arrayfun are strictly element-wise, and each
 element’s computation is performed independently of the others, certain restrictions
 are imposed:
 • Input and output arrays cannot change shape or size.
 • Functions like rand do not support size specifications. Arrays of random numbers
 have independent streams for each element.

For more limitations and details, see “Tips and Restrictions” on page 9-17.

Examples

If you define a MATLAB function as follows:

 function [o1,o2] = aGpuFunction(a,b,c)
 o1 = a + b;
 o2 = o1 .* c + 2;

You can evaluate this on the GPU.

s1 = gpuArray(rand(400));
s2 = gpuArray(rand(400));
s3 = gpuArray(rand(400));
[o1,o2] = arrayfun(@aGpuFunction,s1,s2,s3);
whos

Name Size Bytes Class
o1 400x400 108 gpuArray
Use `gather` to retrieve the data from the GPU to the MATLAB workspace.

```matlab
d = gather(o2);
```

See Also

`bsxfun` | `gather` | `gpuArray` | `pagefun`
batch

Run MATLAB script or function on worker

Syntax

\[
\begin{align*}
\text{j} &= \text{batch('aScript')} \\
\text{j} &= \text{batch(myCluster,'aScript')} \\
\text{j} &= \text{batch(fcn,N,\{x1, \ldots, xn\})} \\
\text{j} &= \text{batch(myCluster,fcn,N,\{x1,\ldots,xn\})} \\
\text{j} &= \text{batch(...,'p1',v1,'p2',v2,...)}
\end{align*}
\]

Arguments

- \text{j} \quad \text{The batch job object.}
- \text{'aScript'} \quad \text{The script of MATLAB code to be evaluated by the worker.}
- \text{myCluster} \quad \text{Cluster object representing cluster compute resources.}
- \text{fcn} \quad \text{Function handle or string of function name to be evaluated by the worker.}
- \text{N} \quad \text{The number of output arguments from the evaluated function.}
- \text{\{x1, \ldots, xn\}} \quad \text{Cell array of input arguments to the function.}
- \text{p1,p2} \quad \text{Object properties or other arguments to control job behavior.}
- \text{v1,v2} \quad \text{Initial values for corresponding object properties or arguments.}

Description

\[
\begin{align*}
\text{j} &= \text{batch('aScript')} \text{ runs the script code of the file aScript.m on a worker in the} \\
&\quad \text{cluster specified by the default cluster profile. (Note: Do not include the .m file extension} \\
&\quad \text{with the script name argument.) The function returns j, a handle to the job object that} \\
&\quad \text{runs the script. The script file aScript.m is copied to the worker.}
\end{align*}
\]

\[
\begin{align*}
\text{j} &= \text{batch(myCluster,'aScript')} \text{ is identical to batch('aScript') except that} \\
&\quad \text{the script runs on a worker according to the cluster identified by the cluster object} \\
&\quad \text{myCluster.}
\end{align*}
\]
j = `batch(fcn,N,\{x1, ..., xn\})` runs the function specified by a function handle or function name, `fcn`, on a worker in the cluster identified by the default cluster profile. The function returns `j`, a handle to the job object that runs the function. The function is evaluated with the given arguments, `x1, ..., xn`, returning `N` output arguments. The function file for `fcn` is copied to the worker. (Do not include the `.m` file extension with the function name argument.)

j = `batch(myCluster,fcn,N,\{x1,...,xn\})` is identical to `batch(fcn,N,\{x1,...,xn\})` except that the function runs on a worker in the cluster identified by the cluster object `myCluster`.

j = `batch(...,'p1',v1,'p2',v2,...)` allows additional parameter-value pairs that modify the behavior of the job. These parameters support `batch` for functions and scripts, unless otherwise indicated. The supported parameters are:

- `'Workspace'` — A 1-by-1 struct to define the workspace on the worker just before the script is called. The field names of the struct define the names of the variables, and the field values are assigned to the workspace variables. By default this parameter has a field for every variable in the current workspace where `batch` is executed. This parameter supports only the running of scripts.
- `'Profile'` — A single string that is the name of a cluster profile to use to identify the cluster. If this option is omitted, the default profile is used to identify the cluster and is applied to the job and task properties.
- `'AdditionalPaths'` — A string or cell array of strings that defines paths to be added to the MATLAB search path of the workers before the script or function executes. The default search path might not be the same on the workers as it is on the client; the path difference could be the result of different current working folders (`pwd`), platforms, or network file system access. The `'AdditionalPaths'` property can assure that workers are looking in the correct locations for necessary code files, data files, model files, etc.
- `'AttachedFiles'` — A string or cell array of strings. Each string in the list identifies either a file or a folder, which gets transferred to the worker.
- `'AutoAttachFiles'` — A logical value to specify whether code files should be automatically attached to the job. If `true`, the batch script or function is analyzed and the code files that it depends on are automatically transferred to the worker. The default is `true`.
- `'CurrentFolder'` — A string indicating in what folder the script executes. There is no guarantee that this folder exists on the worker. The default value for this property
is the cwd of MATLAB when the batch command is executed. If the string for this argument is '.', there is no change in folder before batch execution.

- **'CaptureDiary'** — A logical flag to indicate that the toolbox should collect the diary from the function call. See the diary function for information about the collected data. The default is true.

- **'Pool'** — An integer specifying the number of workers to make into a parallel pool for the job in addition to the worker running the batch job itself. The script or function uses this pool for execution of statements such as parfor and spmd that are inside the batch code. Because the pool requires N workers in addition to the worker running the batch, there must be at least N+1 workers available on the cluster. You do not need a parallel pool already running to execute batch; and the new pool that batch creates is not related to a pool you might already have open. (See “Run a Batch Parallel Loop” on page 1-9.) The default value is 0, which causes the script or function to run on only a single worker without a parallel pool.

Examples

Run a batch script on a worker, without using a parallel pool:

```matlab
j = batch('script1');
```

Run a batch script that requires two additional files for execution:

```matlab
j = batch('myScript','AttachedFiles',{'mscr1.m','mscr2.m'});
wait(j);
load(j);
```

Run a batch pool job on a remote cluster, using eight workers for the parallel pool in addition to the worker running the batch script. Capture the diary, and load the results of the job into the workspace. This job requires a total of nine workers:

```matlab
j = batch('script1','Pool',8,'CaptureDiary',true);
wait(j);   % Wait for the job to finish
diary(j)   % Display the diary
load(j)    % Load job workspace data into client workspace
```

Run a batch pool job on a local worker, which employs two other local workers for the pool. Note, this requires a total of three workers in addition to the client, all on the local machine:

```matlab
j = batch('script1','Profile','local','Pool',2);
```
Clean up a batch job’s data after you are finished with it:

```matlab
delete(j)
```

Run a batch function on a cluster that generates a 10-by-10 random matrix:

```matlab
c = parcluster();
j = batch(c,@rand,1,{10,10});

wait(j)   % Wait for the job to finish
diary(j)  % Display the diary

r = fetchOutputs(j); % Get results into a cell array
r{1}                 % Display result
```

More About

Tips

To see your batch job’s status or to track its progress, use the Job Monitor, as described in “Job Monitor” on page 6-29. You can also use the Job Monitor to retrieve a job object for a batch job that was created in a different session, or for a batch job that was created without returning a job object from the `batch` call.

As a matter of good programming practice, when you no longer need it, you should delete the job created by the batch function so that it does not continue to consume cluster storage resources.

See Also
delete | load | wait | diary | findJob
bsxfun

Binary singleton expansion function for gpuArray

Syntax

C = bsxfun(FUN,A,B)

Description

bsxfun with gpuArray input is similar in behavior to the MATLAB function bsxfun, except that the actual evaluation of the function, FUN, happens on the GPU, not on the CPU.

C = bsxfun(FUN,A,B) applies the element-by-element binary operation specified by the function handle FUN to arrays A and B, with singleton expansion enabled. If A or B is a gpuArray, bsxfun moves all other required data to the GPU and performs its calculation on the GPU. The output array C is a gpuArray, which you can copy to the MATLAB workspace with gather.

For more detailed information, see “Run Element-wise MATLAB Code on GPU” on page 9-13. For the subset of the MATLAB language that is currently supported by bsxfun on the GPU, see “Supported MATLAB Code” on page 9-15.

The corresponding dimensions of A and B must be equal to each other, or equal to one. Whenever a dimension of A or B is singleton (equal to 1), bsxfun virtually replicates the array along that dimension to match the other array. In the case where a dimension of A or B is singleton and the corresponding dimension in the other array is zero, bsxfun virtually diminishes the singleton dimension to 0.

The size of the output array C is such that each dimension is the larger of the two input arrays in that dimension for nonzero size, or zero otherwise. Notice in the following code how dimensions of size 1 are scaled up or down to match the size of the corresponding dimension in the other argument:

R1 = rand(2,5,4,'gpuArray');
R2 = rand(2,1,4,3,'gpuArray');
R = bsxfun(@plus,R1,R2);
```
size(R)
2 5 4 3
R1 = rand(2,2,0,4,'gpuArray');
R2 = rand(2,1,1,4,'gpuArray');
R = bsxfun(@plus,R1,R2);
size(R)
2 2 0 4

Examples

Subtract the mean of each column from all elements in that column:

A = rand(8,'gpuArray');
M = bsxfun(@minus,A,mean(A));

See Also
arrayfun | gather | gpuArray | pagefun
```
cancel

Cancel job or task

Syntax

cancel(t)
cancel(j)

Arguments

t Pending or running task to cancel.
j Pending, running, or queued job to cancel.

Description

cancel(t) stops the task object, t, that is currently in the pending or running state. The task’s State property is set to finished, and no output arguments are returned. An error message stating that the task was canceled is placed in the task object’s ErrorMessage property, and the worker session running the task is restarted.

cancel(j) stops the job object, j, that is pending, queued, or running. The job’s State property is set to finished, and a cancel is executed on all tasks in the job that are not in the finished state. A job object that has been canceled cannot be started again.

If the job is running from an MJS, any worker sessions that are evaluating tasks belonging to the job object are restarted.

If the specified job or task is already in the finished state, no action is taken.

Examples

Cancel a task. Note afterward the task’s State, ErrorIdentifier, and ErrorMessage properties.
c = parcluster();
job1 = createJob(c);
t = createTask(job1, @rand, 1, {3,3});
cancel(t)

t

Task with properties:

ID: 1
State: finished
Function: @rand
Parent: Job 1
StartTime: Running Duration: 0 days 0h 0m 0s

ErrorIdentifier: parallel:task:UserCancellation
ErrorMessage: The task was cancelled by user "mylogin" on machine "myhost.mydomain.com".

See Also
delete | submit
cancel (FevalFuture)

Cancel queued or running future

Syntax

cancel(F)

Description

cancel(F) stops the queued and running futures contained in F. No action is taken for finished futures. Each element of F that is not already in state 'finished' has its State property set to 'finished', and its Error property is set to contain an MException indicating that execution was cancelled.

Examples

Run a function several times until a satisfactory result is found. In this case, the array of futures F is cancelled when a result is greater than 0.95.

N = 100;
for idx = N:-1:1
 F(idx) = parfeval(@rand,1); % Create a random scalar
end
result = NaN; % No result yet.
for idx = 1:N
 [~, thisResult] = fetchNext(F);
 if thisResult > 0.95
 result = thisResult;
 % Have all the results needed, so break
 break;
 end
end
% With required result, cancel any remaining futures
cancel(F)
result
See Also
fetchOutputs | isequal | parfeval | parfevalOnAll | fetchNext
changePassword

Prompt user to change MJS password

Syntax

changePassword(mjs)
changePassword(mjs,username)

Arguments

mjs MJS cluster object on which password is changing
username Character string identifying the user whose password is changing

Description

changePassword(mjs) prompts you to change your password as the current user on the MATLAB job scheduler (MJS) cluster represented by cluster object mjs. (Use the parcluster function to create a cluster object.) In the dialog box that opens, you must enter your current password as well as the new password.

changePassword(mjs,username) prompts you as the MJS cluster admin user to change the password for another specified user. In the dialog box that opens, you must enter the cluster admin password in addition to the user’s new password. This allows the cluster admin to reset a password for a user who is not available or has forgotten the password. (Note: The cluster admin account was created when the MJS cluster was started with a security level of 1, 2, or 3.)

Examples

Change Password with a Cluster Profile

Change your password for the MJS cluster identified by an MJS cluster profile called MyMjsProfile.
mjs = parcluster('MyMjsProfile');
changePassword(mjs)

Change Password on a Parallel Pool

Change your password for the MJS cluster on which the parallel pool is running.

```matlab
p = gcp;
mjs = p.Cluster;
changePassword(mjs)
```

Change Password of Another User

Change the password for another user named john. The admin user can access the MJS from a different session of MATLAB to do this, or change the **Username** property of the cluster object within john’s MATLAB client session.

```matlab
mjs = parcluster('MyMjsProfile');
mjs.Username = 'admin'     % Generates prompt for admin user password.
changePassword(mjs,'john') % Generates prompt for both passwords.
```

![Password Change Interface](image)

At this point, the admin user might want to set the session user back to john.
mjs.Username = 'john' % Prompted again for password.

More About

- “Set MJS Cluster Security”

See Also

logout | parcluster | startjobmanager
classUnderlying

Class of elements within gpuArray or distributed array

Syntax

C = classUnderlying(D)

Description

C = classUnderlying(D) returns the name of the class of the elements contained within the gpuArray or distributed array D. Similar to the MATLAB `class` function, this returns a string indicating the class of the data.

Examples

Examine the class of the elements of a gpuArray.

\[
\begin{align*}
N &= 1000; \\
G8 &= \text{ones}(1,N,'uint8','gpuArray'); \\
G1 &= \text{NaN}(1,N,'single','gpuArray'); \\
c8 &= \text{classUnderlying}(G8) \\
c1 &= \text{classUnderlying}(G1) \\
\end{align*}
\]

\[
\begin{align*}
c8 &= \quad \text{uint8} \\
c1 &= \quad \text{single} \\
\end{align*}
\]

Examine the class of the elements of a distributed array.

\[
\begin{align*}
N &= 1000; \\
D8 &= \text{ones}(1,N,'uint8','distributed'); \\
D1 &= \text{NaN}(1,N,'single','distributed'); \\
c8 &= \text{classUnderlying}(D8) \\
\end{align*}
\]
c1 = classUnderlying(D1)
c8 =
uint8
c1 =
single

See Also
distributed | codistributed | gpuArray
clear

Remove objects from MATLAB workspace

Syntax

clear obj

Arguments

obj An object or an array of objects.

Description

clear obj removes obj from the MATLAB workspace.

Examples

This example creates two job objects on the MATLAB job scheduler jm. The variables for these job objects in the MATLAB workspace are job1 and job2. job1 is copied to a new variable, job1copy; then job1 and job2 are cleared from the MATLAB workspace. The job objects are then restored to the workspace from the job object's Jobs property as j1 and j2, and the first job in the MJS is shown to be identical to job1copy, while the second job is not.

c = parcluster();
delete(c.Jobs) % Assure there are no jobs
job1 = createJob(c);
job2 = createJob(c);
job1copy = job1;
clear job1 job2;
j1 = c.Jobs(1);
j2 = c.Jobs(2);
isequal (job1copy,j1)

ans =
1

isequal (job1copy, j2)

ans =
 0

More About

Tips

If obj references an object in the cluster, it is cleared from the workspace, but it remains in the cluster. You can restore obj to the workspace with the parcluster, findJob, or findTask function; or with the Jobs or Tasks property.

See Also

createJob | createTask | findJob | findTask | parcluster
codistributed

Create codistributed array from replicated local data

Syntax

C = codistributed(X)
C = codistributed(X,codist)
C = codistributed(X,lab,codist)
C = codistributed(C1,codist)

Description

C = codistributed(X) distributes a replicated array X using the default codistributor, creating a codistributed array C as a result. X must be a replicated array, that is, it must have the same value on all workers. size(C) is the same as size(X).

C = codistributed(X,codist) distributes a replicated array X using the distribution scheme defined by codistributor codist. X must be a replicated array, namely it must have the same value on all workers. size(C) is the same as size(X). For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.

C = codistributed(X,lab,codist) distributes a local array X that resides on the worker identified by lab, using the codistributor codist. Local array X must be defined on all workers, but only the value from lab is used to construct C. size(C) is the same as size(X).

C = codistributed(C1,codist) accepts an array C1 that is already codistributed, and redistributes it into C according to the distribution scheme defined by the codistributor codist. This is the same as calling C = redistribute(C1,codist). If the existing distribution scheme for C1 is the same as that specified in codist, then the result C is the same as the input C1.

Tips

gather essentially performs the inverse of codistributed.
Examples

Create a 1000-by-1000 codistributed array C1 using the default distribution scheme.

```matlab
spmd
    N = 1000;
    X = magic(N); % Replicated on every worker
    C1 = codistributed(X); % Partitioned among the workers
end
```

Create a 1000-by-1000 codistributed array C2, distributed by rows (over its first dimension).

```matlab
spmd
    N = 1000;
    X = magic(N);
    C2 = codistributed(X,codistributor1d(1));
end
```

See Also

distributed | codistributor1d | codistributor2dbc | gather |
globalIndices | getLocalPart | redistribute | size | subsasgn | subsref
codistributed.build

Create codistributed array from distributed data

Syntax

D = codistributed.build(L,codist)
D = codistributed.build(L,codist,'noCommunication')

Description

D = codistributed.build(L,codist) forms a codistributed array with
getLocalPart(D) = L. The codistributed array D is created as if you had combined
all copies of the local array L. The distribution scheme is specified by codist. Global
error checking ensures that the local parts conform with the specified distribution
scheme. For information on constructing codistributor objects, see the reference pages for
codistributor1d and codistributor2dbc.

D = codistributed.build(L,codist,'noCommunication') builds a codistributed
array, without performing any interworker communications for error checking.

codist must be complete, which you can check by calling codist.isComplete(). The
requirements on the size and structure of the local part L depend on the class of codist.
For the 1-D and 2-D block-cyclic codistributors, L must have the same class and sparsity
on all workers. Furthermore, the local part L must represent the region described by the
globalIndices method on codist.

Examples

Create a codistributed array of size 1001-by-1001 such that column ii contains the value
ii.

spmd
 N = 1001;
 globalSize = [N,N];
 % Distribute the matrix over the second dimension (columns),
 % and let the codistributor derive the partition from the
% global size.
codistr = codistributor1d(2, ...
 codistributor1d.unsetPartition,globalSize)

% On 4 workers, codistr.Partition equals [251,250,250,250].
% Allocate storage for the local part.
localSize = [N, codistr.Partition(labindex)];
L = zeros(localSize);

% Use globalIndices to map the indices of the columns
% of the local part into the global column indices.
globalInd = codistr.globalIndices(2);
% On 4 workers, globalInd has the values:
% 1:251 on worker 1
% 252:501 on worker 2
% 502:751 on worker 3
% 752:1001 on worker 4

% Initialize the columns of the local part to
% the correct value.
for localCol = 1:length(globalInd)
 globalCol = globalInd(localCol);
 L(:,localCol) = globalCol;
end
D = codistributed.build(L,codistr)
end

See Also

codistributor1d | codistributor2dbc | gather | globalIndices |
getLocalPart | redistribute | size | subsasgn | subsref
codistributed.cell

Create codistributed cell array

Syntax

C = codistributed.cell(n)
C = codistributed.cell(m,n,p,...)
C = codistributed.cell([m,n,p,...])
C = cell(n,codist)
C = cell(m,n,p,...,codist)
C = cell([m,n,p,...],codist)

Description

C = codistributed.cell(n) creates an n-by-n codistributed array of underlying class cell, distributing along columns.

C = codistributed.cell(m,n,p,...) or C =
codistributed.cell([m,n,p,...]) creates an m-by-n-by-p-by-... codistributed array of underlying class cell, using a default scheme of distributing along the last nonsingleton dimension.

Optional arguments to codistributed.cell must be specified after the required arguments, and in the following order:

• codist — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.

• 'noCommunication' — Specifies that no communication is to be performed when constructing the array, skipping some error checking steps.

C = cell(n,codist) is the same as C = codistributed.cell(n, codist). You can also use the 'noCommunication' object with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:
```plaintext
spmd
    C = cell(8,codistributor1d());
end

C = cell(m,n,p,...,codist) and C = cell([m,n,p,...],codist)
are the same as C = codistributed.cell(m,n,p,...) and C =
codistributed.cell([m,n,p,...]), respectively. You can also use the optional
'noCommunication' argument with this syntax.

Examples

With four workers,

```plaintext
spmd(4)
 C = codistributed.cell(1000);
end
```

creates a 1000-by-1000 distributed cell array C, distributed by its second dimension
(columns). Each worker contains a 1000-by-250 local piece of C.

```plaintext
spmd(4)
 codist = codistributor1d(2, 1:numlabs);
 C = cell(10, 10, codist);
end
```

creates a 10-by-10 codistributed cell array C, distributed by its columns. Each worker
contains a 10-by-labindex local piece of C.

See Also
cell | distributed.cell
codistributed.colon

Distributed colon operation

Syntax

codistributed.colon(a,d,b)
codistributed.colon(a,b)
codistributed.colon(____,codist)
codistributed.colon(____,'noCommunication')
codistributed.colon(____,codist,'noCommunication')

Description

codistributed.colon(a,d,b) partitions the vector a:d:b into numlabs contiguous subvectors of equal, or nearly equal length, and creates a codistributed array whose local portion on each worker is the labindex-th subvector.

codistributed.colon(a,b) uses d = 1.

Optional arguments to codistributed.colon must be specified after the required arguments, and in the following order:

codistributed.colon(____,codist) uses the codistributor object codist to specify the distribution scheme of the resulting vector. If omitted, the result is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.

codistributed.colon(____,'noCommunication') or
codistributed.colon(____,codist,'noCommunication') specifies that no communication is to be performed when constructing the vector, skipping some error checking steps.

Examples

Partition the vector 1:10 into four subvectors among four workers.
spmd(4); C = codistributed.colon(1,10), end

Lab 1:
  This worker stores C(1:3).
  LocalPart: [1 2 3]
  Codistributor: [1x1 codistributor1d]

Lab 2:
  This worker stores C(4:6).
  LocalPart: [4 5 6]
  Codistributor: [1x1 codistributor1d]

Lab 3:
  This worker stores C(7:8).
  LocalPart: [7 8]
  Codistributor: [1x1 codistributor1d]

Lab 4:
  This worker stores C(9:10).
  LocalPart: [9 10]
  Codistributor: [1x1 codistributor1d]

See Also

codistributor1d | codistributor2dbc | colon | for
codistributed.spalloc

Allocate space for sparse codistributed matrix

Syntax

SD = codistributed.spalloc(M,N,nzmax)
SD = spalloc(M,N,nzmax,codist)

Description

SD = codistributed.spalloc(M,N,nzmax) creates an M-by-N all-zero sparse codistributed matrix with room to hold nzmax nonzeros.

Optional arguments to codistributed.spalloc must be specified after the required arguments, and in the following order:

- codist — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. The allocated space for nonzero elements is consistent with the distribution of the matrix among the workers according to the Partition of the codistributor.
- 'noCommunication' — Specifies that no communication is to be performed when constructing the array, skipping some error checking steps. You can also use this argument with SD = spalloc(M, N, nzmax, codist).

SD = spalloc(M,N,nzmax,codist) is the same as SD = codistributed.spalloc(M,N,nzmax,codist). You can also use the optional arguments with this syntax.

Examples

Allocate space for a 1000-by-1000 sparse codistributed matrix with room for up to 2000 nonzero elements. Use the default codistributor. Define several elements of the matrix.

spmd  % codistributed array created inside spmd statement
     N = 1000;
SD = codistributed.spalloc(N, N, 2*N);
for ii=1:N-1
    SD(ii,ii:ii+1) = [ii ii];
end

See Also
spalloc | sparse | distributed.spalloc
codistributed.speye

Create codistributed sparse identity matrix

Syntax

\[
\begin{align*}
\text{CS} &= \text{codistributed.speye}(n) \\
\text{CS} &= \text{codistributed.speye}(m,n) \\
\text{CS} &= \text{codistributed.speye}([m,n]) \\
\text{CS} &= \text{speye}(n,\text{codist}) \\
\text{CS} &= \text{speye}(m,n,\text{codist}) \\
\text{CS} &= \text{speye}([m,n],\text{codist})
\end{align*}
\]

Description

\(\text{CS} = \text{codistributed.speye}(n)\) creates an \(n\)-by-\(n\) sparse codistributed array of underlying class double.

\(\text{CS} = \text{codistributed.speye}(m,n)\) or \(\text{CS} = \text{codistributed.speye}([m,n])\) creates an \(m\)-by-\(n\) sparse codistributed array of underlying class double.

Optional arguments to \text{codistributed.speye} must be specified after the required arguments, and in the following order:

- \text{codist} — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for \text{codistributor1d} and \text{codistributor2dbc}.
- '"noCommunication'" — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

\(\text{CS} = \text{speye}(n,\text{codist})\) is the same as \(\text{CS} = \text{codistributed.speye}(n,\text{codist})\). You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

\[
\begin{align*}
\text{spmd} \\
\quad \text{CS} &= \text{codistributed.speye}(8,\text{codistributor1d}()); \\
\text{end}
\end{align*}
\]
CS = speye(m,n,codist) and CS = speye([m,n],codist) are the same as
CS = codistributed.speye(m,n) and CS = codistributed.speye([m,n]),
respectively. You can also use the optional arguments with this syntax.

**Note** To create a sparse codistributed array of underlying class logical, first create an
array of underlying class double and then cast it using the `logical` function:

```
CLS = logical(speye(m,n,codistributor1d()))
```

**Examples**

With four workers,

```
spmd(4)
 CS = speye(1000,codistributor())
end
```

creates a 1000-by-1000 sparse codistributed double array `CS`, distributed by its second
dimension (columns). Each worker contains a 1000-by-250 local piece of `CS`.

```
spmd(4)
 codist = codistributor1d(2,1:numlabs);
 CS = speye(10,10,codist);
end
```

creates a 10-by-10 sparse codistributed double array `CS`, distributed by its columns. Each
worker contains a 10-by-`labindex` local piece of `CS`.

**See Also**

`speye` | `distributed.speye` | `sparse`
codistributed.sprand

Create codistributed sparse array of uniformly distributed pseudo-random values

Syntax

CS = codistributed.sprand(m,n,density)
CS = sprand(n,codist)

Description

CS = codistributed.sprand(m,n,density) creates an m-by-n sparse codistributed array with approximately density*m*n uniformly distributed nonzero double entries.

Optional arguments to codistributed.sprand must be specified after the required arguments, and in the following order:

- codist — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.
- 'noCommunication' — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

CS = sprand(n,codist) is the same as CS = codistributed.sprand(n, codist). You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

```
spmd
 CS = codistributed.sprand(8,8,0.2,codistributor1d());
end
```

Examples

With four workers,

```
spmd(4)
```
```matlab
CS = codistributed.sprand(1000,1000,0.001);
end
```

creates a 1000-by-1000 sparse codistributed double array `CS` with approximately 1000 nonzeros. `CS` is distributed by its second dimension (columns), and each worker contains a 1000-by-250 local piece of `CS`.

```matlab
spmd(4)
 codist = codistributor1d(2,1:numlabs);
 CS = sprand(10,10,0.1,codist);
end
```

creates a 10-by-10 codistributed double array `CS` with approximately 10 nonzeros. `CS` is distributed by its columns, and each worker contains a 10-by-`labindex` local piece of `CS`.

**More About**

**Tips**

When you use `sprand` on the workers in the parallel pool, or in an independent or communicating job (including pmode), each worker sets its random generator seed to a value that depends only on the `labindex` or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.

**See Also**

`sprand` | `rand` | `distributed.sprandn`
**codistributed.sprandn**

Create codistributed sparse array of uniformly distributed pseudo-random values

**Syntax**

```matlab
CS = codistributed.sprandn(m,n,density)
CS = sprandn(n,codist)
```

**Description**

`CS = codistributed.sprandn(m,n,density)` creates an `m`-by-`n` sparse codistributed array with approximately `density*m*n` normally distributed nonzero double entries.

Optional arguments to `codistributed.sprandn` must be specified after the required arguments, and in the following order:

- `codist` — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for `codistributor1d` and `codistributor2dbc`.
- `'noCommunication'` — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

`CS = sprandn(n,codist)` is the same as `CS = codistributed.sprandn(n,codist)`. You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

```matlab
spmd
 CS = codistributed.sprandn(8,8,0.2,codistributor1d());
end
```

**Examples**

With four workers,

```matlab
spmd(4)
```
\begin{verbatim}
CS = codistributed.sprandn(1000,1000,0.001);
end
\end{verbatim}

creates a 1000-by-1000 sparse codistributed double array \texttt{CS} with approximately 1000 nonzeros. \texttt{CS} is distributed by its second dimension (columns), and each worker contains a 1000-by-250 local piece of \texttt{CS}.

\begin{verbatim}
spmd(4)
    codist = codistributor1d(2,1:numlabs);
    CS = sprandn(10,10,0.1,codist);
end
\end{verbatim}

creates a 10-by-10 codistributed double array \texttt{CS} with approximately 10 nonzeros. \texttt{CS} is distributed by its columns, and each worker contains a 10-by-\texttt{labindex} local piece of \texttt{CS}.

### More About

#### Tips

When you use \texttt{sprandn} on the workers in the parallel pool, or in an independent or communicating job (including pmode), each worker sets its random generator seed to a value that depends only on the \texttt{labindex} or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.

#### See Also

\texttt{sprandn} | \texttt{rand} | \texttt{randn} | \texttt{sparse} | \texttt{codistributed.speye} | \texttt{codistributed.sprand} | \texttt{distributed.sprandn}
codistributor

Create codistributor object for codistributed arrays

Syntax

codist = codistributor()
codist = codistributor('1d')
codist = codistributor('1d',dim)
codist = codistributor('1d',dim,part)
codist = codistributor('2dbc')
codist = codistributor('2dbc',lbgrid)
codist = codistributor('2dbc',lbgrid,blksize)

Description

There are two schemes for distributing arrays. The scheme denoted by the string '1d' distributes an array along a single specified subscript, the distribution dimension, in a noncyclic, partitioned manner. The scheme denoted by '2dbc', employed by the parallel matrix computation software ScaLAPACK, applies only to two-dimensional arrays, and varies both subscripts over a rectangular computational grid of labs (workers) in a blocked, cyclic manner.

codist = codistributor(), with no arguments, returns a default codistributor object with zero-valued or empty parameters, which can then be used as an argument to other functions to indicate that the function is to create a codistributed array if possible with default distribution. For example,

\[
Z = \text{zeros}(..., \text{codistributor}())
\]
\[
R = \text{randn}(..., \text{codistributor}())
\]

codist = codistributor('1d') is the same as codist = codistributor().

codist = codistributor('1d',dim) also forms a codistributor object with codist.Dimension = dim and default partition.

codist = codistributor('1d',dim,part) also forms a codistributor object with codist.Dimension = dim and codist.Partition = part.
codist = codistributor('2dbc') forms a 2-D block-cyclic codistributor object. For more information about '2dbc' distribution, see “2-Dimensional Distribution” on page 5-16.

codist = codistributor('2dbc',lbgrid) forms a 2-D block-cyclic codistributor object with the lab grid defined by lbgrid and with default block size.

codist = codistributor('2dbc',lbgrid,blksize) forms a 2-D block-cyclic codistributor object with the lab grid defined by lbgrid and with a block size defined by blksize.

codist = getCodistributor(D) returns the codistributor object of codistributed array D.

Examples

On four workers, create a 3-dimensional, 2-by-6-by-4 array with distribution along the second dimension, and partition scheme [1 2 1 2]. In other words, worker 1 contains a 2-by-1-by-4 segment, worker 2 a 2-by-2-by-4 segment, etc.

spmd
dim = 2; % distribution dimension
codist = codistributor('1d',dim,[1 2 1 2],[2 6 4]);
if mod(labindex,2)
    L = rand(2,1,4);
else
    L = rand(2,2,4);
end
A = codistributed.build(L,codist)
end
A

On four workers, create a 20-by-5 codistributed array A, distributed by rows (over its first dimension) with a uniform partition scheme.

spmd
dim = 1; % distribution dimension
partn = codistributor1d.defaultPartition(20);
codist = codistributor('1d',dim,partn,[20 5]);
L = magic(5) + labindex;
A = codistributed.build(L,codist)
end
See Also

codistributed | codistributor1d | codistributor2dbc | getCodistributor |
getLocalPart | redistribute
**codistributor1d**

Create 1-D codistributor object for codistributed arrays

**Syntax**

```matlab
codist = codistributor1d()
codist = codistributor1d(dim)
codist = codistributor1d(dim,part)
codist = codistributor1d(dim,part,gsize)
```

**Description**

The 1-D codistributor distributes arrays along a single, specified distribution dimension, in a noncyclic, partitioned manner.

- `codist = codistributor1d()` forms a codistributor1d object using default dimension and partition. The default dimension is the last nonsingleton dimension of the codistributed array. The default partition distributes the array along the default dimension as evenly as possible.

- `codist = codistributor1d(dim)` forms a 1-D codistributor object for distribution along the specified dimension: 1 distributes along rows, 2 along columns, etc.

- `codist = codistributor1d(dim,part)` forms a 1-D codistributor object for distribution according to the partition vector `part`. For example `C1 = codistributor1d(1,[1,2,3,4])` describes the distribution scheme for an array of ten rows to be codistributed by its first dimension (rows), to four workers, with 1 row to the first, 2 rows to the second, etc.

The resulting codistributor of any of the above syntax is incomplete because its global size is not specified. A codistributor constructed in this manner can be used as an argument to other functions as a template codistributor when creating codistributed arrays.

- `codist = codistributor1d(dim,part,gsize)` forms a codistributor object with distribution dimension `dim`, distribution partition `part`, and global size of its codistributed arrays `gsize`. The resulting codistributor object is complete and can be used to build a codistributed array from its local parts with `codistributed.build`. 
To use a default dimension, specify `codistributor1d.unsetDimension` for that argument; the distribution dimension is derived from `gsize` and is set to the last non-singleton dimension. Similarly, to use a default partition, specify `codistributor1d.unsetPartition` for that argument; the partition is then derived from the default for that global size and distribution dimension.

The local part on worker `labidx` of a codistributed array using such a codistributor is of size `gsize` in all dimensions except `dim`, where the size is `part(labidx)`. The local part has the same class and attributes as the overall codistributed array. Conceptually, the overall global array could be reconstructed by concatenating the various local parts along dimension `dim`.

**Examples**

Use a codistributor1d object to create an N-by-N matrix of ones, distributed by rows.

```matlab
N = 1000;
spmd
 codistr = codistributor1d(1); % 1st dimension (rows)
 C = ones(N,codistr);
end
```

Use a fully specified codistributor1d object to create a trivial N-by-N codistributed matrix from its local parts. Then visualize which elements are stored on worker 2.

```matlab
N = 1000;
spmd
 codistr = codistributor1d(...
 codistributor1d.unsetDimension, ...
 codistributor1d.unsetPartition, ...
 [N,N]);
 myLocalSize = [N,N]; % start with full size on each lab
 % then set myLocalSize to default part of whole array:
 myLocalSize(codistr.Dimension) = codistr.Partition(labindex);
 myLocalPart = labindex*ones(myLocalSize); % arbitrary values
 D = codistributed.build(myLocalPart,codistr);
end
spy(D==2);
```

**See Also**

codistributed | codistributor2dbc | redistribute
codistributor1d.defaultPartition

Default partition for codistributed array

**Syntax**

```
P = codistributor1d.defaultPartition(n)
```

**Description**

`P = codistributor1d.defaultPartition(n)` is a vector with `sum(P) = n` and `length(P) = numlabs`. The first `rem(n,numlabs)` elements of `P` are equal to `ceil(n/numlabs)` and the remaining elements are equal to `floor(n/numlabs)`. This function is the basis for the default distribution of codistributed arrays.

**Examples**

If `numlabs = 4`, the following code returns the vector `[3 3 2 2]` on all workers:

```
spmd
 P = codistributor1d.defaultPartition(10)
end
```

**See Also**

`codistributed` | `codistributed.colon` | `codistributor1d`
codistributor2dbc

Create 2-D block-cyclic codistributor object for codistributed arrays

Syntax

```
codist = codistributor2dbc()
codist = codistributor2dbc(lbgrid)
codist = codistributor2dbc(lbgrid,blksize)
codist = codistributor2dbc(lbgrid,blksize,orient)
codist = codistributor2dbc(lbgrid,blksize,orient,gsize)
```

Description

The 2-D block-cyclic codistributor can be used only for two-dimensional arrays. It distributes arrays along two subscripts over a rectangular computational grid of labs (workers) in a block-cyclic manner. For a complete description of 2-D block-cyclic distribution, default parameters, and the relationship between block size and lab grid, see “2-Dimensional Distribution” on page 5-16. The 2-D block-cyclic codistributor is used by the ScaLAPACK parallel matrix computation software library.

- `codist = codistributor2dbc()` forms a 2-D block-cyclic codistributor object using default lab grid and block size.
- `codist = codistributor2dbc(lbgrid)` forms a 2-D block-cyclic codistributor object using the specified lab grid and default block size. `lbgrid` must be a two-element vector defining the rows and columns of the lab grid, and the rows times columns must equal the number of workers for the codistributed array.
- `codist = codistributor2dbc(lbgrid,blksize)` forms a 2-D block-cyclic codistributor object using the specified lab grid and block size.
- `codist = codistributor2dbc(lbgrid,blksize,orient)` allows an orientation argument. Valid values for the orientation argument are 'row' for row orientation, and 'col' for column orientation of the lab grid. The default is row orientation.

The resulting codistributor of any of the above syntax is incomplete because its global size is not specified. A codistributor constructed this way can be used as an argument to other functions as a template codistributor when creating codistributed arrays.
codist = codistributor2dbc(lbgrid,blksize,orient,gsize) forms a codistributor object that distributes arrays with the global size gsize. The resulting codistributor object is complete and can therefore be used to build a codistributed array from its local parts with codistributed.build. To use the default values for lab grid, block size, and orientation, specify them using codistributor2dbc.defaultLabGrid, codistributor2dbc.defaultBlockSize, and codistributor2dbc.defaultOrientation, respectively.

Examples

Use a codistributor2dbc object to create an N-by-N matrix of ones.

N = 1000;
spmd
codistr = codistributor2dbc();
D = ones(N,codistr);
end

Use a fully specified codistributor2dbc object to create a trivial N-by-N codistributed matrix from its local parts. Then visualize which elements are stored on worker 2.

N = 1000;
spmd
codistr = codistributor2dbc(...
codistributor2dbc.defaultLabGrid, ...
codistributor2dbc.defaultBlockSize, ...
'row',[N,N]);
myLocalSize = [length(codistr.globalIndices(1)), ...
length(codistr.globalIndices(2))];
myLocalPart = labindex*ones(myLocalSize);
D = codistributed.build(myLocalPart,codistr);
end
spy(D==2);

See Also
codistributed | codistributor1d | getLocalPart | redistribute
codistributor2dbc.defaultLabGrid

Default computational grid for 2-D block-cyclic distributed arrays

Syntax

grid = codistributor2dbc.defaultLabGrid()

Description

grid = codistributor2dbc.defaultLabGrid() returns a vector, grid = [nrow ncol], defining a computational grid of nrow-by-ncol workers in the open parallel pool, such that numlabs = nrow * ncol.

The grid defined by codistributor2dbc.defaultLabGrid is as close to a square as possible. The following rules define nrow and ncol:

• If numlabs is a perfect square, nrow = ncol = sqrt(numlabs).
• If numlabs is an odd power of 2, then nrow = ncol/2 = sqrt(numlabs/2).
• nrow <= ncol.
• If numlabs is a prime, nrow = 1, ncol = numlabs.
• nrow is the greatest integer less than or equal to sqrt(numlabs) for which ncol = numlabs/nrow is also an integer.

Examples

View the computational grid layout of the default distribution scheme for the open parallel pool.

spmd
    grid = codistributor2dbc.defaultLabGrid
end

See Also

codistributed | codistributor2dbc | numlabs
Composite

Create Composite object

Syntax

C = Composite()
C = Composite(nlabs)

Description

C = Composite() creates a Composite object on the client using workers from the parallel pool. The actual number of workers referenced by this Composite object depends on the size of the pool and any existing Composite objects. Generally, you should construct Composite objects outside any spmd statement.

C = Composite(nlabs) creates a Composite object on the parallel pool set that matches the specified constraint. nlabs must be a vector of length 1 or 2, containing integers or Inf. If nlabs is of length 1, it specifies the exact number of workers to use. If nlabs is of size 2, it specifies the minimum and maximum number of workers to use. The actual number of workers used is the maximum number of workers compatible with the size of the parallel pool, and with other existing Composite objects. An error is thrown if the constraints on the number of workers cannot be met.

A Composite object has one entry for each lab; initially each entry contains no data. Use either indexing or an spmd block to define values for the entries.

Tips

• A Composite is created on the workers of the existing parallel pool. If no pool exists, Composite starts a new parallel pool, unless the automatic starting of pools is disabled in your parallel preferences. If there is no parallel pool and Composite cannot start one, the result is a 1-by-1 Composite in the client workspace.
Examples

The following examples all use a local parallel pool of four workers, opened with the statement:

```matlab
p = parpool('local',4);
```

This example shows how to create a Composite object with no defined elements, then assign values using a `for`-loop in the client.

```matlab
c = Composite(); % One element per worker in the pool
for w = 1:length(c)
 c{w} = 0; % Value stored on each worker
end
```

This example shows how to assign Composite elements in an `spmd` block.

```matlab
c = Composite();
spmd
c = 0; % Value stored on each worker
end
```

This example shows how to assign the elements of a Composite with a value from each worker.

```matlab
c = Composite();
spmd
c = labindex;
end
c{:}
1
2
3
4
```

This example shows how to use a distributed array vector to set the values of a Composite.
d = distributed([3 1 4 2]); % One integer per worker
spmd
    c = getLocalPart(d); % Unique value on each worker
end

c{:}

3

1

4

2

See Also
parpool | parallel.pool.Constant | spmd
createCommunicatingJob

Create communicating job on cluster

Syntax

```
job = createCommunicatingJob(cluster)
job = createCommunicatingJob(...,'p1',v1,'p2',v2,...)
job = createCommunicatingJob(...,'Type','pool',...)
job = createCommunicatingJob(...,'Type','spmd',...)
job = createCommunicatingJob(...,'Profile','profileName',...)
```

Description

```
job = createCommunicatingJob(cluster) creates a communicating job object for the identified cluster.

job = createCommunicatingJob(...,'p1',v1,'p2',v2,...) creates a communicating job object with the specified property values. For a listing of the valid properties of the created object, see the parallel.Job object reference page. The property name must be in the form of a string, with the value being the appropriate type for that property. In most cases, the values specified in these property-value pairs override the values in the profile. But when you specify AttachedFiles or AdditionalPaths at the time of creating a job, the settings are combined with those specified in the applicable profile. If an invalid property name or property value is specified, the object will not be created.

job = createCommunicatingJob(...,'Type','pool',...) creates a communicating job of type 'pool'. This is the default if 'Type' is not specified. A 'pool' job runs the specified task function with a parallel pool available to run the body of parfor loops or spmd blocks. Note that only one worker runs the task function, and the rest of the workers in the cluster form the parallel pool. So on a cluster of N workers for a 'pool' type job, only N-1 workers form the actual pool that performs the spmd and parfor code found within the task function.

job = createCommunicatingJob(...,'Type','spmd',...) creates a communicating job of type 'spmd', where the specified task function runs
simultaneously on all workers, and *lab* functions can be used for communication between workers.

\[
\text{job} = \text{createCommunicatingJob}(\ldots, ',\text{Profile}', ',\text{profileName}', \ldots)
\]
creates a communicating job object with the property values specified in the profile 'profileName'. If no profile is specified and the cluster object has a value specified in its 'Profile' property, the cluster's profile is automatically applied.

Examples

Pool Type Communicating Job

Consider the function 'myFunction' which uses a \texttt{parfor} loop:

\[
\begin{align*}
\text{function} & \quad \text{result} = \text{myFunction}(N) \\
& \quad \text{result} = 0; \\
& \quad \text{parfor} \quad \text{ii}=1:N \\
& \quad \quad \text{result} = \text{result} + \max(eig(\text{rand}(\text{ii}))); \\
& \quad \text{end} \\
& \text{end}
\end{align*}
\]

Create a communicating job object to evaluate \texttt{myFunction} on the default cluster:

\[
\begin{align*}
\text{myCluster} & = \text{parcluster}; \\
\text{j} & = \text{createCommunicatingJob(}\text{myCluster, ',Type', ',pool'})
\end{align*}
\]

Add the task to the job, supplying an input argument:

\[
\text{createTask(j, @myFunction, 1, \{100\})}
\]

Set the number of workers required for parallel execution:

\[
\text{j.NumWorkersRange} = [5 \ 10];
\]

Run the job.

\[
\text{submit(j)}
\]

Wait for the job to finish and retrieve its results:

\[
\text{wait(j)} \\
\text{out} = \text{fetchOutputs(j)}
\]
Delete the job from the cluster.

delete(j);

See Also
createJob | createTask | findJob | parcluster | recreate | submit
createJob

Create independent job on cluster

Syntax

```matlab
obj = createJob(cluster)
obj = createJob(...,'p1',v1,'p2',v2,...)
job = createJob(...,'Profile','profileName',...)
```

Arguments

- **obj**
 The job object.
- **cluster**
 The cluster object created by `parcluster`.
- **p1, p2**
 Object properties configured at object creation.
- **v1, v2**
 Initial values for corresponding object properties.

Description

`obj = createJob(cluster)` creates an independent job object for the identified cluster.

The job’s data is stored in the location specified by the cluster’s `JobStorageLocation` property.

`obj = createJob(...,'p1',v1,'p2',v2,...)` creates a job object with the specified property values. For a listing of the valid properties of the created object, see the `parallel.Job` object reference page. The property name must be in the form of a string, with the value being the appropriate type for that property. In most cases, the values specified in these property-value pairs override the values in the profile; but when you specify `AttachedFiles` or `AdditionalPaths` at the time of creating a job, the settings are combined with those specified in the applicable profile. If an invalid property name or property value is specified, the object will not be created.

`job = createJob(...,'Profile','profileName',...)` creates an independent job object with the property values specified in the profile `profileName`. If a profile
is not specified and the cluster has a value specified in its 'Profile' property, the cluster’s profile is automatically applied. For details about defining and applying profiles, see “Clusters and Cluster Profiles” on page 6-14.

Examples

Create and Run a Basic Job

Construct an independent job object using the default profile.

c = parcluster
j = createJob(c);

Add tasks to the job.

for i = 1:10
 createTask(j,@rand,1,{10});
end

Run the job.

submit(j);

Wait for the job to finish running, and retrieve the job results.

wait(j);
out = fetchOutputs(j);

Display the random matrix returned from the third task.

disp(out{3});

Delete the job.

delete(j);

Create a Job with Attached Files

Construct an independent job with attached files in addition to those specified in the default profile.

```matlab
c = parcluster
j = createJob(c,'AttachedFiles',...```
{ 'myapp/folderA', 'myapp/folderB', 'myapp/file1.m' });

See Also
createCommunicatingJob | createTask | findJob | parcluster | recreate | submit
createTask

Create new task in job

Syntax

\[ t = \text{createTask}(j, F, N, \{\text{inputargs}\}) \]
\[ t = \text{createTask}(j, F, N, \{C_1, \ldots, C_m\}) \]
\[ t = \text{createTask}(\ldots, 'p_1', v_1, 'p_2', v_2, \ldots) \]
\[ t = \text{createTask}(\ldots, 'Profile', 'Profile\text{Name}', \ldots) \]

Arguments

\( t \)  
Task object or vector of task objects.

\( j \)  
The job that the task object is created in.

\( F \)  
A handle to the function that is called when the task is evaluated, or an array of function handles.

\( N \)  
The number of output arguments to be returned from execution of the task function. This is a double or array of doubles.

\( \{\text{inputargs}\} \)  
A row cell array specifying the input arguments to be passed to the function \( F \). Each element in the cell array will be passed as a separate input argument. If this is a cell array of cell arrays, a task is created for each cell array.

\( \{C_1, \ldots, C_m\} \)  
Cell array of cell arrays defining input arguments to each of \( m \) tasks.

\( p_1, p_2 \)  
Task object properties configured at object creation.

\( v_1, v_2 \)  
Initial values for corresponding task object properties.

Description

\( t = \text{createTask}(j, F, N, \{\text{inputargs}\}) \) creates a new task object in job \( j \), and returns a reference, \( t \), to the added task object. This task evaluates the function specified
by a function handle or function name \( F \), with the given input arguments \( \{ \text{inputargs} \} \), returning \( N \) output arguments.

\[
t = \text{createTask}(j, F, N, \{C1,\ldots,Cm\})
\]

uses a cell array of \( m \) cell arrays to create \( m \) task objects in job \( j \), and returns a vector, \( t \), of references to the new task objects. Each task evaluates the function specified by a function handle or function name \( F \). The cell array \( C1 \) provides the input arguments to the first task, \( C2 \) to the second task, and so on, so that there is one task per cell array. Each task returns \( N \) output arguments. If \( F \) is a cell array, each element of \( F \) specifies a function for each task in the vector; it must have \( m \) elements. If \( N \) is an array of doubles, each element specifies the number of output arguments for each task in the vector. Multidimensional matrices of inputs \( F \), \( N \) and \( \{C1,\ldots,Cm\} \) are supported; if a cell array is used for \( F \), or a double array for \( N \), its dimensions must match those of the input arguments cell array of cell arrays. The output \( t \) will be a vector with the same number of elements as \( \{C1,\ldots,Cm\} \). Note that because a communicating job has only one task, this form of vectorized task creation is not appropriate for such jobs.

\[
t = \text{createTask}(..., \ 'p1',v1,\ 'p2',v2,\ldots)
\]

adds a task object with the specified property values. For a listing of the valid properties of the created object, see the \texttt{parallel.Task} object reference page. The property name must be in the form of a string, with the value being the appropriate type for that property. The values specified in these property-value pairs override the values in the profile. If an invalid property name or property value is specified, the object will not be created.

\[
t = \text{createTask}(...,\ 'Profile',\ 'ProfileName',\ldots)
\]

creates a task object with the property values specified in the cluster profile \texttt{ProfileName}. For details about defining and applying cluster profiles, see “Clusters and Cluster Profiles” on page 6-14.

## Examples

### Create a Job with One Task

Create a job object.

```matlab
c = parcluster(); % Use default profile
j = createJob(c);
```

Add a task object which generates a 10-by-10 random matrix.

```matlab
t = createTask(j, @rand, 1, \{10,10\});
```
Run the job.

submit(j);

Wait for the job to finish running, and get the output from the task evaluation.

wait(j);
taskoutput = fetchOutputs(j);

Show the 10-by-10 random matrix.

disp(taskoutput{1});

Create a Job with Three Tasks

This example creates a job with three tasks, each of which generates a 10-by-10 random matrix.

c = parcluster(); % Use default profile
j = createJob(c);
t = createTask(j, @rand, 1, {{10,10} {10,10} {10,10}});

Create a Task with Different Property Values

This example creates a task that captures the worker diary, regardless of the setting in the profile.

c = parcluster(); % Use default profile
j = createJob(c);
t = createTask(j, @rand, 1, {10,10}, 'CaptureDiary',true);

See Also
createCommunicatingJob | createJob | findTask | recreate
**delete**

Remove job or task object from cluster and memory

**Syntax**

`delete(obj)`

**Description**

`delete(obj)` removes the job or task object, `obj`, from the local MATLAB session, and removes it from the cluster's `JobStorageLocation`. When the object is deleted, references to it become invalid. Invalid objects should be removed from the workspace with the `clear` command. If multiple references to an object exist in the workspace, deleting one reference to that object invalidates the remaining references to it. These remaining references should be cleared from the workspace with the `clear` command.

When you delete a job object, this also deletes all the task objects contained in that job. Any references to those task objects will also be invalid, and you should clear them from the workspace.

If `obj` is an array of objects and one of the objects cannot be deleted, the other objects in the array are deleted and a warning is returned.

Because its data is lost when you delete an object, **delete** should be used only after you have retrieved all required output data from the affected object.

**Examples**

Create a job object using the default profile, then delete the job:

```matlab
myCluster = parcluster;
j = createJob(myCluster,'Name','myjob');
t = createTask(j,@rand,1,{10});
delete(j);
clear j t
```
Delete all jobs on the cluster identified by the profile `myProfile`:

```matlab
myCluster = parcluster('myProfile');
delete(myCluster.Jobs)
```

**See Also**

`batch` | `createJob` | `createTask` | `findJob` | `findTask` | `wait`
delete (Pool)

Shut down parallel pool

Syntax

delete(poolobj)

Description

delete(poolobj) shuts down the parallel pool associated with the object poolobj, and destroys the communicating job that comprises the pool. Subsequent parallel language features will automatically start a new parallel pool, unless your parallel preferences disable this behavior.

References to the deleted pool object become invalid. Invalid objects should be removed from the workspace with the clear command. If multiple references to an object exist in the workspace, deleting one reference to that object invalidates the remaining references to it. These remaining references should be cleared from the workspace with the clear command.

Examples

Get the current pool and shut it down.

    poolobj = gcp('nocreate');
    delete(poolobj);

See Also

gcp | parpool
demote

Demote job in cluster queue

Syntax

demote(c,job)

Arguments

c Cluster object that contains the job.
job Job object demoted in the job queue.

Description

demote(c,job) demotes the job object job that is queued in the cluster c.

If job is not the last job in the queue, demote exchanges the position of job and the job that follows it in the queue.

Examples

Create and submit multiple jobs to the MATLAB job scheduler (MJS) identified by the default parallel configuration:

c = parcluster();
pause(c) % Prevent submissions from running.

j1 = createJob(c,'Name','Job A');
j2 = createJob(c,'Name','Job B');
j3 = createJob(c,'Name','Job C');
submit(j1);submit(j2);submit(j3);

Demote one of the jobs by one position in the queue:

demote(c,j2)
Examine the new queue sequence:

```matlab
[pjobs, qjobs, rjobs, fjobs] = findJob(c);
get(qjobs, 'Name')

'Job A'
'Job C'
'Job B'
```

**More About**

**Tips**

After a call to `demote` or `promote`, there is no change in the order of job objects contained in the `Jobs` property of the cluster object. To see the scheduled order of execution for jobs in the queue, use the `findJob` function in the form `[pending queued running finished] = findJob(c)`.

**See Also**
createJob | findJob | promote | submit
**diary**

Display or save Command Window text of batch job

**Syntax**

diary(job)
diary(job, 'filename')

**Arguments**

- **job**
  Job from which to view Command Window output text.
- **'filename'**
  File to append with Command Window output text from batch job

**Description**

diary(job) displays the Command Window output from the batch job in the MATLAB Command Window. The Command Window output will be captured only if the batch command included the 'CaptureDiary' argument with a value of true.

diary(job, 'filename') causes the Command Window output from the batch job to be appended to the specified file.

The captured Command Window output includes only the output generated by execution of the task function. Output is not captured from code that runs asynchronously from the task.

**See Also**
diary | batch | load
distributed

Create distributed array from data in client workspace

Syntax

D = distributed(X)

Description

D = distributed(X) creates a distributed array from X. X is an array stored on the MATLAB client workspace, and D is a distributed array stored in parts on the workers of the open parallel pool.

Constructing a distributed array from local data this way is appropriate only if the MATLAB client can store the entirety of X in its memory. To construct large distributed arrays, use one of the constructor methods such as ones(___,'distributed'), zeros(___,'distributed'), etc.

If the input argument is already a distributed array, the result is the same as the input.

Use gather to retrieve the distributed array elements from the pool back to an array in the MATLAB workspace.

Tips

• A distributed array is created on the workers of the existing parallel pool. If no pool exists, distributed will start a new parallel pool, unless the automatic starting of pools is disabled in your parallel preferences. If there is no parallel pool and distributed cannot start one, the result is the full array in the client workspace.

Examples

Create a small array and distribute it:

Nsmall = 50;
D1 = distributed(magic(Nsmall));

Create a large distributed array directly, using a build method:

Nlarge = 1000;
D2 = rand(Nlarge,'distributed');

Retrieve elements of a distributed array, and note where the arrays are located by their Class:

D3 = gather(D2);
whos

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>50x50</td>
<td>733</td>
<td>distributed</td>
</tr>
<tr>
<td>D2</td>
<td>1000x1000</td>
<td>733</td>
<td>distributed</td>
</tr>
<tr>
<td>D3</td>
<td>1000x1000</td>
<td>8000000</td>
<td>double</td>
</tr>
<tr>
<td>Nlarge</td>
<td>1x1</td>
<td>8</td>
<td>double</td>
</tr>
<tr>
<td>Nsmall</td>
<td>1x1</td>
<td>8</td>
<td>double</td>
</tr>
</tbody>
</table>

See Also
codistributed | gather | parpool
distributed.cell

Create distributed cell array

Syntax

D = distributed.cell(n)
D = distributed.cell(m, n, p, ...)
D = distributed.cell([m, n, p, ...])

Description

D = distributed.cell(n) creates an n-by-n distributed array of underlying class cell.

D = distributed.cell(m, n, p, ...) or D = distributed.cell([m, n, p, ...]) create an m-by-n-by-p-by-... distributed array of underlying class cell.

Examples

Create a distributed 1000-by-1000 cell array:

D = distributed.cell(1000)

See Also

cell | codistributed.cell
distributed.spalloc

Allocate space for sparse distributed matrix

Syntax

SD = distributed.spalloc(M,N,nzmax)

Description

SD = distributed.spalloc(M,N,nzmax) creates an M-by-N all-zero sparse distributed matrix with room to hold nzmax nonzeros.

Examples

Allocate space for a 1000-by-1000 sparse distributed matrix with room for up to 2000 nonzero elements, then define several elements:

N = 1000;
SD = distributed.spalloc(N,N,2*N);
for ii=1:N-1
    SD(ii,ii:ii+1) = [ii ii];
end

See Also

spalloc | codistributed.spalloc | sparse
distributed.speye

Create distributed sparse identity matrix

Syntax

$\text{DS} = \text{distributed.speye}(n)$
$\text{DS} = \text{distributed.speye}(m,n)$
$\text{DS} = \text{distributed.speye}([m,n])$

Description

$\text{DS} = \text{distributed.speye}(n)$ creates an $n$-by-$n$ sparse distributed array of underlying class double.

$\text{DS} = \text{distributed.speye}(m,n)$ or $\text{DS} = \text{distributed.speye}([m,n])$ creates an $m$-by-$n$ sparse distributed array of underlying class double.

Examples

Create a distributed 1000-by-1000 sparse identity matrix:

\[
\begin{align*}
N &= 1000; \\
\text{DS} &= \text{distributed.speye}(N);
\end{align*}
\]

See Also

speye | codistributed.speye | eye
**distributed.sprand**

Create distributed sparse array of uniformly distributed pseudo-random values

**Syntax**

\[ DS = distributed.sprand(m,n,density) \]

**Description**

\[ DS = distributed.sprand(m,n,density) \] creates an \( m \)-by-\( n \) sparse distributed array with approximately \( density \cdot m \cdot n \) uniformly distributed nonzero double entries.

**Examples**

Create a 1000-by-1000 sparse distributed double array \( DS \) with approximately 1000 nonzeros.

\[ DS = distributed.sprand(1000,1000,0.001); \]

**More About**

**Tips**

When you use \( sprand \) on the workers in the parallel pool, or in an independent or communicating job (including pmode), each worker sets its random generator seed to a value that depends only on the \texttt{labindex} or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.

**See Also**

\( sprand \) | \texttt{codistributed.sprand} | \texttt{rand} | \texttt{randn} | \texttt{sparse} | \texttt{distributed.speye} | \texttt{distributed.sprandn}
distributed.sprandn

Create distributed sparse array of normally distributed pseudo-random values

Syntax

DS = distributed.sprandn(m,n,density)

Description

DS = distributed.sprandn(m,n,density) creates an m-by-n sparse distributed array with approximately density*m*n normally distributed nonzero double entries.

Examples

Create a 1000-by-1000 sparse distributed double array DS with approximately 1000 nonzeros.

DS = distributed.sprandn(1000,1000,0.001);

More About

Tips

When you use sprandn on the workers in the parallel pool, or in an independent or communicating job (including pmode), each worker sets its random generator seed to a value that depends only on the labindex or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.

See Also

sprandn | codistributed.sprandn | rand | randn | sparse | distributed.speye | distributed.sprand
**dload**

Load distributed arrays and Composite objects from disk

**Syntax**

```matlab
dload

dload filename

dload filename X

dload filename X Y Z ...

dload -scatter ...

[X,Y,Z,...] = dload('filename','X','Y','Z',...)
```

**Description**

**dload** without any arguments retrieves all variables from the binary file named `matlab.mat`. If `matlab.mat` is not available, the command generates an error.

**dload filename** retrieves all variables from a file given a full pathname or a relative partial pathname. If `filename` has no extension, **dload** looks for `filename.mat`. **dload** loads the contents of distributed arrays and Composite objects onto parallel pool workers, other data types are loaded directly into the workspace of the MATLAB client.

**dload filename X** loads only variable `X` from the file. **dload filename X Y Z ...** loads only the specified variables. **dload** does not support wildcards, nor the `-regexp` option. If any requested variable is not present in the file, a warning is issued.

**dload -scatter ...** distributes nondistributed data if possible. If the data cannot be distributed, a warning is issued.

```matlab
[X,Y,Z,...] = dload('filename','X','Y','Z',...)
```

returns the specified variables as separate output arguments (rather than a structure, which the `load` function returns). If any requested variable is not present in the file, an error occurs.

When loading distributed arrays, the data is distributed over the available parallel pool workers using the default distribution scheme. It is not necessary to have the same size pool open when loading as when saving using `dsave`. 

---

11-75
When loading Composite objects, the data is sent to the available parallel pool workers. If the Composite is too large to fit on the current parallel pool, the data is not loaded. If the Composite is smaller than the current parallel pool, a warning is issued.

Examples

Load variables X, Y, and Z from the file fname.mat:

dload fname X Y Z

Use the function form of dload to load distributed arrays P and Q from file fname.mat:

[P,Q] = dload('fname.mat','P','Q');

See Also
load | distributed | Composite | dsave | parpool
dsave

Save workspace distributed arrays and Composite objects to disk

Syntax

dsave

dsave filename

dsave filename X

dsave filename X Y Z

Description

dsave without any arguments creates the binary file named matlab.mat and writes to the file all workspace variables, including distributed arrays and Composite objects. You can retrieve the variable data using dload.

dsave filename saves all workspace variables to the binary file named filename.mat. If you do not specify an extension for filename, it assumes the extension .mat.

dsave filename X saves only variable X to the file.

dsave filename X Y Z saves X, Y, and Z. dsave does not support wildcards, nor the -regexp option.

dsave does not support saving sparse distributed arrays.

Examples

With a parallel pool open, create and save several variables to mydatafile.mat:

D = rand(1000,'distributed'); % Distributed array
C = Composite(); %
C{1} = magic(20); % Data on worker 1 only
X = rand(40); % Client workspace only
dsave mydatafile D C X % Save all three variables
See Also
save | distributed | Composite | dload | parpool
exist

Check whether Composite is defined on workers

Syntax

\[ h = \text{exist}(C, \text{labidx}) \]
\[ h = \text{exist}(C) \]

Description

\[ h = \text{exist}(C, \text{labidx}) \] returns \text{true} if the entry in Composite \( C \) has a defined value on the worker with labindex \( \text{labidx} \), \text{false} otherwise. In the general case where \( \text{labidx} \) is an array, the output \( h \) is an array of the same size as \( \text{labidx} \), and \( h(i) \) indicates whether the Composite entry \( \text{labidx}(i) \) has a defined value.

\[ h = \text{exist}(C) \] is equivalent to \( h = \text{exist}(C, 1:\text{length}(C)) \).

If \( \text{exist}(C, \text{labidx}) \) returns \text{true}, \( C(\text{labidx}) \) does not throw an error, provided that the values of \( C \) on those workers are serializable. The function throws an error if any \( \text{labidx} \) is invalid.

Examples

Define a variable on a random number of workers. Check on which workers the Composite entries are defined, and get all those values:

```matlab
spmd
 if rand() > 0.5
 c = labindex;
 end
end
ind = exist(c);
cvals = c(ind);
```

See Also

Composite
existsOnGPU

Determine if gpuArray or CUDAKernel is available on GPU

Syntax

TF = existsOnGPU(DATA)

Description

TF = existsOnGPU(DATA) returns a logical value indicating whether the gpuArray or CUDAKernel object represented by DATA is still present on the GPU and available from your MATLAB session. The result is false if DATA is no longer valid and cannot be used. Such arrays and kernels are invalidated when the GPU device has been reset with any of the following:

reset(dev) % Where dev is the current gpuDevice
gpuDevice(ix) % Where ix is valid index of current or different device
gpuDevice([]) % With an empty argument (as opposed to no argument)

Examples

Query Existence of gpuArray

Create a gpuArray on the selected GPU device, then reset the device. Query array’s existence and content before and after resetting.

g = gpuDevice(1);
M = gpuArray(magic(4));
M_exists = existsOnGPU(M)

1

M % Display gpuArray

16     2     3    13
5    11    10     8
9     7     6    12
existsOnGPU

4    14    15     1
reset(g);
M_exists = existsOnGPU(M)
    0
M    % Try to display gpuArray
Data no longer exists on the GPU.
clear M

See Also
gpuDevice | gpuArray | parallel.gpu.CUDAKernel | reset
**eye**

Identity matrix

**Syntax**

\[
E = \text{eye}(sz, \text{arraytype})
\]

\[
E = \text{eye}(sz, \text{datatype}, \text{arraytype})
\]

\[
E = \text{eye}(sz,'like',P)
\]

\[
E = \text{eye}(sz, \text{datatype},'like',P)
\]

\[
C = \text{eye}(sz,\text{codist})
\]

\[
C = \text{eye}(sz,\text{datatype},\text{codist})
\]

\[
C = \text{eye}(sz,\text{datatype},'like',P)
\]

**Description**

\(E = \text{eye}(sz,\text{arraytype})\) creates an \text{arraytype} identity matrix with underlying class of double, with ones on the main diagonal and zeros elsewhere.

\(E = \text{eye}(sz,\text{datatype},\text{arraytype})\) creates an \text{arraytype} identity matrix with underlying class of \text{datatype}, with ones on the main diagonal and zeros elsewhere.

The size and type of array are specified by the argument options according to the following table.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sz</td>
<td>(n)</td>
<td>Specifies array size as an (n)-by-(n) matrix.</td>
</tr>
<tr>
<td></td>
<td>(m,n)</td>
<td>Specifies array size as an (m)-by-(n) matrix.</td>
</tr>
<tr>
<td></td>
<td>([m \ n])</td>
<td>Specifies array size as an (m)-by-(n) matrix.</td>
</tr>
<tr>
<td>arraytype</td>
<td>'distributed'</td>
<td>Specifies distributed array.</td>
</tr>
<tr>
<td></td>
<td>'codistributed'</td>
<td>Specifies codistributed array, using the default distribution scheme.</td>
</tr>
<tr>
<td></td>
<td>'gpuArray'</td>
<td>Specifies gpuArray.</td>
</tr>
<tr>
<td>datatype</td>
<td>'double' (default), 'single', 'int8',</td>
<td>Specifies underlying class of the array, i.e., the data type of its elements.</td>
</tr>
</tbody>
</table>
E = eye(sz,'like',P) creates an identity matrix of the same type and underlying class (data type) as array P.

E = eye(sz,datatype,'like',P) creates an identity matrix of the specified underlying class (datatype), and the same type as array P.

C = eye(sz,codist) or C = eye(sz,datatype,codist) creates a codistributed identity matrix of the specified size and underlying class (the default datatype is 'double'). The codistributor object, codist, specifies the distribution scheme for creating the codistributed array. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor constructor without arguments. For example:

spmd
    C = eye(8,codistributor1d());
end

C = eye(sz,___,codist,'noCommunication') specifies that no interworker communication is to be performed when constructing a codistributed array, skipping some error checking steps.

C = eye(sz,___,codist,'like',P) creates a codistributed identity matrix with the specified size, underlying class (datatype), and distribution scheme. If either the datatype or codistributor argument is omitted, the characteristic is acquired from the codistributed array P.

Examples

Create Distributed Identity Matrix

Create a 1000-by-1000 distributed identity matrix of underlying class double:
D = eye(1000,'distributed');

Create Codistributed Identity Matrix

Create a 1000-by-1000 codistributed double identity matrix, distributed by its second
dimension (columns).

\[
\begin{align*}
\text{spmd}(4) \\
&\quad C = \text{eye}(1000, '\text{codistributed}'); \\
\text{end}
\end{align*}
\]

With four workers, each worker contains a 1000-by-250 local piece of \( C \).

Create a 1000-by-1000 codistributed \texttt{uint16} identity matrix, distributed by its columns.

\[
\begin{align*}
\text{spmd}(4) \\
&\quad \text{codist} = \text{codistributor}('1d', 2, 100*[1:numlabs]); \\
&\quad C = \text{eye}(1000, 1000, '\text{uint16}', \text{codist}); \\
\text{end}
\end{align*}
\]

Each worker contains a 100-by-labindex local piece of \( C \).

Create \texttt{gpuArray} Identity Matrix

Create a 1000-by-1000 \texttt{gpuArray} identity matrix of underlying class \texttt{uint32}:

\[
\begin{align*}
G = \text{eye}(1000, '\text{uint32}', '\text{gpuArray}');
\end{align*}
\]

See Also

\texttt{codistributed.speye} | \texttt{distributed.speye} | \texttt{eye} | \texttt{false} | \texttt{Inf} | \texttt{NaN} | \texttt{ones} | \texttt{true} | \texttt{zeros}
false

Array of logical 0 (false)

Syntax

F = false(sz,arraytype)
F = false(sz,'like',P)
C = false(sz,codist)
C = false(sz,___,codist,'noCommunication')
C = false(sz,___,codist,'like',P)

Description

F = false(sz,arraytype) creates a matrix with false values in all elements.

The size and type of array are specified by the argument options according to the following table.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sz</td>
<td>n</td>
<td>Specifies size as an n-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m,n or [m n]</td>
<td>Specifies size as an m-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m,n,...,k or [m n ... k]</td>
<td>Specifies size as an m-by-n-by-...-by-k array.</td>
</tr>
<tr>
<td>arraytype</td>
<td>'distributed'</td>
<td>Specifies distributed array.</td>
</tr>
<tr>
<td></td>
<td>'codistributed'</td>
<td>Specifies codistributed array, using the default distribution scheme.</td>
</tr>
<tr>
<td></td>
<td>'gpuArray'</td>
<td>Specifies gpuArray.</td>
</tr>
</tbody>
</table>

F = false(sz,'like',P) creates an array of false values with the same type as array P.

C = false(sz,codist) creates a codistributed array of false values with the specified size. The codistributor object codist specifies the distribution scheme for creating the codistributed array. For information on constructing codistributor objects,
see the reference pages for `codistributor1d` and `codistributor2dbc`. To use the default distribution scheme, you can specify a codistributor constructor without arguments. For example:

```matlab
spmd
 C = false(8,codistributor1d());
end
```

C = false(sz,___,codist,'noCommunication') specifies that no interworker communication is to be performed when constructing a codistributed array, skipping some error checking steps.

C = false(sz,___,codist,'like',P) creates a codistributed array of false values with the specified size and distribution scheme. If the codistributor argument is omitted, the distribution scheme is taken from the codistributed array P.

### Examples

#### Create Distributed False Matrix

Create a 1000-by-1000 distributed array of false values with underlying class double:

```matlab
D = false(1000,'distributed');
```

#### Create Codistributed False Matrix

Create a 1000-by-1000 codistributed matrix of false values, distributed by its second dimension (columns).

```matlab
spmd(4)
 C = false(1000,'codistributed');
end
```

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed matrix of false values, distributed by its columns.

```matlab
spmd(4)
 codist = codistributor('1d',2,100*[1:numlabs]);
 C = false(1000,1000,codist);
end
```
Each worker contains a 100-by-
labindex local piece of C.

Create gpuArray False Matrix

Create a 1000-by-1000 gpuArray of false:

G = false(1000,'gpuArray');

See Also

eye | false | Inf | NaN | ones | true | zeros
fetchNext

Retrieve next available unread FevalFuture outputs

Syntax

\[
\text{[idx,B1,B2,...,Bn] = fetchNext}(F) \\
\text{[idx,B1,B2,...,Bn] = fetchNext}(F,\text{TIMEOUT})
\]

Description

\[
\text{[idx,B1,B2,...,Bn] = fetchNext}(F) \text{ waits for an unread FevalFuture in the array of futures } F \text{ to finish, and then returns the linear index of that future in array } F \text{ as } \text{idx}, \text{ along with the future's results in } B1,B2,...,Bn. \text{ Before this call, the 'Read' property of the particular future is } \text{false}; \text{ afterward it is } \text{true}.
\]

\[
\text{[idx,B1,B2,...,Bn] = fetchNext}(F,\text{TIMEOUT}) \text{ waits no longer than } \text{TIMEOUT} \text{ seconds for a result to become available. If the timeout expires before any result becomes available, all output arguments are empty.}
\]

If there are no futures in \( F \) whose 'Read' property is \text{false}, then an error is reported. You can check whether there are any unread futures using \text{anyUnread = ~all([F.Read])}.

If the element of \( F \) which has become finished encountered an error during execution, that error will be thrown by \text{fetchNext}. However, that future's 'Read' property is set to \text{true}, so that any subsequent calls to \text{fetchNext} can proceed.

Examples

Request several function evaluations, and update a progress bar while waiting for completion.

\[
N = 100; \\
\text{for } \text{idx} = N:1:1 \\
\quad \% \text{Compute the rank of } N \text{ magic squares} \\
\quad F(\text{idx}) = \text{parfeval}(@\text{rank},1,\text{magic(idx)});
\]
end
% Build a waitbar to track progress
h = waitbar(0,'Waiting for FevalFutures to complete...');
results = zeros(1,N);
for idx = 1:N
    [completedIdx,thisResult] = fetchNext(F);
    % store the result
    results(completedIdx) = thisResult;
    % update waitbar
    waitbar(idx/N,h,sprintf('Latest result: %d',thisResult));
end
delete(h)

More About

Tips

The fetchNext function returns the linear index of the future from its array. If instead, you need the subscript values of a multidimensional array, you can use the ind2sub function to convert the values.

See Also

isequal | fetchOutputs | parfeval | parfevalOnAll | parpool
**fetchOutputs (job)**

Retrieve output arguments from all tasks in job

**Syntax**

```matlab
data = fetchOutputs(job)
```

**Description**

`data = fetchOutputs(job)` retrieves the output arguments contained in the tasks of a finished job. If the job has M tasks, each row of the M-by-N cell array `data` contains the output arguments for the corresponding task in the job. Each row has N elements, where N is the greatest number of output arguments from any one task in the job. The N elements of a row are arrays containing the output arguments from that task. If a task has less than N output arguments, the excess arrays in the row for that task are empty. The order of the rows in `data` is the same as the order of the tasks contained in the job’s `Tasks` property.

Calling `fetchOutputs` does not remove the output data from the location where it is stored. To remove the output data, use the `delete` function to remove individual tasks or entire jobs.

`fetchOutputs` reports an error if the job is not in the 'finished' state, or if one of its tasks encountered an error during execution. If some tasks completed successfully, you can access their output arguments directly from the `OutputArguments` property of the tasks.

**Examples**

Create a job to generate a random matrix:

```matlab
myCluster = parcluster; % Use default profile
j = createJob(myCluster,'Name','myjob');
t = createTask(j,@rand,1,{10});
submit(j);
```
Wait for the job to finish and retrieve the random matrix:

```python
wait(j)
data = fetchOutputs(j);
data{1}
```
**fetchOutputs (FevalFuture)**

Retrieve all output arguments from Future

**Syntax**

\[
[B1, B2, \ldots, Bn] = \text{fetchOutputs}(F) \\
[B1, B2, \ldots, Bn] = \text{fetchOutputs}(F, 'UniformOutput', false)
\]

**Description**

\([B1, B2, \ldots, Bn] = \text{fetchOutputs}(F)\) fetches all outputs of future object \(F\) after first waiting for each element of \(F\) to reach the state 'finished'. An error results if any element of \(F\) has \text{NumOutputArguments} less than the requested number of outputs.

When \(F\) is a vector of FevalFutures, each output argument is formed by concatenating the corresponding output arguments from each future in \(F\). An error results if these outputs cannot be concatenated. To avoid this error, set the 'UniformOutput' option to false.

\([B1, B2, \ldots, Bn] = \text{fetchOutputs}(F, 'UniformOutput', false)\) requests that \text{fetchOutputs} combine the future outputs into cell arrays \(B1, B2, \ldots, Bn\). The outputs of \(F\) can be of any size or type.

After the call to \text{fetchOutputs}, all futures in \(F\) have their 'Read' property set to true. \text{fetchOutputs} returns outputs for all futures in \(F\) regardless of the value of each future's 'Read' property.

**Examples**

Create an FevalFuture, and fetch its outputs.

\[
f = \text{parfeval}(@rand, 1, 3); \\
R = \text{fetchOutputs}(f)
\]

\[
\begin{array}{ccc}
0.5562 & 0.6218 & 0.3897 \\
0.0084 & 0.4399 & 0.2700
\end{array}
\]
0.0048    0.9658    0.8488

Create an FevalFuture vector, and fetch all its outputs.

```matlab
for idx = 1:10
 F(idx) = parfeval(@rand,1,1,10); % One row each future
end
R = fetchOutputs(F); % 10-by-10 concatenated output
```

**See Also**
fetchNext | parfeval | parpool
feval

Evaluate kernel on GPU

Syntax

feval(KERN, x1, ..., xn)
[y1, ..., ym] = feval(KERN, x1, ..., xn)

Description

feval(KERN, x1, ..., xn) evaluates the CUDA kernel KERN with the given arguments x1, ..., xn. The number of input arguments, n, must equal the value of the NumRHSArguments property of KERN, and their types must match the description in the ArgumentTypes property of KERN. The input data can be regular MATLAB data, GPU arrays, or a mixture of the two.

[y1, ..., ym] = feval(KERN, x1, ..., xn) returns multiple output arguments from the evaluation of the kernel. Each output argument corresponds to the value of the non-const pointer inputs to the CUDA kernel after it has executed. The output from feval running a kernel on the GPU is always gpuArray type, even if all the inputs are data from the MATLAB workspace. The number of output arguments, m, must not exceed the value of the MaxNumLHSArguments property of KERN.

Examples

If the CUDA kernel within a CU file has the following signature:
void myKernel(const float * pIn, float * pInOut1, float * pInOut2)

The corresponding kernel object in MATLAB then has the properties:

MaxNumLHSArguments: 2
NumRHSArguments: 3
ArgumentTypes: {'in single vector' ...
 'inout single vector' 'inout single vector'}

You can use feval on this code’s kernel (KERN) with the syntax:
[y1, y2] = feval(KERN, x1, x2, x3)

The three input arguments, x1, x2, and x3, correspond to the three arguments that are passed into the CUDA function. The output arguments, y1 and y2, are gpuArray types, and correspond to the values of pInOut1 and pInOut2 after the CUDA kernel has executed.

See Also
arrayfun | gather | gpuArray | parallel.gpu.CUDAKernel
**findJob**

Find job objects stored in cluster

**Syntax**

```matlab
out = findJob(c)
[pending queued running completed] = findJob(c)
out = findJob(c,'p1',v1,'p2',v2,...)
```

**Arguments**

- `c` : Cluster object in which to find the job.
- `pending` : Array of jobs whose State is pending in cluster `c`.
- `queued` : Array of jobs whose State is queued in cluster `c`.
- `running` : Array of jobs whose State is running in cluster `c`.
- `completed` : Array of jobs that have completed running, i.e., whose State is finished or failed in cluster `c`.
- `out` : Array of jobs found in cluster `c`.
- `p1`, `p2` : Job object properties to match.
- `v1`, `v2` : Values for corresponding object properties.

**Description**

`out = findJob(c)` returns an array, `out`, of all job objects stored in the cluster `c`. Jobs in the array are ordered by the ID property of the jobs, indicating the sequence in which they were created.

`[pending queued running completed] = findJob(c)` returns arrays of all job objects stored in the cluster `c`, by state. Within `pending`, `running`, and `completed`, the jobs are returned in sequence of creation. Jobs in the array `queued` are in the order in which they are queued, with the job at `queued(1)` being the next to execute. The
completed jobs include those that failed. Jobs that are deleted or whose status is unavailable are not returned by this function.

\[
\text{out} = \text{findJob}(c,'p1',v1,'p2',v2,\ldots)
\]
returns an array, \( \text{out} \), of job objects whose property values match those passed as property-value pairs, \( p1, v1, p2, v2, \) etc. The property name must be in the form of a string, with the value being the appropriate type for that property. For a match, the object property value must be exactly the same as specified, including letter case. For example, if a job’s Name property value is MyJob, then \text{findJob} will not find that object while searching for a Name property value of myjob.

**See Also**
createJob | findTask | parcluster | recreate | submit
findTask

Task objects belonging to job object

Syntax

tasks = findTask(j)
[pending running completed] = findTask(j)
tasks = findTask(j,'p1',v1,'p2',v2,...)

Arguments

j          Job object.
tasks      Returned task objects.
pending    Array of tasks in job obj whose State is pending.
running    Array of tasks in job obj whose State is running.
completed  Array of completed tasks in job obj, i.e., those whose State is finished or failed.

p1, p2     Task object properties to match.
v1, v2     Values for corresponding object properties.

Description

tasks = findTask(j) gets a 1-by-N array of task objects belonging to a job object j. Tasks in the array are ordered by the ID property of the tasks, indicating the sequence in which they were created.

[pending running completed] = findTask(j) returns arrays of all task objects stored in the job object j, sorted by state. Within each array (pending, running, and completed), the tasks are returned in sequence of creation.

tasks = findTask(j,'p1',v1,'p2',v2,...) returns an array of task objects belonging to a job object j. The returned task objects will be only those matching the
specified property-value pairs, \( p1, v1, p2, v2 \), etc. The property name must be in the form of a string, with the value being the appropriate type for that property. For a match, the object property value must be exactly the same as specified, including letter case. For example, if a task's `Name` property value is `MyTask`, then `findTask` will not find that object while searching for a `Name` property value of `mytask`.

**Examples**

Create a job object.

```matlab
c = parcluster();
j = createJob(c);
```

Add a task to the job object.

```matlab
createTask(j,@rand,1,{10})
```

Find all task objects now part of job `j`.

```matlab
t = findTask(j)
```

**More About**

**Tips**

If job `j` is contained in a remote service, `findTask` will result in a call to the remote service. This could result in `findTask` taking a long time to complete, depending on the number of tasks retrieved and the network speed. Also, if the remote service is no longer available, an error will be thrown.

**See Also**

`createJob` | `createTask` | `findJob`
for

for-loop over distributed range

Syntax

for variable = drange(colonop)
    statement
    ...
    statement
end

Description

The general format is

for variable = drange(colonop)
    statement
    ...
    statement
end

The colonop is an expression of the form start:increment:finish or start:finish. The default value of increment is 1. The colonop is partitioned by codistributed.colon into numlabs contiguous segments of nearly equal length. Each segment becomes the iterator for a conventional for-loop on an individual worker.

The most important property of the loop body is that each iteration must be independent of the other iterations. Logically, the iterations can be done in any order. No communication with other workers is allowed within the loop body. The functions that perform communication are gop, gcat, gplus, codistributor, codistributed, gather, and redistribute.

It is possible to access portions of codistributed arrays that are local to each worker, but it is not possible to access other portions of codistributed arrays.

The break statement can be used to terminate the loop prematurely.
Examples

Find the rank of magic squares. Access only the local portion of a codistributed array.

```matlab
r = zeros(1, 40, codistributor());
for n = drange(1:40)
 r(n) = rank(magic(n));
end
r = gather(r);
```

Perform Monte Carlo approximation of pi. Each worker is initialized to a different random number state.

```matlab
m = 10000;
for p = drange(1:numlabs)
 z = rand(m,1) + i*rand(m,1);
 c = sum(abs(z) < 1)
end
k = gplus(c)
p = 4*k/(m*numlabs);
```

Attempt to compute Fibonacci numbers. This will not work, because the loop bodies are dependent.

```matlab
f = zeros(1, 50, codistributor());
f(1) = 1;
f(2) = 2;
for n = drange(3:50)
 f(n) = f(n-1) + f(n-2)
end
```

See Also

for | numlabs | parfor
**gather**

Transfer distributed array or gpuArray to local workspace

**Syntax**

\[
X = \text{gather}(A) \\
X = \text{gather}(C, \text{lab})
\]

**Description**

\( X = \text{gather}(A) \) can operate inside an \texttt{spmd} statement, pmode, or communicating job to gather together the elements of a codistributed array, or outside an \texttt{spmd} statement to gather the elements of a distributed array. If you execute this inside an \texttt{spmd} statement, pmode, or communicating job, \( X \) is a replicated array with all the elements of the array on every worker. If you execute this outside an \texttt{spmd} statement, \( X \) is an array in the local workspace, with the elements transferred from the multiple workers.

\( X = \text{gather}(\text{distributed}(X)) \) or \( X = \text{gather}(\text{codistributed}(X)) \) returns the original array \( X \).

\( X = \text{gather}(C, \text{lab}) \) converts a codistributed array \( C \) to a variant array \( X \), such that all of the elements are contained on worker \( \text{lab} \), and \( X \) is a 0-by-0 empty double on all other workers.

For a gpuArray input, \( X = \text{gather}(A) \) transfers the array elements from the GPU to the local workspace.

If the input argument to \texttt{gather} is not a distributed, a codistributed, or a gpuArray, the output is the same as the input.

**Examples**

Distribute a magic square across your workers, then gather the whole matrix onto every worker and then onto the client. This code results in the equivalent of \( M = \text{magic}(n) \) on all workers and the client.
n = 10;
spmd
    C = codistributed(magic(n));
    M = gather(C) % Gather all elements to all workers
end
S = gather(C) % Gather elements to client

Gather all of the elements of C onto worker 1, for operations that cannot be performed across distributed arrays.

n = 10;
spmd
    C = codistributed(magic(n));
    out = gather(C,1);
    if labindex == 1
        % Characteristic sum for this magic square:
        characteristicSum = sum(1:n^2)/n;
        % Ensure that the diagonal sums are equal to the characteristic sum:
        areDiagonalsEqual = isequal ...
            (trace(out),trace(flipud(out)),characteristicSum)
    end
end

Lab 1:
    areDiagonalsEqual = 1

Gather all of the elements from a distributed array D onto the client.

n = 10;
D = distributed(magic(n)); % Distribute array to workers
M = gather(D) % Return array to client

Gather the results of a GPU operation to the MATLAB workspace.

G = gpuArray(rand(1024,1));
F = sqrt(G); % Input and output are both gpuArray
W = gather(G); % Return array to workspace

whos

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1024x1</td>
<td>108</td>
<td>gpuArray</td>
</tr>
<tr>
<td>G</td>
<td>1024x1</td>
<td>108</td>
<td>gpuArray</td>
</tr>
</tbody>
</table>
More About

Tips

Note that `gather` assembles the codistributed or distributed array in the workspaces of all the workers on which it executes, or on the MATLAB client, respectively, but not both. If you are using `gather` within an `spmd` statement, the gathered array is accessible on the client via its corresponding `Composite` object; see “Access Worker Variables with Composites” on page 3-6. If you are running `gather` in a communicating job, you can return the gathered array to the client as an output argument from the task.

As the `gather` function requires communication between all the workers, you cannot gather data from all the workers onto a single worker by placing the function inside a conditional statement such as `if labindex == 1`.

See Also
`arrayfun` | `codistributed` | `bsxfun` | `distributed` | `gpuArray` | `pagefun` | `pmode`
**gcat**

Global concatenation

**Syntax**

```plaintext
Xs = gcat(X)
Xs = gcat(X,dim)
Xs = gcat(X,dim,targetlab)
```

**Description**

- `Xs = gcat(X)` concatenates the variant array `X` from each worker in the second dimension. The result is replicated on all workers.

- `Xs = gcat(X,dim)` concatenates the variant array `X` from each worker in the dimension indicated by `dim`.

- `Xs = gcat(X,dim,targetlab)` performs the reduction, and places the result into `res` only on the worker indicated by `targetlab`. `res` is set to `[ ]` on all other workers.

**Examples**

With four workers,

```plaintext
Xs = gcat(labindex)
```

returns `Xs = [ 1 2 3 4]` on all four workers.

**See Also**

`cat` | `gop` | `labindex` | `numlabs`
**gcp**

Get current parallel pool

**Syntax**

```matlab
p = gcp
p = gcp('nocreate')
```

**Description**

`p = gcp` returns a `parallel.Pool` object representing the current parallel pool. The current pool is where parallel language features execute, such as `parfor`, `spmd`, `distributed`, `Composite`, `parfeval` and `parfevalOnAll`.

If no parallel pool exists, `gcp` starts a new parallel pool and returns a pool object for that, unless automatic pool starts are disabled in your parallel preferences. If no parallel pool exists and automatic pool starts are disabled, `gcp` returns an empty pool object.

`p = gcp('nocreate')` returns the current pool if one exists. If no pool exists, the 'nocreate' option causes `gcp` not to create a pool, regardless of your parallel preferences settings.

**Examples**

**Find Size of Current Pool**

Find the number of workers in the current parallel pool.

```matlab
p = gcp('nocreate'); % If no pool, do not create new one.
if isempty(p)
 poolsize = 0;
else
 poolsize = p.NumWorkers
end
```

**Delete Current Pool**

Use the parallel pool object to delete the current pool.
delete(gcp('nocreate'))

See Also
Composite | delete | distributed | parfeval | parfevalOnAll | parfor | parpool | spmd

Introduced in R2013b
getAttachedFilesFolder

Folder into which AttachedFiles are written

Syntax

folder = getAttachedFilesFolder
folder = getAttachedFilesFolder(FileName)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>folder</td>
<td>Character string indicating location where files from job’s AttachedFiles property are placed</td>
</tr>
<tr>
<td>FileName</td>
<td>Character string specifying all or part of the attached file or folder name</td>
</tr>
</tbody>
</table>

Description

folder = getAttachedFilesFolder returns a string, which is the path to the local folder into which AttachedFiles are written on the worker. This function returns an empty array if it is not called on a MATLAB worker.

folder = getAttachedFilesFolder(FileName) returns the path name to the specified attached folder on the worker, or the folder containing the specified attached file. FileName can match either the full name of the attached file or folder, or on the ending part of the name. Multiple match results return a cell array.

If you have attached a folder, this does not match on file names within that folder.

Suppose you attach the folder 'C:\monday\tuesday\wednesday\thursday', which on the workers is stored in /tmp/MDCS/tp12345. The following table displays the results of various match attempts.

<table>
<thead>
<tr>
<th>Specified Matching String Argument</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>getAttachedFilesFolder('C:\monday')</td>
<td>Empty result, because 'C:\monday' is only the start of the path, and does not include 'thursday'</td>
</tr>
</tbody>
</table>
Specified Matching String Argument | Result
---|---
getAttachedFilesFolder('wednesday') | Empty result, because 'wednesday' is in the middle of the path and does not include 'thursday'
getAttachedFilesFolder('thurs') | Empty result, because 'thurs' is not the ending of the folder name.
getAttachedFilesFolder('thursday') | '/tmp/MDCS/tp12345'
getAttachedFilesFolder('wednesday \thursday') | '/tmp/MDCS/tp12345'

Examples

Attach a folder to a parallel pool, then find its location on the worker to execute one of its files.

```matlab
myPool = parpool;
addAttachedFiles(myPool,'mydir');
spmd
 folder = getAttachedFilesFolder('mydir');
 oldFolder = cd(folder); % Change to that folder
 [OK,output] = system('myExecutable');
 cd(oldFolder); % Change to original folder
end
```

Attach an executable file to a parallel pool, then change to its folder for accessing and processing some data.

```matlab
myPool = parpool;
addAttachedFiles(myPool,'myExecutable');
spmd
 system('myExecutable'); % Now on MATLAB path
 folder = getAttachedFilesFolder('myExecutable');
 oldFolder = cd(folder);
 fid = open('myData.txt'); % Access data file
 % Process fid
 close(fid)
 cd(oldFolder); % Change back to the original folder
end
```
See Also

Functions
addAttachedFiles | getCurrentCluster | getCurrentJob | getCurrentTask | getCurrentWorker
getCodistributor

Codistributor object for existing codistributed array

Syntax

codist = getCodistributor(D)

Description

codist = getCodistributor(D) returns the codistributor object of codistributed array D. Properties of the object are Dimension and Partition for 1-D distribution; and BlockSize, LabGrid, and Orientation for 2-D block cyclic distribution. For any one codistributed array, getCodistributor returns the same values on all workers. The returned codistributor object is complete, and therefore suitable as an input argument for codistributed.build.

Examples

Get the codistributor object for a 1-D codistributed array that uses default distribution on 4 workers:

```matlab
spmd (4)
 I1 = eye(64,codistributor1d());
 codist1 = getCodistributor(I1)
 dim = codist1.Dimension
 partn = codist1.Partition
end
```

Get the codistributor object for a 2-D block cyclic codistributed array that uses default distribution on 4 workers:

```matlab
spmd (4)
 I2 = eye(128,codistributor2dbc());
 codist2 = getCodistributor(I2)
 blocksz = codist2.BlockSize
 partn = codist2.LabGrid
end
```
ornt = codist2.Orientation
end

Demonstrate that these codistributor objects are complete:

spmd (4)
    isComplete(codist1)
    isComplete(codist2)
end

See Also
codistributed | codistributed.build | getLocalPart | redistribute
**getCurrentCluster**

Cluster object that submitted current task

**Syntax**

\[ c = \text{getCurrentCluster} \]

**Arguments**

- \( c \) The cluster object that scheduled the task currently being evaluated by the worker session.

**Description**

\( c = \text{getCurrentCluster} \) returns the `parallel.Cluster` object that has sent the task currently being evaluated by the worker session. Cluster object \( c \) is the Parent of the task’s parent job.

**Examples**

Find the current cluster.

\[
\text{myCluster} = \text{getCurrentCluster};
\]

Get the host on which the cluster is running.

\[
\text{host} = \text{myCluster}.\text{Host};
\]

**More About**

**Tips**

If this function is executed in a MATLAB session that is not a worker, you get an empty result.
See Also
getAttachedFilesFolder | getCurrentJob | getCurrentTask | getCurrentWorker
**get_current_Job**

*Job object whose task is currently being evaluated*

**Syntax**

```matlab
job = getCurrentJob
```

**Arguments**

`job`  
The job object that contains the task currently being evaluated by the worker session.

**Description**

`job = getCurrentJob` returns the `Parallel.Job` object that is the Parent of the task currently being evaluated by the worker session.

**More About**

**Tips**

If the function is executed in a MATLAB session that is not a worker, you get an empty result.

**See Also**

`getAttachedFilesFolder | getCurrentCluster | getCurrentTask | getCurrentWorker`
**getCurrentTask**

Task object currently being evaluated in this worker session

**Syntax**

```matlab
task = getCurrentTask
```

**Arguments**

- **task**
  
  The task object that the worker session is currently evaluating.

**Description**

`task = getCurrentTask` returns the `Parallel.Task` object whose function is currently being evaluated by the MATLAB worker session on the cluster.

**More About**

**Tips**

If the function is executed in a MATLAB session that is not a worker, you get an empty result.

**See Also**

- `getAttachedFilesFolder`
- `getCurrentCluster`
- `getCurrentJob`
- `getCurrentWorker`
getCurrentWorker

Worker object currently running this session

Syntax

worker = getCurrentWorker

Arguments

worker The worker object that is currently evaluating the task that contains this function.

Description

worker = getCurrentWorker returns the Parallel.Worker object representing the MATLAB worker session that is currently evaluating the task function that contains this call.

If the function runs in a MATLAB session that is not a worker, it returns an empty result.

Examples

Find the Host property of a worker that runs a task. The file identifyWorkerHost.m contains the following function code.

```matlab
function localHost = identifyWorkerHost()
 thisworker = getCurrentWorker; % Worker object
 localHost = thisworker.Host; % Host property
end
```

Create a job with a task to execute this function on a worker and return the worker’s host name. This example manually attaches the necessary code file.

c = parcluster();
j = createJob(c);
j.AttachedFiles = {'identifyWorkerHost.m'};
t = createTask(j,@identifyWorkerHost,1,{});
submit(j)
wait(j)
workerhost = fetchOutputs(j)

See Also
getAttachedFilesFolder | getCurrentCluster | getCurrentJob | getCurrentTask
**getDebugLog**

Read output messages from job run in CJS cluster

**Syntax**

```
str = getDebugLog(cluster, job_or_task)
```

**Arguments**

- **str**: Variable to which messages are returned as a string expression.
- **cluster**: Cluster object referring to Microsoft Windows HPC Server (or CCS), Platform LSF, PBS Pro, or TORQUE cluster, created by `parcluster`.
- **job_or_task**: Object identifying job or task whose messages you want.

**Description**

```
str = getDebugLog(cluster, job_or_task) returns any output written to the
standard output or standard error stream by the job or task identified by job_or_task,
being run in the cluster identified by cluster.
```

**Examples**

This example shows how to create and submit a communicating job, and how to retrieve
the job's debug log. Assume that you already have a cluster profile called `My3pCluster`
that defines the properties of the cluster.

```
c = parcluster('My3pCluster');
j = createCommunicatingJob(c);
createTask(j, @labindex, 1, {});
submit(j);
```
getDebugLog(c,j);

See Also
createCommunicatingJob | createJob | createTask | parcluster
getJobClusterData

Get specific user data for job on generic cluster

Syntax

userdata = getJobClusterData(cluster,job)

Arguments

userdata    Information that was previously stored for this job
cluster     Cluster object identifying the generic third-party cluster running the job
job         Job object identifying the job for which to retrieve data

Description

userdata = getJobClusterData(cluster,job) returns data stored for the job
job that was derived from the generic cluster cluster. The information was originally
stored with the function setJobClusterData. For example, it might be useful to store
the third-party scheduler’s external ID for this job, so that the function specified in
GetJobStateFcn can later query the scheduler about the state of the job.

To use this feature, you should call the function setJobClusterData in the submit
function (identified by the IndependentSubmitFcn or CommunicatingSubmitFcn
property) and call getJobClusterData in any of the functions identified by the
properties GetJobStateFcn, DeleteJobFcn, DeleteTaskFcn, CancelJobFcn, or
CancelTaskFcn.

For more information and examples on using these functions and properties, see
“Manage Jobs with Generic Scheduler” on page 7-34.

See Also
setJobClusterData
getJobFolder

Folder on client where jobs are stored

Syntax

joblocation = getJobFolder(cluster,job)

Description

joblocation = getJobFolder(cluster,job) returns the path to the folder on disk where files are stored for the specified job and cluster. This folder is valid only the client MATLAB session, not necessarily the workers. This method exists only on clusters using the generic interface.

See Also

getJobFolderOnCluster | parcluster
**getJobFolderOnCluster**

Folder on cluster where jobs are stored

**Syntax**

joblocation = getJobFolderOnCluster(cluster,job)

**Description**

joblocation = getJobFolderOnCluster(cluster,job) returns the path to the folder on disk where files are stored for the specified job and cluster. This folder is valid only in worker MATLAB sessions. An error results if the HasSharedFilesystem property of the cluster is false. This method exists only on clusters using the generic interface.

**See Also**

getJobFolder | parcluster
getLocalPart

Local portion of codistributed array

Syntax

L = getLocalPart(A)

Description

L = getLocalPart(A) returns the local portion of a codistributed array.

Examples

With four workers,

A = magic(4); %replicated on all workers
D = codistributed(A, codistributor1d(1));
L = getLocalPart(D)

returns

Lab 1: L = [16 2 3 13]
Lab 2: L = [ 5 11 10  8]
Lab 3: L = [ 9  7  6 12]
Lab 4: L = [ 4 14 15  1]

See Also

codistributed | codistributor
getLogLocation

Log location for job or task

Syntax

logfile = getLogLocation(cluster,cj)
logfile = getLogLocation(cluster,it)

Description

logfile = getLogLocation(cluster,cj) for a generic cluster cluster and communicating job cj, returns the location where the log data should be stored for the whole job cj.

logfile = getLogLocation(cluster,it) for a generic cluster cluster and task it of an independent job returns the location where the log data should be stored for the task it.

This function can be useful during submission, to instruct the third-party cluster to put worker output logs in the correct location.

See Also
parcluster
**globalIndices**

Global indices for local part of codistributed array

**Syntax**

```
K = globalIndices(C,dim)
K = globalIndices(C,dim,lab)
[E,F] = globalIndices(C,dim)
[E,F] = globalIndices(C,dim,lab)
K = globalIndices(codist,dim,lab)
[E,F] = globalIndices(codist,dim,lab)
```

**Description**

globalIndices tells you the relationship between indices on a local part and the corresponding index range in a given dimension on the codistributed array. The globalIndices method on a codistributor object allows you to get this relationship without actually creating the array.

`K = globalIndices(C,dim)` or `K = globalIndices(C,dim,lab)` returns a vector K so that `getLocalPart(C) = C(...,K,...)` in the specified dimension `dim` of codistributed array C on the specified worker. If the lab argument is omitted, the default is labindex.

`[E,F] = globalIndices(C,dim)` or `[E,F] = globalIndices(C,dim,lab)` returns two integers E and F so that `getLocalPart(C) = C(...,E:F,...)` of codistributed array C in the specified dimension `dim` on the specified worker. If the lab argument is omitted, the default is labindex.

`K = globalIndices(codist,dim,lab)` is the same as `K = globalIndices(C,dim,lab)`, where codist is the codistributor to be used for C, or `codist = getCodistributor(C)`. This allows you to get the global indices for a codistributed array without having to create the array itself.

`[E,F] = globalIndices(codist,dim,lab)` is the same as `[E,F] = globalIndices(C,dim,lab)`, where codist is the codistributor to be used for C, or `codist = getCodistributor(C)`. This allows you to get the global indices for a codistributed array without having to create the array itself.
Examples

Create a 2-by-22 codistributed array among four workers, and view the global indices on each lab:

```
spmd
 C = zeros(2,22,codistributor1d(2,[6 6 5 5]));
 if labindex == 1
 K = globalIndices(C,2) % returns K = 1:6.
 elseif labindex == 2
 [E,F] = globalIndices(C,2) % returns E = 7, F = 12.
 end
 K = globalIndices(C,2,3) % returns K = 13:17.
 [E,F] = globalIndices(C,2,4) % returns E = 18, F = 22.
end
```

Use `globalIndices` to load data from a file and construct a codistributed array distributed along its columns, i.e., dimension 2. Notice how `globalIndices` makes the code not specific to the number of workers and alleviates you from calculating offsets or partitions.

```
spmd
 siz = [1000,1000];
 codistr = codistributor1d(2,[],siz);

 % Use globalIndices to figure out which columns
 % each worker should load.
 [firstCol,lastCol] = globalIndices(codistr,2);

 % Call user-defined function readRectangleFromFile to
 % load all the values that should go into
 % the local part for this worker.
 labLocalPart = readRectangleFromFile(fileName, ...
 1,siz(1),firstCol,lastCol);

 % With the local part and codistributor,
 % construct the corresponding codistributed array.
 C = codistributed.build(labLocalPart,codistr);
end
```

See Also

getLocalPart | labindex
gop

Global operation across all workers

Syntax

\[
\begin{align*}
\text{res} &= \text{gop}(\text{FUN},x) \\
\text{res} &= \text{gop}(\text{FUN},x,\text{targetlab})
\end{align*}
\]

Arguments

<table>
<thead>
<tr>
<th>FUN</th>
<th>Function to operate across workers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Argument to function F, should be the same variable on all workers, but can have different values.</td>
</tr>
<tr>
<td>res</td>
<td>Variable to hold reduction result.</td>
</tr>
<tr>
<td>targetlab</td>
<td>Lab to which reduction results are returned. This value is returned by that worker's labindex.</td>
</tr>
</tbody>
</table>

Description

\[
\text{res} = \text{gop}(\text{FUN},x)
\]

is the reduction via the function \text{FUN} of the quantities \text{x} from each worker. The result is duplicated on all workers.

\text{FUN} can be a handle to any function, including user-written functions and user-defined anonymous functions. It should accept two arguments of the same type, and return one result of that same type, so it can be used iteratively in the form:

\[
\text{FUN}(\text{FUN}(x_1,x_2),\text{FUN}(x_3,x_4))
\]

The function \text{FUN} should be associative, that is,

\[
\text{FUN}(\text{FUN}(x_1,x_2),x_3) = \text{FUN}(x_1,\text{FUN}(x_2,x_3))
\]

\[
\text{res} = \text{gop}(\text{FUN},x,\text{targetlab})
\]

performs the reduction, and places the result into \text{res} only on the worker indicated by \text{targetlab}. \text{res} is set to \([\ ]\) on all other workers.
Examples

This example shows how to calculate the sum and maximum values for \( x \) among all workers.

\[
p = \\text{parpool('local',4);} \\
x = \\text{Composite();} \\
x[1] = 3; \\
x[2] = 1; \\
x[3] = 4; \\
x[4] = 2; \\
spmd \\
xsum = \\text{gop(@plus,x);} \\
xmax = \\text{gop(@max,x);} \\
end \\
xsum{1} \\
10 \\
xmax{1} \\
4 \\
\]

This example shows how to horizontally concatenate the column vectors of \( x \) from all workers into a matrix. It uses the same 4-worker parallel pool opened by the previous example.

\[
x[1] = [3;30]; \\
x[2] = [1;10]; \\
x[3] = [4;40]; \\
x[4] = [2;20]; \\
spmd \\
res = \\text{gop(@horzcat,x);} \\
end \\
res{1} \\
<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
</table>
| 30| 10| 40| 20| \\
\]

This example shows how to use an anonymous function with \texttt{gop} to join character strings with spaces between them. In this case, the strings are created from each worker’s \texttt{labindex} value.

\[
afun = @(a,b)[a,' ',b] \\
\]
spmd
    res = gop(afun,num2str(labindex));
end
res{1}
1 2 3 4

See Also
labBarrier | labindex | numlabs
gplus

Global addition

Syntax

S = gplus(X)
S = gplus(X,targetlab)

Description

S = gplus(X) returns the addition of the variant array X from each worker. The result S is replicated on all workers.

S = gplus(X,targetlab) performs the addition, and places the result into S only on the worker indicated by targetlab. S is set to [] on all other workers.

Examples

With four workers,
S = gplus(labindex)

calculates S = 1 + 2 + 3 + 4, and returns 10 on all four workers.

See Also

gop | labindex
**gpuArray**

Create array on GPU

**Syntax**

\[ G = \text{gpuArray}(X) \]

**Description**

\[ G = \text{gpuArray}(X) \] copies the numeric array \( X \) to the GPU, and returns a gpuArray object. You can operate on this array by passing its gpuArray to the `feval` method of a CUDA kernel object, or by using one of the methods defined for gpuArray objects in “Establish Arrays on a GPU” on page 9-3.

The MATLAB array \( X \) must be numeric (for example: `single`, `double`, `int8`, etc.) or logical, and the GPU device must have sufficient free memory to store the data.

If the input argument is already a gpuArray, the output is the same as the input.

Use `gather` to retrieve the array from the GPU to the MATLAB workspace.

**Examples**

Transfer a 10-by-10 matrix of random single-precision values to the GPU, then use the GPU to square each element.

\[
X = \text{rand}(10,\text{'single'});
G = \text{gpuArray}(X);
\text{classUnderlying}(G)
\]

`single`

\[ G2 = G .* G; \]
\[ \% \text{Performed on GPU} \]
\[ \text{whos} \ G2 \]
\[ \% \text{Result on GPU} \]

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11-132
Copy the array back to the MATLAB workspace.

G1 = gather(G2);
whos G1

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>10x10</td>
<td>400</td>
<td>single</td>
</tr>
</tbody>
</table>

See Also
arrayfun | bsxfun | existsOnGPU | feval | gather | parallel.gpu.CUDAKernel | reset
gpuDevice

Query or select GPU device

Syntax

D = gpuDevice
D = gpuDevice()
D = gpuDevice(IDX)
gpuDevice([])

Description

D = gpuDevice or D = gpuDevice(), if no device is already selected, selects the default GPU device and returns a GPUDevice object representing that device. If a GPU device is already selected, this returns an object representing that device without clearing it.

D = gpuDevice(IDX) selects the GPU device specified by index IDX. IDX must be in the range of 1 to gpuDeviceCount. A warning or error might occur if the specified GPU device is not supported. This form of the command with a specified index resets the device and clears its memory (even if this device is already currently selected, equivalent to reset); so all workspace variables representing gpuArray or CUDAKernel variables are now invalid, and you should clear them from the workspace or redefine them.

gpuDevice([]), with an empty argument (as opposed to no argument), deselects the GPU device and clears its memory of gpuArray and CUDAKernel variables. This leaves no GPU device selected as the current device.

Examples

Create an object representing the default GPU device.

```
g = gpuDevice;
```

Query the compute capabilities of all available GPU devices.
for ii = 1:gpuDeviceCount
    g = gpuDevice(ii);
    fprintf(1,'Device %i has ComputeCapability %s \n', ... 
            g.Index,g.ComputeCapability)
end

Device 1 has ComputeCapability 3.5
Device 2 has ComputeCapability 2.0

See Also
arrayfun | wait (GPUDevice) | feval | gpuDeviceCount | parallel.gpu.CUDAKernel | reset
gpuDeviceCount

Number of GPU devices present

Syntax

n = gpuDeviceCount

Description

n = gpuDeviceCount returns the number of GPU devices present in your computer.

Examples

Determine how many GPU devices you have available in your computer and examine the properties of each.

n = gpuDeviceCount;
for ii = 1:n
    gpuDevice(ii)
end

See Also

arrayfun | feval | gpuDevice | parallel.gpu.CUDAKernel
gputimeit

Time required to run function on GPU

Syntax

t = gputimeit(F)
t = gputimeit(F,N)

Description

t = gputimeit(F) measures the typical time (in seconds) required to run the function specified by the function handle F. The function handle accepts no external input arguments, but can be defined with input arguments to its internal function call.

t = gputimeit(F,N) calls F to return N output arguments. By default, gputimeit calls the function F with one output argument, or no output arguments if F does not return any output.

Examples

Measure the time to calculate \( \text{sum}(A.' .* B, 1) \) on a GPU, where \( A \) is a 12000-by-400 matrix and \( B \) is 400-by-12000.

\[
\begin{align*}
A &= \text{rand}(12000,400,'\text{gpuArray}') ; \\
B &= \text{rand}(400,12000,'\text{gpuArray}') ; \\
f &= @(A) \text{sum}(A.' .* B, 1) ; \\
t &= \text{gputimeit}(f) \\
0.0026
\end{align*}
\]

Compare the time to run \( \text{svd} \) on a GPU, with one versus three output arguments.

\[
\begin{align*}
X &= \text{rand}(1000,'\text{gpuArray}') ; \\
f &= @(X) \text{svd}(X) ; \\
t3 &= \text{gputimeit}(f,3) \\
1.0622
\end{align*}
\]
t1 = gputimeit(f,1)
0.2933

More About

Tips

gputimeit is preferable to timeit for functions that use the GPU, because it ensures that all operations on the GPU have finished before recording the time and compensates for the overhead. For operations that do not use a GPU, timeit offers greater precision.

Note the following limitations:

- The function F should not call tic or toc.
- You cannot use tic and toc to measure the execution time of gputimeit itself.

See Also

gpuArray | wait
help

Help for toolbox functions in Command Window

Syntax

help class/function

Arguments

class A Parallel Computing Toolbox object class, for example, parallel.cluster, parallel.job, or parallel.task.
function A function or property of the specified class. To see what functions or properties are available for a class, see the methods or properties reference page.

Description

help class/function returns command-line help for the specified function of the given class.

If you do not know the class for the function, use class(obj), where function is of the same class as the object obj.

Examples

Get help on functions or properties from Parallel Computing Toolbox object classes.

help parallel.cluster/createJob
help parallel.job/cancel
help parallel.task/wait

c = parcluster();
j1 = createJob(c);
class(j1)
parallel.job.CJSIndependentJob

help parallel.job/createTask
help parallel.job/AdditionalPaths

See Also
methods
Inf

Array of infinity

Syntax

A = Inf(sz, arraytype)
A = Inf(sz, datatype, arraytype)
A = Inf(sz, 'like', P)
A = Inf(sz, datatype, 'like', P)
C = Inf(sz, codist)
C = Inf(sz, datatype, codist)
C = Inf(sz, __, codist, 'noCommunication')
C = Inf(sz, __, codist, 'like', P)

Description

A = Inf(sz, arraytype) creates a matrix with underlying class of double, with Inf
values in all elements.

A = Inf(sz, datatype, arraytype) creates a matrix with underlying class of
datatype, with Inf values in all elements.

The size and type of array are specified by the argument options according to the
following table.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sz</td>
<td>n</td>
<td>Specifies size as an n-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m, n or [m n]</td>
<td>Specifies size as an m-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m, n, ..., k or [m n ... k]</td>
<td>Specifies size as an m-by-n-by-...-by-k array.</td>
</tr>
<tr>
<td>arraytype</td>
<td>'distributed'</td>
<td>Specifies distributed array.</td>
</tr>
</tbody>
</table>
|             | 'codistributed'    | Specifies codistributed array, using the default
distribution scheme.                             |
A = Inf(sz, 'like', P) creates an array of Inf values with the same type and underlying class (data type) as array P.

A = Inf(sz, datatype, 'like', P) creates an array of Inf values with the specified underlying class (datatype), and the same type as array P.

C = Inf(sz, codist) or C = Inf(sz, datatype, codist) creates a codistributed array of Inf values with the specified size and underlying class (the default datatype is 'double'). The codistributor object codist specifies the distribution scheme for creating the codistributed array. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor constructor without arguments. For example:

spmd
    C = Inf(8, codistributor1d());
end

C = Inf(sz, ___, codist, 'noCommunication') specifies that no interworker communication is to be performed when constructing a codistributed array, skipping some error checking steps.

C = Inf(sz, ___, codist, 'like', P) creates a codistributed array of Inf values with the specified size, underlying class, and distribution scheme. If either the class or codistributor argument is omitted, the characteristic is acquired from the codistributed array P.

Examples

Create Distributed Inf Matrix

Create a 1000-by-1000 distributed array of Inf values with underlying class double:

D = Inf(1000, 'distributed');
Create Codistributed Inf Matrix

Create a 1000-by-1000 codistributed double matrix of Inf\(s\), distributed by its second dimension (columns).

\[
\text{spmd}(4) \\
\quad C = \text{Inf}(1000, '\text{codistributed}'); \\
\text{end}
\]

With four workers, each worker contains a 1000-by-250 local piece of \(C\).

Create a 1000-by-1000 codistributed single matrix of Inf\(s\), distributed by its columns.

\[
\text{spmd}(4) \\
\quad \text{codist} = \text{codistributor}('1d', 2, 100*[1:numlabs]); \\
\quad C = \text{Inf}(1000, 1000, '\text{single}', \text{codist}); \\
\text{end}
\]

Each worker contains a 100-by-\(\text{labindex}\) local piece of \(C\).

Create gpuArray Inf Matrix

Create a 1000-by-1000 gpuArray of Inf\(s\) with underlying class double:

\[
G = \text{Inf}(1000, '\text{double}', '\text{gpuArray}');
\]

See Also

`eye` | `false` | `Inf` | `NaN` | `ones` | `true` | `zeros`
isaUnderlying

True if distributed array's underlying elements are of specified class

Syntax

\[ \text{TF} = \text{isaUnderlying}(D, 'classname') \]

Description

\[ \text{TF} = \text{isaUnderlying}(D, 'classname') \] returns true if the elements of distributed or codistributed array D are either an instance of \textit{classname} or an instance of a class derived from \textit{classname}. \text{isaUnderlying} supports the same values for \textit{classname} as the MATLAB \text{isa} function does.

Examples

\begin{verbatim}
N = 1000;
D_uint8 = ones(1,N,'uint8','distributed');
D_cell = distributed.cell(1,N);
isUint8 = isaUnderlying(D_uint8,'uint8') % returns true
isDouble = isaUnderlying(D_cell,'double') % returns false
\end{verbatim}

See Also

isa
iscodistributed

True for codistributed array

Syntax

tf = iscodistributed(X)

Description

tf = iscodistributed(X) returns true for a codistributed array, or false otherwise. For a description of codistributed arrays, see “Nondistributed Versus Distributed Arrays” on page 5-2.

Examples

With a running parallel pool,

spmd
    L = ones(100,1);
    D = ones(100,1,'codistributed');
    iscodistributed(L) % returns false
    iscodistributed(D) % returns true
end

See Also

isdistributed
isComplete

True if codistributor object is complete

Syntax

\[ tf = \text{isComplete}(\text{codist}) \]

Description

\[ tf = \text{isComplete}(\text{codist}) \] returns true if \text{codist} is a completely defined codistributor, or false otherwise. For a description of codistributed arrays, see “Nondistributed Versus Distributed Arrays” on page 5-2.

See Also

codistributed | codistributor
isdistributed

True for distributed array

Syntax

tf = isdistributed(X)

Description

tf = isdistributed(X) returns true for a distributed array, or false otherwise. For a description of a distributed array, see “Nondistributed Versus Distributed Arrays” on page 5-2.

Examples

With a running parallel pool,

L = ones(100,1);
D = ones(100,1,'distributed');
isdistributed(L) % returns false
isdistributed(D) % returns true

See Also

iscodistributed
isequal

True if clusters have same property values

Syntax

isequal(C1,C2)
isequal(C1,C2,C3,...)

Description

isequal(C1,C2) returns logical 1 (true) if clusters C1 and C2 have the same property values, or logical 0 (false) otherwise.

isequal(C1,C2,C3,...) returns true if all clusters are equal. isequal can operate on arrays of clusters. In this case, the arrays are compared element by element.

When comparing clusters, isequal does not compare the contents of the clusters’ Jobs property.

Examples

Compare clusters after some properties are modified.

c1 = parcluster('local');
c1.NumWorkers = 2; % Modify cluster
c1.saveAsProfile('local2') % Create new profile
c2 = parcluster('local2'); % Make cluster from new profile
isequal(c1,c2)

1

c0 = parcluster('local') % Use original profile
isequal(c0,c1)

0

See Also
parcluster
isequal (FevalFuture)

True if futures have same ID

Syntax

eq = isequal(F1,F2)

Description

eq = isequal(F1,F2) returns logical 1 (true) if futures F1 and F2 have the same ID property value, or logical 0 (false) otherwise.

Examples

Compare future object in workspace to queued future object.

p = parpool('local',2);
q = p.FevalQueue;
Fp = parfevalOnAll(p,@pause,0,30);
F1 = parfeval(p,@magic,1,10);
F2 = q.QueuedFutures;
isequal(F1,F2)

1

See Also

fetchOutputs | cancel | fetchNext | parfeval | wait
isreplicated

True for replicated array

Syntax

tf = isreplicated(X)

Description

tf = isreplicated(X) returns true for a replicated array, or false otherwise. For a description of a replicated array, see “Nondistributed Versus Distributed Arrays” on page 5-2. isreplicated also returns true for a Composite X if all its elements are identical.

Examples

With an open parallel pool,

spmd
    A = magic(3);
    t = isreplicated(A) % returns t = true
    B = magic(labindex);
    f = isreplicated(B) % returns f = false
end

More About

Tips

isreplicated(X) requires checking for equality of the array X across all workers. This might require extensive communication and time. isreplicated is most useful for debugging or error checking small arrays. A codistributed array is not replicated.

See Also
iscodistributed | isdistributed
jobStartup

File for user-defined options to run when job starts

Syntax

jobStartup(job)

Arguments

job The job for which this startup is being executed.

Description

jobStartup(job) runs automatically on a worker the first time that worker evaluates a task for a particular job. You do not call this function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the jobStartup.m file to define job initialization actions on the worker. The worker looks for jobStartup.m in the following order, executing the one it finds first:

1 Included in the job’s AttachedFiles property.
2 In a folder included in the job’s AdditionalPaths property.
3 In the worker’s MATLAB installation at the location

matlabroot/toolbox/distcomp/user/jobStartup.m

To create a version of jobStartup.m for AttachedFiles or AdditionalPaths, copy the provided file and modify it as required. For further details on jobStartup and its implementation, see the text in the installed jobStartup.m file.

See Also

poolStartup | taskFinish | taskStartup
labBarrier

Block execution until all workers reach this call

Syntax

labBarrier

Description

labBarrier blocks execution of a parallel algorithm until all workers have reached the call to labBarrier. This is useful for coordinating access to shared resources such as file I/O.

Examples

Synchronize Workers for Timing

When timing code execution on the workers, use labBarrier to ensure all workers are synchronized and start their timed work together.

labBarrier;
tic
    A = rand(1,1e7,'codistributed');
distTime = toc;

See Also

labBroadcast | labReceive | labSend | labSendReceive
labBroadcast

Send data to all workers or receive data sent to all workers

Syntax

shared_data = labBroadcast(srcWkrIdx,data)
shared_data = labBroadcast(srcWkrIdx)

Arguments

srcWkrIdx  The labindex of the worker sending the broadcast.
data       The data being broadcast. This argument is required only for the worker that is broadcasting. The absence of this argument indicates that a worker is receiving.

shared_data  The broadcast data as it is received on all other workers.

Description

shared_data = labBroadcast(srcWkrIdx,data) sends the specified data to all executing workers. The data is broadcast from the worker with labindex == srcWkrIdx, and is received by all other workers.

shared_data = labBroadcast(srcWkrIdx) receives on each executing worker the specified shared_data that was sent from the worker whose labindex is srcWkrIdx.

If labindex is not srcWkrIdx, then you do not include the data argument. This indicates that the function is to receive data, not broadcast it. The received data, shared_data, is identical on all workers.

This function blocks execution until the worker’s involvement in the collective broadcast operation is complete. Because some workers may complete their call to labBroadcast before others have started, use labBarrier if you need to guarantee that all workers are at the same point in a program.
Examples

In this case, the broadcaster is the worker whose labindex is 1.

```matlab
srcWkrIdx = 1;
if labindex == srcWkrIdx
 data = randn(10);
 shared_data = labBroadcast(srcWkrIdx,data);
else
 shared_data = labBroadcast(srcWkrIdx);
end
```

See Also
labBarrier | labindex | labSendReceive
**labindex**

Index of this worker

**Syntax**

```
id = labindex
```

**Description**

`id = labindex` returns the index of the worker currently executing the function. `labindex` is assigned to each worker when a job begins execution, and applies only for the duration of that job. The value of `labindex` spans from 1 to `n`, where `n` is the number of workers running the current job, defined by `numlabs`.

**Examples**

View `labindex` in `spmd` blocks and `parfor`-loops.

```
p = parpool('local',2);
spmd
 labindex
end
Lab 1:
 1
Lab 2:
 2
```

Using the same two-worker pool, `p`:

```
parfor a=1:4
 [a,labindex]
end
ans =
 3 1
```
\begin{verbatim}
ans =
    2     1
ans =
    1     1
ans =
    4     1
\end{verbatim}

More About

Tips

In an \texttt{spmd} block, because you have access to all workers individually and control what gets executed on them, each worker has a unique \texttt{labindex}.

However, inside a \texttt{parfor}-loop, \texttt{labindex} always returns a value of 1 on all workers in all iterations.

See Also

labSendReceive | numlabs
**labProbe**

Test to see if messages are ready to be received from other worker.

**Syntax**

```matlab
isDataAvail = labProbe
isDataAvail = labProbe(srcWkrIdx)
isDataAvail = labProbe('any',tag)
isDataAvail = labProbe(srcWkrIdx,tag)
[isDataAvail,srcWkrIdx,tag] = labProbe
```

**Arguments**

- `srcWkrIdx`  
  labindex of a particular worker from which to test for a message.
- `tag`  
  Tag defined by the sending worker’s `labSend` function to identify particular data.
- `'any'`  
  String to indicate that all workers should be tested for a message.
- `isDataAvail`  
  Logical indicating if a message is ready to be received.

**Description**

`isDataAvail = labProbe` returns a logical value indicating whether any data is available for this worker to receive with the `labReceive` function.

`isDataAvail = labProbe(srcWkrIdx)` tests for a message only from the specified worker.

`isDataAvail = labProbe('any',tag)` tests only for a message with the specified tag, from any worker.

`isDataAvail = labProbe(srcWkrIdx,tag)` tests for a message from the specified worker and tag.
[isDataAvail, srcWkrIdx, tag] = labProbe returns labindex of the workers and tags of ready messages. If no data is available, srcWkrIdx and tag are returned as [].

See Also
labindex | labReceive | labSend | labSendReceive
labReceive

Receive data from another worker

Syntax

data = labReceive
data = labReceive(srcWkrIdx)
data = labReceive('any',tag)
data = labReceive(srcWkrIdx,tag)
[data,srcWkrIdx,tag] = labReceive

Arguments

srcWkrIdx      labindex of a particular worker from which to receive data.
tag            Tag defined by the sending worker's labSend function to identify particular data.
'any'          String to indicate that data can come from any worker.
data            Data sent by the sending worker's labSend function.

Description

data = labReceive receives data from any worker with any tag.
data = labReceive(srcWkrIdx) receives data from the specified worker with any tag.
data = labReceive('any',tag) receives data from any worker with the specified tag.
data = labReceive(srcWkrIdx,tag) receives data from only the specified worker with the specified tag.
[data,srcWkrIdx,tag] = labReceive returns the source worker labindex and tag with the data.
More About

Tips

This function blocks execution in the worker until the corresponding call to `labSend` occurs in the sending worker.

See Also

`labBarrier` | `labindex` | `labProbe` | `labSend` | `labSendReceive`
labSend

Send data to another worker

Syntax

labSend(data,rcvWkrIdx)
labSend(data,rcvWkrIdx,tag)

Arguments

data          Data sent to the other workers; any MATLAB data type.
rcvWkrIdx     labindex of receiving worker or workers.
tag          Nonnegative integer to identify data.

Description

labSend(data,rcvWkrIdx) sends the data to the specified destination. data can be any MATLAB data type. rcvWkrIdx identifies the labindex of the receiving worker, and must be either a scalar or a vector of integers between 1 and numlabs; it cannot be labindex of the current (sending) worker.

labSend(data,rcvWkrIdx,tag) sends the data to the specified destination with the specified tag value. tag can be any integer from 0 to 32767, with a default of 0.

More About

Tips

This function might or might not return before the corresponding labReceive completes in the receiving worker.

See Also

labBarrier | labindex | labProbe | labReceive | labSendReceive | numlabs
**labSendReceive**

Simultaneously send data to and receive data from another worker

**Syntax**

\[
\text{dataReceived} = \text{labSendReceive}(\text{rcvWkrIdx, srcWkrIdx, dataSent}) \\
\text{dataReceived} = \text{labSendReceive}(\text{rcvWkrIdx, srcWkrIdx, dataSent, tag})
\]

**Arguments**

- **dataSent**  
  Data on the sending worker that is sent to the receiving worker; any MATLAB data type.
- **dataReceived**  
  Data accepted on the receiving worker.
- **rcvWkrIdx**  
  labindex of the receiving worker to which data is sent.
- **srcWkrIdx**  
  labindex of the source worker from which data is sent.
- **tag**  
  Nonnegative integer to identify data.

**Description**

\[
\text{dataReceived} = \text{labSendReceive}(\text{rcvWkrIdx, srcWkrIdx, dataSent}) \text{ sends dataSent to the worker whose labindex is rcvWkrIdx, and receives dataReceived from the worker whose labindex is srcWkrIdx. The values for arguments rcvWkrIdx and srcWkrIdx must be scalars. This function is conceptually equivalent to the following sequence of calls:}
\]

\[
\text{labSend(dataSent, rcvWkrIdx);} \\
\text{dataReceived = labReceive(srcWkrIdx);}
\]

with the important exception that both the sending and receiving of data happens concurrently. This can eliminate deadlocks that might otherwise occur if the equivalent call to labSend would block.

If rcvWkrIdx is an empty array, labSendReceive does not send data, but only receives. If srcWkrIdx is an empty array, labSendReceive does not receive data, but only sends.
dataReceived = labSendReceive(rcvWkrIdx, srcWkrIdx, dataSent, tag) uses the specified tag for the communication. tag can be any integer from 0 to 32767.

Examples

Create a unique set of data on each worker, and transfer each worker’s data one worker to the right (to the next higher labindex).

First use the magic function to create a unique value for the variant array mydata on each worker.

mydata = magic(labindex)

Lab 1:
    mydata =
        1
Lab 2:
    mydata =
        1  3
        4  2
Lab 3:
    mydata =
        8  1  6
        3  5  7
        4  9  2

Define the worker on either side, so that each worker will receive data from the worker on its “left,” while sending data to the worker on its “right,” cycling data from the end worker back to the beginning worker.

rcvWkrIdx = mod(labindex, numlabs) + 1; % one worker to the right
srcWkrIdx = mod(labindex - 2, numlabs) + 1; % one worker to the left

Transfer the data, sending each worker’s mydata into the next worker’s otherdata variable, wrapping the third worker’s data back to the first worker.

otherdata = labSendReceive(rcvWkrIdx, srcWkrIdx, dataSent, tag)
Lab 2:
otherdata = 
    1
Lab 3:
otherdata = 
    1 3
    4 2

Transfer data to the next worker without wrapping data from the last worker to the first worker.

if labindex < numlabs; rcvWkrIdx = labindex + 1; else rcvWkrIdx = []; end;
if labindex > 1; srcWkrIdx = labindex - 1; else srcWkrIdx = []; end;
otherdata = labSendReceive(rcvWkrIdx,srcWkrIdx,mydata)

Lab 1:
otherdata = 
    []
Lab 2:
otherdata = 
    1
Lab 3:
otherdata = 
    1 3
    4 2

See Also
labBarrier | labindex | labProbe | labReceive | labSend | numlabs
length

Length of object array

Syntax

length(obj)

Arguments

obj An object or an array of objects.

Description

length(obj) returns the length of obj. It is equivalent to the command max(size(obj)).

Examples

Examine how many tasks are in the job j1.

length(j1.Tasks)

ans =
  9

See Also

size
**listAutoAttachedFiles**

List of files automatically attached to job, task, or parallel pool

**Syntax**

```matlab
listAutoAttachedFiles(obj)
```

**Description**

`listAutoAttachedFiles(obj)` performs a dependency analysis on all the task functions, or on the batch job script or function. Then it displays a list of the code files that are already or going to be automatically attached to the job or task object `obj`.

If `obj` is a parallel pool, the output lists the files that have already been attached to the parallel pool following an earlier dependency analysis. The dependency analysis runs if a `parfor` or `spmd` block errors due to an undefined function. At that point any files, functions, or scripts needed by the `parfor` or `spmd` block are attached if possible.

**Examples**

**Automatically Attach Files via Cluster Profile**

Employ a cluster profile to automatically attach code files to a job. Set the `AutoAttachFiles` property for a job in the cluster's profile. If this property value is true, then all jobs you create on that cluster with this profile will have the necessary code files automatically attached. This example assumes that the cluster profile `myAutoCluster` has that setting.

Create batch job, applying your cluster.

```matlab
obj = batch(myScript,'profile','myAutoCluster');
```

Verify attached files by viewing list.
Automatically Attach Files Programmatically

Programmatically set a job to automatically attach code files, and then view a list of those files for one of the tasks in the job.

c = parcluster(); % Use default profile
j = createJob(c); j.AutoAttachFiles = true;
obj = createTask(j,myFun,OutNum,ArgCell);
listAutoAttachedFiles(obj) % View attached list

The files returned in the output listing are those that analysis has determined to be required for the workers to evaluate the function myFun, and which automatically attach to the job.

Input Arguments

**obj — Job, task, or pool to which files automatically attach**

job object | task object | parallel pool object

Job, task, or pool to which code files are automatically attached, specified as a parallel.Job, parallel.Task, or parallel.Pool object. The AutoAttachFiles property of the job object must be true; if the input is a task object, then this applies to its parent job object.

Example: obj = createJob(cluster);
Example: obj = gcp

More About

- “Create and Modify Cluster Profiles” on page 6-17

See Also

batch | createCommunicatingJob | createJob | createTask | parcluster | parpool

Introduced in R2013a
load

Load workspace variables from batch job

Syntax

load(job)
load(job,'X')
load(job,'X','Y','Z*')
load(job,'-regexp','PAT1','PAT2')
S = load(job ...)

Arguments

job Job from which to load workspace variables.
'X', 'Y', 'Z*' Variables to load from the job. Wildcards allow pattern matching in MAT-file style.
'-regexp' Indication to use regular expression pattern matching.
S Struct containing the variables after loading.

Description

load(job) retrieves all variables from a batch job and assigns them into the current workspace. load throws an error if the batch runs a function (instead of a script), the job is not finished, or the job encountered an error while running.

load(job,'X') loads only the variable named X from the job.

load(job,'X','Y','Z*') loads only the specified variables. The wildcard '*' loads variables that match a pattern (MAT-file only).

load(job,'-regexp','PAT1','PAT2') can be used to load all variables matching the specified patterns using regular expressions. For more information on using regular expressions, type doc regexp at the command prompt.
S = load(job ...) returns the contents of job into variable S, which is a struct containing fields matching the variables retrieved.

**Examples**

Run a batch job and load its results into your client workspace.

```matlab
j = batch('myScript');
wait(j)
load(j)
```

Load only variables whose names start with 'a'.

```matlab
load(job,'a*')
```

Load only variables whose names contain any digits.

```matlab
load(job,'-regexp','\d')
```

**See Also**

batch | fetchOutputs
logout
Log out of MJS cluster

Syntax
logout(c)

Description
logout(c) logs you out of the MJS cluster specified by cluster object c. Any subsequent call to a privileged action requires you to re-authenticate with a valid password. Logging out might be useful when you are finished working on a shared machine.

See Also
changePassword
mapreducer

Define parallel execution environment for mapreduce

mapreducer is the execution configuration function for mapreduce. This function specifies where mapreduce execution takes place. With Parallel Computing Toolbox, you can expand the execution environment to include various compute clusters.

Syntax

mapreducer
mapreducer(0)
mapreducer(poolobj)
mapreducer(hcluster)
mapreducer(mr)
mr = mapreducer(___)
mr = mapreducer(___, 'ObjectVisibility', 'Off')

Description

mapreducer specifies the default global execution environment for mapreduce.

If you have Parallel Computing Toolbox installed, and your default cluster profile specifies a local cluster, then mapreducer also opens a parallel pool so that mapreduce can distribute mapper and reducer tasks to the pool workers.

You can set your parallel preferences so that a pool does not automatically open. In this case, you must explicitly start a pool if you want to use parallel resources. See “Parallel Preferences” on page 6-12.

mapreducer(0) specifies that mapreduce run in the MATLAB client session without using any parallel resources.

mapreducer(poolobj) specifies a cluster for parallel execution of mapreduce. poolobj is a parallel.Pool object. The default pool is the current pool that is returned or opened by gcp.
mapreducer(hcluster) specifies a Hadoop cluster for parallel execution of mapreduce. hcluster is a parallel.cluster.Hadoop object.

mapreducer(mr) sets the global execution environment for mapreduce using a previously created MapReducer object, mr, if its ObjectVisibility property is 'On'.

mr = mapreducer(__) returns a MapReducer object to specify the execution environment. You can define several MapReducer objects, allowing you to swap execution environments by passing one as an input argument to mapreduce.

mr = mapreducer(__,'ObjectVisibility','Off') hides the visibility of the MapReducer object, mr, using any of the previous syntaxes. Use this syntax to create new MapReducer objects without affecting the global execution environment of mapreduce.

If this object’s ObjectVisibility property is 'On' (the default), mr defines the default global execution environment for mapreduce. If the ObjectVisibility property is 'Off', you can pass mr as an input argument to mapreduce to explicitly specify the execution environment for that particular call.

Examples
• “Run mapreduce on a Parallel Pool” on page 6-57
• “Run mapreduce on a Hadoop Cluster” on page 6-61

Input Arguments

poolobj — Pool for parallel execution
gcp (default) | parallel.Pool object

Pool for parallel execution, specified as a parallel.Pool object.

Example: p = gcp

hcluster — Hadoop cluster for parallel execution
parallel.cluster.Hadoop object

Hadoop cluster for parallel execution, specified as a parallel.cluster.Hadoop object.

Example: hcluster = parallel.cluster.Hadoop
Output Arguments

mr — Execution environment for mapreduce
MapReducer object

Execution environment for mapreduce, returned as a MapReducer object.

See Also

gcmr | gcp | mapreduce | parallel.cluster.Hadoop

Introduced in R2014b
methods

List functions of object class

Syntax

methods(obj)
out = methods(obj)

Arguments

obj An object or an array of objects.
out Cell array of strings.

Description

methods(obj) returns the names of all methods for the class of which obj is an instance.

out = methods(obj) returns the names of the methods as a cell array of strings.

Examples

Create cluster, job, and task objects, and examine what methods are available for each.

c = parcluster();
methods(c)

j1 = createJob(c);
methods(j1)

t1 = createTask(j1,@rand,1,{3});
methods(t1)
See Also
help
**mexcuda**

Compile MEX-function for GPU computation

**Syntax**

mexcuda filenames
mexcuda option1 ... optionN filenames

**Description**

mexcuda filenames compiles and links source files into a shared library called a MEX-file, executable from within MATLAB. mexcuda is an extension of the MATLAB mex function. It compiles MEX-files written using the CUDA C++ framework with NVIDIA’s nvcc compiler, allowing the files to define and launch GPU kernels. In addition, it exposes the GPU MEX API to allow the MEX-file to read and write gpuArrays.

mexcuda option1 ... optionN filenames builds with the specified build options. The option1 ... optionN arguments supplement or override the default mexcuda build configuration.

**Examples**

**Compile Simple MEX-Function**

Compile a simple MEX-function to create the function myMexFunction from a CUDA C++ source file.

mexcuda myMexFunction.cu

An example source file is available at matlabroot/toolbox/distcomp/gpu/extern/src/mex/mexGPUExample.cu.

**Display Detailed Build and Troubleshooting Information**

Use verbose mode to display the compile and link commands and other information useful for troubleshooting.
mexcuda -v myMexFunction.cu

**Compile and Link Multiple Source Files**

Compile and link multiple source files with one command.

mexcuda myMexFunction.cu otherSource1.cpp otherSource2.cpp

**Compile and Link in Two Stages**

First compile, then link to create a function.

mexcuda -c myMexFunction.cu
mexcuda myMexFunction.obj

The first line compiles to `myMexFunction.obj` (Windows) or `myMexFunction.o` (UNIX), and the second links to create the function `myMexFunction`.

**Compile with Dynamic Parallelism**

Compile code that uses dynamic parallelism, defining kernels that launch other kernels.

mexcuda -dynamic myMexFunction.cu

**Link to Third-Party Library**

Compile a MEX-function that makes use of the CUDA image primitives library, `npp`, which is installed at `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0\lib\x64\nppi.lib`.

mexcuda '-LC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0\lib\x64' -lnppi myMexFunction.cu

- Accessing Advanced CUDA Features Using MEX

**Input Arguments**

**filenames** — One or more file names

string

One or more file names, including name and file extension, specified as a string. If the file is not in the current folder, specify the full path to the file. File names can be any combination of:
• C or C++ language source files
• object files
• library files

The first source code file listed in filenames is the name of the binary MEX-file. To override this naming convention, use the '-output' option.

Data Types: char

**option1 ... optionN — One or more build options**
strings corresponding to valid option flags

One or more build options, specified as one of these values. Options can appear in any order on any platform, except where indicated.

In addition to most options available for the mex function, these options are supported:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dynamic</td>
<td>Dynamic parallelism: compiles MEX-files that define kernels that launch other kernels.</td>
</tr>
<tr>
<td>-G</td>
<td>Generate debug information for device code. This makes it possible to step through kernel code line by line in one of NVIDIA’s debugging applications (NSight or cuda-gdb). To enable debugging of host code use -g.</td>
</tr>
</tbody>
</table>

All other mex function options are supported, except for the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>-compatibleArrayDims</td>
<td>Use of -largeArrayDims is implicit, and cannot be overridden.</td>
</tr>
</tbody>
</table>

**More About**

• “Run MEX-Functions Containing CUDA Code” on page 9-31

**See Also**
mex
Introduced in R2015b
mpiLibConf

Location of MPI implementation

Syntax

[primaryLib,extras] = mpiLibConf

Arguments

primaryLib  MPI implementation library used by a communicating job.
extras      Cell array of other required library names.

Description

[primaryLib,extras] = mpiLibConf returns the MPI implementation library to be used by a communicating job. primaryLib is the name of the shared library file containing the MPI entry points. extras is a cell array of other library names required by the MPI library.

To supply an alternative MPI implementation, create a file named mpiLibConf.m, and place it on the MATLAB path. The recommended location is matlabroot/toolbox/distcomp/user. Your mpiLibConf.m file must be higher on the cluster workers' path than matlabroot/toolbox/distcomp/mpi. (Sending mpiLibConf.m as a file dependency for this purpose does not work.) After your mpiLibConf.m file is in place, update the toolbox path caching with the following command in MATLAB:

rehash toolboxcache

Examples

Use the mpiLibConf function to view the current MPI implementation library:

mpiLibConf
More About

Tips

Under all circumstances, the MPI library must support all MPI-1 functions. Additionally, the MPI library must support null arguments to MPI_Init as defined in section 4.2 of the MPI-2 standard. The library must also use an mpi.h header file that is fully compatible with MPICH2.

When used with the MATLAB job scheduler or the local cluster, the MPI library must support the following additional MPI-2 functions:

• MPI_Open_port
• MPI_Comm_accept
• MPI_Comm_connect

When used with any third-party scheduler, it is important to launch the workers using the version of mpiexec corresponding to the MPI library being used. Also, you might need to launch the corresponding process management daemons on the cluster before invoking mpiexec.

• “Use Different MPI Builds on UNIX Systems”
• “Toolbox Path Caching in MATLAB”

See Also
rehash
mpiprofile
Profile parallel communication and execution times

Syntax

mpiprofile
mpiprofile on <options>
mpiprofile off
mpiprofile resume
mpiprofile clear
mpiprofile status
mpiprofile reset
mpiprofile info
mpiprofile viewer
mpiprofile('viewer',<profinfoarray>)

Description

mpiprofile enables or disables the parallel profiler data collection on a MATLAB worker running a communicating job. mpiprofile aggregates statistics on execution time and communication times. The statistics are collected in a manner similar to running the profile command on each MATLAB worker. By default, the parallel profiling extensions include array fields that collect information on communication with each of the other workers. This command in general should be executed in pmode or as part of a task in a communicating job.

mpiprofile on <options> starts the parallel profiler and clears previously recorded profile statistics.

mpiprofile takes the following options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-detail mmex</td>
<td>This option specifies the set of functions for which profiling statistics are gathered. -detail mmex (the default) records information about functions, local functions, and MEX-functions. -detail builtin</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>additionally records information about built-in functions such as <code>eig</code> or <code>labReceive</code>.</td>
</tr>
<tr>
<td><code>-messagedetail default</code></td>
<td>This option specifies the detail at which communication information is stored.</td>
</tr>
<tr>
<td><code>-messagedetail simplified</code></td>
<td><code>-messagedetail default</code> collects information on a per-lab instance.</td>
</tr>
<tr>
<td></td>
<td><code>-messagedetail simplified</code> turns off collection for *PerLab data fields, which reduces the profiling overhead. If you have a very large cluster, you might want to use this option; however, you will not get all the detailed inter-lab communication plots in the viewer. For information about the structure of returned data, see <code>mpiprofile info</code> below.</td>
</tr>
<tr>
<td><code>-history</code></td>
<td><code>mpiprofile</code> supports these options in the same way as the standard <code>profile</code>.</td>
</tr>
<tr>
<td><code>-nohistory</code></td>
<td>No other <code>profile</code> options are supported by <code>mpiprofile</code>. These three options have no effect on the data displayed by <code>mpiprofile viewer</code>.</td>
</tr>
<tr>
<td><code>-historysize &lt;size&gt;</code></td>
<td></td>
</tr>
</tbody>
</table>

`mpiprofile off` stops the parallel profiler. To reset the state of the profiler and disable collecting communication information, you should also call `mpiprofile reset`.

`mpiprofile resume` restarts the profiler without clearing previously recorded function statistics. This works only in pmode or in the same MATLAB worker session.

`mpiprofile clear` clears the profile information.

`mpiprofile status` returns a valid status when it runs on the worker.

`mpiprofile reset` turns off the parallel profiler and resets the data collection back to the standard profiler. If you do not call `reset`, subsequent profile commands will collect MPI information.
mpiprofile info returns a profiling data structure with additional fields to the one provided by the standard profile info in the FunctionTable entry. All these fields are recorded on a per-function and per-line basis, except for the *PerLab fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BytesSent</td>
<td>Records the quantity of data sent</td>
</tr>
<tr>
<td>BytesReceived</td>
<td>Records the quantity of data received</td>
</tr>
<tr>
<td>TimeWasted</td>
<td>Records communication waiting time</td>
</tr>
<tr>
<td>CommTime</td>
<td>Records the communication time</td>
</tr>
<tr>
<td>CommTimePerLab</td>
<td>Vector of communication receive time for each lab</td>
</tr>
<tr>
<td>TimeWastedPerLab</td>
<td>Vector of communication waiting time for each lab</td>
</tr>
<tr>
<td>BytesReceivedPerLab</td>
<td>Vector of data received from each lab</td>
</tr>
</tbody>
</table>

The three *PerLab fields are collected only on a per-function basis, and can be turned off by typing the following command in pmode:

```
mpiprofile on -messagedetail simplified
```

mpiprofile viewer is used in pmode after running user code with mpiprofile on. Calling the viewer stops the profiler and opens the graphical profile browser with parallel options. The output is an HTML report displayed in the profiler window. The file listing at the bottom of the function profile page shows several columns to the left of each line of code. In the summary page:

- Column 1 indicates the number of calls to that line.
- Column 2 indicates total time spent on the line in seconds.
- Columns 3–6 contain the communication information specific to the parallel profiler

mpiprofile('viewer',<profinfoarray>) in function form can be used from the client. A structure <profinfoarray> needs be passed in as the second argument, which is an array of mpiprofile info structures. See pInfoVector in the Examples section below.

mpiprofile does not accept -timer clock options, because the communication timer clock must be real.

For more information and examples on using the parallel profiler, see “Profiling Parallel Code” on page 6-42.
Examples

In pmode, turn on the parallel profiler, run your function in parallel, and call the viewer:

```matlab
mpiprofile on;
% call your function;
mpiprofile viewer;
```

If you want to obtain the profiler information from a communicating job outside of pmode (i.e., in the MATLAB client), you need to return output arguments of `mpiprofile info` by using the functional form of the command. Define your function `foo()`, and make it the task function in a communicating job:

```matlab
function [pInfo,yourResults] = foo
mpiprofile on
initData = (rand(100, codistributor()) ...
 * rand(100,codistributor()));
pInfo = mpiprofile('info');
yourResults = gather(initData,1)

After the job runs and `foo()` is evaluated on your cluster, get the data on the client:

```matlab
A = fetchOutputs(yourJob);
```

Then view parallel profile information:

```matlab
pInfoVector = [A{:,1}];
mpiprofile('viewer',pInfoVector);
```

See Also

`profile` | `pmode` | `mpiSettings`
mpiSettings

Configure options for MPI communication

Syntax

```matlab
mpiSettings('DeadlockDetection','on')
mpiSettings('MessageLogging','on')
mpiSettings('MessageLoggingDestination','CommandWindow')
mpiSettings('MessageLoggingDestination','stdout')
mpiSettings('MessageLoggingDestination','File','filename')
```

Description

`mpiSettings('DeadlockDetection','on')` turns on deadlock detection during calls to `labSend` and `labReceive`. If deadlock is detected, a call to `labReceive` might cause an error. Although it is not necessary to enable deadlock detection on all workers, this is the most useful option. The default value is 'off' for communicating jobs, and 'on' inside `pmode` sessions or `spmd` statements. Once the setting has been changed within a `pmode` session or an `spmd` statement, the setting stays in effect until either the `pmode` session ends or the parallel pool is closed.

`mpiSettings('MessageLogging','on')` turns on MPI message logging. The default is 'off'. The default destination is the MATLAB Command Window.

`mpiSettings('MessageLoggingDestination','CommandWindow')` sends MPI logging information to the MATLAB Command Window. If the task within a communicating job is set to capture Command Window output, the MPI logging information will be present in the task's `CommandWindowOutput` property.

`mpiSettings('MessageLoggingDestination','stdout')` sends MPI logging information to the standard output for the MATLAB process. If you are using a MATLAB job scheduler (MJS), this is the mdce service log file.

`mpiSettings('MessageLoggingDestination','File','filename')` sends MPI logging information to the specified file.
Examples

Set deadlock detection for a communicating job inside the `jobStartup.m` file for that job:

```matlab
% Inside jobStartup.m for the communicating job
mpiSettings('DeadlockDetection','on');
myLogFname = sprintf('%s_%d.log',tempname,labindex);
mpiSettings('MessageLoggingDestination','File',myLogFname);
mpiSettings('MessageLogging','on');
```

Turn off deadlock detection for all subsequent `spmd` statements that use the same parallel pool:

```matlab
spmd;mpiSettings('DeadlockDetection','off');end
```

More About

Tips

Setting the `MessageLoggingDestination` does not automatically enable message logging. A separate call is required to enable message logging.

`mpiSettings` has to be called on the worker, not the client. That is, it should be called within the task function, within `jobStartup.m`, or within `taskStartup.m`.
mxGPUCopyFromMxArray (C)

Copy mxArray to mxGPUArray

C Syntax

```c
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyFromMxArray(mxArray const * const mp)
```

Arguments

- `mp`
 Pointer to an mxArray that contains either GPU or CPU data.

Returns

- Pointer to an mxGPUArray.

Description

mxGPUCopyFromMxArray produces a new mxGPUArray object with the same characteristics as the input mxArray.

- If the input mxArray contains a gpuArray, the output is a new copy of the data on the GPU.
- If the input mxArray contains numeric or logical CPU data, the output is copied to the GPU.

Either way, this function always allocates memory on the GPU and allocates a new mxGPUArray object on the CPU. Use mxGPUDestroyGPUArray to delete the result when you are done with it.

See Also

mxGPUCopyGPUArray | mxGPUDestroyGPUArray
mxGPUCopyGPUArray (C)

Duplicate (deep copy) mxGPUArray object

C Syntax

#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyGPUArray(mxGPUArray const * const mgp)

Arguments

mgp
 Pointer to an mxGPUArray.

Returns

Pointer to an mxGPUArray.

Description

mxGPUCopyGPUArray produces a new array on the GPU and copies the data, and then returns a new mxGPUArray that refers to the copy. Use mxGPUDestroyGPUArray to delete the result when you are done with it.

See Also

mxGPUCopyFromMxArray | mxGPUDestroyGPUArray
mxGPUCopyImag (C)

Copy imaginary part of mxGPUArray

C Syntax

```
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyImag(mxGPUArray const * const mgp)
```

Arguments

mgp

Pointer to an mxGPUArray. The target gpuArray must be full, not sparse.

Returns

Pointer to an mxGPUArray.

Description

mxGPUCopyImag copies the imaginary part of GPU data, and returns a new mxGPUArray object that refers to the copy. The returned array is real, with element values equal to the imaginary values of the input, similar to how the MATLAB `imag` function behaves. If the input is real rather than complex, the function returns an array of zeros.

Use `mxGPUDestroyGPUArray` to delete the result when you are done with it.

See Also

mxGPUCopyReal | mxGPUDestroyGPUArray
mxGPUCopyReal (C)

Copy real part of mxGPUArray

C Syntax

```c
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyReal(mxGPUArray const * const mgp)
```

Arguments

mgp

Pointer to an mxGPUArray. The target gpuArray must be full, not sparse.

Returns

Pointer to an mxGPUArray.

Description

`mxGPUCopyReal` copies the real part of GPU data, and returns a new mxGPUArray object that refers to the copy. If the input is real rather than complex, the function returns a copy of the input.

Use `mxGPUDestroyGPUArray` to delete the result when you are done with it.

See Also

`mxGPUCopyImag` | `mxGPUDestroyGPUArray`
mxGPUCreateComplexGPUArray (C)

Create complex GPU array from two real gpuArrays

C Syntax

```c
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCreateComplexGPUArray(mxGPUArray const * const mgpR,
                                      mxGPUArray const * const mgpI)
```

Arguments

mgpR	mgpI
Pointers to `mxGPUArray` data containing real and imaginary coefficients. The target gpuArrays must be full, not sparse.

Returns

Pointer to an `mxGPUArray`.

Description

`mxGPUCreateComplexGPUArray` creates a new complex `mxGPUArray` from two real `mxGPUArray` objects. The function allocates memory on the GPU and copies the data. The inputs must both be real, and have matching sizes and classes. Use `mxGPUDestroyGPUArray` to delete the result when you are done with it.

See Also

`mxGPUDestroyGPUArray`
mxGPUCreateFromMxArray (C)

Create read-only mxGPUArray object from input mxArray

C Syntax

```c
#include "gpu/mxGPUArray.h"
mxGPUArray const * mxGPUCreateFromMxArray(mxArray const * const mp)
```

Arguments

mp

Pointer to an mxArray that contains either GPU or CPU data.

Returns

Pointer to a read-only mxGPUArray object.

Description

mxGPUCreateFromMxArray produces a read-only mxGPUArray object from an mxArray.

- If the input mxArray contains a gpuArray, this function extracts a reference to the GPU data from an mxArray passed as an input to the function.
- If the input mxArray contains CPU data, the data is copied to the GPU, but the returned object is still read-only.

If you need a writable copy of the array, use mxGPUCopyFromMxArray instead.

This function allocates a new mxGPUArray object on the CPU. Use mxGPUDestroyGPUArray to delete the result when you are done with it.

See Also

mxGPUCopyFromMxArray | mxGPUCreateGPUArray | mxGPUDestroyGPUArray
mxGPUCreateGPUArray (C)

Create mxGPUArray object, allocating memory on GPU

C Syntax

```c
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCreateGPUArray(mwSize const ndims,
    mwSize const * const dims,
    mxClassID const cid,
    mxComplexity const ccx,
    mxGPUInitialize const init0)
```

Arguments

- **ndims**
 - mwSize type specifying the number of dimensions in the created mxGPUArray.
- **dims**
 - Pointer to an mwSize vector specifying the sizes of each dimension in the created mxGPUArray.
- **cid**
 - mxClassID type specifying the element class of the created mxGPUArray.
- **ccx**
 - mxComplexity type specifying the complexity of the created mxGPUArray.
- **init0**
 - mxGPUInitialize type specifying whether to initialize elements values to 0 in the created mxGPUArray.
 - A value of MX_GPU_INITIALIZE_VALUES specifies that elements are to be initialized to 0.
 - A value of MX_GPU_DO_NOT_INITIALIZE specifies that elements are not to be initialized.
Returns

Pointer to an `mxGPUArray`.

Description

`mxGPUCreateGPUArray` creates a new `mxGPUArray` object with the specified size, type, and complexity. It also allocates the required memory on the GPU, and initializes the memory if requested.

This function allocates a new `mxGPUArray` object on the CPU. Use `mxGPUDestroyGPUArray` to delete the object when you are done with it.

See Also

`mxGPUCreateFromMxArray` | `mxGPUDestroyGPUArray`
mxGPUCreateMxArrayOnCPU (C)

Create mxArray for returning CPU data to MATLAB with data from GPU

C Syntax

```
#include "gpu/mxGPUArray.h"
mxArray* mxGPUCreateMxArrayOnCPU(mxGPUArray const * const mgp)
```

Arguments

- mgp
 - Pointer to an mxGPUArray.

Returns

Pointer to an mxArray object containing CPU data that is a copy of the GPU data.

Description

mxGPUCreateMxArrayOnCPU copies the GPU data from the specified mxGPUArray into an mxArray on the CPU for return to MATLAB. This is similar to the gather function. After calling this function, the input mxGPUArray object is no longer needed and you can delete it with mxGPUDestroyGPUArray.

See Also

- mxGPUCreateMxArrayOnGPU
- mxGPUDestroyGPUArray
mxGPUCreateMxArrayOnGPU (C)

Create mxArray for returning GPU data to MATLAB

C Syntax

```c
#include "gpu/mxGPUArray.h"
mxArray* mxGPUCreateMxArrayOnGPU(mxGPUArray const * const mgp)
```

Arguments

`mgp`

Pointer to an `mxGPUArray`.

Returns

Pointer to an `mxArray` object containing GPU data.

Description

`mxGPUCreateMxArrayOnGPU` puts the `mxGPUArray` into an `mxArray` for return to MATLAB. The data remains on the GPU and the returned class in MATLAB is `gpuArray`. After this call, the `mxGPUArray` object is no longer needed and can be destroyed.

See Also

`mxGPUCreateMxArrayOnCPU` | `mxGPUDestroyGPUArray`
mxGPUDestroyGPUArray (C)

Delete mxGPUArray object

C Syntax

```c
#include "gpu/mxGPUArray.h"
mxGPUDestroyGPUArray(mxGPUArray const * const mgp)
```

Arguments

- **mgp**

 Pointer to an mxGPUArray.

Description

mxGPUDestroyGPUArray deletes an mxGPUArray object on the CPU. Use this function to delete an mxGPUArray object you created with:

- mxGPUCreateGPUArray
- mxGPUCreateFromMxArray
- mxGPUCopyFromMxArray
- mxGPUCopyReal
- mxGPUCopyImag, or
- mxGPUCreateComplexGPUArray.

This function clears memory on the GPU, unless some other mxArray holds a reference to the same data. For example, if the mxGPUArray was extracted from an input mxArray, or wrapped in an mxArray for an output, then the data remains on the GPU.

See Also

mxGPUCopyFromMxArray | mxGPUCopyImag | mxGPUCopyReal | mxGPUCreateComplexGPUArray | mxGPUCreateFromMxArray | mxGPUCreateGPUArray
mxGPUGetClassID (C)

mxClassID associated with data on GPU

C Syntax

```
#include "gpu/mxGPUArray.h"
mxClassID mxGPUGetClassID(mxGPUArray const * const mgp)
```

Arguments

mgp

Pointer to an mxGPUArray.

Returns

mxClassID type.

Description

mxGPUGetClassID returns an mxClassID type indicating the underlying class of the input data.

See Also

mxGPUGetComplexity
mxGPUGetComplexity (C)

Complexity of data on GPU

C Syntax

```
#include "gpu/mxGPUArray.h"
mxComplexity mxGPUGetComplexity(mxGPUArray const * const mgp)
```

Arguments

mgp

Pointer to an mxGPUArray.

Returns

mxComplexity type.

Description

mxGPUGetComplexity returns an mxComplexity type indicating the complexity of the GPU data.

See Also

mxGPUGetClassID
mxGPUGetData (C)

Raw pointer to underlying data

C Syntax

#include "gpu/mxGPUArray.h"
void* mxGPUGetData(mxGPUArray const * const mgp)

Arguments

mgp

Pointer to an mxGPUArray on the GPU. The target gpuArray must be full, not sparse.

Returns

Pointer to data.

Description

mxGPUGetData returns a raw pointer to the underlying data. Cast this pointer to the type of data that you want to use on the device. It is your responsibility to check that the data inside the array has the appropriate type, for which you can use mxGPUGetClassID.

See Also

mxGPUGetClassID | mxGPUGetDataReadOnly
mxGPUGetDataReadOnly (C)

Read-only raw pointer to underlying data

C Syntax

```c
#include "gpu/mxGPUArray.h"
void const* mxGPUGetDataReadOnly(mxGPUArray const * const mgp)
```

Arguments

`mgp`

Pointer to an `mxGPUArray` on the GPU. The target gpuArray must be full, not sparse.

Returns

Read-only pointer to data.

Description

`mxGPUGetDataReadOnly` returns a read-only raw pointer to the underlying data. Cast it to the type of data that you want to use on the device. It is your responsibility to check that the data inside the array has the appropriate type, for which you can use `mxGPUGetClassID`.

See Also

`mxGPUGetClassID` | `mxGPUGetData`
mxGPUGetDimensions (C)

mxGPUArray dimensions

C Syntax

```c
#include "gpu/mxGPUArray.h"
mwSize const * mxGPUGetDimensions(mxGPUArray const * const mgp)
```

Arguments

`mgp`

- Pointer to an `mxGPUArray`.

Returns

- Pointer to a read-only array of `mwSize` type.

Description

`mxGPUGetDimensions` returns a pointer to an array of `mwSize` indicating the dimensions of the input argument. Use `mxFree` to delete the output.

See Also

`mxGPUGetComplexity` | `mxGPUGetNumberOfDimensions`
mxGPUGetNumberOfDimensions (C)

Size of dimension array for mxGPUArray

C Syntax

```c
#include "gpu/mxGPUArray.h"
mwSize mxGPUGetNumberOfDimensions(mxGPUArray const * const mgp)
```

Arguments

`mgp`

Pointer to an mxGPUArray.

Returns

`mwSize` type.

Description

`mxGPUGetNumberOfDimensions` returns the size of the dimension array for the mxGPUArray input argument, indicating the number of its dimensions.

See Also

`mxGPUGetComplexity` | `mxGPUGetDimensions`
mxGPUGetNumberOfElements (C)

Number of elements on GPU for array

C Syntax

#include "gpu/mxGPUArray.h"
mwSize mxGPUGetNumberOfElements(mxGPUArray const * const mgp)

Arguments

mgp
 Pointer to an mxGPUArray.

Returns

mwSize type.

Description

mxGPUGetNumberOfElements returns the total number of elements on the GPU for this array.

See Also

mxGPUGetComplexity | mxGPUGetDimensions | mxGPUGetNumberOfDimensions
mxGPUIsSame (C)

Determine if two mxGPUArrays refer to same GPU data

C Syntax

```c
#include "gpu/mxGPUArray.h"
int mxGPUIsSame(mxGPUArray const * const mgp1,
                mxGPUArray const * const mgp2)
```

Arguments

- `mgp1`mgp2

 Pointers to `mxGPUArray`.

Returns

- `int` type.

Description

`mxGPUIsSame` returns an integer indicating if two `mxGPUArray` pointers refer to the same GPU data:

- 1 (true) indicates that the inputs refer to the same data.
- 0 (false) indicates that the inputs do not refer to the same data.

See Also

`mxGPUIsValidGPUData`
mxGPUIsSparse (C)

Determine if mxGPUArray contains sparse GPU data

C Syntax

#include "gpu/mxGPUArray.h"
int mxGPUIsSparse(mxGPUArray const * mp);

Arguments

mp

Pointer to an mxGPUArray to be queried for sparse data.

Returns

Integer indicating true result:

• 1 indicates the input is a sparse gpuArray.
• 0 indicates the input is not a sparse gpuArray.

See Also

mxGPUIsValidGPUData | mxIsGPUArray
mxGPUIsValidGPUData (C)

Determine if mxArray is pointer to valid GPU data

C Syntax

```c
#include "gpu/mxGPUArray.h"
int mxGPUIsValidGPUData(mxArray const * const mp)
```

Arguments

mp

Pointer to an mxArray.

Returns

int type.

Description

mxGPUIsValidGPUData indicates if the mxArray is a pointer to valid GPU data

If the GPU device is reinitialized in MATLAB with `gpuDevice`, all data on the device becomes invalid, but the CPU data structures that refer to the GPU data still exist. This function checks whether the mxArray is a container of valid GPU data, and returns one of the following values:

- 0 (false) for CPU data or for invalid GPU data.
- 1 (true) for valid GPU data.

See Also

mxIsGPUArray
mxInitGPU (C)

Initialize MATLAB GPU library on currently selected device

C Syntax

```c
#include "gpu/mxGPUArray.h"
int mxInitGPU()
```

Returns

`int` type with one of the following values:

- `MX_GPU_SUCCESS` if the MATLAB GPU library is successfully initialized.
- `MX_GPU_FAILURE` if not successfully initialized.

Description

Before using any CUDA code in your MEX file, initialize the MATLAB GPU library if you intend to use any `mxGPUArray` functionality in MEX or any GPU calls in MATLAB. There are many ways to initialize the MATLAB GPU API, including:

- Call `mxInitGPU` at the beginning of your MEX file before any CUDA code.
- Call `gpuDevice(deviceIndex)` in MATLAB before running any MEX code.
- Create a `gpuArray` in MATLAB before running any MEX code.

You should call `mxInitGPU` at the beginning of your MEX file, unless you have an alternate way of guaranteeing that the MATLAB GPU library is initialized at the start of your MEX file.

If the library is initialized, this function returns without doing any work. If the library is not initialized, the function initializes the default device. Note: At present, a MATLAB MEX file can work with only one GPU device at a time.

See Also

`gpuArray | gpuDevice`
mxIsGPUArray (C)

Determine if mxArray contains GPU data

C Syntax

```c
#include "gpu/mxGPUArray.h"
int mxIsGPUArray(mxArray const * const mp);
```

Arguments

- `mp`
 Pointer to an mxArray that might contain gpuArray data.

Returns

Integer indicating true result:

- 1 indicates the input is a gpuArray.
- 0 indicates the input is not a gpuArray.

See Also

- `mxGPUIsSparse`
- `mxGPUIsValidGPUData`
NaN

Array of Not-a-Numbers

Syntax

A = NaN(sz,arraytype)
A = NaN(sz,datatype, arraytype)
A = NaN(sz,'like',P)
A = NaN(sz,datatype, 'like', P)
C = NaN(sz,codist)
C = NaN(sz,datatype, codist)
C = NaN(sz,___,codist,'noCommunication')
C = NaN(sz,___,codist,'like',P)

Description

A = NaN(sz,arraytype) creates a matrix with underlying class of double, with NaN values in all elements.

A = NaN(sz,datatype, arraytype) creates a matrix with underlying class of datatype, with NaN values in all elements.

The size and type of array are specified by the argument options according to the following table.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sz</td>
<td>n</td>
<td>Specifies size as an n-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m,n or [m n]</td>
<td>Specifies size as an m-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m,n,...,k or [m n ... k]</td>
<td>Specifies size as an m-by-n-by-....-by-k array.</td>
</tr>
<tr>
<td>arraytype</td>
<td>'distributed'</td>
<td>Specifies distributed array.</td>
</tr>
<tr>
<td></td>
<td>'codistributed'</td>
<td>Specifies codistributed array, using the default distribution scheme.</td>
</tr>
</tbody>
</table>
Functions — Alphabetical List

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>'gpuArray'</td>
<td></td>
<td>Specifies gpuArray.</td>
</tr>
<tr>
<td>'datatype'</td>
<td>'double' (default),</td>
<td>Specifies underlying class of the array, i.e., the data type of its elements.</td>
</tr>
<tr>
<td></td>
<td>'single'</td>
<td></td>
</tr>
</tbody>
</table>

A = NaN(sz, 'like', P) creates an array of NaN values with the same type and underlying class (data type) as array P.

A = NaN(sz, datatype, 'like', P) creates an array of NaN values with the specified underlying class (datatype), and the same type as array P.

C = NaN(sz, codist) or C = NaN(sz, datatype, codist) creates a codistributed array of NaN values with the specified size and underlying class (the default datatype is 'double'). The codistributor object codist specifies the distribution scheme for creating the codistributed array. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor constructor without arguments. For example:

```matlab
spmd
    C = NaN(8, codistributor1d());
end
```

C = NaN(sz, ___, codist, 'noCommunication') specifies that no interworker communication is to be performed when constructing a codistributed array, skipping some error checking steps.

C = NaN(sz, ___, codist, 'like', P) creates a codistributed array of NaN values with the specified size, underlying class, and distribution scheme. If either the class or codistributor argument is omitted, the characteristic is acquired from the codistributed array P.

Examples

Create Distributed NaN Matrix

Create a 1000-by-1000 distributed matrix of NaNs with underlying class double:

D = NaN(1000, 'distributed');
Create Codistributed NaN Matrix

Create a 1000-by-1000 codistributed double matrix of NaNs, distributed by its second dimension (columns).

```matlab
spmd(4)
    C = NaN(1000,'codistributed');
end
```

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed single matrix of NaNs, distributed by its columns.

```matlab
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = NaN(1000,1000,'single',codist);
end
```

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray NaN Matrix

Create a 1000-by-1000 gpuArray of NaNs with underlying class double:

```matlab
G = NaN(1000,'double','gpuArray');
```

See Also

eye | false | Inf | ones | true | NaN | zeros
numlabs

Total number of workers operating in parallel on current job

Syntax

\[n = \text{numlabs} \]

Description

\[n = \text{numlabs} \] returns the total number of workers currently operating on the current job. This value is the maximum value that can be used with \text{labSend} and \text{labReceive}.

More About

Tips

In an \text{spmd} block, \text{numlabs} on each worker returns the parallel pool size.

However, inside a \text{parfor}-loop, \text{numlabs} always returns a value of 1.

See Also

\text{labindex} | \text{labSendReceive}
ones

Array of ones

Syntax

N = ones(sz, arraytype)
N = ones(sz, datatype, arraytype)
N = ones(sz, 'like', P)
N = ones(sz, datatype, 'like', P)
C = ones(sz, codist)
C = ones(sz, datatype, codist)
C = ones(sz, ___, codist, 'noCommunication')
C = ones(sz, ___, codist, 'like', P)

Description

N = ones(sz, arraytype) creates a matrix with underlying class of double, with ones in all elements.

N = ones(sz, datatype, arraytype) creates a matrix with underlying class of datatype, with ones in all elements.

The size and type of array are specified by the argument options according to the following table.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sz</td>
<td>n</td>
<td>Specifies size as an n-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m,n or [m n]</td>
<td>Specifies size as an m-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m,n,...,k or [m n ... k]</td>
<td>Specifies size as an m-by-n-by-...-by-k array.</td>
</tr>
<tr>
<td>arraytype</td>
<td>'distributed'</td>
<td>Specifies distributed array.</td>
</tr>
<tr>
<td></td>
<td>'codistributed'</td>
<td>Specifies codistributed array, using the default distribution scheme.</td>
</tr>
</tbody>
</table>
Argument Values Descriptions

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>'gpuArray'</td>
<td>Specifies gpuArray.</td>
</tr>
<tr>
<td></td>
<td>'double' (default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', or 'uint64'</td>
<td>Specifies underlying class of the array, i.e., the data type of its elements.</td>
</tr>
</tbody>
</table>

\[
N = \text{ones}(sz, 'like', P)
\]
creates an array of ones with the same type and underlying class (data type) as array \(P \).

\[
N = \text{ones}(sz, \text{datatype}, 'like', P)
\]
creates an array of ones with the specified underlying class (\textit{datatype}), and the same type as array \(P \).

\[
C = \text{ones}(sz, \text{codist}) \quad \text{or} \quad C = \text{ones}(sz, \text{datatype}, \text{codist})
\]
creates a codistributed array of ones with the specified size and underlying class (the default \textit{datatype} is 'double'). The codistributor object \textit{codist} specifies the distribution scheme for creating the codistributed array. For information on constructing codistributor objects, see the reference pages for \texttt{codistributor1d} and \texttt{codistributor2dbc}. To use the default distribution scheme, you can specify a codistributor constructor without arguments. For example:

```matlab
spmd
    C = ones(8, codistributor1d());
end
```

\[
C = \text{ones}(sz, ___, \text{codist}, 'noCommunication')
\]
specifies that no interworker communication is to be performed when constructing a codistributed array, skipping some error checking steps.

\[
C = \text{ones}(sz, ___, \text{codist}, 'like', P)
\]
creates a codistributed array of ones with the specified size, underlying class, and distribution scheme. If either the class or codistributor argument is omitted, the characteristic is acquired from the codistributed array \(P \).
Examples

Create Distributed Ones Matrix

Create a 1000-by-1000 distributed array of ones with underlying class double:

\[D = \text{ones}(1000,'\text{distributed}'); \]

Create Codistributed Ones Matrix

Create a 1000-by-1000 codistributed double matrix of ones, distributed by its second dimension (columns).

\[
\begin{align*}
\text{spmd}(4) \\
C &= \text{ones}(1000,'\text{codistributed}'); \\
\text{end}
\end{align*}
\]

With four workers, each worker contains a 1000-by-250 local piece of \(C \).

Create a 1000-by-1000 codistributed uint16 matrix of ones, distributed by its columns.

\[
\begin{align*}
\text{spmd}(4) \\
\text{codist} &= \text{codistributor('1d',2,100*[1:numlabs]})); \\
C &= \text{ones}(1000,1000,'\text{uint16}',\text{codist}); \\
\text{end}
\end{align*}
\]

Each worker contains a 100-by-labindex local piece of \(C \).

Create gpuArray Ones Matrix

Create a 1000-by-1000 gpuArray of ones with underlying class uint32:

\[G = \text{ones}(1000,'\text{uint32}','\text{gpuArray}'); \]

See Also

eye | false | Inf | NaN | ones | true | zeros
pagefun

Apply function to each page of array on GPU

Syntax

```matlab
A = pagefun(FUN,B)
A = pagefun(FUN,B,C,...)
[A,B,...] = pagefun(FUN,C,...)
```

Description

`pagefun` iterates over the pages of a `gpuArray`, applying the same function to each page.

`A = pagefun(FUN,B)` applies the function specified by `FUN` to each page of the `gpuArray` `B`, and returns the results in `gpuArray` `A`, such that `A(:,:,I,J,...) = FUN(B(:,:,I,J,...))`. `FUN` is a handle to a function that takes a two-dimensional input argument.

You can use `gather` to retrieve the array from the GPU back to the MATLAB workspace.

`A = pagefun(FUN,B,C,...)` evaluates `FUN` using pages of the arrays `B`, `C`, etc., as input arguments with scalar expansion enabled. Any of the input page dimensions that are scalar are virtually replicated to match the size of the other arrays in that dimension so that `A(:,:,I,J,...) = FUN(B(:,:,I,J,...), C(:,:,I,J,...), ...)`. At least one of the inputs `B`, `C`, etc. must be a `gpuArray`. Any other inputs held in CPU memory are converted to a `gpuArray` before calling the function on the GPU. If an array is to be used in several different `pagefun` calls, it is more efficient to convert that array to a `gpuArray` before your series of `pagefun` calls. The input pages `B(:,:,I, J, ...), C(:,:,I, J, ...),` etc., must satisfy all of the input and output requirements of `FUN`.

`[A,B,...] = pagefun(FUN,C,...)`, where `FUN` is a handle to a function that returns multiple outputs, returns `gpuArrays` `A`, `B`, etc., each corresponding to one of the output arguments of `FUN`. `pagefun` invokes `FUN` with as many outputs as there are in the call to `pagefun`. All elements of `A` must be the same class; `B` can be a different class from `A`, but all elements of `B` must be of the same class; etc.

`FUN` must return values of the same class each time it is called. The order in which `pagefun` computes pages is not specified and should not be relied on.
FUN must be a handle to a function that is written in the MATLAB language (i.e., not a built-in function or a MEX-function).

Currently the supported values for FUN are:

- Most element-wise gpuArray functions, listed in “Run Built-In Functions on a GPU” on page 9-8, and the following:
 - @ctranspose
 - @fliplr
 - @flipud
 - @inv
 - @mldivide
 - @mrdivide
 - @mtimes
 - @rot90
 - @transpose

Examples

```matlab
M = 3;         % output number of rows
K = 6;         % matrix multiply inner dimension
N = 2;         % output number of columns
P1 = 10;       % size of first page dimension
P2 = 17;       % size of second page dimension
P3 = 4;        % size of third page dimension
P4 = 12;       % size of fourth page dimension
A = rand(M,K,P1,1,P3,'gpuArray');
B = rand(K,N,1,P2,P3,P4,'gpuArray');
C = pagefun(@mtimes,A,B);
s = size(C)    % M-by-N-by-P1-by-P2-by-P3-by-P4

s =
  3  2 10 17  4 12

M = 300;       % output number of rows
K = 500;       % matrix multiply inner dimension
N = 1000;      % output number of columns
P = 200;       % number of pages
A = rand(M,K,'gpuArray');
```
B = rand(K,N,P,'gpuArray');
C = pagefun(@mtimes,A,B);
s = size(C) % returns M-by-N-by-P

s =
 300 1000 200

See Also
arrayfun | bsxfun | gather | gpuArray
parallel.cluster.Hadoop

Create Hadoop cluster object

Syntax

hcluster = parallel.cluster.Hadoop
hcluster = parallel.cluster.Hadoop(Name,Value)

Description

hcluster = parallel.cluster.Hadoop creates a parallel.cluster.Hadoop object representing the Hadoop cluster.

You use the resulting object as input to the mapreducer function, for specifying the Hadoop cluster as the mapreduce parallel execution environment.

hcluster = parallel.cluster.Hadoop(Name,Value) uses the specified names and values to set properties on the created parallel.cluster.Hadoop object.

Examples

Set Hadoop Cluster as mapreduce Execution Environment

This example shows how to create and use a parallel.cluster.Hadoop object to set a Hadoop cluster as the mapreduce parallel execution environment.

hcluster = parallel.cluster.Hadoop('HadoopInstallFolder','/host/hadoop-install');
mr = mapreducer(hcluster);
• “Run mapreduce on a Hadoop Cluster” on page 6-61
Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (’ ’). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: ‘HadoopInstallFolder’, '/share/hadoop/a1.2.1'

'ClusterMatlabRoot' — Path to MATLAB for workers
character string

Path to MATLAB for workers, specified as the comma-separated pair consisting of 'ClusterMatlabRoot' and a character string. This points to the installation of MATLAB Distributed Computing Server for the workers, whether local to each machine or on a network share.

'HadoopConfigurationFile' — Path to Hadoop application configuration file
character string

Path to Hadoop application configuration file, specified as the comma-separated pair consisting of 'HadoopConfigurationFile' and a character string.

'HadoopInstallFolder' — Path to Hadoop installation on worker machines
character string

Path to Hadoop installation on worker machines, specified as the comma-separated pair consisting of 'HadoopInstallFolder' and a character string. If this property is not set, the default is the value specified by the environment variable HADOOP_PREFIX, or if that is not set, then HADOOP_HOME.

Output Arguments

hcluster — Hadoop cluster
parallel.cluster.Hadoop object

Hadoop cluster, returned as a parallel.cluster.Hadoop object.
See Also
mapreduce | mapreducer

Introduced in R2014b
parallel.clusterProfiles

Names of all available cluster profiles

Syntax

```
ALLPROFILES = parallel.clusterProfiles
ALLPROFILES, DEFAULTPROFILE] = parallel.clusterProfiles
```

Description

`ALLPROFILES = parallel.clusterProfiles` returns a cell array containing the names of all available profiles.

`[ALLPROFILES, DEFAULTPROFILE] = parallel.clusterProfiles` returns a cell array containing the names of all available profiles, and separately the name of the default profile.

The cell array `ALLPROFILES` always contains a profile called `local` for the local cluster, and always contains the default profile. If the default profile has been deleted, or if it has never been set, `parallel.clusterProfiles` returns `local` as the default profile.

You can create and change profiles using the `saveProfile` or `saveAsProfile` methods on a cluster object. Also, you can create, delete, and change profiles through the Cluster Profile Manager.

Examples

Display the names of all the available profiles and set the first in the list to be the default profile.

```
allNames = parallel.clusterProfiles()
parallel.defaultClusterProfile(allNames{1});
```

Display the names of all the available profiles and get the cluster identified by the last profile name in the list.
allNames = parallel.clusterProfiles()
lastCluster = parcluster(allNames{end});

See Also
parallel.defaultClusterProfile | parallel.exportProfile | parallel.importProfile
parallel.defaultClusterProfile

Examine or set default cluster profile

Syntax

\[
p = \text{parallel.defaultClusterProfile}
\]

\[
\text{oldprofile} = \text{parallel.defaultClusterProfile(newprofile)}
\]

Description

\(p = \text{parallel.defaultClusterProfile} \) returns the name of the default cluster profile.

\(\text{oldprofile} = \text{parallel.defaultClusterProfile(newprofile)} \) sets the default profile to be \(\text{newprofile} \) and returns the previous default profile. It might be useful to keep the old profile so that you can reset the default later.

If the default profile has been deleted, or if it has never been set, \(\text{parallel.defaultClusterProfile} \) returns 'local' as the default profile.

You can save modified profiles with the `saveProfile` or `saveAsProfile` method on a cluster object. You can create, delete, import, and modify profiles with the Cluster Profile Manager, accessible from the MATLAB desktop Home tab Environment area by selecting Parallel > Manage Cluster Profiles.

Examples

Display the names of all available profiles and set the first in the list to be the default.

\[
\text{allProfiles} = \text{parallel.clusterProfiles}
\]

\[
\text{parallel.defaultClusterProfile(allProfiles{1})};
\]

First set the profile named 'MyProfile' to be the default, and then set the profile named 'Profile2' to be the default.

\[
\text{parallel.defaultClusterProfile('MyProfile')};
\]
oldDefault = parallel.defaultClusterProfile('Profile2');
strcmpp(oldDefault,'MyProfile') % returns true

See Also
parallel.clusterProfiles | parallel.importProfile
parallel.exportProfile

Export one or more profiles to file

Syntax

```matlab
parallel.exportProfile(profileName, filename)
parallel.exportProfile({profileName1,profileName2,...,profileNameN},filename)
```

Description

`parallel.exportProfile(profileName, filename)` exports the profile with the name `profileName` to specified `filename`. The extension `.settings` is appended to the `filename`, unless already there.

`parallel.exportProfile({profileName1,profileName2,...,profileNameN},filename)` exports the profiles with the specified names to `filename`.

To import a profile, use `parallel.importProfile` or the Cluster Profile Manager.

Examples

Export the profile named `MyProfile` to the file `MyExportedProfile.settings`.

```matlab
parallel.exportProfile('MyProfile','MyExportedProfile.settings')
```

Export the default profile to the file `MyDefaultProfile.settings`.

```matlab
def_profile = parallel.defaultClusterProfile();
parallel.exportProfile(def_profile,'MyDefaultProfile.settings')
```

Export all profiles except for `local` to the file `AllProfiles.settings`.

```matlab
allProfiles = parallel.clusterProfiles();
% Remove 'local' from allProfiles
notLocal = ~strcmp(allProfiles,'local');
profilesToExport = allProfiles(notLocal);
if ~isempty(profilesToExport)
```
parallel.exportProfile(profilesToExport, 'AllProfiles');
end

See Also
parallel.clusterProfiles | parallel.importProfile
parallel.gpu.CUDAKernel

Create GPU CUDA kernel object from PTX and CU code

Syntax

KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO)
KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO, FUNC)
KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE)
KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE, FUNC)

Description

KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO) and KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO, FUNC) create a CUDAKernel object that you can use to call a CUDA kernel on the GPU. PTXFILE is the name of the file that contains the PTX code, or the contents of a PTX file as a string; and CPROTO is the C prototype for the kernel call that KERN represents. If specified, FUNC must be a string that unambiguously defines the appropriate kernel entry name in the PTX file. If FUNC is omitted, the PTX file must contain only a single entry point.

KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE) and KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE, FUNC) create a kernel object that you can use to call a CUDA kernel on the GPU. In addition, they read the CUDA source file CUFILE, and look for a kernel definition starting with '__global__' to find the function prototype for the CUDA kernel that is defined in PTXFILE.

For information on executing your kernel object, see “Run a CUDAKernel” on page 9-26.

Examples

If simpleEx.cu contains the following:

/*
 * Add a constant to a vector.
 */
__global__ void addToVector(float * pi, float c, int vecLen) {

11-230
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < vecLen) {
 pi[idx] += c;
 }
}

and simpleEx.ptx contains the PTX resulting from compiling simpleEx.cu into
PTX, both of the following statements return a kernel object that you can use to call the
addToVector CUDA kernel.

kern = parallel.gpu.CUDAKernel('simpleEx.ptx', ...
 'simpleEx.cu');
kern = parallel.gpu.CUDAKernel('simpleEx.ptx', ...
 'float *,float,int');

See Also
arrayfun | feval | existsOnGPU | gpuArray | reset
parallel.importProfile

Import cluster profiles from file

Syntax

```
prof = parallel.importProfile(filename)
```

Description

```
prof = parallel.importProfile(filename) imports the profiles stored in the
specified file and returns the names of the imported profiles. If `filename` has no
extension, `.settings` is assumed; configuration files must be specified with the `.mat
extension. Configuration `.mat` files contain only one profile, but profile `.settings` files
can contain one or more profiles. If only one profile is defined in the file, then `prof` is a
string reflecting the name of the profile; if multiple profiles are defined in the file, then
`prof` is a cell array of strings. If a profile with the same name as an imported profile
already exists, an extension is added to the name of the imported profile.
```

You can use the imported profile with any functions that support profiles. `parallel.importProfile` does not set any of the imported profiles as the default; you can set the default profile by using the `parallel.defaultClusterProfile` function.

Profiles that were exported in a previous release are upgraded during import. Configurations are automatically converted to cluster profiles.

Imported profiles are saved as a part of your MATLAB settings, so these profiles are available in subsequent MATLAB sessions without importing again.

Examples

Import a profile from file `ProfileMaster.settings` and set it as the default cluster profile.

```
profile_master = parallel.importProfile('ProfileMaster');
parallel.defaultClusterProfile(profile_master)
```
Import all the profiles from the file `ManyProfiles.settings`, and use the first one to open a parallel pool.

```matlab
profs = parallel.importProfile('ManyProfiles');
parpool(profs{1})
```

Import a configuration from the file `OldConfiguration.mat`, and set it as the default parallel profile.

```matlab
old_conf = parallel.importProfile('OldConfiguration.mat')
parallel.defaultClusterProfile(old_conf)
```

See Also

- `parallel.clusterProfiles`
- `parallel.defaultClusterProfile`
- `parallel.exportProfile`
parallel.pool.Constant

Build `parallel.pool.Constant` from data or function handle

Syntax

```matlab
C = parallel.pool.Constant(X)
C = parallel.pool.Constant(FH)
C = parallel.pool.Constant(FH,CLEANUP)
C = parallel.pool.Constant(COMP)
```

Description

`C = parallel.pool.Constant(X)` copies the value `X` to each worker and returns a `parallel.pool.Constant` object, `C`, which allows each worker to access the value `X` within a parallel language construct (`parfor`, `spmd`, `parfeval`) using the property `C.Value`. This can improve performance when you have multiple `parfor`-loops accessing the same constant set of data, because `X` is transferred only once to the workers.

`C = parallel.pool.Constant(FH)` evaluates function handle `FH` on each worker and stores the result in `C.Value`. This is also useful for creating and using any handle-type resources on the workers, such as file handles and database connections.

`C = parallel.pool.Constant(FH,CLEANUP)` evaluates function handle `FH` on each worker and stores the result in `C.Value`. When `C` is cleared, the function handle `CLEANUP` is evaluated with a single argument `C.Value` on each worker.

`C = parallel.pool.Constant(COMP)` uses the values stored in the Composite `COMP`, and stores them in `C.Value` on each worker. This is especially useful when the data that you need to use inside a `parfor`-loop can be constructed only on the workers, such as when the data is too large to conveniently fit in the client, or when it is being loaded from a file that only the workers can access. If `COMP` does not have a defined value on every worker, an error results.

Tips

`parallel.pool.Constant` must be called in the MATLAB client session.
parallel.pool.Constant automatically starts a parallel pool, if possible. If no pool is running, and one cannot be started automatically, **parallel.pool.Constant** generates an error.

Examples

Make parallel.pool.Constant from array in client

This example shows how to create a numeric parallel.pool.Constant, and use it in multiple **parfor**-loops on the same pool.

First, create some large data on the client, then build a parallel.pool.Constant, transferring the data to the pool only once.

```matlab
data = rand(1000);
c = parallel.pool.Constant(data);
for ii = 1:10
    % Run multiple PARFOR loops accessing the data.
    parfor jj = 1:10
        x(ii,jj) = c.Value(ii,jj);
    end
end```

**Make parallel.pool.Constant from function handle**

This examples shows how to create a parallel.pool.Constant with a function handle and a cleanup function.

Create a temporary file on each worker. By passing `@fclose` as the second argument, the file is automatically closed when `c` goes out of scope.

```matlab
c = parallel.pool.Constant(@() fopen(tempname(pwd),'wt'),@fclose);
spmd
disp(fopen(c.Value)); % Displays the temporary filenames.
end
parfor idx = 1:1000
 fprintf(c.Value,'Iteration: %d\n',idx);
end
clear c; % Closes the temporary files.
Make `parallel.pool.Constant from Composite`

This example shows how to build large data sets as a Composite on pool workers inside an `spmd` block, and then use that data as a `parallel.pool.Constant` inside a `parfor`-loop.

```matlab
spmd
    if labindex == 1
        x = labBroadcast(1,rand(5000));
    else
        x = labBroadcast(1);
    end
end
xc = parallel.pool.Constant(x);
parfor idx = 1:10
    s(idx) = sum(xc.Value(:,idx));
end
s
```

```
s = 1.0e+03 *  
  2.5108  2.5031  2.5123  2.4909  2.4957  2.5462  2.4859  2.5320  2.5076  2.5432
```

See Also
parcluster | parfeval | parfor | parpool | spmd

Introduced in R2015b
parcluster

Create cluster object

Syntax

c = parcluster

c = parcluster(profile)

Description

c = parcluster returns a cluster object representing the cluster identified by the default cluster profile, with the cluster object properties set to the values defined in that profile.

c = parcluster(profile) returns a cluster object representing the cluster identified by the specified cluster profile, with the cluster object properties set to the values defined in that profile.

You can save modified profiles with the saveProfile or saveAsProfile method on a cluster object. You can create, delete, import, and modify profiles with the Cluster Profile Manager, accessible from the MATLAB desktop Home tab Environment area by selecting Parallel > Manage Cluster Profiles. For more information, see “Clusters and Cluster Profiles” on page 6-14.

Examples

Find the cluster identified by the default parallel computing cluster profile, with the cluster object properties set to the values defined in that profile.

myCluster = parcluster;

View the name of the default profile and find the cluster identified by it. Open a parallel pool on the cluster.

defaultProfile = parallel.defaultClusterProfile
myCluster = parcluster(defaultProfile);
parpool(myCluster);

Find a particular cluster using the profile named 'MyProfile', and create an independent job on the cluster.

myCluster = parcluster('MyProfile');
j = createJob(myCluster);

See Also
createJob | parallel.clusterProfiles | parallel.defaultClusterProfile | parpool
parfeval

Execute function asynchronously on parallel pool worker

Syntax

\[F = \text{parfeval}(p, \text{fcn}, \text{numout}, \text{in1}, \text{in2}, \ldots) \]
\[F = \text{parfeval}(\text{fcn}, \text{numout}, \text{in1}, \text{in2}, \ldots) \]

Description

\[F = \text{parfeval}(p, \text{fcn}, \text{numout}, \text{in1}, \text{in2}, \ldots) \] requests asynchronous execution of the function \(\text{fcn} \) on a worker contained in the parallel pool \(p \), expecting \(\text{numout} \) output arguments and supplying as input arguments \(\text{in1}, \text{in2}, \ldots \). The asynchronous evaluation of \(\text{fcn} \) does not block MATLAB. \(F \) is a parallel.FevalFuture object, from which the results can be obtained when the worker has completed evaluating \(\text{fcn} \). The evaluation of \(\text{fcn} \) always proceeds unless you explicitly cancel execution by calling cancel(F). To request multiple function evaluations, you must call parfeval multiple times. (However, parfevalOnAll can run the same function on all workers.)

\[F = \text{parfeval}(\text{fcn}, \text{numout}, \text{in1}, \text{in2}, \ldots) \] requests asynchronous execution on the current parallel pool. If no pool exists, it starts a new parallel pool, unless your parallel preferences disable automatic creation of pools.

Examples

Submit a single request to the parallel pool and retrieve the outputs.

\[p = \text{gcp}(); \quad \% \text{get the current parallel pool} \]
\[f = \text{parfeval}(p, @\text{magic}, 1, 10); \]
\[\text{value} = \text{fetchOutputs}(f); \quad \% \text{Blocks until complete} \]

Submit a vector of multiple future requests in a for-loop and retrieve the individual future outputs as they become available.

\[p = \text{gcp}(); \]
\[\% \text{To request multiple evaluations, use a loop.} \]
for idx = 1:10
 f(idx) = parfeval(p,@magic,1,idx); % Square size determined by idx
end
% Collect the results as they become available.
magicResults = cell(1,10);
for idx = 1:10
 % fetchNext blocks until next results are available.
 [completedIdx,value] = fetchNext(f);
 magicResults{completedIdx} = value;
 fprintf('Got result with index: %d.
', completedIdx);
end

See Also
fetchOutputs | wait | cancel | fetchNext | isequal | parallel.pool.Constant | parfevalOnAll | parpool
parfevalOnAll

Execute function asynchronously on all workers in parallel pool

Syntax

\[F = \text{parfevalOnAll}(p,\text{fcn},\text{numout},\text{in1,}\text{in2},...) \]
\[F = \text{parfevalOnAll}(\text{fcn},\text{numout},\text{in1,}\text{in2},...) \]

Description

\(F = \text{parfevalOnAll}(p,\text{fcn},\text{numout},\text{in1,}\text{in2},...) \) requests the asynchronous execution of the function \(\text{fcn} \) on all workers in the parallel pool \(p \), expecting \(\text{numout} \) output arguments from each worker and supplying input arguments \(\text{in1,}\text{in2},... \) to each worker. \(F \) is a parallel.FevalOnAllFuture object, from which you can obtain the results when all workers have completed executing \(\text{fcn} \).

\(F = \text{parfevalOnAll}(\text{fcn},\text{numout},\text{in1,}\text{in2},...) \) requests asynchronous execution on all workers in the current parallel pool. If no pool exists, it starts a new parallel pool, unless your parallel preferences disable automatic creation of pools.

Examples

Close all Simulink models on all workers.

\[p = \text{gcp}(); \quad \% \text{Get the current parallel pool} \]
\[f = \text{parfevalOnAll}(p,\@\text{bdclose},0,\text{'all'}); \]
\[\% \text{No output arguments, but you might want to wait for completion} \]
\[\text{wait}(f); \]

See Also

fetchOutputs | wait | cancel | fetchNext | parallel.pool.Constant | parfeval | parpool
parfor

Execute loop iterations in parallel

Syntax

parfor loopvar = initval:endval, statements, end
parfor (loopvar = initval:endval, M), statements, end

Description

parfor loopvar = initval:endval, statements, end allows you to write a loop for a statement or block of code that executes in parallel on a cluster of workers, which are identified and reserved with the parpool command. initval and endval must evaluate to finite integer values, or the range must evaluate to a value that can be obtained by such an expression, that is, an ascending row vector of consecutive integers.

The following table lists some ranges that are not valid.

<table>
<thead>
<tr>
<th>Invalid parfor Range</th>
<th>Reason Range Not Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>parfor i = 1:2:25</td>
<td>1, 3, 5,... are not consecutive.</td>
</tr>
<tr>
<td>parfor i = -7.5:7.5</td>
<td>-7.5, -6.5,... are not integers.</td>
</tr>
<tr>
<td>A = [3 7 -2 6 4 -4 9 3 7];</td>
<td>The resulting range, 1, 2, 4,..., has nonconsecutive integers.</td>
</tr>
<tr>
<td>parfor i = find(A>0)</td>
<td></td>
</tr>
<tr>
<td>parfor i = [5;6;7;8]</td>
<td>[5;6;7;8] is a column vector, not a row vector.</td>
</tr>
</tbody>
</table>

You can enter a parfor-loop on multiple lines, but if you put more than one segment of the loop statement on the same line, separate the segments with commas or semicolons:

parfor i = range; <loop body>; end

parfor (loopvar = initval:endval, M), statements, end uses M to specify the maximum number of MATLAB workers that will evaluate statements in the body of the parfor-loop. M must be a nonnegative integer. By default, MATLAB uses as many workers as it finds available. If you specify an upper limit, MATLAB employs no more
than that number, even if additional workers are available. If you request more resources than are available, MATLAB uses the maximum number available at the time of the call.

If the `parfor`-loop cannot run on workers in a parallel pool (for example, if no workers are available or \(M \) is 0), MATLAB executes the loop on the client in a serial manner. In this situation, the `parfor` semantics are preserved in that the loop iterations can execute in any order.

Note Because of independence of iteration order, execution of `parfor` does not guarantee deterministic results.

The maximum amount of data that can be transferred in a single chunk between client and workers in the execution of a `parfor`-loop is determined by the JVM memory allocation limit. For details, see “Object Data Size Limitations” on page 6-52.

For a detailed description of `parfor`-loops, see “Parallel for-Loops (parfor)”.

Examples

Suppose that \(f \) is a time-consuming function to compute, and that you want to compute its value on each element of array \(A \) and place the corresponding results in array \(B \):

```matlab
parfor i = 1:length(A)
    B(i) = f(A(i));
end
```

Because the loop iteration occurs in parallel, this evaluation can complete much faster than it would in an analogous `for`-loop.

Next assume that \(A, B, \) and \(C \) are variables and that \(f, g, \) and \(h \) are functions:

```matlab
parfor i = 1:n
    t = f(A(i));
    u = g(B(i));
    C(i) = h(t,u);
end
```

If the time to compute \(f, g, \) and \(h \) is large, `parfor` will be significantly faster than the corresponding `for` statement, even if \(n \) is relatively small. Although the form of this statement is similar to a `for` statement, the behavior can be significantly different.
Notably, the assignments to the variables \(i\), \(t\), and \(u\) do not affect variables with the same name in the context of the `parfor` statement. The rationale is that the body of the `parfor` is executed in parallel for all values of \(i\), and there is no deterministic way to say what the “final” values of these variables are. Thus, `parfor` is defined to leave these variables unaffected in the context of the `parfor` statement. By contrast, the variable \(C\) has a different element set for each value of \(i\), and these assignments do affect the variable \(C\) in the context of the `parfor` statement.

Another important use of `parfor` has the following form:

```matlab
s = 0;
parfor i = 1:n
    if p(i)  % assume p is a function
        s = s + 1;
    end
end
```

The key point of this example is that the conditional adding of 1 to \(s\) can be done in any order. After the `parfor` statement has finished executing, the value of \(s\) depends only on the number of iterations for which \(p(i)\) is `true`. As long as \(p(i)\) depends only upon \(i\), the value of \(s\) is deterministic. This technique generalizes to functions other than `plus (+)`.

Note that the variable \(s\) refers to the variable in the context of the `parfor` statement. The general rule is that the only variables in the context of a `parfor` statement that can be affected by it are those like \(s\) (combined by a suitable function like `+`) or those like \(C\) in the previous example (set by indexed assignment).

More About

Tips

- A `parfor`-loop runs on the existing parallel pool. If no pool exists, `parfor` will start a new parallel pool, unless the automatic starting of pools is disabled in your parallel preferences. If there is no parallel pool and `parfor` cannot start one, the loop runs serially in the client session.
- Inside a `parfor`-loop, the functions `labindex` and `numlabs` both always return a value of 1.
- If the `AutoAttachFiles` property in the cluster profile for the parallel pool is set to `true`, MATLAB performs an analysis on a `parfor`-loop to determine what code files
are necessary for its execution, then automatically attaches those files to the parallel pool so that the code is available to the workers.

See Also
for | parallel.pool.Constant | parpool | pmode | numlabs
parpool

Create parallel pool on cluster

Syntax

parpool
parpool(poolsize)
parpool(profilename)
parpool(profilename,poolsize)
parpool(cluster)
parpool(cluster,poolsize)
parpool(___,Name,Value)
poolobj = parpool(___)

Description

parpool enables the full functionality of the parallel language features (parfor and spmd) in MATLAB by creating a special job on a pool of workers, and connecting the MATLAB client to the parallel pool. If possible, the working folder on the workers is set to match that of the MATLAB client session.

parpool starts a pool using the default cluster profile, with the pool size specified by your parallel preferences and the default profile.

parpool(poolsize) overrides the number of workers specified in the preferences or profile, and starts a pool of exactly that number of workers, even if it has to wait for them to be available. Most clusters have a maximum number of workers they can start. If the profile specifies a MATLAB job scheduler (MJS) cluster, parpool reserves its workers from among those already running and available under that MJS. If the profile specifies a local or third-party scheduler, parpool instructs the scheduler to start the workers for the pool.

parpool(profilename) or parpool(profilename,poolsize) starts a worker pool using the cluster profile identified by profilename.

parpool(cluster) or parpool(cluster,poolsize) starts a worker pool on the cluster specified by the cluster object cluster.
parpool(___,'Name','Value') applies the specified values for certain properties when starting the pool.

poolobj = parpool(____) returns a parallel.Pool object to the client workspace representing the pool on the cluster. You can use the pool object to programmatically delete the pool or to access its properties.

Examples

Create Pool from Default Profile

Start a parallel pool using the default profile to define the number of workers.

```matlab
parpool
```

Create Pool from Specified Profile

Start a parallel pool of 16 workers using a profile called `myProf`.

```matlab
parpool('myProf',16)
```

Create Pool from Local Profile

Start a parallel pool of 2 workers using the local profile.

```matlab
parpool('local',2)
```

Create Pool on Specified Cluster

Create an object representing the cluster identified by the default profile, and use that cluster object to start a parallel pool. The pool size is determined by the default profile.

```matlab
c = parcluster
parpool(c)
```

Create Pool and Attach Files

Start a parallel pool with the default profile, and pass two code files to the workers.

```matlab
parpool('AttachedFiles',{mod1.m,mod2.m})
```
Return Pool Object and Delete Pool

Create a parallel pool with the default profile, and later delete the pool.

```matlab
poolobj = parpool;
delete(poolobj)
```

Determine Size of Current Pool

Find the number of workers in the current parallel pool.

```matlab
poolobj = gcp('nocreate'); % If no pool, do not create new one.
if isempty(poolobj)
    poolsize = 0;
else
    poolsize = poolobj.NumWorkers
end
```

Input Arguments

- `poolsize` — Size of parallel pool
 set in parallel preferences or parallel profile (default)

 Size of the parallel pool, specified as a numeric value.

 Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

- `profilename` — Profile that defines cluster and properties

 Profile that defines cluster and properties, specified as a string.

 Example:

 Data Types: `char`

- `cluster` — Cluster to start pool on

 Cluster to start pool on, specified as a cluster object

 Example: `c = parcluster();`
Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside single quotes (‘ ’). You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: ‘AttachedFiles’,{'myFun.m'}

`'AttachedFiles'` — Files to attach to pool

string or cell array of strings

Files to attach to pool, specified as a string or cell array of strings.

With this argument pair, `parpool` starts a parallel pool and passes the identified files to the workers in the pool. The files specified here are appended to the `AttachedFiles` property specified in the applicable parallel profile to form the complete list of attached files. The `'AttachedFiles'` property name is case sensitive, and must appear as shown.

Example: `{’myFun.m’,’myFun2.m’}

Data Types: char | cell

`'SpmdEnabled'` — Indication if pool is enabled to support SPMD

true (default) | false

Indication if pool is enabled to support SPMD, specified as a logical. You can disable support only on a local or MJS cluster. Because `parfor` iterations do not involve interworker communication, disabling SPMD support this way allows the parallel pool to keep evaluating a `parfor`-loop even if one or more workers aborts during loop execution.

Data Types: logical

Output Arguments

poolobj — Access to parallel pool from client

parallel.Pool object

Access to parallel pool from client, returned as a parallel.Pool object.
More About

Tips

- The pool status indicator in the lower-left corner of the desktop shows the client session connection to the pool and the pool status. Click the icon for a menu of supported pool actions.

With a pool running: [Image] With no pool running: [Image]

- If you set your parallel preferences to automatically create a parallel pool when necessary, you do not need to explicitly call the `parpool` command. You might explicitly create a pool to control when you incur the overhead time of setting it up, so the pool is ready for subsequent parallel language constructs.

- `delete(poolobj)` shuts down the parallel pool. Without a parallel pool, `spmd` and `parfor` run as a single thread in the client, unless your parallel preferences are set to automatically start a parallel pool for them.

- When you use the MATLAB editor to update files on the client that are attached to a parallel pool, those updates automatically propagate to the workers in the pool. (This automatic updating does not apply to Simulink model files. To propagate updated model files to the workers, use the `updateAttachedFiles` function.)

- If possible, the working folder on the workers is initially set to match that of the MATLAB client session. Subsequently, the following commands entered in the client Command Window also execute on all the workers in the pool:

 - `cd`
 - `addpath`
 - `rmpath`

 This behavior allows you to set the working folder and the command search path on all the workers, so that subsequent pool activities such as `parfor`-loops execute in the proper context.

 When changing folders or adding a path with `cd` or `addpath` on clients with Windows operating systems, the value sent to the workers is the UNC path for the folder if possible. For clients with Linux operating systems, it is the absolute folder location.
If any of these commands does not work on the client, it is not executed on the workers either. For example, if `addpath` specifies a folder that the client cannot access, the `addpath` command is not executed on the workers. However, if the working folder can be set on the client, but cannot be set as specified on any of the workers, you do not get an error message returned to the client Command Window.

Be careful of this slight difference in behavior in a mixed-platform environment where the client is not the same platform as the workers, where folders local to or mapped from the client are not available in the same way to the workers, or where folders are in a nonshared file system. For example, if you have a MATLAB client running on a Microsoft Windows operating system while the MATLAB workers are all running on Linux operating systems, the same argument to `addpath` cannot work on both. In this situation, you can use the function `pctRunOnAll` to assure that a command runs on all the workers.

Another difference between client and workers is that any `addpath` arguments that are part of the `matlabroot` folder are not set on the workers. The assumption is that the MATLAB install base is already included in the workers’ paths. The rules for `addpath` regarding workers in the pool are:

- Subfolders of the `matlabroot` folder are not sent to the workers.
- Any folders that appear before the first occurrence of a `matlabroot` folder are added to the top of the path on the workers.
- Any folders that appear after the first occurrence of a `matlabroot` folder are added after the `matlabroot` group of folders on the workers’ paths.

For example, suppose that `matlabroot` on the client is `C:\Applications\matlab\`. With an open parallel pool, execute the following to set the path on the client and all workers:

```matlab
addpath('P1', 'P2', 'C:\Applications\matlab\T3', 'C:\Applications\matlab\T4', 'P5', 'C:\Applications\matlab\T6', 'P7', 'P8');
```
Because T3, T4, and T6 are subfolders of `matlabroot`, they are not set on the workers’ paths. So on the workers, the pertinent part of the path resulting from this command is:

P1
P2
<worker original matlabroot folders...>
P5
P7
P8

- “Parallel Preferences” on page 6-12
- “Clusters and Cluster Profiles” on page 6-14
- “Pass Data to and from Worker Sessions” on page 7-17

See Also

Composite | delete | distributed | gcp | `parallel.defaultClusterProfile` | `parallel.pool.Constant` | `parfeval` | `parfevalOnAll` | `parfor` | `pctRunOnAll` | spmd

Introduced in R2013b
pause

Pause MATLAB job scheduler queue

Syntax

```matlab
pause(mjs)
```

Arguments

- `mjs` MATLAB job scheduler object whose queue is paused.

Description

`pause(mjs)` pauses the MATLAB job scheduler’s queue so that jobs waiting in the queued state will not run. Jobs that are already running also pause, after completion of tasks that are already running. No further jobs or tasks will run until the `resume` function is called for the MJS.

The `pause` function does nothing if the MJS is already paused.

See Also

`resume` | `wait`
pctconfig

Configure settings for Parallel Computing Toolbox client session

Syntax

pctconfig('p1',v1,...)
config = pctconfig('p1',v1,...)
config = pctconfig()

Arguments

p1 Property to configure. Supported properties are 'portrange',
 'hostname'.

v1 Value for corresponding property.

config Structure of configuration value.

Description

pctconfig('p1',v1,...) sets the client configuration property p1 with the value v1.

Note that the property value pairs can be in any format supported by the set function,
 i.e., param-value string pairs, structures, and param-value cell array pairs. If a structure
 is used, the structure field names are the property names and the field values specify the
 property values.

If the property is 'portrange', the specified value is used to set the range of ports to
be used by the client session of Parallel Computing Toolbox software. This is useful in
environments with a limited choice of ports. The value of 'portrange' should either
be a 2-element vector [minport, maxport] specifying the range, or 0 to specify that
the client session should use ephemeral ports. By default, the client session searches
for available ports to communicate with the other sessions of MATLAB Distributed
Computing Server software.

If the property is 'hostname', the specified value is used to set the hostname for
the client session of Parallel Computing Toolbox software. This is useful when the
client computer is known by more than one hostname. The value you should use is the hostname by which the cluster nodes can contact the client computer. The toolbox supports both short hostnames and fully qualified domain names.

`config = pctconfig('p1',v1,...)` returns a structure to `config`. The field names of the structure reflect the property names, while the field values are set to the property values.

`config = pctconfig()`, without any input arguments, returns all the current values as a structure to `config`. If you have not set any values, these are the defaults.

Examples

View the current settings for hostname and ports.

```matlab
config = pctconfig()
```

```matlab
config =
    portrange: [27370 27470]
    hostname: 'machine32'
```

Set the current client session port range to **21000-22000** with hostname `fdm4`.

```matlab
pctconfig('hostname','fdm4','portrange',[21000 22000]);
```

Set the client hostname to a fully qualified domain name.

```matlab
pctconfig('hostname','desktop24.subnet6.companydomain.com');
```

More About

Tips

The values set by this function do not persist between MATLAB sessions. To guarantee its effect, call `pctconfig` before calling any other Parallel Computing Toolbox functions.
pctRunDeployedCleanup

Clean up after deployed parallel applications

Syntax

```matlab
pctRunDeployedCleanup
```

Description

`pctRunDeployedCleanup` performs necessary cleanup so that the client JVM can properly terminate when the deployed application exits. All deployed applications that use Parallel Computing Toolbox functionality need to call `pctRunDeployedCleanup` after the last call to Parallel Computing Toolbox functionality.

After calling `pctRunDeployedCleanup`, you should not use any further Parallel Computing Toolbox functionality in the current MATLAB session.
pctRunOnAll

Run command on client and all workers in parallel pool

Syntax

pctRunOnAll command

Description

pctRunOnAll command runs the specified command on all the workers of the parallel pool as well as the client, and prints any command-line output back to the client Command Window. The specified command runs in the base workspace of the workers and does not have any return variables. This is useful if there are setup changes that need to be performed on all the workers and the client.

Note If you use pctRunOnAll to run a command such as addpath in a mixed-platform environment, it can generate a warning on the client while executing properly on the workers. For example, if your workers are all running on Linux operating systems and your client is running on a Microsoft Windows operating system, an addpath argument with Linux-based paths will warn on the Windows-based client.

Examples

Clear all loaded functions on all workers:

pctRunOnAll clear functions

Change the directory on all workers to the project directory:

pctRunOnAll cd /opt/projects/c1456

Add some directories to the paths of all the workers:

pctRunOnAll addpath({'/usr/share/path1' '/usr/share/path2'})
See Also
parpool
pload

Load file into parallel session

Syntax

pload(fileroot)

Arguments

fileroot Part of filename common to all saved files being loaded.

Description

pload(fileroot) loads the data from the files named [fileroot num2str(labindex)] into the workers running a communicating job. The files should have been created by the psave command. The number of workers should be the same as the number of files. The files should be accessible to all the workers. Any codistributed arrays are reconstructed by this function. If fileroot contains an extension, the character representation of the labindex will be inserted before the extension. Thus, pload('abc') attempts to load the file abc1.mat on worker 1, abc2.mat on worker 2, and so on.

Examples

Create three variables — one replicated, one variant, and one codistributed. Then save the data. (This example works in a communicating job or in pmode, but not in a parfor or spmd block.)

```matlab
clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,codistributor());
psave('threeThings');
```
This creates three files (\texttt{threeThings1.mat}, \texttt{threeThings2.mat}, \texttt{threeThings3.mat}) in the current working directory.

Clear the workspace on all the workers and confirm there are no variables.

\begin{verbatim}
clear all
whos
\end{verbatim}

Load the previously saved data into the workers. Confirm its presence.

\begin{verbatim}
pload('threeThings');
whos
isreplicated(rep)
iscodistributed(D)
\end{verbatim}

\textbf{See Also}

\url{load | save | labindex | pmode | psave | numlabs}
pmode

Interactive Parallel Command Window

Syntax

pmode start
pmode start numworkers
pmode start prof numworkers
pmode quit
pmode exit
pmode client2lab clientvar workers workervar
pmode lab2client workervar worker clientvar
pmode cleanup prof

Description

pmode allows the interactive parallel execution of MATLAB commands. pmode achieves this by defining and submitting a communicating job, and opening a Parallel Command Window connected to the workers running the job. The workers then receive commands entered in the Parallel Command Window, process them, and send the command output back to the Parallel Command Window. Variables can be transferred between the MATLAB client and the workers. For more details about program development in pmode and its interactive features, see “Interactive Parallel Development”.

pmode start starts pmode, using the default profile to define the cluster and number of workers. (The initial default profile is local; you can change it by using the function parallel.defaultClusterProfile.) You can also specify the number of workers using pmode start numworkers.

pmode start prof numworkers starts pmode using the Parallel Computing Toolbox profile prof to locate the cluster, submits a communicating job with the number of workers identified by numworkers, and connects the Parallel Command Window with the workers. If the number of workers is specified, it overrides the minimum and maximum number of workers specified in the profile.
pmode quit or pmode exit stops the pmode job, deletes it, and closes the Parallel Command Window. You can enter this command at the MATLAB prompt or the pmode prompt.

pmode client2lab clientvar workers workervar copies the variable clientvar from the MATLAB client to the variable workervar on the workers identified by workers. If workervar is omitted, the copy is named clientvar. workers can be either a single index or a vector of indices. You can enter this command at the MATLAB prompt or the pmode prompt.

pmode lab2client workervar worker clientvar copies the variable workervar from the worker identified by worker, to the variable clientvar on the MATLAB client. If clientvar is omitted, the copy is named workervar. You can enter this command at the MATLAB prompt or the pmode prompt. Note: If you use this command in an attempt to transfer a codistributed array to the client, you get a warning, and only the local portion of the array on the specified worker is transferred. To transfer an entire codistributed array, first use the gather function to assemble the whole array into the worker workspaces.

pmode cleanup prof deletes all communicating jobs created by pmode for the current user running on the cluster specified in the profile prof, including jobs that are currently running. The profile is optional; the default profile is used if none is specified. You can enter this command at the MATLAB prompt or the pmode prompt.

You can invoke pmode as either a command or a function, so the following are equivalent.

pmode start prof 4
pmode('start','prof',4)

Examples

In the following examples, the pmode prompt (P>>) indicates commands entered in the Parallel Command Window. Other commands are entered in the MATLAB Command Window.

Start pmode using the default profile to identify the cluster and number of workers.

pmode start

Start pmode using the local profile with four local workers.
pmode start local 4

Start pmode using the profile myProfile and eight workers on the cluster.

pmode start myProfile 8

Execute a command on all workers.

P>> x = 2*labindex;

Copy the variable x from worker 7 to the MATLAB client.

pmode lab2client x 7

Copy the variable y from the MATLAB client to workers 1 through 8.

pmode client2lab y 1:8

Display the current working directory of each worker.

P>> pwd

See Also
createCommunicatingJob | parallel.defaultClusterProfile | parcluster
poolStartup

File for user-defined options to run on each worker when parallel pool starts

Syntax

poolStartup

Description

poolStartup runs automatically on a worker each time the worker forms part of a parallel pool. You do not call this function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the poolStartup.m file to define pool initialization on the worker. The worker looks for poolStartup.m in the following order, executing the one it finds first:

1. Included in the job's AttachedFiles property.
2. In a folder included in the job's AdditionalPaths property.
3. In the worker's MATLAB installation at the location

 `matlabroot/toolbox/distcomp/user/poolStartup.m`

To create a version of poolStartup.m for AttachedFiles or AdditionalPaths, copy the provided file and modify it as required.

poolStartup is the ideal location for startup code required for parallel execution on the parallel pool. For example, you might want to include code for using mpiSettings. Because jobStartup and taskStartup execute before poolStartup, they are not suited to pool-specific code. In other words, you should use taskStartup for setup code on your worker regardless of whether the task is from an independent job, communicating job, or using a parallel pool; while poolStartup is for setup code for pool usage only.

For further details on poolStartup and its implementation, see the text in the installed poolStartup.m file.
See Also
jobStartup | taskFinish | taskStartup
promote

Promote job in MJS cluster queue

Syntax

`promote(c,job)`

Arguments

- `c` The MJS cluster object that contains the job.
- `job` Job object promoted in the queue.

Description

`promote(c,job)` promotes the job object `job`, that is queued in the MJS cluster `c`.

If `job` is not the first job in the queue, `promote` exchanges the position of `job` and the previous job.

Examples

Create and submit multiple jobs to the cluster identified by the default cluster profile, assuming that the default cluster profile uses an MJS:

```matlab
    c = parcluster();
    pause(c) % Prevent submissions from running.

    j1 = createJob(c,'Name','Job A');
    j2 = createJob(c,'Name','Job B');
    j3 = createJob(c,'Name','Job C');
    submit(j1);submit(j2);submit(j3);
```

Promote Job C by one position in its queue:

`promote(c,j3)`
Examine the new queue sequence:

```matlab
[pjobs, qjobs, rjobs, fjobs] = findJob(c);
get(qjobs, 'Name')

'Job A'
'Job C'
'Job B'
```

More About

Tips

After a call to `promote` or `demote`, there is no change in the order of job objects contained in the `Jobs` property of the MJS cluster object. To see the scheduled order of execution for jobs in the queue, use the `findJob` function in the form `[pending queued running finished] = findJob(c).`

See Also

`createJob` | `demote` | `findJob` | `submit`
psave

Save data from communicating job session

Syntax

`psave(fileroot)`

Arguments

`fileroot` Part of filename common to all saved files.

Description

`psave(fileroot)` saves the data from the workers’ workspace into the files named `[fileroot num2str(labindex)]`. The files can be loaded by using the `pload` command with the same `fileroot`, which should point to a folder accessible to all the workers. If `fileroot` contains an extension, the character representation of the `labindex` is inserted before the extension. Thus, `psave('abc')` creates the files 'abc1.mat', 'abc2.mat', etc., one for each worker.

Examples

Create three arrays — one replicated, one variant, and one codistributed. Then save the data. (This example works in a communicating job or in pmode, but not in a `parfor` or `spmd` block.)

```mex
clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,codistributor());
psave('threeThings');
```

This creates three files (threeThings1.mat, threeThings2.mat, threeThings3.mat) in the current working folder.
Clear the workspace on all the workers and confirm there are no variables.

```matlab
clear all
whos
```

Load the previously saved data into the workers. Confirm its presence.

```matlab
pload('threeThings');
whos
isreplicated(rep)
iscodistributed(D)
```

See Also

`load | save | labindex | pmode | pload | numlabs`
rand

Array of rand values

Syntax

\[
\begin{align*}
R &= \text{rand}(sz, \text{arraytype}) \\
R &= \text{rand}(sz, \text{datatype}, \text{arraytype}) \\
R &= \text{rand}(sz, \text{'like'}, P) \\
R &= \text{rand}(sz, \text{datatype}, \text{'like'}, P) \\
C &= \text{rand}(sz, \text{codist}) \\
C &= \text{rand}(sz, \text{datatype}, \text{codist}) \\
C &= \text{rand}(sz, _, \text{codist}, \text{'noCommunication'}) \\
C &= \text{rand}(sz, _, \text{codist}, \text{'like'}, P)
\end{align*}
\]

Description

\[
R = \text{rand}(sz, \text{arraytype}) \] creates a matrix with underlying class of double, with \text{rand} values in all elements.

\[
R = \text{rand}(sz, \text{datatype}, \text{arraytype}) \] creates a matrix with underlying class of \text{datatype}, with \text{rand} values in all elements.

The size and type of array are specified by the argument options according to the following table.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{sz}</td>
<td>\text{n}</td>
<td>Specifies size as an \text{n}-by-\text{n} matrix.</td>
</tr>
<tr>
<td></td>
<td>\text{m,n or [m n]}</td>
<td>Specifies size as an \text{m}-by-\text{n} matrix.</td>
</tr>
<tr>
<td></td>
<td>\text{m,n,...,k or [m n ... k]}</td>
<td>Specifies size as an \text{m}-by-\text{n}-by-\text{...}-by-\text{k} array.</td>
</tr>
<tr>
<td>\text{arraytype}</td>
<td>\text{'distributed'}</td>
<td>Specifies distributed array.</td>
</tr>
<tr>
<td></td>
<td>\text{'codistributed'}</td>
<td>Specifies codistributed array, using the default distribution scheme.</td>
</tr>
<tr>
<td>Argument</td>
<td>Values</td>
<td>Descriptions</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>'gpuArray'</td>
<td>Specifies gpuArray.</td>
</tr>
<tr>
<td>datatype</td>
<td>'double' (default), 'single'</td>
<td>Specifies underlying class of the array, i.e., the data type of its elements.</td>
</tr>
</tbody>
</table>

\[R = \text{rand}(\text{sz}, 'like', P) \]
creates an array of \text{rand} values with the same type and underlying class (data type) as array \(P \).

\[R = \text{rand}(\text{sz}, \text{datatype}, 'like', P) \]
creates an array of \text{rand} values with the specified underlying class (\text{datatype}), and the same type as array \(P \).

\[C = \text{rand}(\text{sz}, \text{codist}) \]
\[C = \text{rand}(\text{sz}, \text{datatype}, \text{codist}) \]
creates a codistributed array of \text{rand} values with the specified size and underlying class (the default \text{datatype} is 'double'). The codistributor object \text{codist} specifies the distribution scheme for creating the codistributed array. For information on constructing codistributor objects, see the reference pages for \text{codistributor1d} and \text{codistributor2dbc}. To use the default distribution scheme, you can specify a codistributor constructor without arguments. For example:

\begin{verbatim}
spmd
 C = \text{rand}(8, \text{codistributor1d}());
end
\end{verbatim}

\[C = \text{rand}(\text{sz}, _, _, \text{codist}, 'noCommunication') \]
specifies that no interworker communication is to be performed when constructing a codistributed array, skipping some error checking steps.

\[C = \text{rand}(\text{sz}, _, _, \text{codist}, 'like', P) \]
creates a codistributed array of \text{rand} values with the specified size, underlying class, and distribution scheme. If either the class or codistributor argument is omitted, the characteristic is acquired from the codistributed array \(P \).

Examples

Create Distributed Rand Matrix

Create a 1000-by-1000 distributed array of \text{rands} with underlying class \text{double}:

\[D = \text{rand}(1000, 'distributed'); \]
Create Codistributed Rand Matrix

Create a 1000-by-1000 codistributed double matrix of \texttt{rand}s, distributed by its second dimension (columns).

\begin{verbatim}
spmd(4)
 C = rand(1000,'codistributed');
end
\end{verbatim}

With four workers, each worker contains a 1000-by-250 local piece of \texttt{C}.

Create a 1000-by-1000 codistributed \texttt{single} matrix of \texttt{rand}s, distributed by its columns.

\begin{verbatim}
spmd(4)
 codist = codistributor('1d',2,100*[1:numlabs]);
 C = rand(1000,1000,'single',codist);
end
\end{verbatim}

Each worker contains a 100-by-\texttt{labindex} local piece of \texttt{C}.

Create \texttt{gpuArray} Rand Matrix

Create a 1000-by-1000 \texttt{gpuArray} of \texttt{rand}s with underlying class \texttt{double}:

\begin{verbatim}
G = rand(1000,'double','gpuArray');
\end{verbatim}

See Also

\texttt{rand | randi | randn | codistributed.sprand | distributed.sprand}
randi

Array of random integers

Syntax

R = randi(valrange,sz,arraytype)
R = randi(valrange,sz,datatype,arraytype)
R = randi(valrange,sz,'like',P)
R = randi(valrange,sz,datatype,'like',P)
C = randi(valrange,sz,codist)
C = randi(valrange,sz,datatype,codist)
C = randi(valrange,sz,___,codist,'noCommunication')
C = randi(valrange,sz,___,codist,'like',P)

Description

R = randi(valrange,sz,arraytype) creates a matrix with underlying class of
double, with randi integer values in all elements.

R = randi(valrange,sz,datatype,arraytype) creates a matrix with underlying
class of datatype, with randi values in all elements.

The size and type of array are specified by the argument options according to the
following table.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>valrange</td>
<td>max or [min max]</td>
<td>Specifies integer value range from 1 to max, or from min to max.</td>
</tr>
<tr>
<td>sz</td>
<td>n</td>
<td>Specifies size as an n-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m,n or [m n]</td>
<td>Specifies size as an m-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m,n,...,k or [m n ... k]</td>
<td>Specifies size as an m-by-n-by-...-by-k array.</td>
</tr>
<tr>
<td>arraytype</td>
<td>'distributed'</td>
<td>Specifies distributed array.</td>
</tr>
<tr>
<td>Argument</td>
<td>Values</td>
<td>Descriptions</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>'codistributed'</td>
<td>Specifies codistributed array, using the default distribution scheme.</td>
</tr>
<tr>
<td></td>
<td>'gpuArray'</td>
<td>Specifies gpuArray.</td>
</tr>
<tr>
<td>datatype</td>
<td>'double' (default), 'single', 'int8',</td>
<td>Specifies underlying class of the array, i.e., the data type of its elements.</td>
</tr>
<tr>
<td></td>
<td>'uint8', 'int16', 'uint16', 'int32',</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'uint32', 'int64', 'uint64'</td>
<td></td>
</tr>
</tbody>
</table>

\[R = \text{randi}(\text{valrange},sz,'like',P) \] creates an array of \text{randi} values with the same type and underlying class (data type) as array \(P \).

\[R = \text{randi}(\text{valrange},sz,\text{datatype},'like',P) \] creates an array of \text{randi} values with the specified underlying class (\text{datatype}), and the same type as array \(P \).

\[C = \text{randi}(\text{valrange},sz,\text{codist}) \] or \(C = \text{randi}(\text{valrange},sz,\text{datatype},\text{codist}) \) creates a codistributed array of \text{randi} values with the specified size and underlying class (the default \text{datatype} is 'double'). The codistributor object \text{codist} specifies the distribution scheme for creating the codistributed array. For information on constructing codistributor objects, see the reference pages for \text{codistributor1d} and \text{codistributor2dbc}. To use the default distribution scheme, you can specify a codistributor constructor without arguments. For example:

\[
\begin{align*}
\text{spmd} \\
 C &= \text{randi}(8,\text{codistributor1d}()); \\
\text{end}
\end{align*}
\]

\[C = \text{randi}(\text{valrange},sz,___,\text{codist},'noCommunication') \] specifies that no interworker communication is to be performed when constructing a codistributed array, skipping some error checking steps.

\[C = \text{randi}(\text{valrange},sz,___,\text{codist},'like',P) \] creates a codistributed array of \text{randi} values with the specified range, size, underlying class, and distribution scheme. If either the class or codistributor argument is omitted, the characteristic is acquired from the codistributed array \(P \).
Examples

Create Distributed Randi Matrix

Create a 1000-by-1000 distributed array of randi values from 1 to 100, with underlying class double:

\[D = \text{randi}(100,1000,'distributed'); \]

Create Codistributed Randi Matrix

Create a 1000-by-1000 codistributed double matrix of randi values from 0 to 12, distributed by its second dimension (columns).

```
spmd(4)
    C = \text{randi}([0 12],1000,'codistributed');
end
```

With four workers, each worker contains a 1000-by-250 local piece of \(C \).

Create a 1000-by-1000 codistributed single matrix of randi values from 1 to 4, distributed by its columns.

```
spmd(4)
    codist = \text{codistributor}('1d',2,100*[1:numlabs]);
    C = \text{randi}(4,1000,1000,'single',codist);
end
```

Each worker contains a 100-by-\text{labindex} local piece of \(C \).

Create gpuArray Randi Matrix

Create a 1000-by-1000 gpuArray of randi values from —50 to 50, with underlying class double:

\[G = \text{randi}([-50 50],1000,'double','gpuArray'); \]

See Also

randi | rand | randn
randn

Array of randn values

Syntax

\[
\begin{align*}
R &= \text{randn}(sz, \text{arraytype}) \\
R &= \text{randn}(sz, \text{datatype}, \text{arraytype}) \\
R &= \text{randn}(sz, 'like', P) \\
R &= \text{randn}(sz, \text{datatype}, 'like', P) \\
C &= \text{randn}(sz, \text{codist}) \\
C &= \text{rand}(sz, \text{datatype}, \text{codist}) \\
C &= \text{randn}(sz, __, \text{codist}, 'noCommunication') \\
C &= \text{randn}(sz, __, \text{codist}, 'like', P)
\end{align*}
\]

Description

\(R = \text{randn}(sz, \text{arraytype}) \) creates a matrix with underlying class of double, with randn values in all elements.

\(R = \text{randn}(sz, \text{datatype}, \text{arraytype}) \) creates a matrix with underlying class of \text{datatype}, with randn values in all elements.

The size and type of array are specified by the argument options according to the following table.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sz)</td>
<td>(n)</td>
<td>Specifies size as an (n)-by-(n) matrix.</td>
</tr>
<tr>
<td></td>
<td>(m,n) or ([m \ n])</td>
<td>Specifies size as an (m)-by-(n) matrix.</td>
</tr>
<tr>
<td></td>
<td>(m,n,\ldots,k) or ([m \ n \ \ldots \ k])</td>
<td>Specifies size as an (m)-by-(n)-by-(\ldots)-by-(k) array.</td>
</tr>
<tr>
<td>(arraytype)</td>
<td>'distributed'</td>
<td>Specifies distributed array.</td>
</tr>
<tr>
<td></td>
<td>'codistributed'</td>
<td>Specifies codistributed array, using the default distribution scheme.</td>
</tr>
<tr>
<td>Argument</td>
<td>Values</td>
<td>Descriptions</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>'gpuArray'</td>
<td></td>
<td>Specifies gpuArray.</td>
</tr>
<tr>
<td>datatype</td>
<td>'double' (default), 'single'</td>
<td>Specifies underlying class of the array, i.e., the data type of its elements.</td>
</tr>
</tbody>
</table>

R = randn(sz,'like',P) creates an array of randn values with the same type and underlying class (data type) as array P.

R = randn(sz,*datatype*, 'like', P) creates an array of randn values with the specified underlying class (*datatype*), and the same type as array P.

C = randn(sz,codist) or C = rand(sz,*datatype*,codist) creates a codistributed array of randn values with the specified size and underlying class (the default *datatype* is 'double'). The codistributor object *codist* specifies the distribution scheme for creating the codistributed array. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor constructor without arguments. For example:

```matlab
spmd
    C = randn(8,codistributor1d());
end
```

C = randn(sz,___,codist,'noCommunication') specifies that no interworker communication is to be performed when constructing a codistributed array, skipping some error checking steps.

C = randn(sz,___,codist,'like',P) creates a codistributed array of randn values with the specified size, underlying class, and distribution scheme. If either the class or codistributor argument is omitted, the characteristic is acquired from the codistributed array P.

Examples

Create Distributed Randn Matrix

Create a 1000-by-1000 distributed array of randn values with underlying class double:

```matlab
D = randn(1000, 'distributed');
```
Create Codistributed Randn Matrix

Create a 1000-by-1000 codistributed double matrix of \texttt{randn} values, distributed by its second dimension (columns).

\begin{verbatim}
spmd(4)
 C = randn(1000,'codistributed');
end
\end{verbatim}

With four workers, each worker contains a 1000-by-250 local piece of \texttt{C}.

Create a 1000-by-1000 codistributed \texttt{single} matrix of \texttt{randn} values, distributed by its columns.

\begin{verbatim}
spmd(4)
 codist = codistributor('1d',2,100*[1:numlabs]);
 C = randn(1000,1000,'single',codist);
end
\end{verbatim}

Each worker contains a 100-by-\texttt{labindex} local piece of \texttt{C}.

Create \texttt{gpuArray} Rand Matrix

Create a 1000-by-1000 \texttt{gpuArray} of \texttt{randn} values with underlying class \texttt{double}:

\begin{verbatim}
G = randn(1000,'double','gpuArray');
\end{verbatim}

See Also
\texttt{randn} | \texttt{rand} | \texttt{randi} | \texttt{codistributed.sprandn} | \texttt{distributed.sprandn}
recreate

Create new job from existing job

Syntax

newjob = recreate(oldjob)
newjob = recreate(oldjob,'TaskID',ids)

Arguments

newjob | New job object.
oldjob | Original job object to be duplicated.
'TaskID' | Option to include only some tasks
ids | Vector of integers specifying task IDs

Description

newjob = recreate(oldjob) creates a new job object based on an existing job, containing the same tasks and settable properties as oldjob. The old job can be in any state; the new job state is pending.

newjob = recreate(oldjob,'TaskID',ids) creates a job object containing the tasks from oldjob that correspond to the tasks with IDs specified by ids, a vector of integers. Because communicating jobs have only one task, this option supports only independent jobs.

Examples

Recreate an Entire Job

This example shows how to recreate the entire job myJob.

newJob = recreate(myJob)
Recreate a Job with Specified Tasks

This example shows how to recreate an independent job, which has only the tasks with IDs 21 to 32 from the job `oldIndependentJob`.

```matlab
newJob = recreate(oldIndependentJob,'TaskID',[21:32]);
```

Recreate Jobs of a Specific User

This example shows how to find and recreate all failed jobs submitted by user Mary. Assume the default cluster is the one Mary had submitted her jobs to.

```matlab
c = parcluster();
failedjobs = findJob(c,'Username','Mary','State','failed');
for m = 1:length(failedjobs)
    newJob(m) = recreate(failedjobs(m));
ext
```

See Also

`createCommunicatingJob` | `createJob` | `createTask` | `findJob` | `submit`
redistribute

Redistribute codistributed array with another distribution scheme

Syntax

D2 = redistribute(D1,codist)

Description

D2 = redistribute(D1,codist) redistributes a codistributed array D1 and returns D2 using the distribution scheme defined by the codistributor object codist.

Examples

Redistribute an array according to the distribution scheme of another array.

```matlab
spmd
    % First, create a magic square distributed by columns:
    M = codistributed(magic(10),codistributor1d(2,[1 2 3 4]));

    % Create a pascal matrix distributed by rows (first dimension):
    P = codistributed(pascal(10),codistributor1d(1));

    % Redistribute the pascal matrix according to the
    % distribution (partition) scheme of the magic square:
    R = redistribute(P,getCodistributor(M));
end
```

See Also

codistributed | codistributor | codistributor1d.defaultPartition
reset

Reset GPU device and clear its memory

Syntax

reset(gpudev)

Description

reset(gpudev) resets the GPU device and clears its memory of gpuArray and CUDAKernel data. The GPU device identified by gpudev remains the selected device, but all gpuArray and CUDAKernel objects in MATLAB representing data on that device are invalid.

Arguments

gpudev
GPUDevice object representing the currently selected device

Tips

After you reset a GPU device, any variables representing arrays or kernels on the device are invalid; you should clear or redefine them.

Examples

Reset GPU Device

Create a gpuArray on the selected GPU device, then reset the device.

```matlab
    g = gpuDevice(1);
    M = gpuArray(magic(4));
```
M % Display gpuArray

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

reset(g);
g % Show that the device is still selected

g =

CUDADevice with properties:

 Name: 'Tesla K20c'
 Index: 1
 ComputeCapability: '3.5'
 SupportsDouble: 1
 DriverVersion: 7
 ToolkitVersion: 7
 MaxThreadsPerBlock: 1024
 MaxShmemPerBlock: 49152
 MaxThreadBlockSize: [1024 1024 64]
 MaxGridSize: [2.1475e+09 65535 65535]
 SIMDWidth: 32
 TotalMemory: 5.0327e+09
 AvailableMemory: 4.9190e+09
 MultiprocessorCount: 13
 ClockRateKHz: 705500
 ComputeMode: 'Default'
 GPUOverlapsTransfers: 1
 KernelExecutionTimeout: 0
 CanMapHostMemory: 1
 DeviceSupported: 1
 DeviceSelected: 1

whos % Show that the gpuArray variable name
% is still in the MATLAB workspace

 Name Size Bytes Class Attributes
 g 1x1 112 parallel.gpu.CUDADevice
 M 1x1 108 gpuArray

M % Try to display gpuArray

Data no longer exists on the GPU.
clear M

See Also
gpuDevice | gpuArray | parallel.gpu.CUDAKernel
resume

Resume processing queue in MATLAB job scheduler

Syntax

resume(mjs)

Arguments

mjs MATLAB job scheduler object whose queue is resumed.

Description

resume(mjs) resumes processing of the specified MATLAB job scheduler's queue so that jobs waiting in the queued state will be run. This call will do nothing if the MJS is not paused.

See Also

pause | wait
saveAsProfile

Save cluster properties to specified profile

Description

saveAsProfile(cluster,profileName) saves the properties of the cluster object to
the specified profile, and updates the cluster Profile property value to indicate the new
profile name.

Examples

Create a cluster, then modify a property and save the properties to a new profile.

myCluster = parcluster('local');
myCluster.NumWorkers = 3;
saveAsProfile(myCluster,'local2'); New profile now specifies 3 workers

See Also

parcluster | saveProfile
saveProfile

Save modified cluster properties to its current profile

Description

saveProfile(cluster) saves the modified properties on the cluster object to the profile specified by the cluster's Profile property, and sets the Modified property to false. If the cluster's Profile property is empty, an error is thrown.

Examples

Create a cluster, then modify a property and save the change to the profile.

myCluster = parcluster('local')

myCluster =
Local Cluster
 Properties:
 Profile: local
 Modified: false
 Host: HOSTNAME
 NumWorkers: 4

myCluster.NumWorkers = 3

myCluster =
Local Cluster
 Properties:
 Profile: local
 Modified: true
 Host: HOSTNAME
 NumWorkers: 3

The myCluster.Modified property is now true.

saveProfile(myCluster);

myCluster

myCluster =
Local Cluster
Properties:

- Profile: local
- Modified: false
- Host: HOSTNAME
- NumWorkers: 3

After saving, the `local` profile now matches the current property settings, so the `myCluster.Modified` property is `false`.

See Also

`parcluster` | `saveAsProfile`
setConstantMemory

Set some constant memory on GPU

Syntax

setConstantMemory(kern, sym, val)
setConstantMemory(kern, sym1, val1, sym2, val2, ...)

Description

setConstantMemory(kern, sym, val) sets the constant memory in the CUDA kernel kern with symbol name sym to contain the data in val. val can be any numeric array, including a gpuArray. The command errors if the named symbol does not exist or if it is not big enough to contain the specified data. Partially filling a constant is allowed.

There is no automatic data-type conversion for constant memory, so it is important to make sure that the supplied data is of the correct type for the constant memory symbol being filled.

setConstantMemory(kern, sym1, val1, sym2, val2, ...) sets multiple constant symbols.

Examples

If KERN represents a CUDA kernel whose CU file contains the following includes and constant definitions:

```c
#include "tmwtypes.h"
__constant__ int32_t N1;
__constant__ int N2; // Assume 'int' is 32 bits
__constant__ double CONST_DATA[256];
```

you can fill these with MATLAB data as follows:

```matlab
KERN = parallel.gpu.CUDAKernel(ptxFile, cudaFile);
```
setConstantMemory(KERN,'N1',int32(10));
setConstantMemory(KERN,'N2',int32(10));
setConstantMemory(KERN,'CONST_DATA',1:10);

or

setConstantMemory(KERN,'N1',int32(10),'N2',int32(10),'CONST_DATA',1:10);

See Also

gpuArray | parallel.gpu.CUDAKernel
setJobClusterData

Set specific user data for job on generic cluster

Syntax

setJobClusterData(cluster,job,userdata)

Arguments

cluster Cluster object identifying the generic third-party cluster running the job
job Job object identifying the job for which to store data
userdata Information to store for this job

Description

setJobClusterData(cluster,job,userdata) stores data for the job job that is running on the generic cluster cluster. You can later retrieve the information with the function getJobClusterData. For example, it might be useful to store the third-party scheduler's external ID for this job, so that the function specified in GetJobStateFcn can later query the scheduler about the state of the job. Or the stored data might be an array with the scheduler's ID for each task in the job.

You should call the function setJobClusterData in the submit function (identified by the IndependentSubmitFcn or CommunicatingSubmitFcn property) and call getJobClusterData in any of the functions identified by the properties GetJobStateFcn, DeleteJobFcn, DeleteTaskFcn, CancelJobFcn, or CancelTaskFcn.

For more information and examples on using these functions and properties, see “Manage Jobs with Generic Scheduler” on page 7-34.

See Also

gJobClusterData
size

Size of object array

Syntax

\[
\begin{align*}
d &= \text{size}(\text{obj}) \\
[m,n] &= \text{size}(\text{obj}) \\
[m_1,m_2,m_3,...,m_n] &= \text{size}(\text{obj}) \\
m &= \text{size}(\text{obj},\text{dim})
\end{align*}
\]

Arguments

- **obj**: An object or an array of objects.
- **dim**: The dimension of \text{obj}.
- **d**: The number of rows and columns in \text{obj}.
- **m**: The number of rows in \text{obj}, or the length of the dimension specified by \text{dim}.
- **n**: The number of columns in \text{obj}.
- **m_1,m_2,m_3,...,m_n**: The lengths of the first \(n\) dimensions of \text{obj}.

Description

- \(d = \text{size}(\text{obj})\) returns the two-element row vector \(d\) containing the number of rows and columns in \text{obj}.
- \([m,n] = \text{size}(\text{obj})\) returns the number of rows and columns in separate output variables.
- \([m_1,m_2,m_3,...,m_n] = \text{size}(\text{obj})\) returns the length of the first \(n\) dimensions of \text{obj}.
- \(m = \text{size}(\text{obj},\text{dim})\) returns the length of the dimension specified by the scalar \text{dim}. For example, \(\text{size}(\text{obj},1)\) returns the number of rows.
See Also
length
sparse

Create sparse distributed or codistributed matrix

Syntax

SD = sparse(FD)
SC = sparse(m,n,codist)
SC = sparse(m,n,codist,'noCommunication')
SC = sparse(i,j,v,m,n,nzmax)
SC = sparse(i,j,v,m,n)
SC = sparse(i,j,v)

Description

SD = sparse(FD) converts a full distributed or codistributed array FD to a sparse distributed or codistributed (respectively) array SD.

SC = sparse(m,n,codist) creates an m-by-n sparse codistributed array of underlying class double, distributed according to the scheme defined by the codistributor codist. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc. This form of the syntax is most useful inside spmd, pmode, or a communicating job.

SC = sparse(m,n,codist,'noCommunication') creates an m-by-n sparse codistributed array in the manner specified above, but does not perform any global communication for error checking when constructing the array. This form of the syntax is most useful inside spmd, pmode, or a communicating job.

SC = sparse(i,j,v,m,n,nzmax) uses vectors i and j to specify indices, and v to specify element values, for generating an m-by-n sparse matrix such that SC(i(k),j(k)) = v(k), with space allocated for nzmax nonzeros. If any of the input vectors i, j, or v is codistributed, the output sparse matrix SC is codistributed. Vectors i, j, and v must be the same length. Any elements of v that are zero are ignored, along with the corresponding values of i and j. Any elements of v that have duplicate values of i and j are added together.
To simplify this six-argument call, you can pass scalars for the argument \(v \) and one of the arguments \(i \) or \(j \), in which case they are expanded so that \(i \), \(j \), and \(v \) all have the same length.

\[
SC = \text{sparse}(i,j,v,m,n) \text{ uses } nzmax = \max([\text{length}(i) \text{ length}(j)]).
\]

\[
SC = \text{sparse}(i,j,v) \text{ uses } m = \max(i) \text{ and } n = \max(j). \text{ The maxima are computed before any zeros in } v \text{ are removed, so one of the rows of } [i \ j \ v] \text{ might be } [m \ n \ 0], \text{ assuring the matrix size satisfies the requirements of } m \text{ and } n.
\]

Note: To create a sparse codistributed array of underlying class logical, first create an array of underlying class double and then cast it using the *logical* function:

```matlab
spmd
    SC = logical(sparse(m,n,codistributor1d()));
end
```

Examples

With four workers,

```matlab
spmd(4)
    C = sparse(1000,1000,codistributor1d())
end
```

creates a 1000-by-1000 codistributed sparse double array \(C \). \(C \) is distributed by its second dimension (columns), and each worker contains a 1000-by-250 local piece of \(C \).

```matlab
spmd(4)
    codist = codistributor1d(2,1:numlabs)
    C = sparse(10,10,codist);
end
```

creates a 10-by-10 codistributed sparse double array \(C \), distributed by its columns. Each worker contains a 10-by-\text{labindex} local piece of \(C \).

Convert a distributed array into a sparse distributed array:

```matlab
R = rand(1000,'distributed');
D = floor(2*R); % D also is distributed
SD = sparse(D); % SD is sparse distributed
```
Create a sparse codistributed array from vectors of indices and a distributed array of element values:

```matlab
r = [1 1 4 4 8];
c = [1 4 1 4 8];
v = [10 20 30 40 0];
V = distributed(v);
spmd
    SC = sparse(r,c,V);
end
```

In this example, even though the fifth element of the value array `v` is 0, the size of the result is an 8-by-8 matrix because of the corresponding maximum indices in `r` and `c`. Matrix `SC` is considered codistributed when viewed inside an `spmd` block, and distributed when viewed from the client workspace. To view a full version of the matrix, the `full` function converts this distributed sparse array to a full distributed array:

```matlab
S = full(SC)
```

```
  10  0  0  20  0  0  0  0
   0  0  0  0  0  0  0  0
   0  0  0  0  0  0  0  0
  30  0  0  40  0  0  0  0
   0  0  0  0  0  0  0  0
   0  0  0  0  0  0  0  0
   0  0  0  0  0  0  0  0
   0  0  0  0  0  0  0  0
```

See Also
- `sparse`
- `distributed.spalloc`
- `codistributed.spalloc`
spmd

Execute code in parallel on workers of parallel pool

Syntax

spmd, statements, end
spmd(n), statements, end
spmd(m,n), statements, end

Description

The general form of an spmd (single program, multiple data) statement is:

 spmd
 statements
 end

spmd, statements, end defines an spmd statement on a single line. MATLAB executes the spmd body denoted by statements on several MATLAB workers simultaneously. The spmd statement can be used only if you have Parallel Computing Toolbox. To execute the statements in parallel, you must first open a pool of MATLAB workers using parpool or have your parallel preferences allow the automatic start of a pool.

Inside the body of the spmd statement, each MATLAB worker has a unique value of labindex, while numlabs denotes the total number of workers executing the block in parallel. Within the body of the spmd statement, communication functions for communicating jobs (such as labSend and labReceive) can transfer data between the workers.

Values returning from the body of an spmd statement are converted to Composite objects on the MATLAB client. A Composite object contains references to the values stored on the remote MATLAB workers, and those values can be retrieved using cell-array indexing. The actual data on the workers remains available on the workers for subsequent spmd execution, so long as the Composite exists on the client and the parallel pool remains open.
By default, MATLAB uses as many workers as it finds available in the pool. When there are no MATLAB workers available, MATLAB executes the block body locally and creates Composite objects as necessary.

`spmd(n), statements, end` uses `n` to specify the exact number of MATLAB workers to evaluate `statements`, provided that `n` workers are available from the parallel pool. If there are not enough workers available, an error is thrown. If `n` is zero, MATLAB executes the block body locally and creates Composite objects, the same as if there is no pool available.

`spmd(m,n), statements, end` uses a minimum of `m` and a maximum of `n` workers to evaluate `statements`. If there are not enough workers available, an error is thrown. `m` can be zero, which allows the block to run locally if no workers are available.

For more information about `spmd` and Composite objects, see “Distributed Arrays and SPMD”.

Examples

Perform a simple calculation in parallel, and plot the results:

```
parpool(3)
spmd
    % build magic squares in parallel
    q = magic(labindex + 2);
end
for ii=1:length(q)
    % plot each magic square
    figure, imagesc(q{ii});
end
delete(gcp)
```

More About

Tips

- An `spmd` block runs on the workers of the existing parallel pool. If no pool exists, `spmd` will start a new parallel pool, unless the automatic starting of pools is disabled in your parallel preferences. If there is no parallel pool and `spmd` cannot start one, the code runs serially in the client session.
If the AutoAttachFiles property in the cluster profile for the parallel pool is set to true, MATLAB performs an analysis on an spmd block to determine what code files are necessary for its execution, then automatically attaches those files to the parallel pool job so that the code is available to the workers.

For information about restrictions and limitations when using spmd, see “spmd Limitations” on page 3-13.

See Also
batch | Composite | gop | labindex | parallel.pool.Constant | parpool | numlabs | parfor
submit

Queue job in scheduler

Syntax

submit(j)

Arguments

j

Job object to be queued.

Description

submit(j) queues the job object j in its cluster queue. The cluster used for this job was determined when the job was created.

Examples

Find the MJS cluster identified by the cluster profile Profile1.

c1 = parcluster('Profile1');

Create a job object in this cluster.

j1 = createJob(c1);

Add a task object to be evaluated for the job.

t1 = createTask(j1,@rand,1,{8,4});

Queue the job object in the cluster for execution.

submit(j1);
More About

Tips

When a job is submitted to a cluster queue, the job’s **State** property is set to **queued**, and the job is added to the list of jobs waiting to be executed.

The jobs in the waiting list are executed in a first in, first out manner; that is, the order in which they were submitted, except when the sequence is altered by **promote**, **demote**, **cancel**, or **delete**.

See Also

createCommunicatingJob | createJob | findJob | parcluster | promote | recreate
subsasgn

Subscripted assignment for Composite

Syntax

C(i) = {B}
C(1:end) = {B}
C([i1,i2]) = {B1,B2}
C{i} = B

Description

subsasgn assigns remote values to Composite objects. The values reside on the workers in the current parallel pool.

C(i) = {B} sets the entry of C on worker i to the value B.
C(1:end) = {B} sets all entries of C to the value B.
C([i1,i2]) = {B1,B2} assigns different values on workers i1 and i2.
C{i} = B sets the entry of C on worker i to the value B.

See Also

subsasgn | Composite | subsref
subsref

Subscripted reference for Composite

Syntax

B = C(i)
B = C([i1,i2,...])
B = C{i}
[B1,B2,...] = C{[i1,i2,...]}

Description

subsref retrieves remote values of a Composite object from the workers in the current parallel pool.

B = C(i) returns the entry of Composite C from worker i as a cell array.

B = C([i1,i2,...]) returns multiple entries as a cell array.

B = C{i} returns the value of Composite C from worker i as a single entry.

[B1,B2,...] = C{[i1,i2,...]} returns multiple entries.

See Also

subsref | Composite | subsasgn
taskFinish

User-defined options to run on worker when task finishes

Syntax

taskFinish(task)

Arguments

task

The task being evaluated by the worker

Description

taskFinish(task) runs automatically on a worker each time the worker finishes evaluating a task for a particular job. You do not call this function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the taskFinish.m file to define anything you want executed on the worker when a task is finished. The worker looks for taskFinish.m in the following order, executing the one it finds first:

1. Included in the job’s AttachedFiles property.
2. In a folder included in the job’s AdditionalPaths property.
3. In the worker’s MATLAB installation at the location

 matlabroot/toolbox/distcomp/user/taskFinish.m

To create a version of taskFinish.m for AttachedFiles or AdditionalPaths, copy the provided file and modify it as required. For further details on taskFinish and its implementation, see the text in the installed taskFinish.m file.

See Also

jobStartup | poolStartup | taskStartup
taskStartup

User-defined options to run on worker when task starts

Syntax

```matlab
taskStartup(task)
```

Arguments

- `task` The task being evaluated by the worker.

Description

`taskStartup(task)` runs automatically on a worker each time the worker evaluates a task for a particular job. You do not call this function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the `taskStartup.m` file to define task initialization on the worker. The worker looks for `taskStartup.m` in the following order, executing the one it finds first:

1. Included in the job’s `AttachedFiles` property.
2. In a folder included in the job’s `AdditionalPaths` property.
3. In the worker’s MATLAB installation at the location
   ```matlab
   matlabroot/toolbox/distcomp/user/taskStartup.m
   ```

To create a version of `taskStartup.m` for `AttachedFiles` or `AdditionalPaths`, copy the provided file and modify it as required. For further details on `taskStartup` and its implementation, see the text in the installed `taskStartup.m` file.

See Also

`jobStartup` | `poolStartup` | `taskFinish`
true

Array of logical 1 (true)

Syntax

\[
T = \text{true}(sz, \text{arraytype})
\]
\[
T = \text{true}(sz, 'like', P)
\]
\[
C = \text{true}(sz, \text{codist})
\]
\[
C = \text{true}(sz, _, \text{codist}, 'noCommunication')
\]
\[
C = \text{true}(sz, _, \text{codist}, 'like', P)
\]

Description

\[
T = \text{true}(sz, \text{arraytype})
\] creates a matrix with true values in all elements.

The size and type of array are specified by the argument options according to the following table.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sz</td>
<td>(n)</td>
<td>Specifies size as an (n)-by-(n) matrix.</td>
</tr>
<tr>
<td></td>
<td>(m,n) or ([m \ n])</td>
<td>Specifies size as an (m)-by-(n) matrix.</td>
</tr>
<tr>
<td></td>
<td>(m,n,...,k) or ([m \ n ... k])</td>
<td>Specifies size as an (m)-by-(n)-by-...-by-(k) array.</td>
</tr>
<tr>
<td>arraytype</td>
<td>'distributed'</td>
<td>Specifies distributed array.</td>
</tr>
<tr>
<td></td>
<td>'codistributed'</td>
<td>Specifies codistributed array, using the default distribution scheme.</td>
</tr>
<tr>
<td></td>
<td>'gpuArray'</td>
<td>Specifies gpuArray.</td>
</tr>
</tbody>
</table>

\[
T = \text{true}(sz, 'like', P)
\] creates an array of true values with the same type as array \(P\).

\[
C = \text{true}(sz, \text{codist})
\] creates a codistributed array of true values with the specified size. The codistributor object \(\text{codist}\) specifies the distribution scheme for creating the codistributed array. For information on constructing codistributor objects, see the
reference pages for `codistributor1d` and `codistributor2dbc`. To use the default distribution scheme, you can specify a codistributor constructor without arguments. For example:

```matlab
spmd
    C = true(8,codistributor1d());
end
```

```matlab
C = true(sz,___,codist,'noCommunication')
```

specifies that no interworker communication is to be performed when constructing a codistributed array, skipping some error checking steps.

```matlab
C = true(sz,___,codist,'like',P)
```

creates a codistributed array of `true` values with the specified size and distribution scheme. If the codistributor argument is omitted, the distribution scheme is taken from the codistributed array `P`.

Examples

Create Distributed True Matrix

Create a 1000-by-1000 distributed array of `true`es with underlying class double:

```matlab
D = true(1000,'distributed');
```

Create Codistributed True Matrix

Create a 1000-by-1000 codistributed matrix of `true`es, distributed by its second dimension (columns).

```matlab
spmd(4)
    C = true(1000,'codistributed');
end
```

With four workers, each worker contains a 1000-by-250 local piece of `C`.

Create a 1000-by-1000 codistributed matrix of `true`es, distributed by its columns.

```matlab
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = true(1000,1000,codist);
end
```
Each worker contains a 100-by-labindex local piece of C.

Create gpuArray True Matrix

Create a 1000-by-1000 gpuArray of trues:

\[G = \text{true}(1000, 'gpuArray'); \]

See Also

eye | false | Inf | NaN | ones | true | zeros
updateAttachedFiles
Update attached files or folders on parallel pool

Syntax
updateAttachedFiles(poolobj)

Description
updateAttachedFiles(poolobj) checks all the attached files of the specified parallel pool to see if they have changed, and replicates any changes to each of the workers in the pool. This checks files that were attached (by a profile or parpool argument) when the pool was started and those subsequently attached with the addAttachedFiles command.

Examples
Update Attached Files on Current Parallel Pool
Update all attached files on the current parallel pool.

poolobj = gcp;
updateAttachedFiles(poolobj)

Input Arguments
poolobj — Pool with attached files
pool object

Pool with attached files, specified as a pool object.
Example: poolobj = gcp;

More About
• “Create and Modify Cluster Profiles” on page 6-17
See Also
addAttachedFiles | gcp | listAutoAttachedFiles | parpool

Introduced in R2013b
wait

Wait for job to change state

Syntax

wait(j)
wait(j,'state')
wait(j,'state',timeout)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>Job object whose change in state to wait for.</td>
</tr>
<tr>
<td>'state'</td>
<td>Value of the job object’s State property to wait for.</td>
</tr>
<tr>
<td>timeout</td>
<td>Maximum time to wait, in seconds.</td>
</tr>
</tbody>
</table>

Description

wait(j) blocks execution in the client session until the job identified by the object j reaches the 'finished' state or fails. This occurs when all the job’s tasks are finished processing on the workers.

wait(j,'state') blocks execution in the client session until the specified job object changes state to the value of 'state'. The valid states to wait for are 'queued', 'running', and 'finished'.

If the object is currently or has already been in the specified state, a wait is not performed and execution returns immediately. For example, if you execute wait(j,'queued') for a job already in the 'finished' state, the call returns immediately.

wait(j,'state',timeout) blocks execution until either the job reaches the specified 'state', or timeout seconds elapse, whichever happens first.
Note Simulink models cannot run while a MATLAB session is blocked by `wait`. If you must run Simulink from the MATLAB client while also running jobs, you cannot use `wait`.

Examples

Submit a job to the queue, and wait for it to finish running before retrieving its results.

```matlab
submit(j);
wait(j, 'finished')
results = fetchOutputs(j)
```

Submit a batch job and wait for it to finish before retrieving its variables.

```matlab
j = batch('myScript');
wait(j)
load(j)
```

See Also

`pause` | `resume` | `wait (GPUDevice)` | `wait (FevalFuture)`
wait (FevalFuture)

Wait for futures to complete

Syntax

OK = wait(F)
OK = wait(F,STATE)
OK = wait(F,STATE,TIMEOUT)

Description

OK = wait(F) blocks execution until each of the array of futures F has reached the 'finished' state. OK is true if the wait completed successfully, and false if any of the futures was cancelled or failed execution.

OK = wait(F,STATE) blocks execution until the array of futures F has reached the state STATE. Valid values for STATE are 'running' or 'finished'.

OK = wait(F,STATE,TIMEOUT) blocks execution for a maximum of TIMEOUT seconds. OK is set false if TIMEOUT is exceeded before STATE is reached, or if any of the futures was cancelled or failed execution.

See Also
fetchOutputs | isequal | parfeval | parfevalOnAll | fetchNext
wait (GPUDevice)

Wait for GPU calculation to complete

Syntax

```matlab
wait(gpudev)
```

Description

`wait(gpudev)` blocks execution in MATLAB until the GPU device identified by the GPUDevice object `gpudev` completes its calculations. This can be used before calls to `toc` when timing GPU code that does not gather results back to the workspace. When gathering results from a GPU, MATLAB automatically waits until all GPU calculations are complete, so you do not need to explicitly call `wait` in that situation.

See Also

`gather`, `gpuArray`, `gpuDevice`, `gputimeit`

Related Examples

- “Measure Performance on the GPU” on page 9-38
zeros

Array of zeros

Syntax

Z = zeros(sz, arraytype)
Z = zeros(sz, datatype, arraytype)
Z = zeros(sz, 'like', P)
Z = zeros(sz, datatype, 'like', P)
C = zeros(sz, codist)
C = zeros(sz, datatype, codist)
C = zeros(sz, __, codist, 'noCommunication')
C = zeros(sz, __, codist, 'like', P)

Description

$Z = \text{zeros}(sz, \text{arraytype})$ creates a matrix with underlying class of double, with zeros in all elements.

$Z = \text{zeros}(sz, \text{datatype}, \text{arraytype})$ creates a matrix with underlying class of datatype, with zeros in all elements.

The size and type of array are specified by the argument options according to the following table.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Values</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sz</td>
<td>n</td>
<td>Specifies size as an n-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m,n or [m n]</td>
<td>Specifies size as an m-by-n matrix.</td>
</tr>
<tr>
<td></td>
<td>m,n,...,k or [m n ... k]</td>
<td>Specifies size as an m-by-n-by-...-by-k array.</td>
</tr>
<tr>
<td>arraytype</td>
<td>'distributed'</td>
<td>Specifies distributed array.</td>
</tr>
<tr>
<td></td>
<td>'codistributed'</td>
<td>Specifies codistributed array, using the default distribution scheme.</td>
</tr>
<tr>
<td>Argument</td>
<td>Values</td>
<td>Descriptions</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>'gpuArray'</td>
<td>Specifies gpuArray.</td>
</tr>
<tr>
<td></td>
<td>'double' (default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', or 'uint64'</td>
<td>Specifies underlying class of the array, i.e., the data type of its elements.</td>
</tr>
</tbody>
</table>

\[
Z = \text{zeros}(sz,'like',P)
\]
creates an array of zeros with the same type and underlying class (data type) as array \(P \).

\[
Z = \text{zeros}(sz,\text{datatype},'like',P)
\]
creates an array of zeros with the specified underlying class (\text{datatype}), and the same type as array \(P \).

\[
C = \text{zeros}(sz,\text{codist}) \text{ or } C = \text{zeros}(sz,\text{datatype},\text{codist})
\]
creates a codistributed array of zeros with the specified size and underlying class (the default \text{datatype} is 'double'). The codistributor object \text{codist} specifies the distribution scheme for creating the codistributed array. For information on constructing codistributor objects, see the reference pages for \text{codistributor1d} and \text{codistributor2dbc}. To use the default distribution scheme, you can specify a codistributor constructor without arguments. For example:

```matlab
spmd
    C = zeros(8,codistributor1d());
end
```

\[
C = \text{zeros}(sz,\text{___},\text{codist},'\text{noCommunication}')
\]
specifies that no interworker communication is to be performed when constructing a codistributed array, skipping some error checking steps.

\[
C = \text{zeros}(sz,\text{___},\text{codist},'\text{like}',P)
\]
creates a codistributed array of zeros with the specified size, underlying class, and distribution scheme. If either the class or codistributor argument is omitted, the characteristic is acquired from the codistributed array \(P \).
Examples

Create Distributed Zeros Matrix

Create a 1000-by-1000 distributed array of zeros with underlying class double:

\[D = \text{zeros}(1000,'\text{distributed}'); \]

Create Codistributed Zeros Matrix

Create a 1000-by-1000 codistributed double matrix of zeros, distributed by its second dimension (columns).

\[
\begin{align*}
\text{spmd}(4) \\
C &= \text{zeros}(1000,'\text{codistributed}'); \\
\text{end}
\end{align*}
\]

With four workers, each worker contains a 1000-by-250 local piece of \(C \).

Create a 1000-by-1000 codistributed uint16 matrix of zeros, distributed by its columns.

\[
\begin{align*}
\text{spmd}(4) \\
\text{codist} &= \text{codistributor}('1d',2,100*[1:\text{numlabs}]); \\
C &= \text{zeros}(1000,1000,'\text{uint16}',\text{codist}); \\
\text{end}
\end{align*}
\]

Each worker contains a 100-by-labindex local piece of \(C \).

Create gpuArray Zeros Matrix

Create a 1000-by-1000 gpuArray of zeros with underlying class uint32:

\[G = \text{zeros}(1000,'\text{uint32}','\text{gpuArray}'); \]

See Also
eye | false | Inf | NaN | ones | true | zeros
<table>
<thead>
<tr>
<th>CHECKPOINTBASE</th>
<th>The name of the parameter in the mdce_def file that defines the location of the checkpoint directories for the MATLAB job scheduler and workers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>checkpoint directory</td>
<td>See CHECKPOINTBASE.</td>
</tr>
<tr>
<td>client</td>
<td>The MATLAB session that defines and submits the job. This is the MATLAB session in which the programmer usually develops and prototypes applications. Also known as the MATLAB client.</td>
</tr>
<tr>
<td>client computer</td>
<td>The computer running the MATLAB client; often your desktop.</td>
</tr>
<tr>
<td>cluster</td>
<td>A collection of computers that are connected via a network and intended for a common purpose.</td>
</tr>
<tr>
<td>coarse-grained application</td>
<td>An application for which run time is significantly greater than the communication time needed to start and stop the program. Coarse-grained distributed applications are also called embarrassingly parallel applications.</td>
</tr>
<tr>
<td>codistributed array</td>
<td>An array partitioned into segments, with each segment residing in the workspace of a different worker. When created, viewed, accessed, or manipulated from one of the worker sessions that contains part of the array, it is referred to as a codistributed array. Compare to distributed array.</td>
</tr>
<tr>
<td>communicating job</td>
<td>Job composed of tasks that communicate with each other during evaluation. All tasks must run simultaneously. A special case of communicating job is a parallel pool, used for executing parfor-loops and spmd blocks.</td>
</tr>
<tr>
<td>Composite</td>
<td>An object in a MATLAB client session that provides access to data values stored on the workers in a parallel pool, such as the values of variables that are assigned inside an spmd statement.</td>
</tr>
<tr>
<td>computer</td>
<td>A system with one or more processors.</td>
</tr>
<tr>
<td>distributed application</td>
<td>The same application that runs independently on several nodes, possibly with different input parameters. There is no communication, shared data, or synchronization points between the nodes, so they are generally considered to be coarse-grained.</td>
</tr>
<tr>
<td>distributed array</td>
<td>An array partitioned into segments, with each segment residing in the workspace of a different worker. When created, viewed, accessed, or manipulated from the client session, it is referred to as a distributed array. Compare to codistributed array.</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System. A system that translates Internet domain names into IP addresses.</td>
</tr>
<tr>
<td>dynamic licensing</td>
<td>The ability of a MATLAB worker to employ all the functionality you are licensed for in the MATLAB client, while checking out only an engine license. When a job is created in the MATLAB client with Parallel Computing Toolbox software, the products for which the client is licensed will be available for all workers that evaluate tasks for that job. This allows you to run any code on the cluster that you are licensed for on your MATLAB client, without requiring extra licenses for the worker beyond MATLAB Distributed Computing Server software. For a list of products that are not eligible for use with Parallel Computing Toolbox software, see http://www.mathworks.com/products/ineligible_programs/.</td>
</tr>
<tr>
<td>fine-grained application</td>
<td>An application for which run time is significantly less than the communication time needed to start and stop the program. Compare to coarse-grained applications.</td>
</tr>
<tr>
<td>head node</td>
<td>Usually, the node of the cluster designated for running the job scheduler and license manager. It is often useful to run all the nonworker related processes on a single machine.</td>
</tr>
<tr>
<td>heterogeneous cluster</td>
<td>A cluster that is not homogeneous.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>homogeneous cluster</td>
<td>A cluster of identical machines, in terms of both hardware and software.</td>
</tr>
<tr>
<td>independent job</td>
<td>A job composed of independent tasks, which do not communicate with each other during evaluation. Tasks do not need to run simultaneously.</td>
</tr>
<tr>
<td>job</td>
<td>The complete large-scale operation to perform in MATLAB, composed of a set of tasks.</td>
</tr>
<tr>
<td>job scheduler checkpoint information</td>
<td>Snapshot of information necessary for the MATLAB job scheduler to recover from a system crash or reboot.</td>
</tr>
<tr>
<td>job scheduler database</td>
<td>The database that the MATLAB job scheduler uses to store the information about its jobs and tasks.</td>
</tr>
<tr>
<td>LOGDIR</td>
<td>The name of the parameter in the mdce_def file that defines the directory where logs are stored.</td>
</tr>
<tr>
<td>MATLAB client</td>
<td>See client.</td>
</tr>
<tr>
<td>MATLAB job scheduler (MJS)</td>
<td>The MathWorks process that queues jobs and assigns tasks to workers. Formerly known as a job manager.</td>
</tr>
<tr>
<td>MATLAB worker</td>
<td>See worker.</td>
</tr>
<tr>
<td>mdce</td>
<td>The service that has to run on all machines before they can run a MATLAB job scheduler or worker. This is the engine foundation process, making sure that the job scheduler and worker processes that it controls are always running. Note that the program and service name is all lowercase letters.</td>
</tr>
<tr>
<td>mdce_def file</td>
<td>The file that defines all the defaults for the mdce processes by allowing you to set preferences or definitions in the form of parameter values.</td>
</tr>
<tr>
<td>MPI</td>
<td>Message Passing Interface, the means by which workers communicate with each other while running tasks in the same job.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>node</td>
<td>A computer that is part of a cluster.</td>
</tr>
<tr>
<td>parallel application</td>
<td>The same application that runs on several workers simultaneously, with communication, shared data, or synchronization points between the workers.</td>
</tr>
<tr>
<td>parallel pool</td>
<td>A collection of workers that are reserved by the client and running a special communicating job for execution of parfor-loops, spmd statements, and distributed arrays.</td>
</tr>
<tr>
<td>private array</td>
<td>An array which resides in the workspaces of one or more, but perhaps not all workers. There might or might not be a relationship between the values of these arrays among the workers.</td>
</tr>
<tr>
<td>random port</td>
<td>A random unprivileged TCP port, i.e., a random TCP port above 1024.</td>
</tr>
<tr>
<td>register a worker</td>
<td>The action that happens when both worker and MATLAB job scheduler are started and the worker contacts the job scheduler.</td>
</tr>
<tr>
<td>replicated array</td>
<td>An array which resides in the workspaces of all workers, and whose size and content are identical on all workers.</td>
</tr>
<tr>
<td>scheduler</td>
<td>The process, either local, third-party, or the MATLAB job scheduler, that queues jobs and assigns tasks to workers.</td>
</tr>
<tr>
<td>spmd (single program multiple data)</td>
<td>A block of code that executes simultaneously on multiple workers in a parallel pool. Each worker can operate on a different data set or different portion of distributed data, and can communicate with other participating workers while performing the parallel computations.</td>
</tr>
<tr>
<td>task</td>
<td>One segment of a job to be evaluated by a worker.</td>
</tr>
<tr>
<td>variant array</td>
<td>An array which resides in the workspaces of all workers, but whose content differs on these workers.</td>
</tr>
<tr>
<td>worker</td>
<td>The MATLAB session that performs the task computations. Also known as the MATLAB worker or worker process.</td>
</tr>
<tr>
<td>worker checkpoint information</td>
<td>Files required by the worker during the execution of tasks.</td>
</tr>
</tbody>
</table>