How to Contact MathWorks

Latest news: www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Global Optimization Toolbox User's Guide

© COPYRIGHT 2004–2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.
<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Revision History</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2004</td>
<td>Online only</td>
<td>New for Version 1.0 (Release 13SP1+)</td>
</tr>
<tr>
<td>June 2004</td>
<td>First printing</td>
<td>Revised for Version 1.0.1 (Release 14)</td>
</tr>
<tr>
<td>October 2004</td>
<td>Online only</td>
<td>Revised for Version 1.0.2 (Release 14SP1)</td>
</tr>
<tr>
<td>March 2005</td>
<td>Online only</td>
<td>Revised for Version 1.0.3 (Release 14SP2)</td>
</tr>
<tr>
<td>September 2005</td>
<td>Second printing</td>
<td>Revised for Version 2.0 (Release 14SP3)</td>
</tr>
<tr>
<td>March 2006</td>
<td>Online only</td>
<td>Revised for Version 2.0.1 (Release 2006a)</td>
</tr>
<tr>
<td>September 2006</td>
<td>Online only</td>
<td>Revised for Version 2.0.2 (Release 2006b)</td>
</tr>
<tr>
<td>March 2007</td>
<td>Online only</td>
<td>Revised for Version 2.1 (Release 2007a)</td>
</tr>
<tr>
<td>September 2007</td>
<td>Third printing</td>
<td>Revised for Version 2.2 (Release 2007b)</td>
</tr>
<tr>
<td>March 2008</td>
<td>Online only</td>
<td>Revised for Version 2.3 (Release 2008a)</td>
</tr>
<tr>
<td>October 2008</td>
<td>Online only</td>
<td>Revised for Version 2.4 (Release 2008b)</td>
</tr>
<tr>
<td>March 2009</td>
<td>Online only</td>
<td>Revised for Version 2.4.1 (Release 2009a)</td>
</tr>
<tr>
<td>September 2009</td>
<td>Online only</td>
<td>Revised for Version 2.4.2 (Release 2009b)</td>
</tr>
<tr>
<td>March 2010</td>
<td>Online only</td>
<td>Revised for Version 3.0 (Release 2010a)</td>
</tr>
<tr>
<td>September 2010</td>
<td>Online only</td>
<td>Revised for Version 3.1 (Release 2010b)</td>
</tr>
<tr>
<td>April 2011</td>
<td>Online only</td>
<td>Revised for Version 3.1.1 (Release 2011a)</td>
</tr>
<tr>
<td>September 2011</td>
<td>Online only</td>
<td>Revised for Version 3.2 (Release 2011b)</td>
</tr>
<tr>
<td>March 2012</td>
<td>Online only</td>
<td>Revised for Version 3.2.1 (Release 2012a)</td>
</tr>
<tr>
<td>September 2012</td>
<td>Online only</td>
<td>Revised for Version 3.2.2 (Release 2012b)</td>
</tr>
<tr>
<td>March 2013</td>
<td>Online only</td>
<td>Revised for Version 3.2.3 (Release 2013a)</td>
</tr>
<tr>
<td>September 2013</td>
<td>Online only</td>
<td>Revised for Version 3.2.4 (Release 2013b)</td>
</tr>
<tr>
<td>March 2014</td>
<td>Online only</td>
<td>Revised for Version 3.2.5 (Release 2014a)</td>
</tr>
<tr>
<td>October 2014</td>
<td>Online only</td>
<td>Revised for Version 3.3 (Release 2014b)</td>
</tr>
<tr>
<td>March 2015</td>
<td>Online only</td>
<td>Revised for Version 3.3.1 (Release 2015a)</td>
</tr>
<tr>
<td>September 2015</td>
<td>Online only</td>
<td>Revised for Version 3.3.2 (Release 2015b)</td>
</tr>
</tbody>
</table>
Getting Started

Introducing Global Optimization Toolbox

Functions

- Global Optimization Toolbox Product Description .. 1-2
 - Key Features .. 1-2
- Solution Quality ... 1-3
- Comparison of Five Solvers .. 1-4
 - Function to Optimize .. 1-4
 - Five Solution Methods ... 1-5
 - Compare Syntax and Solutions .. 1-10
- What Is Global Optimization? ... 1-12
 - Local vs. Global Optima .. 1-12
 - Basins of Attraction .. 1-13
- Optimization Workflow .. 1-16
- Choosing a Solver ... 1-17
 - Table for Choosing a Solver ... 1-17
 - Solver Characteristics ... 1-21
 - Why Are Some Solvers Objects? .. 1-23
Write Files for Optimization Functions

2

Compute Objective Functions ... 2-2
 Objective (Fitness) Functions ... 2-2
 Write a Function File .. 2-2
 Write a Vectorized Function .. 2-3
 Gradients and Hessians .. 2-4
 Maximizing vs. Minimizing ... 2-5

Write Constraints .. 2-6
 Consult Optimization Toolbox Documentation 2-6
 Set Bounds ... 2-6
 Ensure ga Options Maintain Feasibility 2-7
 Gradients and Hessians .. 2-7
 Vectorized Constraints .. 2-7

Using GlobalSearch and MultiStart

3

Problems That GlobalSearch and MultiStart Can Solve 3-2

Optimization Workflow ... 3-3

Inputs for Problem Structure .. 3-5

Create Problem Structure .. 3-6
 About Problem Structures ... 3-6
 Using the createOptimProblem Function 3-6
 Exporting from the Optimization app 3-9

Create Solver Object ... 3-14
 What Is a Solver Object? .. 3-14
 Properties (Global Options) of Solver Objects 3-14
 Creating a Nondefault GlobalSearch Object 3-16
 Creating a Nondefault MultiStart Object 3-16

Set Start Points for MultiStart ... 3-17
 Four Ways to Set Start Points ... 3-17
Positive Integer for Start Points 3-17
RandomStartPointSet Object for Start Points 3-18
CustomStartPointSet Object for Start Points 3-18
Cell Array of Objects for Start Points 3-19

Run the Solver ... 3-20
Optimize by Calling run .. 3-20
Example of Run with GlobalSearch 3-21
Example of Run with MultiStart 3-22

Single Solution ... 3-24

Multiple Solutions .. 3-25
About Multiple Solutions .. 3-25
Change the Definition of Distinct Solutions 3-28

Iterative Display .. 3-30
Types of Iterative Display 3-30
Examine Types of Iterative Display 3-30

Global Output Structures ... 3-33

Visualize the Basins of Attraction 3-34

Output Functions for GlobalSearch and MultiStart 3-37
What Are Output Functions? 3-37
GlobalSearch Output Function 3-37
No Parallel Output Functions 3-39

Plot Functions for GlobalSearch and MultiStart 3-40
What Are Plot Functions? 3-40
MultiStart Plot Function 3-41
No Parallel Plot Functions 3-43

How GlobalSearch and MultiStart Work 3-44
Multiple Runs of a Local Solver 3-44
Differences Between the Solver Objects 3-44
GlobalSearch Algorithm 3-46
MultiStart Algorithm 3-50
Bibliography .. 3-52

Can You Certify a Solution Is Global? 3-53
No Guarantees .. 3-53
Using Direct Search

What Is Direct Search? .. 4-2

Optimize Using Pattern Search 4-3
Call patternsearch at the Command Line 4-3
Pattern Search on Unconstrained Problems 4-3
Pattern Search on Constrained Problems 4-4
Additional Output Arguments 4-5
Use the Optimization App for Pattern Search 4-5

Optimize Using the GPS Algorithm 4-8
Objective Function .. 4-8
Finding the Minimum of the Function 4-8
Plotting the Objective Function Values and Mesh Sizes . 4-10

Pattern Search Terminology .. 4-12
Patterns ... 4-12
Meshes .. 4-13
Polling .. 4-14
Expanding and Contracting ... 4-14

How Pattern Search Polling Works 4-15
Context .. 4-15
Successful Polls ... 4-16
An Unsuccessful Poll .. 4-19
Displaying the Results at Each Iteration 4-20
More Iterations ... 4-20
Poll Method ... 4-21
Complete Poll ... 4-23
Stopping Conditions for the Pattern Search 4-23
Robustness of Pattern Search 4-25

Searching and Polling .. 4-26
Definition of Search .. 4-26
How to Use a Search Method 4-28
Search Types ... 4-29
When to Use Search ... 4-29

Setting Solver Tolerances ... 4-31
Search and Poll .. 4-32
 Using a Search Method ... 4-32
 Search Using a Different Solver 4-35

Nonlinear Constraint Solver Algorithm 4-37

Custom Plot Function .. 4-39
 About Custom Plot Functions 4-39
 Creating the Custom Plot Function 4-39
 Setting Up the Problem .. 4-40
 Using the Custom Plot Function 4-41
 How the Plot Function Works 4-42

Set Options .. 4-44
 Set Options Using psoptimset 4-44
 Create Options and Problems Using the Optimization App . 4-46

Polling Types .. 4-47
 Using a Complete Poll in a Generalized Pattern Search ... 4-47
 Compare the Efficiency of Poll Options 4-51

Set Mesh Options .. 4-58
 Mesh Expansion and Contraction 4-58
 Mesh Accelerator .. 4-65

Constrained Minimization Using patternsearch 4-69
 Linearly Constrained Problem 4-69
 Nonlinearly Constrained Problem 4-72

Use Cache ... 4-75

Vectorize the Objective and Constraint Functions 4-80
 Vectorize for Speed ... 4-80
 Vectorized Objective Function 4-80
 Vectorized Constraint Functions 4-83
 Example of Vectorized Objective and Constraints 4-83

Optimize an ODE in Parallel 4-85
Using the Genetic Algorithm

What Is the Genetic Algorithm? ... 5-2

Optimize Using ga ... 5-3
 Calling the Function ga at the Command Line 5-3
 Use the Optimization App ... 5-3

Minimize Rastrigin's Function .. 5-6
 Rastrigin's Function .. 5-6
 Finding the Minimum of Rastrigin's Function 5-8
 Finding the Minimum from the Command Line 5-10
 Displaying Plots ... 5-11

Genetic Algorithm Terminology .. 5-15
 Fitness Functions .. 5-15
 Individuals .. 5-15
 Populations and Generations ... 5-15
 Diversity ... 5-16
 Fitness Values and Best Fitness Values 5-16
 Parents and Children .. 5-17

How the Genetic Algorithm Works .. 5-18
 Outline of the Algorithm ... 5-18
 Initial Population ... 5-19
 Creating the Next Generation 5-19
 Plots of Later Generations .. 5-21
 Stopping Conditions for the Algorithm 5-22
 Selection ... 5-25
 Reproduction Options ... 5-25
 Mutation and Crossover ... 5-26

Mixed Integer Optimization .. 5-27
 Solving Mixed Integer Optimization Problems 5-27
 Characteristics of the Integer ga Solver 5-29
 Integer ga Algorithm ... 5-35

Solving a Mixed Integer Engineering Design Problem Using
the Genetic Algorithm ... 5-37
Global vs. Local Minima Using ga 5-97
 Searching for a Global Minimum 5-97
 Running the Genetic Algorithm on the Example 5-99

Include a Hybrid Function 5-104

Set Maximum Number of Generations 5-108

Vectorize the Fitness Function 5-110
 Vectorize for Speed 5-110
 Vectorized Constraints 5-111

Constrained Minimization Using ga 5-112

Particle Swarm Optimization

6

What Is Particle Swarm Optimization? 6-2

Optimize Using Particle Swarm 6-3

Particle Swarm Output Function 6-7

Particle Swarm Optimization Algorithm 6-10
 Algorithm Outline 6-10
 Initialization 6-10
 Iteration Steps 6-11
 Stopping Criteria 6-12

Using Simulated Annealing

7

What Is Simulated Annealing? 7-2

Optimize Using Simulated Annealing 7-3
 Calling simulannealbnd at the Command Line 7-3
 Using the Optimization App 7-3

xiii
Minimize Function with Many Local Minima 7-6
 Description .. 7-6
 Minimize at the Command Line 7-8
 Minimize Using the Optimization App 7-8

Simulated Annealing Terminology .. 7-10
 Objective Function .. 7-10
 Temperature ... 7-10
 Annealing Parameter .. 7-11
 Reannealing .. 7-11

How Simulated Annealing Works .. 7-12
 Outline of the Algorithm .. 7-12
 Stopping Conditions for the Algorithm 7-14
 Bibliography .. 7-14

Command Line Simulated Annealing Optimization 7-15
 Run simulannealbnd With the Default Options 7-15
 Set Options for simulannealbnd at the Command Line 7-16
 Reproduce Your Results .. 7-18

Minimization Using Simulated Annealing Algorithm 7-20

Multiobjective Optimization

Use gamultiobj ... 8-5
 Problem Formulation ... 8-5
 Use gamultiobj with the Optimization app 8-5
 Multiobjective Optimization with Two Objectives 8-6
 Options and Syntax: Differences from ga 8-13

Bibliography ... 8-14
Parallel Processing

Background ... 9-2
 Parallel Processing Types in Global Optimization Toolbox 9-2
 How Toolbox Functions Distribute Processes 9-3

How to Use Parallel Processing 9-12
 Multicore Processors ... 9-12
 Processor Network ... 9-13
 Parallel Search Functions or Hybrid Functions 9-15

Minimizing an Expensive Optimization Problem Using
Parallel Computing Toolbox™ 9-19

Options Reference

GlobalSearch and MultiStart Properties (Options) 10-2
 How to Set Properties .. 10-2
 Properties of Both Objects 10-2
 GlobalSearch Properties 10-6
 MultiStart Properties 10-7

Pattern Search Options .. 10-9
 Optimization App vs. Command Line 10-9
 Plot Options .. 10-10
 Poll Options .. 10-12
 Search Options .. 10-13
 Mesh Options .. 10-17
 Constraint Parameters 10-19
 Cache Options .. 10-19
 Stopping Criteria ... 10-20
 Output Function Options 10-21
 Display to Command Window Options 10-23
 Vectorize and Parallel Options (User Function Evaluation) 10-24
 Options Table for Pattern Search Algorithms 10-25
Genetic Algorithm Options 10-28
Optimization App vs. Command Line 10-28
Plot Options .. 10-29
Population Options 10-32
Fitness Scaling Options 10-35
Selection Options 10-37
Reproduction Options 10-39
Mutation Options 10-40
Crossover Options 10-42
Migration Options 10-46
Constraint Parameters 10-47
Multiobjective Options 10-48
Hybrid Function Options 10-49
Stopping Criteria Options 10-49
Output Function Options 10-50
Display to Command Window Options 10-52
Vectorize and Parallel Options (User Function Evaluation) 10-53

Particle Swarm Options 10-54
Specifying Options for particleswarm 10-54
Swarm Creation 10-54
Display Settings 10-55
Algorithm Settings 10-56
Hybrid Function 10-57
Output Function and Plot Function 10-57
Parallel or Vectorized Function Evaluation .. 10-59
Stopping Criteria 10-60

Simulated Annealing Options 10-62
saoptimset At The Command Line 10-62
Plot Options .. 10-62
Temperature Options 10-64
Algorithm Settings 10-65
Hybrid Function Options 10-66
Stopping Criteria Options 10-67
Output Function Options 10-68
Display Options 10-69

Functions — Alphabetical List
Getting Started

Introducing Global Optimization Toolbox Functions (p. 1) Introduces the algorithms and features.
Write Files for Optimization Functions (p. 1) Explains how to write files that compute the functions you want to optimize.
Introducing Global Optimization Toolbox Functions

- “Global Optimization Toolbox Product Description” on page 1-2
- “Solution Quality” on page 1-3
- “Comparison of Five Solvers” on page 1-4
- “What Is Global Optimization?” on page 1-12
- “Optimization Workflow” on page 1-16
- “Choosing a Solver” on page 1-17
Global Optimization Toolbox Product Description

Solve multiple maxima, multiple minima, and nonsmooth optimization problems

Global Optimization Toolbox provides methods that search for global solutions to problems that contain multiple maxima or minima. It includes global search, multistart, pattern search, genetic algorithm, and simulated annealing solvers. You can use these solvers to solve optimization problems where the objective or constraint function is continuous, discontinuous, stochastic, does not possess derivatives, or includes simulations or black-box functions with undefined values for some parameter settings.

Genetic algorithm and pattern search solvers support algorithmic customization. You can create a custom genetic algorithm variant by modifying initial population and fitness scaling options or by defining parent selection, crossover, and mutation functions. You can customize pattern search by defining polling, searching, and other functions.

Key Features

- Interactive tools for defining and solving optimization problems and monitoring solution progress
- Global search and multistart solvers for finding single or multiple global optima
- Genetic algorithm solver that supports linear, nonlinear, and bound constraints
- Multiobjective genetic algorithm with Pareto-front identification, including linear and bound constraints
- Pattern search solver that supports linear, nonlinear, and bound constraints
- Simulated annealing tools that implement a random search method, with options for defining annealing process, temperature schedule, and acceptance criteria
- Parallel computing support in multistart, genetic algorithm, and pattern search solver
- Custom data type support in genetic algorithm, multiobjective genetic algorithm, and simulated annealing solvers
Solution Quality

Global Optimization Toolbox solvers repeatedly attempt to locate a global solution. However, no solver employs an algorithm that can certify a solution as global.

You can extend the capabilities of Global Optimization Toolbox functions by writing your own files, by using them in combination with other toolboxes, or with the MATLAB® or Simulink® environments.
Comparison of Five Solvers

In this section...

“Function to Optimize” on page 1-4
“Five Solution Methods” on page 1-5
“Compare Syntax and Solutions” on page 1-10

Function to Optimize

This example shows how to minimize Rastrigin’s function with five solvers. Each solver has its own characteristics. The characteristics lead to different solutions and run times. The results, examined in “Compare Syntax and Solutions” on page 1-10, can help you choose an appropriate solver for your own problems.

Rastrigin’s function has many local minima, with a global minimum at (0,0):

$$\text{Ras}(x) = 20 + x_1^2 + x_2^2 - 10(\cos 2\pi x_1 + \cos 2\pi x_2).$$

Usually you don’t know the location of the global minimum of your objective function. To show how the solvers look for a global solution, this example starts all the solvers around the point [20, 30], which is far from the global minimum.

The \texttt{rastriginsfcn.m} file implements Rastrigin’s function. This file comes with Global Optimization Toolbox software. This example employs a scaled version of Rastrigin’s function with larger basins of attraction. For information, see “Basins of Attraction” on page 1-13.

$$rf2 = @(x)\text{rastriginsfcn}(x/10);$$
This example minimizes rf2 using the default settings of `fminunc` (an Optimization Toolbox™ solver), `patternsearch`, and `GlobalSearch`. It also uses `ga` and `particleswarm` with a nondefault setting, to obtain an initial population around the point [20, 30].

Five Solution Methods

- “fminunc” on page 1-6
- “patternsearch” on page 1-6
- “ga” on page 1-7
- “particleswarm” on page 1-8
• “GlobalSearch” on page 1-9

\textbf{fminunc}

To solve the optimization problem using the \texttt{fminunc} Optimization Toolbox solver, enter:

\begin{verbatim}
rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
[xf,ff,flf,of] = fminunc(rf2,x0)
\end{verbatim}

\texttt{fminunc} returns

\texttt{Local minimum found.}

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.

\begin{verbatim}
xf =
 19.8991 29.8486
ff =
 12.9344
flf =
 1
of =
 iterations: 3
 funcCount: 15
 stepsize: 1.7776e-06
 lssteplength: 1
 firstorderopt: 5.9907e-09
 algorithm: 'quasi-newton'
 message: 'Local minimum found.'
\end{verbatim}

• \texttt{xf} is the minimizing point.
• \texttt{ff} is the value of the objective, \texttt{rf2}, at \texttt{xf}.
• \texttt{flf} is the exit flag. An exit flag of 1 indicates \texttt{xf} is a local minimum.
• \texttt{of} is the output structure, which describes the \texttt{fminunc} calculations leading to the solution.

\textbf{patternsearch}

To solve the optimization problem using the \texttt{patternsearch} Global Optimization Toolbox solver, enter:
Comparison of Five Solvers

rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
[xp,fp,flp,op] = patternsearch(rf2,x0)

patternsearch returns

Optimization terminated: mesh size less than options.TolMesh.
xp =
 19.8991 -9.9496
fp =
 4.9748
flp =
 1
op =
 function: @(x)rastriginsfcn(x/10)
 problemtype: 'unconstrained'
 pollmethod: 'gpspositivebasis2n'
 maxconstraint: []
 searchmethod: []
 iterations: 48
 funccount: 174
 meshsize: 9.5367e-07
 rngstate: [1x1 struct]
 message: 'Optimization terminated: mesh size less than options.TolMesh.'

• xp is the minimizing point.
• fp is the value of the objective, rf2, at xp.
• flp is the exit flag. An exit flag of 1 indicates xp is a local minimum.
• op is the output structure, which describes the patternsearch calculations leading to the solution.

ga

To solve the optimization problem using the ga Global Optimization Toolbox solver, enter:

rng default % for reproducibility
rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
initpop = 10*randn(20,2) + repmat([10 30],20,1);
opts = gaoptimset('InitialPopulation',initpop);
[xga,fga,flga,oga] = ga(rf2,2,[],[],[],[],[],[],[],opts)
Introducing Global Optimization Toolbox Functions

`initpop` is a 20-by-2 matrix. Each row of `initpop` has mean $[10, 30]$, and each element is normally distributed with standard deviation 10. The rows of `initpop` form an initial population matrix for the `ga` solver.

`opts` is an optimization structure setting `initpop` as the initial population.

The final line calls `ga`, using the optimization structure.

`ga` uses random numbers, and produces a random result. In this case `ga` returns:

```
Optimization terminated: average change in the fitness value
less than options.TolFun.
```

```
xga =
   0.0236   -0.0180
fga =
   0.0017
flga =
   1
oga =
    problemtype: 'unconstrained'
    rngstate: [1x1 struct]
    generations: 107
    funccount: 5400
    message: 'Optimization terminated: average change in the fitness value less...
    maxconstraint: []
```

- `xga` is the minimizing point.
- `fga` is the value of the objective, `rf2`, at `xga`.
- `flga` is the exit flag. An exit flag of 1 indicates `xga` is a local minimum.
- `oga` is the output structure, which describes the `ga` calculations leading to the solution.

particleswarm

Like `ga`, `particleswarm` is a population-based algorithm. So for a fair comparison of solvers, initialize the particle swarm to the same population as `ga`.

```
rng default % for reproducibility
rf2 = @(x)rastriginsfcn(x/10); % objective
opts = optimoptions('particleswarm','InitialSwarm',initpop);
[xpso,fpso,flgpso,opso] = particleswarm(rf2,2,[],[],opts)
```

```
Optimization ended: relative change in the objective value
over the last OPTIONS.StallIterLimit iterations is less than OPTIONS.TolFun.

\[ \text{xpso} = \begin{bmatrix} 1.0e-06 \times -0.8839 & 0.3073 \\ \end{bmatrix} \]

\[ \text{fpso} = 1.7373e-12 \]

\[ \text{flgpso} = 1 \]

\[ \text{opso} = \begin{bmatrix} \text{rngstate: [1x1 struct]} \\ \text{iterations: 114} \\ \text{funcount: 2300} \\ \text{message: 'Optimization ended: relative change in the objective value ...'} \\ \end{bmatrix} \]

- \text{xpso} is the minimizing point.
- \text{fpso} is the value of the objective, \text{rf2}, at \text{xpso}.
- \text{flgpso} is the exit flag. An exit flag of 1 indicates \text{xpso} is a local minimum.
- \text{opso} is the output structure, which describes the \text{particleswarm} calculations leading to the solution.

**GlobalSearch**

To solve the optimization problem using the \text{GlobalSearch} solver, enter:

\[ \text{rf2} = @(x)\text{rastriginsfcn}(x/10); \text{ % objective} \]
\[ \text{x0} = [20,30]; \text{ % start point away from the minimum} \]
\[ \text{problem} = \text{createOptimProblem('fmincon','objective',rf2,...} \]
\[ \text{'x0',x0}); \]
\[ \text{gs} = \text{GlobalSearch}; \]
\[ \text{[xg,fg,flg,og]} = \text{run(gs,problem)} \]
**problem** is an optimization problem structure. **problem** specifies the **fmincon** solver, the **rf2** objective function, and **x0=[20,30]**. For more information on using **createOptimProblem**, see “Create Problem Structure” on page 3-6.

**Note:** You must specify **fmincon** as the solver for **GlobalSearch**, even for unconstrained problems.

**gs** is a default **GlobalSearch** object. The object contains options for solving the problem. Calling **run(gs,problem)** runs **problem** from multiple start points. The start points are random, so the following result is also random.

In this case, the run returns:

GlobalSearch stopped because it analyzed all the trial points.

All 4 local solver runs converged with a positive local solver exit flag.

\[
xg = \begin{bmatrix} 1.00e-07 * \\ -0.1405 & -0.1405 \end{bmatrix}
\]

\[
fg = 0
\]

\[
flg = 1
\]

\[
og = \begin{bmatrix} funcCount: 2178 \\ localSolverTotal: 4 \\ localSolverSuccess: 4 \\ localSolverIncomplete: 0 \\ localSolverNoSolution: 0 \end{bmatrix}
\]

message: 'GlobalSearch stopped because it analyzed all the trial po...'

- **xg** is the minimizing point.
- **fg** is the value of the objective, **rf2**, at **xg**.
- **flg** is the exit flag. An exit flag of 1 indicates all **fmincon** runs converged properly.
- **og** is the output structure, which describes the **GlobalSearch** calculations leading to the solution.

**Compare Syntax and Solutions**

One solution is better than another if its objective function value is smaller than the other. The following table summarizes the results, accurate to one decimal.
Comparison of Five Solvers

<table>
<thead>
<tr>
<th>Results</th>
<th>fminunc</th>
<th>patternsearch</th>
<th>ga</th>
<th>particleswarm</th>
<th>GlobalSearch</th>
</tr>
</thead>
<tbody>
<tr>
<td>solution</td>
<td>[19.9 29.9]</td>
<td>[19.9 -9.9]</td>
<td>[0 0]</td>
<td>[0 0]</td>
<td>[0 0]</td>
</tr>
<tr>
<td>objective</td>
<td>12.9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td># Fevals</td>
<td>15</td>
<td>174</td>
<td>5400</td>
<td>2300</td>
<td>2178</td>
</tr>
</tbody>
</table>

These results are typical:

- **fminunc** quickly reaches the local solution within its starting basin, but does not explore outside this basin at all. fminunc has simple calling syntax.

- **patternsearch** takes more function evaluations than fminunc, and searches through several basins, arriving at a better solution than fminunc. patternsearch calling syntax is the same as that of fminunc.

- **ga** takes many more function evaluations than patternsearch. By chance it arrived at a better solution. In this case, ga found a point near the global optimum. ga is stochastic, so its results change with every run. ga has simple calling syntax, but there are extra steps to have an initial population near [20,30].

- **particleswarm** takes fewer function evaluations than ga, but more than patternsearch. In this case, particleswarm found the global optimum. particleswarm is stochastic, so its results change with every run. particleswarm has simple calling syntax, but there are extra steps to have an initial population near [20,30].

- **GlobalSearch** run takes the same order of magnitude of function evaluations as ga and particleswarm, searches many basins, and arrives at a good solution. In this case, GlobalSearch found the global optimum. Setting up GlobalSearch is more involved than setting up the other solvers. As the example shows, before calling GlobalSearch, you must create both a GlobalSearch object (gs in the example), and a problem structure (problem). Then, call the run method with gs and problem. For more details on how to run GlobalSearch, see “Optimization Workflow” on page 3-3.
What Is Global Optimization?

In this section...

“Local vs. Global Optima” on page 1-12
“Basins of Attraction” on page 1-13

Local vs. Global Optima

Optimization is the process of finding the point that minimizes a function. More specifically:

- A local minimum of a function is a point where the function value is smaller than or equal to the value at nearby points, but possibly greater than at a distant point.
- A global minimum is a point where the function value is smaller than or equal to the value at all other feasible points.

Generally, Optimization Toolbox solvers find a local optimum. (This local optimum can be a global optimum.) They find the optimum in the basin of attraction of the starting point. For more information, see “Basins of Attraction” on page 1-13.

In contrast, Global Optimization Toolbox solvers are designed to search through more than one basin of attraction. They search in various ways:

- GlobalSearch and MultiStart generate a number of starting points. They then use a local solver to find the optima in the basins of attraction of the starting points.
- ga uses a set of starting points (called the population) and iteratively generates better points from the population. As long as the initial population covers several basins, ga can examine several basins.
- simulannealbnd performs a random search. Generally, simulannealbnd accepts a point if it is better than the previous point. simulannealbnd occasionally accepts a worse point, in order to reach a different basin.
• **patternsearch** looks at a number of neighboring points before accepting one of them. If some neighboring points belong to different basins, **patternsearch** in essence looks in a number of basins at once.

### Basins of Attraction

If an objective function $f(x)$ is smooth, the vector $-\nabla f(x)$ points in the direction where $f(x)$ decreases most quickly. The equation of steepest descent, namely

$$\frac{d}{dt}x(t) = -\nabla f(x(t)),$$

yields a path $x(t)$ that goes to a local minimum as $t$ gets large. Generally, initial values $x(0)$ that are close to each other give steepest descent paths that tend to the same minimum point. The **basin of attraction** for steepest descent is the set of initial values leading to the same local minimum.

The following figure shows two one-dimensional minima. The figure shows different basins of attraction with different line styles, and it shows directions of steepest descent with arrows. For this and subsequent figures, black dots represent local minima. Every steepest descent path, starting at a point $x(0)$, goes to the black dot in the basin containing $x(0)$.

The following figure shows how steepest descent paths can be more complicated in more dimensions.
The following figure shows even more complicated paths and basins of attraction.
Constraints can break up one basin of attraction into several pieces. For example, consider minimizing \( y \) subject to:

- \( y \geq |x| \)
- \( y \geq 5 - 4(x-2)^2 \).

The figure shows the two basins of attraction with the final points.

The steepest descent paths are straight lines down to the constraint boundaries. From the constraint boundaries, the steepest descent paths travel down along the boundaries. The final point is either (0,0) or (11/4,11/4), depending on whether the initial \( x \)-value is above or below 2.
Optimization Workflow

To solve an optimization problem:

1. Decide what type of problem you have, and whether you want a local or global solution (see “Local vs. Global Optima” on page 1-12). Choose a solver per the recommendations in “Choosing a Solver” on page 1-17.

2. Write your objective function and, if applicable, constraint functions per the syntax in “Compute Objective Functions” on page 2-2 and “Write Constraints” on page 2-6.

3. Set appropriate options with `psoptimset`, `gaoptimset`, or `saoptimset`, or prepare a `GlobalSearch` or `MultiStart` problem as described in “Optimization Workflow” on page 3-3. For details, see “Pattern Search Options” on page 10-9, “Genetic Algorithm Options” on page 10-28, or “Simulated Annealing Options” on page 10-62.

4. Run the solver.

5. Examine the result. For information on the result, see “Solver Outputs and Iterative Display” in the Optimization Toolbox documentation or Examine Results for `GlobalSearch` or `MultiStart`.

6. If the result is unsatisfactory, change options or start points or otherwise update your optimization and rerun it. For information, see Improve Results, or see “When the Solver Fails”, “When the Solver Might Have Succeeded”, or “When the Solver Succeeds” in the Optimization Toolbox documentation.
Choosing a Solver

In this section...

“Table for Choosing a Solver” on page 1-17
“Solver Characteristics” on page 1-21
“Why Are Some Solvers Objects?” on page 1-23

Table for Choosing a Solver

There are seven Global Optimization Toolbox solvers:

- ga (genetic algorithm)
- GlobalSearch
- MultiStart
- patternsearch, also called direct search
- particleswarm
- simulannealbnd (simulated annealing)
- gamultiobj, which is not a minimizer; see “Multiobjective Optimization”

Choose an optimizer based on problem characteristics and on the type of solution you want. “Solver Characteristics” on page 1-21 contains more information to help you decide which solver is likely to be most suitable.

<table>
<thead>
<tr>
<th>Desired Solution</th>
<th>Smooth Objective and Constraints</th>
<th>Nonsmooth Objective or Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single local solution</td>
<td>Optimization Toolbox functions; see “Optimization Decision Table” in the Optimization Toolbox documentation</td>
<td>fminbnd, patternsearch, fminsearch, ga, particleswarm, simulannealbnd</td>
</tr>
<tr>
<td>Multiple local solutions</td>
<td>GlobalSearch, MultiStart</td>
<td></td>
</tr>
<tr>
<td>Single global solution</td>
<td>GlobalSearch, MultiStart, patternsearch, ga, simulannealbnd</td>
<td>patternsearch, ga, particleswarm, simulannealbnd</td>
</tr>
</tbody>
</table>
### Desired Solution

<table>
<thead>
<tr>
<th>Desired Solution</th>
<th>Smooth Objective and Constraints</th>
<th>Nonsmooth Objective or Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single local solution using parallel processing</td>
<td>MultiStart, Optimization Toolbox functions</td>
<td>patternsearch, ga, particleswarm</td>
</tr>
<tr>
<td>Multiple local solutions using parallel processing</td>
<td>MultiStart</td>
<td></td>
</tr>
<tr>
<td>Single global solution using parallel processing</td>
<td>MultiStart</td>
<td>patternsearch, ga, particleswarm</td>
</tr>
</tbody>
</table>

#### Explanation of “Desired Solution”

To understand the meaning of the terms in “Desired Solution,” consider the example

\[ f(x) = 100x^2(1-x)^2 - x, \]

which has local minima \( x_1 \) near 0 and \( x_2 \) near 1:

![Graph of the function](image)

The minima are located at:

\[
x_1 = \text{fminsearch}(@(x)(100*x^2*(x - 1)^2 - x),0) \\
x_1 = 0.0051 \\
x_2 = \text{fminsearch}(@(x)(100*x^2*(x - 1)^2 - x),1)
\]
Description of the Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single local solution</td>
<td>Find one local solution, a point (x) where the objective function (f(x)) is a local minimum. For more details, see “Local vs. Global Optima” on page 1-12. In the example, both (x_1) and (x_2) are local solutions.</td>
</tr>
<tr>
<td>Multiple local solutions</td>
<td>Find a set of local solutions. In the example, the complete set of local solutions is ({x_1, x_2}).</td>
</tr>
<tr>
<td>Single global solution</td>
<td>Find the point (x) where the objective function (f(x)) is a global minimum. In the example, the global solution is (x_2).</td>
</tr>
</tbody>
</table>

Choosing Between Solvers for Smooth Problems

Single Global Solution

1. Try `GlobalSearch` first. It is most focused on finding a global solution, and has an efficient local solver, `fmincon`.

2. Try `MultiStart` second. It has efficient local solvers, and can search a wide variety of start points.

3. Try `patternsearch` third. It is less efficient, since it does not use gradients. However, `patternsearch` is robust and is more efficient than the remaining local solvers.

4. Try `particleswarm` fourth, if your problem is unconstrained or has only bound constraints. Usually, `particleswarm` is more efficient than the remaining solvers, and can be more efficient than `patternsearch`.

5. Try `ga` fifth. It can handle all types of constraints, and is usually more efficient than `simulannealbnd`.

6. Try `simulannealbnd` last. It can handle problems with no constraints or bound constraints. `simulannealbnd` is usually the least efficient solver. However, given a slow enough cooling schedule, it can find a global solution.

Multiple Local Solutions

`GlobalSearch` and `MultiStart` both provide multiple local solutions. For the syntax to obtain multiple solutions, see “Multiple Solutions” on page 3-25. `GlobalSearch` and `MultiStart` differ in the following characteristics:
• **MultiStart** can find more local minima. This is because **GlobalSearch** rejects many generated start points (initial points for local solution). Essentially, **GlobalSearch** accepts a start point only when it determines that the point has a good chance of obtaining a global minimum. In contrast, **MultiStart** passes all generated start points to a local solver. For more information, see “GlobalSearch Algorithm” on page 3-46.

• **MultiStart** offers a choice of local solver: **fmincon**, **fminunc**, **lsqcurvefit**, or **lsqnonlin**. The **GlobalSearch** solver uses only **fmincon** as its local solver.

• **GlobalSearch** uses a scatter-search algorithm for generating start points. In contrast, **MultiStart** generates points uniformly at random within bounds, or allows you to provide your own points.

• **MultiStart** can run in parallel. See “How to Use Parallel Processing” on page 9-12.

### Choosing Between Solvers for Nonsmooth Problems

Choose the applicable solver with the lowest number. For problems with integer constraints, use **ga**.

1. Use **fminbnd** first on one-dimensional bounded problems only. **fminbnd** provably converges quickly in one dimension.

2. Use **patternsearch** on any other type of problem. **patternsearch** provably converges, and handles all types of constraints.

3. Try **fminsearch** next for low-dimensional unbounded problems. **fminsearch** is not as general as **patternsearch** and can fail to converge. For low-dimensional problems, **fminsearch** is simple to use, since it has few tuning options.

4. Try **particleswarm** next on unbounded or bound-constrained problems. **particleswarm** has little supporting theory, but is often an efficient algorithm.

5. Try **ga** next. **ga** has little supporting theory and is often less efficient than **patternsearch** or **particleswarm**. It handles all types of constraints. **ga** is the only solver that handles integer constraints.

6. Try **simulannealbnd** last for unbounded problems, or for problems with bounds. **simulannealbnd** provably converges only for a logarithmic cooling schedule, which is extremely slow. **simulannealbnd** takes only bound constraints, and is often less efficient than **ga**.
## Solver Characteristics

<table>
<thead>
<tr>
<th>Solver</th>
<th>Convergence</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GlobalSearch</strong></td>
<td>Fast convergence to local optima for smooth problems.</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic stochastic start points</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removes many start points heuristically</td>
</tr>
<tr>
<td><strong>MultiStart</strong></td>
<td>Fast convergence to local optima for smooth problems.</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can run in parallel; see “How to Use Parallel Processing” on page 9-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stochastic or deterministic start points, or combination of both</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic stochastic start points</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Runs all start points</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Choice of local solver: <code>fmincon</code>, <code>fminunc</code>, <code>lsqcurvefit</code>, or <code>lsqnonlin</code></td>
</tr>
<tr>
<td><strong>patternsearch</strong></td>
<td>Proven convergence to local optimum, slower than gradient-based solvers.</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can run in parallel; see “How to Use Parallel Processing” on page 9-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No gradients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User-supplied start point</td>
</tr>
<tr>
<td><strong>particleswarm</strong></td>
<td>No convergence proof.</td>
<td>Stochastic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can run in parallel; see “How to Use Parallel Processing” on page 9-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Population-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No gradients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic start population, or user-supplied population, or combination of both</td>
</tr>
</tbody>
</table>
### Introducing Global Optimization Toolbox Functions

#### Solver | Convergence | Characteristics
--- | --- | ---
| | | Only bound constraints
| ga | No convergence proof. | Stochastic iterates
| | | Can run in parallel; see “How to Use Parallel Processing” on page 9-12
| | | Population-based
| | | No gradients
| | | Allows integer constraints; see “Mixed Integer Optimization” on page 5-27
| | | Automatic start population, or user-supplied population, or combination of both
| simulannealbnd | Proven to converge to global optimum for bounded problems with very slow cooling schedule. | Stochastic iterates
| | | No gradients
| | | User-supplied start point
| | | Only bound constraints

Explanation of some characteristics:

- **Convergence** — Solvers can fail to converge to any solution when started far from a local minimum. When started near a local minimum, gradient-based solvers converge to a local minimum quickly for smooth problems. *patternsearch* provably converges for a wide range of problems, but the convergence is slower than gradient-based solvers. Both **ga** and **simulannealbnd** can fail to converge in a reasonable amount of time for some problems, although they are often effective.

- **Iterates** — Solvers iterate to find solutions. The steps in the iteration are iterates. Some solvers have deterministic iterates. Others use random numbers and have stochastic iterates.

- **Gradients** — Some solvers use estimated or user-supplied derivatives in calculating the iterates. Other solvers do not use or estimate derivatives, but use only objective and constraint function values.

- **Start points** — Most solvers require you to provide a starting point for the optimization. One reason they require a start point is to obtain the dimension of the decision variables. **ga** does not require any starting points, because it takes the
Choosing a Solver

dimension of the decision variables as an input. ga can generate its start population automatically.

Compare the characteristics of Global Optimization Toolbox solvers to Optimization Toolbox solvers.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Convergence</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>fmincon, fminunc, fseminf, lsqcurvefit, lsqnonlin</td>
<td>Proven quadratic convergence to local optima for smooth problems</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User-supplied starting point</td>
</tr>
<tr>
<td>fminsearch</td>
<td>No convergence proof — counterexamples exist.</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No gradients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User-supplied start point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No constraints</td>
</tr>
<tr>
<td>fminbnd</td>
<td>Proven convergence to local optima for smooth problems, slower than quadratic.</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No gradients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User-supplied start point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only one-dimensional problems</td>
</tr>
</tbody>
</table>

All these Optimization Toolbox solvers:

- Have deterministic iterates
- Start from one user-supplied point
- Search just one basin of attraction

Why Are Some Solvers Objects?

GlobalSearch and MultiStart are objects. What does this mean for you?

- You create a GlobalSearch or MultiStart object before running your problem.
- You can reuse the object for running multiple problems.
- GlobalSearch and MultiStart objects are containers for algorithms and global options. You use these objects to run a local solver multiple times. The local solver has its own options.
For more information, see the “Object-Oriented Programming” documentation.
Write Files for Optimization Functions

- “Compute Objective Functions” on page 2-2
- “Write Constraints” on page 2-6
Compute Objective Functions

In this section...

“Objective (Fitness) Functions” on page 2-2
“Write a Function File” on page 2-2
“Write a Vectorized Function” on page 2-3
“Gradients and Hessians” on page 2-4
“Maximizing vs. Minimizing” on page 2-5

Objective (Fitness) Functions

To use Global Optimization Toolbox functions, first write a file (or an anonymous function) that computes the function you want to optimize. This is called an objective function for most solvers, or fitness function for ga. The function should accept a vector, whose length is the number of independent variables, and return a scalar. For gamultiobj, the function should return a row vector of objective function values. For vectorized solvers, the function should accept a matrix, where each row represents one input vector, and return a vector of objective function values. This section shows how to write the file.

Write a Function File

This example shows how to write a file for the function you want to optimize. Suppose that you want to minimize the function

\[ f(x) = x_1^2 - 2x_1x_2 + 6x_1 + 4x_2^2 - 3x_2. \]

The file that computes this function must accept a vector \( x \) of length 2, corresponding to the variables \( x_1 \) and \( x_2 \), and return a scalar equal to the value of the function at \( x \).

2. Enter the following two lines of code:

\[
\text{function } z = \text{my_fun}(x)
\]
Compute Objective Functions

3. Save the file in a folder on the MATLAB path.

Check that the file returns the correct value.

```matlab
my_fun([2 3])
```

```matlab
ans =
 31
```

For `ga`, `gamultiobj`, and `patternsearch` solvers, suppose you have three objectives. Your objective function returns a three-element vector consisting of the three objective function values:

```matlab
function z = my_fun(x)
zz = zeros(1,3); % allocate output
z(1) = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)^2 - 3*x(2);
zz(2) = x(1)*x(2) + cos(3*x(2)/(2+x(1)));
zz(3) = tanh(x(1) + x(2));
```

**Write a Vectorized Function**

The `ga`, `gamultiobj`, and `patternsearch` solvers optionally compute the objective functions of a collection of vectors in one function call. This method can take less time than computing the objective functions of the vectors serially. This method is called a vectorized function call.

To compute in vectorized fashion:

- Write your objective function to:
  - Accept a matrix with an arbitrary number of rows.
  - Return the vector of function values of each row.
  - For `gamultiobj`, return a matrix, where each row contains the objective function values of the corresponding input matrix row.
  - If you have a nonlinear constraint, be sure to write the constraint in a vectorized fashion. For details, see “Vectorized Constraints” on page 2-7.
  - Set the `Vectorized` option to 'on' with `gaoptimset` or `psoptimset`, or set User function evaluation > Evaluate objective/fitness and constraint functions to vectorized in the Optimization app. For `patternsearch`, also set `CompletePoll` to 'on'. Be sure to pass the options structure to the solver.
For example, to write the objective function of “Write a Function File” on page 2-2 in a vectorized fashion,

```matlab
function z = my_fun(x)
z = x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + ...
 4*x(:,2).^2 - 3*x(:,2);
```

To use `my_fun` as a vectorized objective function for `patternsearch`:

```matlab
options = psoptimset('CompletePoll','on','Vectorized','on');
[x fval] = patternsearch(@my_fun,[1 1],[],[],[],[],[],[],
 [],options);
```

To use `my_fun` as a vectorized objective function for `ga`:

```matlab
options = gaoptimset('Vectorized','on');
[x fval] = ga(@my_fun,2,[],[],[],[],[],[],[],options);
```

For `gamultiobj`,

```matlab
function z = my_fun(x)
z = zeros(size(x,1),3); % allocate output
z(:,1) = x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + ...
 4*x(:,2).^2 - 3*x(:,2);
z(:,2) = x(:,1).*x(:,2) + cos(3*x(:,2)./(2+x(:,1)));
z(:,3) = tanh(x(:,1) + x(:,2));
```

To use `my_fun` as a vectorized objective function for `gamultiobj`:

```matlab
options = gaoptimset('Vectorized','on');
[x fval] = gamultiobj(@my_fun,2,[],[],[],[],[],[],[],options);
```

For more information on writing vectorized functions for `patternsearch`, see “Vectorize the Objective and Constraint Functions” on page 4-80. For more information on writing vectorized functions for `ga`, see “Vectorize the Fitness Function” on page 5-110.

### Gradients and Hessians

If you use `GlobalSearch` or `MultiStart`, your objective function can return derivatives (gradient, Jacobian, or Hessian). For details on how to include this syntax in your objective function, see “Writing Objective Functions” in the Optimization Toolbox documentation. Use `optimoptions` to set options so that your solver uses the derivative information:
Local Solver = fmincon, fminunc

<table>
<thead>
<tr>
<th>Condition</th>
<th>Option Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective function contains gradient</td>
<td>'GradObj' = 'on'</td>
</tr>
<tr>
<td>Objective function contains Hessian</td>
<td>'Hessian' = 'on'</td>
</tr>
<tr>
<td>Constraint function contains gradient</td>
<td>'GradConstr' = 'on'</td>
</tr>
<tr>
<td>Calculate Hessians of Lagrangian in an extra function</td>
<td>'Hessian' = 'on', 'HessFcn' = function handle</td>
</tr>
</tbody>
</table>

For more information about Hessians for fmincon, see “Hessian”.

Local Solver = lsqcurvefit, lsqnonlin

<table>
<thead>
<tr>
<th>Condition</th>
<th>Option Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective function contains Jacobian</td>
<td>'Jacobian' = 'on'</td>
</tr>
</tbody>
</table>

Maximizing vs. Minimizing

Global Optimization Toolbox optimization functions minimize the objective or fitness function. That is, they solve problems of the form

\[
\min_x f(x).
\]

If you want to maximize \( f(x) \), minimize \(-f(x)\), because the point at which the minimum of \(-f(x)\) occurs is the same as the point at which the maximum of \( f(x) \) occurs.

For example, suppose you want to maximize the function

\[
f(x) = x_1^2 - 2x_1x_2 + 6x_1 + 4x_2^2 - 3x_2.
\]

Write your function file to compute

\[
g(x) = -f(x) = -x_1^2 + 2x_1x_2 - 6x_1 - 4x_2^2 + 3x_2,
\]

and minimize \( g(x) \).
Write Constraints

In this section...

“Consult Optimization Toolbox Documentation” on page 2-6
“Set Bounds” on page 2-6
“Ensure ga Options Maintain Feasibility” on page 2-7
“Gradients and Hessians” on page 2-7
“Vectorized Constraints” on page 2-7

Consult Optimization Toolbox Documentation

Many Global Optimization Toolbox functions accept bounds, linear constraints, or nonlinear constraints. To see how to include these constraints in your problem, see “Writing Constraints” in the Optimization Toolbox documentation. Try consulting these pertinent links to sections:

• “Bound Constraints”
• “Linear Inequality Constraints” (linear equality constraints have the same form)
• “Nonlinear Constraints ”

Set Bounds

It is more important to set bounds for global solvers than for local solvers. Global solvers use bounds in a variety of ways:

• GlobalSearch requires bounds for its scatter-search point generation. If you do not provide bounds, GlobalSearch bounds each component below by -9999 and above by 10001. However, these bounds can easily be inappropriate.

• If you do not provide bounds and do not provide custom start points, MultiStart bounds each component below by -1000 and above by 1000. However, these bounds can easily be inappropriate.

• ga uses bounds and linear constraints for its initial population generation. For unbounded problems, ga uses a default of 0 as the lower bound and 1 as the upper bound for each dimension for initial point generation. For bounded problems, and problems with linear constraints, ga uses the bounds and constraints to make the initial population.
Write Constraints

• `simulannealbnd` and `patternsearch` do not require bounds, although they can use bounds.

**Ensure ga Options Maintain Feasibility**

The `ga` solver generally maintains strict feasibility with respect to bounds and linear constraints. This means that, at every iteration, all members of a population satisfy the bounds and linear constraints.

However, you can set options that cause this feasibility to fail. For example if you set `MutationFcn` to `@mutationgaussian` or `@mutationuniform`, the mutation function does not respect constraints, and your population can become infeasible. Similarly, some crossover functions can cause infeasible populations, although the default `gacreationlinearfeasible` does respect bounds and linear constraints. Also, `ga` can have infeasible points when using custom mutation or crossover functions.

To ensure feasibility, use the default crossover and mutation functions for `ga`. Be especially careful that any custom functions maintain feasibility with respect to bounds and linear constraints.

**Gradients and Hessians**

If you use `GlobalSearch` or `MultiStart` with `fmincon`, your nonlinear constraint functions can return derivatives (gradient or Hessian). For details, see “Gradients and Hessians” on page 2-4.

**Vectorized Constraints**

The `ga` and `patternsearch` solvers optionally compute the nonlinear constraint functions of a collection of vectors in one function call. This method can take less time than computing the objective functions of the vectors serially. This method is called a vectorized function call.

For the solver to compute in a vectorized manner, you must vectorize both your objective (fitness) function and nonlinear constraint function. For details, see “Vectorize the Objective and Constraint Functions” on page 4-80.

As an example, suppose your nonlinear constraints for a three-dimensional problem are
The following code gives these nonlinear constraints in a vectorized fashion, assuming that the rows of your input matrix \( x \) are your population or input vectors:

```matlab
function [c ceq] = nlinconst(x)

c(:,1) = x(:,1).^2/4 + x(:,2).^2/9 + x(:,3).^2/25 - 6;

c(:,2) = cosh(x(:,1) + x(:,2)) - x(:,3);

ceq = x(:,1).*x(:,2).*x(:,3) - 2;
```

For example, minimize the vectorized quadratic function

```matlab
function y = vfun(x)
y = -x(:,1).^2 - x(:,2).^2 - x(:,3).^2;
```

over the region with constraints \texttt{nlinconst} using \texttt{patternsearch}:

```matlab
options = psoptimset('CompletePoll','on','Vectorized','on');
[x fval] = patternsearch(@vfun,[1,1,2],[],[],[],[],[],[],@nlinconst,options)
```

Optimization terminated: mesh size less than options.TolMesh and constraint violation is less than options.TolCon.

\[
\frac{x_1^2}{4} + \frac{x_2^2}{9} + \frac{x_3^2}{25} \leq 6
\]

\[
x_3 \geq \cosh(x_1 + x_2)
\]

\[
x_1x_2x_3 = 2.
\]
-138.1066

For this problem *patternsearch* computes the solution far more quickly and accurately.
Using GlobalSearch and MultiStart

• “Problems That GlobalSearch and MultiStart Can Solve” on page 3-2
• “Optimization Workflow” on page 3-3
• “Inputs for Problem Structure” on page 3-5
• “Create Problem Structure” on page 3-6
• “Create Solver Object” on page 3-14
• “Set Start Points for MultiStart” on page 3-17
• “Run the Solver” on page 3-20
• “Single Solution” on page 3-24
• “Multiple Solutions” on page 3-25
• “Iterative Display” on page 3-30
• “Global Output Structures” on page 3-33
• “Visualize the Basins of Attraction” on page 3-34
• “Output Functions for GlobalSearch and MultiStart” on page 3-37
• “Plot Functions for GlobalSearch and MultiStart” on page 3-40
• “How GlobalSearch and MultiStart Work” on page 3-44
• “Can You Certify a Solution Is Global?” on page 3-53
• “Refine Start Points” on page 3-57
• “Change Options” on page 3-65
• “Reproduce Results” on page 3-69
• “Find Global or Multiple Local Minima” on page 3-72
• “Optimize Using Only Feasible Start Points” on page 3-80
• “MultiStart Using lsqcurvefit or lsqnonlin” on page 3-85
• “Parallel MultiStart” on page 3-89
• “Isolated Global Minimum” on page 3-92
Problems That GlobalSearch and MultiStart Can Solve

The GlobalSearch and MultiStart solvers apply to problems with smooth objective and constraint functions. The solvers search for a global minimum, or for a set of local minima. For more information on which solver to use, see “Choosing a Solver” on page 1-17.

GlobalSearch and MultiStart work by starting a local solver, such as fmincon, from a variety of start points. Generally the start points are random. However, for MultiStart you can provide a set of start points. For more information, see “How GlobalSearch and MultiStart Work” on page 3-44.

To find out how to use these solvers, see “Optimization Workflow” on page 3-3.
Optimization Workflow

To find a global or multiple local solutions:

1. “Create Problem Structure” on page 3-6
2. “Create Solver Object” on page 3-14
3. (Optional, MultiStart only) “Set Start Points for MultiStart” on page 3-17
4. “Run the Solver” on page 3-20

The following figure illustrates these steps.
Using GlobalSearch and MultiStart

Information you have

Local Solver X0
Objective Constraints
Local Options

Global options
Optional, MultiStart only
Start Points

Command to use
createOptimProblem
GlobalSearch or MultiStart
RandomStartPointSet or CustomStartPointSet

Resulting Object or Structure
Problem Structure
Solver Object
Start Points Object

run

Results
Inputs for Problem Structure

A problem structure defines a local optimization problem using a local solver, such as `fmincon`. Therefore, most of the documentation on choosing a solver or preparing the inputs is in the Optimization Toolbox documentation.

### Required Inputs

<table>
<thead>
<tr>
<th>Input</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local solver</td>
<td>“Optimization Decision Table” in the Optimization Toolbox documentation.</td>
</tr>
<tr>
<td>Objective function</td>
<td>“Compute Objective Functions” on page 2-2</td>
</tr>
<tr>
<td>Start point (x_0)</td>
<td>Gives the dimension of points for the objective function.</td>
</tr>
</tbody>
</table>

### Optional Inputs

<table>
<thead>
<tr>
<th>Input</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint functions</td>
<td>“Write Constraints” on page 2-6</td>
</tr>
<tr>
<td>Local options structure</td>
<td>“Set Options”</td>
</tr>
</tbody>
</table>
Create Problem Structure

In this section...

“About Problem Structures” on page 3-6
“Using the createOptimProblem Function” on page 3-6
“Exporting from the Optimization app” on page 3-9

About Problem Structures

To use the GlobalSearch or MultiStart solvers, you must first create a problem structure. There are two ways to create a problem structure: using the createOptimProblem function and exporting from the Optimization app.

For information on creating inputs for the problem structure, see “Inputs for Problem Structure” on page 3-5.

Using the createOptimProblem Function

Follow these steps to create a problem structure using the createOptimProblem function.

1. Define your objective function as a file or anonymous function. For details, see “Compute Objective Functions” on page 2-2. If your solver is lsqcurvefit or lsqnonlin, ensure the objective function returns a vector, not scalar.

2. If relevant, create your constraints, such as bounds and nonlinear constraint functions. For details, see “Write Constraints” on page 2-6.

3. Create a start point. For example, to create a three-dimensional random start point xstart:

   xstart = randn(3,1);

4. (Optional) Create an options structure using optimoptions. For example,

   options = optimoptions(@fmincon,'Algorithm','interior-point');

5. Enter

   problem = createOptimProblem(solver,
where `solver` is the name of your local solver:

- For `GlobalSearch`: 'fmincon'
- For `MultiStart` the choices are:
  - 'fmincon'
  - 'fminunc'
  - 'lsqcurvefit'
  - 'lsqnonlin'

For help choosing, see “Optimization Decision Table”.

6 Set an initial point using the 'x0' parameter. If your initial point is xstart, and your solver is `fmincon`, your entry is now

```matlab
problem = createOptimProblem('fmincon','x0',xstart,
```

7 Include the function handle for your objective function in `objective`:

```matlab
problem = createOptimProblem('fmincon','x0',xstart, ...
 'objective',@objfun,
```

8 Set bounds and other constraints as applicable.

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower bounds</td>
<td>'lb'</td>
</tr>
<tr>
<td>upper bounds</td>
<td>'ub'</td>
</tr>
<tr>
<td>matrix Aineq for linear inequalities Aineq x ≤ bineq</td>
<td>'Aineq'</td>
</tr>
<tr>
<td>vector bineq for linear inequalities Aineq x ≤ bineq</td>
<td>'bineq'</td>
</tr>
<tr>
<td>matrix Aeq for linear equalities Aeq x = beq</td>
<td>'Aeq'</td>
</tr>
<tr>
<td>vector beq for linear equalities Aeq x = beq</td>
<td>'beq'</td>
</tr>
<tr>
<td>nonlinear constraint function</td>
<td>'nonlcon'</td>
</tr>
</tbody>
</table>

9 If using the `lsqcurvefit` local solver, include vectors of input data and response data, named 'xdata' and 'ydata' respectively.

10 *Best practice: validate the problem structure by running your solver on the structure.* For example, if your local solver is `fmincon`:

```matlab
[x fval eflag output] = fmincon(problem);
```
Example: Creating a Problem Structure with createOptimProblem

This example minimizes the function from “Run the Solver” on page 3-20, subject to the constraint \( x_1 + 2x_2 \geq 4 \). The objective is \( \text{sixmin} = 4x^2 - 2.1x^4 + x^6/3 + xy - 4y^2 + 4y^4 \).

Use the interior-point algorithm of \texttt{fmincon}, and set the start point to \([2;3]\).

1. Write a function handle for the objective function.
   \[
   \text{sixmin} = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
   \]

2. Write the linear constraint matrices. Change the constraint to “less than” form:
   \[
   \begin{align*}
   A &= [-1,-2]; \\
   b &= -4;
   \end{align*}
   \]

3. Create the local options structure to use the interior-point algorithm:
   \[
   \text{opts} = \text{optimoptions}(@\text{fmincon},'\text{Algorithm}','\text{interior-point'});
   \]

4. Create the problem structure with \texttt{createOptimProblem}:
   \[
   \text{problem} = \text{createOptimProblem}('\text{fmincon}', ... \\
   '\text{x0}',[2;3],'\text{objective}',\text{sixmin}, ... \\
   '\text{Aineq}',A,'\text{bineq}',b,'\text{options}',\text{opts})
   \]

5. The resulting structure:
   \[
   \begin{align*}
   \text{problem} = \\
   \text{objective}: @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4) \\
   \text{x0}: [2x1 \text{ double}] \\
   \text{Aineq}: [-1 -2] \\
   \text{bineq}: -4 \\
   \text{Aeq}: [] \\
   \text{beq}: [] \\
   \text{lb}: [] \\
   \text{ub}: [] \\
   \text{nonlcon}: [] \\
   \text{solver}: '\text{fmincon}' \\
   \text{options}: [1x1 \text{ optim.options.Fmincon}]
   \end{align*}
   \]

6. Best practice: validate the problem structure by running your solver on the structure:
   \[
   [\text{x fval eflag output}] = \text{fmincon}(\text{problem});
   \]
Exporting from the Optimization app

Follow these steps to create a problem structure using the Optimization app.

1. Define your objective function as a file or anonymous function. For details, see “Compute Objective Functions” on page 2-2. If your solver is `lsqcurvefit` or `lsqnonlin`, ensure the objective function returns a vector, not scalar.

2. If relevant, create nonlinear constraint functions. For details, see “Nonlinear Constraints”.

3. Create a start point. For example, to create a three-dimensional random start point \( x_{\text{start}} \):

   \[
   x_{\text{start}} = \text{randn}(3,1);
   \]

4. Open the Optimization app by entering `optimtool` at the command line, or by choosing the Optimization app from the Apps tab.

5. Choose the local Solver.

   - For GlobalSearch: `fmincon` (default).
   - For MultiStart:
     - `fmincon` (default)
     - `fminunc`
     - `lsqcurvefit`
     - `lsqnonlin`

   For help choosing, see “Optimization Decision Table”.


6. Choose an appropriate **Algorithm**. For help choosing, see “Choosing the Algorithm”.

7. Set an initial point (**Start point**).

8. Include the function handle for your objective function in **Objective function**, and, if applicable, include your **Nonlinear constraint function**. For example,

9. Set bounds, linear constraints, or local **Options**. For details on constraints, see “Writing Constraints”.

10. **Best practice: run the problem to verify the setup.**

11. Choose **File > Export to Workspace** and select **Export problem and options to a MATLAB structure named**
Example: Creating a Problem Structure with the Optimization App

This example minimizes the function from “Run the Solver” on page 3-20, subject to the constraint \( x_1 + 2x_2 \geq 4 \). The objective is

\[
sixmin = 4x^2 - 2.1x^4 + x^6/3 + xy - 4y^2 + 4y^4.
\]

Use the interior-point algorithm of \texttt{fmincon}, and set the start point to \([2;3]\).

1. Write a function handle for the objective function.

\[
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
\]

2. Write the linear constraint matrices. Change the constraint to “less than” form:

\[
A = [-1,-2];
b = -4;
\]

3. Launch the Optimization app by entering \texttt{optimtool} at the MATLAB command line.

4. Set the solver, algorithm, objective, start point, and constraints.
5  Best practice: run the problem to verify the setup.

The problem runs successfully.
6 Choose File > Export to Workspace and select Export problem and options to a MATLAB structure named
Create Solver Object

In this section...

“What Is a Solver Object?” on page 3-14
“Properties (Global Options) of Solver Objects” on page 3-14
“Creating a Nondefault GlobalSearch Object” on page 3-16
“Creating a Nondefault MultiStart Object” on page 3-16

What Is a Solver Object?

A solver object contains your preferences for the global portion of the optimization.

You do not need to set any preferences. Create a `GlobalSearch` object named `gs` with default settings as follows:

```matlab
gs = GlobalSearch;
```

Similarly, create a `MultiStart` object named `ms` with default settings as follows:

```matlab
ms = MultiStart;
```

Properties (Global Options) of Solver Objects

Global options are properties of a `GlobalSearch` or `MultiStart` object.

Properties for both `GlobalSearch` and `MultiStart`

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Detail level of iterative display. Set to 'off' for no display, 'final' (default) for a report at the end of the run, or 'iter' for reports as the solver progresses. For more information and examples, see “Iterative Display” on page 3-30.</td>
</tr>
<tr>
<td>TolFun</td>
<td>Solvers consider objective function values within <code>TolFun</code> of each other to be identical (not distinct). Default: 1e-6. Solvers group solutions when the solutions satisfy both <code>TolFun</code> and <code>TolX</code> tolerances.</td>
</tr>
<tr>
<td>TolX</td>
<td>Solvers consider solutions within <code>TolX</code> distance of each other to be identical (not distinct). Default: 1e-6. Solvers group</td>
</tr>
</tbody>
</table>
### Create Solver Object

**Create Solver Object**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>solutions when the solutions satisfy both <code>TolFun</code> and <code>TolX</code> tolerances.</td>
</tr>
<tr>
<td><strong>MaxTime</strong></td>
<td>Solvers halt if the run exceeds <code>MaxTime</code> seconds, as measured by a clock (not processor seconds). Default: Inf</td>
</tr>
<tr>
<td><strong>StartPointsToRun</strong></td>
<td>Choose whether to run 'all' (default) start points, only those points that satisfy 'bounds', or only those points that are feasible with respect to bounds and inequality constraints with 'bounds-ineqs'. For an example, see “Optimize Using Only Feasible Start Points” on page 3-80.</td>
</tr>
<tr>
<td><strong>OutputFcns</strong></td>
<td>Functions to run after each local solver run. See “Output Functions for GlobalSearch and MultiStart” on page 3-37. Default: []</td>
</tr>
<tr>
<td><strong>PlotFcns</strong></td>
<td>Plot functions to run after each local solver run. See “Plot Functions for GlobalSearch and MultiStart” on page 3-40. Default: []</td>
</tr>
</tbody>
</table>

**Properties for GlobalSearch**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumTrialPoints</td>
<td>Number of trial points to examine. Default: 1000</td>
</tr>
<tr>
<td>BasinRadiusFactor</td>
<td></td>
</tr>
<tr>
<td>DistanceThresholdFactor</td>
<td></td>
</tr>
<tr>
<td>MaxWaitCycle</td>
<td></td>
</tr>
<tr>
<td>NumStageOnePoints</td>
<td></td>
</tr>
<tr>
<td>PenaltyThresholdFactor</td>
<td></td>
</tr>
</tbody>
</table>

**Properties for MultiStart**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseParallel</td>
<td>When true, <code>MultiStart</code> attempts to distribute start points to multiple processors for the local solver. Disable by setting to false (default). For details, see “How to Use Parallel Processing” on page 9-12. For an example, see “Parallel MultiStart” on page 3-89.</td>
</tr>
</tbody>
</table>
Creating a Nondefault GlobalSearch Object

Suppose you want to solve a problem and:

- Consider local solutions identical if they are within 0.01 of each other and the function values are within the default `TolFun` tolerance.
- Spend no more than 2000 seconds on the computation.

To solve the problem, create a `GlobalSearch` object `gs` as follows:

```matlab
gs = GlobalSearch('TolX',0.01,'MaxTime',2000);
```

Creating a Nondefault MultiStart Object

Suppose you want to solve a problem such that:

- You consider local solutions identical if they are within 0.01 of each other and the function values are within the default `TolFun` tolerance.
- You spend no more than 2000 seconds on the computation.

To solve the problem, create a `MultiStart` object `ms` as follows:

```matlab
ms = MultiStart('TolX',0.01,'MaxTime',2000);
```
Set Start Points for MultiStart

In this section...

“Four Ways to Set Start Points” on page 3-17
“Positive Integer for Start Points” on page 3-17
“RandomStartPointSet Object for Start Points” on page 3-18
“CustomStartPointSet Object for Start Points” on page 3-18
“Cell Array of Objects for Start Points” on page 3-19

Four Ways to Set Start Points

There are four ways you tell MultiStart which start points to use for the local solver:

• Pass a positive integer $k$. MultiStart generates $k - 1$ start points as if using a RandomStartPointSet object and the problem structure. MultiStart also uses the $x_0$ start point from the problem structure, for a total of $k$ start points.

• Pass a RandomStartPointSet object.

• Pass a CustomStartPointSet object.

• Pass a cell array of RandomStartPointSet and CustomStartPointSet objects.
  Pass a cell array if you have some specific points you want to run, but also want MultiStart to use other random start points.

Note: You can control whether MultiStart uses all start points, or only those points that satisfy bounds or other inequality constraints. For more information, see “Filter Start Points (Optional)” on page 3-51.

Positive Integer for Start Points

The syntax for running MultiStart for $k$ start points is

```
[xmin,fmin,flag,outpt,allmins] = run(ms,problem,k);
```

The positive integer $k$ specifies the number of start points MultiStart uses. MultiStart generates random start points using the dimension of the problem and bounds from the problem structure. MultiStart generates $k - 1$ random start points, and also uses the $x_0$ start point from the problem structure.
RandomStartPointSet Object for Start Points

Create a RandomStartPointSet object as follows:

```matlab
stpoints = RandomStartPointSet;
```

By default a RandomStartPointSet object generates 10 start points. Control the number of start points with the NumStartPoints property. For example, to generate 40 start points:

```matlab
stpoints = RandomStartPointSet('NumStartPoints',40);
```

You can set an ArtificialBound for a RandomStartPointSet. This ArtificialBound works in conjunction with the bounds from the problem structure:

- If a component has no bounds, RandomStartPointSet uses a lower bound of -$\text{ArtificialBound}$, and an upper bound of $\text{ArtificialBound}$.
- If a component has a lower bound $\text{lb}$ but no upper bound, RandomStartPointSet uses an upper bound of $\text{lb} + 2*\text{ArtificialBound}$.
- Similarly, if a component has an upper bound $\text{ub}$ but no lower bound, RandomStartPointSet uses a lower bound of $\text{ub} - 2*\text{ArtificialBound}$.

For example, to generate 100 start points with an ArtificialBound of 50:

```matlab
stpoints = RandomStartPointSet('NumStartPoints',100, ... 'ArtificialBound',50);
```

A RandomStartPointSet object generates start points with the same dimension as the $\text{x0}$ point in the problem structure; see list.

CustomStartPointSet Object for Start Points

To use a specific set of starting points, package them in a CustomStartPointSet as follows:

1. Place the starting points in a matrix. Each row of the matrix represents one starting point. MultiStart runs all the rows of the matrix, subject to filtering with the StartPointsToRun property. For more information, see “MultiStart Algorithm” on page 3-50.
2. Create a CustomStartPointSet object from the matrix:

```matlab
tpoints = CustomStartPointSet(ptmatrix);
```
For example, create a set of 40 five-dimensional points, with each component of a point equal to 10 plus an exponentially distributed variable with mean 25:

\[
\text{pts} = -25 \ast \log(\text{rand}(40,5)) + 10;
\]

\[
\text{tpoints} = \text{CustomStartPointSet(pts)};
\]

To get the original matrix of points from a \textbf{CustomStartPointSet} object, use the list method:

\[
\text{pts} = \text{list(tpoints)}; \quad \% \text{ Assumes tpoints is a CustomStartPointSet}
\]

A \textbf{CustomStartPointSet} has two properties: \texttt{DimStartPoints} and \texttt{NumStartPoints}. You can use these properties to query a \textbf{CustomStartPointSet} object. For example, the \texttt{tpoints} object in the example has the following properties:

\[
\text{tpoints.DimStartPoints}
\]

\[
\text{ans} = 5
\]

\[
\text{tpoints.NumStartPoints}
\]

\[
\text{ans} = 40
\]

\section*{Cell Array of Objects for Start Points}

To use a specific set of starting points along with some randomly generated points, pass a cell array of \textbf{RandomStartPointSet} or \textbf{CustomStartPointSet} objects.

For example, to use both the 40 specific five-dimensional points of “\textbf{CustomStartPointSet Object for Start Points}” on page 3-18 and 40 additional five-dimensional points from \textbf{RandomStartPointSet}:

\[
\text{pts} = -25 \ast \log(\text{rand}(40,5)) + 10;
\]

\[
\text{tpoints} = \text{CustomStartPointSet(pts)};
\]

\[
\text{rpts} = \text{RandomStartPointSet('NumStartPoints',40)};
\]

\[
\text{allpts} = \{\text{tpoints},\text{rpts}\};
\]

Run \textbf{MultiStart} with the \texttt{allpts} cell array:

\[
\% \text{ Assume ms and problem exist}
\]

\[
[xmin,fmin,flag,outpt,allmins] = \text{run(ms,problem,allpts)};
\]
Run the Solver

In this section...

“Optimize by Calling run” on page 3-20
“Example of Run with GlobalSearch” on page 3-21
“Example of Run with MultiStart” on page 3-22

Optimize by Calling run

Running a solver is nearly identical for GlobalSearch and MultiStart. The only difference in syntax is MultiStart takes an additional input describing the start points.

For example, suppose you want to find several local minima of the sixmin function

\[
sixmin = 4x^2 - 2.1x^4 + x^6/3 + xy - 4y^2 + 4y^4.
\]

This function is also called the six-hump camel back function [3]. All the local minima lie in the region \(-3 \leq x, y \leq 3\).
**Example of Run with GlobalSearch**

To find several local minima of the `sixmin` function using `GlobalSearch`, enter:

```matlab
% % Set the random stream to get exactly the same output
% rng(14,'twister')
gs = GlobalSearch;
opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
 + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
 'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
 'options',opts);
[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);
```

The output of the run (which varies, based on the random seed):

```
xming,fming,flagg,outptg,manyminsg
xming =
 0.0898 -0.7127

fming =
 -1.0316

flagg =
 1

outptg =
 funcCount: 2131
 localSolverTotal: 3
 localSolverSuccess: 3
 localSolverIncomplete: 0
 localSolverNoSolution: 0
 message: 'GlobalSearch stopped because it analyzed all the trial po.

manyminsg =
 1x2 GlobalOptimSolution array with properties:

 X
 Fval
 Exitflag
 Output
 X0
```
Example of Run with MultiStart

To find several local minima of the sixmin function using 50 runs of fmincon with MultiStart, enter:

% % Set the random stream to get exactly the same output
% rng(14,'twister')
ms = MultiStart;
 opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... 
 + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
    'options',opts);
[xminm,fminm,flagm,outptm,manyminsm] = run(ms,problem,50);

The output of the run (which varies based on the random seed):

xminm, fminm, flagm, outptm, manyminsm

xminm =
    0.0898    -0.7127

fminm =
    -1.0316

flagm =
    1

outptm =
    funcCount: 2034
    localSolverTotal: 50
    localSolverSuccess: 50
    localSolverIncomplete: 0
    localSolverNoSolution: 0
    message: 'MultiStart completed the runs from all start points.....'

manyminsm =
    1x6 GlobalOptimSolution array with properties:
        X        Fval       Exitflag
        Output
In this case, MultiStart located all six local minima, while GlobalSearch located two. For pictures of the MultiStart solutions, see “Visualize the Basins of Attraction” on page 3-34.
Single Solution

You obtain the single best solution found during the run by calling `run` with the syntax

```matlab
[x fval eflag output] = run(...);
```

- `x` is the location of the local minimum with smallest objective function value.
- `fval` is the objective function value evaluated at `x`.
- `eflag` is an exit flag for the global solver. Values:

**Global Solver Exit Flags**

<table>
<thead>
<tr>
<th><code>eflag</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>At least one local minimum found. Some runs of the local solver converged (had positive exit flag).</td>
</tr>
<tr>
<td>1</td>
<td>At least one local minimum found. All runs of the local solver converged (had positive exit flag).</td>
</tr>
<tr>
<td>0</td>
<td>No local minimum found. Local solver called at least once, and at least one local solver exceeded the <code>MaxIter</code> or <code>MaxFunEvals</code> tolerances.</td>
</tr>
<tr>
<td>-1</td>
<td>Solver stopped by output function or plot function.</td>
</tr>
<tr>
<td>-2</td>
<td>No feasible local minimum found.</td>
</tr>
<tr>
<td>-5</td>
<td><code>MaxTime</code> limit exceeded.</td>
</tr>
<tr>
<td>-8</td>
<td>No solution found. All runs had local solver exit flag -1 or smaller.</td>
</tr>
<tr>
<td>-10</td>
<td>Failures encountered in user-provided functions.</td>
</tr>
</tbody>
</table>

- `output` is a structure with details about the multiple runs of the local solver. For more information, see “Global Output Structures” on page 3-33.

The list of outputs is for the case `eflag > 0`. If `eflag <= 0`, then `x` is the following:

- If some local solutions are feasible, `x` represents the location of the lowest objective function value. “Feasible” means the constraint violations are smaller than `problem.options.TolCon`.
- If no solutions are feasible, `x` is the solution with lowest infeasibility.
- If no solutions exist, `x`, `fval`, and `output` are empty ([ ]).
Multiple Solutions

In this section...

“About Multiple Solutions” on page 3-25
“Change the Definition of Distinct Solutions” on page 3-28

About Multiple Solutions

You obtain multiple solutions in an object by calling `run` with the syntax

```matlab
[x fval eflag output manymins] = run(...);
```

`manymins` is a vector of solution objects; see `GlobalOptimSolution`. The `manymins` vector is in order of objective function value, from lowest (best) to highest (worst). Each solution object contains the following properties (fields):

- **X** — a local minimum
- **Fval** — the value of the objective function at `X`
- **Exitflag** — the exit flag for the local solver (described in the local solver function reference page: `fmincon` exitflag, `fminunc` exitflag, `lsqcurvefit` exitflag, or `lsqnonlin` exitflag
- **Output** — an output structure for the local solver (described in the local solver function reference page: `fmincon` output, `fminunc` output, `lsqcurvefit` output, or `lsqnonlin` output
- **X0** — a cell array of start points that led to the solution point `X`

There are several ways to examine the vector of solution objects:

- In the MATLAB Workspace Browser. Double-click the solution object, and then double-click the resulting display in the Variables editor.
• Using dot notation. `GlobalOptimSolution` properties are capitalized. Use proper capitalization to access the properties.
For example, to find the vector of function values, enter:

```matlab
fcnvals = [manymins.Fval]
```

```matlab
cfcnvals =
 -1.0316 -0.2155 0
```

To get a cell array of all the start points that led to the lowest function value (the first element of `manymins`), enter:

```matlab
smallX0 = manymins(1).X0
```

- Plot some field values. For example, to see the range of resulting `Fval`, enter:

```matlab
histogram([manymins.Fval],10)
```

This results in a histogram of the computed function values. (The figure shows a histogram from a different example than the previous few figures.)
Change the Definition of Distinct Solutions

You might find out, after obtaining multiple local solutions, that your tolerances were not appropriate. You can have many more local solutions than you want, spaced too closely together. Or you can have fewer solutions than you want, with `GlobalSearch` or `MultiStart` clumping together too many solutions.

To deal with this situation, run the solver again with different tolerances. The `TolX` and `TolFun` tolerances determine how the solvers group their outputs into the `GlobalOptimSolution` vector. These tolerances are properties of the `GlobalSearch` or `MultiStart` object.
For example, suppose you want to use the **active-set** algorithm in `fmincon` to solve the problem in “Example of Run with MultiStart” on page 3-22. Further suppose that you want to have tolerances of 0.01 for both `TolX` and `TolFun`. The `run` method groups local solutions whose objective function values are within `TolFun` of each other, and which are also less than `TolX` apart from each other. To obtain the solution:

```matlab
% % Set the random stream to get exactly the same output
% rng(14,'twister')
ms = MultiStart('TolFun',0.01,'TolX',0.01);
opts = optimoptions(@fmincon,'Algorithm','active-set');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
 + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
 'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
 'options',opts);
[xminm,fminm,flagm,outptm,someminsm] = run(ms,problem,50);
```

**MultiStart** completed the runs from all start points.

All 50 local solver runs converged with a positive local solver exit flag.

someminsm

someminsm =

```
1x5 GlobalOptimSolution

Properties:
 X
 Fval
 Exitflag
 Output
 X0
```

In this case, **MultiStart** generated five distinct solutions. Here “distinct” means that the solutions are more than 0.01 apart in either objective function value or location.
## Iterative Display

### In this section...

| “Types of Iterative Display” on page 3-30 |
| “Examine Types of Iterative Display” on page 3-30 |

### Types of Iterative Display

Iterative display gives you information about the progress of solvers during their runs.

There are two types of iterative display:

- Global solver display
- Local solver display

Both types appear at the command line, depending on global and local options.

Obtain local solver iterative display by setting the `Display` option in the `problem.options` structure to `'iter'` or `'iter-detailed'` with `optimoptions`. For more information, see “Iterative Display” in the Optimization Toolbox documentation.

Obtain global solver iterative display by setting the `Display` property in the `GlobalSearch` or `MultiStart` object to `'iter'`.

Global solvers set the default `Display` option of the local solver to `'off'`, unless the problem structure has a value for this option. Global solvers do not override any setting you make for local options.

**Note:** Setting the local solver `Display` option to anything other than `'off'` can produce a great deal of output. The default `Display` option created by `optimoptions(@solver)` is `'final'`.

### Examine Types of Iterative Display

Run the example described in “Run the Solver” on page 3-20 using `GlobalSearch` with `GlobalSearch` iterative display:

```matlab
% % Set the random stream to get exactly the same output
```
% rng(14,'twister')
gs = GlobalSearch('Display','iter');
opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
   + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',
   [-1,2],...
   'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
   'options',opts);
[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);

<table>
<thead>
<tr>
<th>Num Pts</th>
<th>Analyzed</th>
<th>F-count</th>
<th>f(x)</th>
<th>Current</th>
<th>Penalty</th>
<th>Threshold</th>
<th>Penalty</th>
<th>Local f(x)</th>
<th>exitflag</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>34</td>
<td>-1.032</td>
<td></td>
<td>-1.032</td>
<td></td>
<td></td>
<td>-0.2155</td>
<td>1</td>
<td>Initial Point</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1291</td>
<td>-1.032</td>
<td></td>
<td></td>
<td>248.7</td>
<td>-0.2137</td>
<td></td>
<td>1</td>
<td>Stage 1 Local</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1393</td>
<td>-1.032</td>
<td></td>
<td></td>
<td>278</td>
<td>1.134</td>
<td></td>
<td></td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1493</td>
<td>-1.032</td>
<td></td>
<td></td>
<td>9.055</td>
<td>0.3214</td>
<td></td>
<td></td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td></td>
<td>446</td>
<td>1577</td>
<td>-1.032</td>
<td></td>
<td></td>
<td>-0.7299</td>
<td>-0.7686</td>
<td></td>
<td></td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1631</td>
<td>-1.032</td>
<td></td>
<td></td>
<td>0.3191</td>
<td>-0.7431</td>
<td></td>
<td></td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>1731</td>
<td>-1.032</td>
<td></td>
<td></td>
<td>296.4</td>
<td>0.4577</td>
<td></td>
<td></td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>1831</td>
<td>-1.032</td>
<td></td>
<td></td>
<td>10.68</td>
<td>0.5116</td>
<td></td>
<td></td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1931</td>
<td>-1.032</td>
<td></td>
<td></td>
<td>-0.9207</td>
<td>-0.9254</td>
<td></td>
<td></td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>2131</td>
<td>-1.032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GlobalSearch stopped because it analyzed all the trial points.

All 3 local solver runs converged with a positive local solver exit flag.

Run the same example without GlobalSearch iterative display, but with fmincon iterative display:

gs.Display = 'final';
problem.options.Display = 'iter';
[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);

<table>
<thead>
<tr>
<th>Iter</th>
<th>F-count</th>
<th>f(x)</th>
<th>First-order optimality</th>
<th>Norm of step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>4.823332e-001</td>
<td>0.0000e+000</td>
<td>1.088e+002</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>2.020476e+000</td>
<td>0.0000e+000</td>
<td>2.176e+000</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>6.525252e-001</td>
<td>0.0000e+000</td>
<td>1.937e+000</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>-8.776121e-001</td>
<td>0.0000e+000</td>
<td>9.076e-001</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>-9.121907e-001</td>
<td>0.0000e+000</td>
<td>9.076e-001</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>-1.009367e+000</td>
<td>0.0000e+000</td>
<td>7.326e-001</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>-1.030423e+000</td>
<td>0.0000e+000</td>
<td>2.172e-001</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>-1.031578e+000</td>
<td>0.0000e+000</td>
<td>4.278e-002</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>-1.031628e+000</td>
<td>0.0000e+000</td>
<td>8.777e-003</td>
</tr>
<tr>
<td>9</td>
<td>31</td>
<td>-1.031628e+000</td>
<td>0.0000e+000</td>
<td>8.845e-005</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>-1.031628e+000</td>
<td>0.0000e+000</td>
<td>1.354e-006</td>
</tr>
</tbody>
</table>

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the selected value of the function tolerance, and constraints were satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>

---

3-31
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the selected value of the function tolerance, and constraints were satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>

GlobalSearch stopped because it analyzed all the trial points.

All 4 local solver runs converged with a positive local solver exit flag.

Setting GlobalSearch iterative display, as well as fmincon iterative display, yields both displays intermingled.

For an example of iterative display in a parallel environment, see “Parallel MultiStart” on page 3-89.
Global Output Structures

run can produce two types of output structures:

- A global output structure. This structure contains information about the overall run from multiple starting points. Details follow.
- Local solver output structures. The vector of GlobalOptimSolution objects contains one such structure in each element of the vector. For a description of this structure, see “Output Structures” in the Optimization Toolbox documentation, or the function reference pages for the local solvers: fmincon output, fminunc output, lsqcurvefit output, or lsqnonlin output.

### Global Output Structure

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>funcCount</td>
<td>Total number of calls to user-supplied functions (objective or nonlinear constraint)</td>
</tr>
<tr>
<td>localSolverTotal</td>
<td>Number of local solver runs started</td>
</tr>
<tr>
<td>localSolverSuccess</td>
<td>Number of local solver runs that finished with a positive exit flag</td>
</tr>
<tr>
<td>localSolverIncomplete</td>
<td>Number of local solver runs that finished with a 0 exit flag</td>
</tr>
<tr>
<td>localSolverNoSolution</td>
<td>Number of local solver runs that finished with a negative exit flag</td>
</tr>
<tr>
<td>message</td>
<td>GlobalSearch or MultiStart exit message</td>
</tr>
</tbody>
</table>

A positive exit flag from a local solver generally indicates a successful run. A negative exit flag indicates a failure. A 0 exit flag indicates that the solver stopped by exceeding the iteration or function evaluation limit. For more information, see “Exit Flags and Exit Messages” or “Tolerances and Stopping Criteria” in the Optimization Toolbox documentation.
Visualize the Basins of Attraction

Which start points lead to which basin? For a steepest descent solver, nearby points generally lead to the same basin; see “Basins of Attraction” on page 1-13. However, for Optimization Toolbox solvers, basins are more complicated.

Plot the MultiStart start points from the example, “Example of Run with MultiStart” on page 3-22, color-coded with the basin where they end.

```matlab
% rng(14,'twister')
% Uncomment the previous line to get the same output
ms = MultiStart;
opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
 'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
 'options',opts);
[xminm,fminm,flagm,outptm,manyminsm] = run(ms,problem,50);

possColors = 'kbgcrm';
hold on
for i = 1:size(manyminsm,2)
 % Color of this line
 cIdx = rem(i-1, length(possColors)) + 1;
 color = possColors(cIdx);

 % Plot start points
 u = manyminsm(i).X0;
x0ThisMin = reshape([u{:}], 2, length(u));
plot(x0ThisMin(1, :), x0ThisMin(2, :), '.', ...
 'Color',color,'MarkerSize',25);

 % Plot the basin with color i
 plot(manyminsm(i).X(1), manyminsm(i).X(2), '*', ...
 'Color', color, 'MarkerSize',25);
end % basin center marked with a *, start points with dots
hold off
```
The figure shows the centers of the basins by colored * symbols. Start points with the same color as the * symbol converge to the center of the * symbol.

Start points do not always converge to the closest basin. For example, the red points are closer to the cyan basin center than to the red basin center. Also, many black and blue start points are closer to the opposite basin centers.

The magenta and red basins are shallow, as you can see in the following contour plot.
Output Functions for GlobalSearch and MultiStart

What Are Output Functions?

Output functions allow you to examine intermediate results in an optimization. Additionally, they allow you to halt a solver programmatically.

There are two types of output functions, like the two types of output structures:

- Global output functions run after each local solver run. They also run when the global solver starts and ends.
- Local output functions run after each iteration of a local solver. See “Output Functions” in the Optimization Toolbox documentation.

To use global output functions:

- Write output functions using the syntax described in “OutputFcns” on page 10-3.
- Set the OutputFcns property of your GlobalSearch or MultiStart solver to the function handle of your output function. You can use multiple output functions by setting the OutputFcns property to a cell array of function handles.

GlobalSearch Output Function

This output function stops GlobalSearch after it finds five distinct local minima with positive exit flags, or after it finds a local minimum value less than 0.5. The output function uses a persistent local variable, foundLocal, to store the local results. foundLocal enables the output function to determine whether a local solution is distinct from others, to within a tolerance of 1e-4.

To store local results using nested functions instead of persistent variables, see “Example of a Nested Output Function” in the MATLAB Mathematics documentation.

1 Write the output function using the syntax described in “OutputFcns” on page 10-3.
function stop = StopAfterFive(optimValues, state)
    persistent foundLocal
    stop = false;
    switch state
    case 'init'
        foundLocal = []; % initialized as empty
    case 'iter'
        newf = optimValues.localsolution.Fval;
        eflag = optimValues.localsolution.Exitflag;
        % Now check if the exit flag is positive and
        % the new value differs from all others by at least 1e-4
        % If so, add the new value to the newf list
        if eflag > 0 && all(abs(newf - foundLocal) > 1e-4)
            foundLocal = [foundLocal;newf];
            % Now check if the latest value added to foundLocal
            % is less than 1/2
            % Also check if there are 5 local minima in foundLocal
            % If so, then stop
            if foundLocal(end) < 0.5 || length(foundLocal) >= 5
                stop = true;
            end
        end
    end
end

Save StopAfterFive.m as a file in a folder on your MATLAB path.

Write the objective function and create an optimization problem structure as in
"Find Global or Multiple Local Minima" on page 3-72.

function f = sawtoothxy(x,y)
    [t r] = cart2pol(x,y); % change to polar coordinates
    h = cos(2*t - 1/2)/2 + cos(t) + 2;
    g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ... 
        .*r.^2./(r+1);
    f = g.*h;
end

Save sawtoothxy.m as a file in a folder on your MATLAB path.

At the command line, create the problem structure:

problem = createOptimProblem('fmincon',... 
    'objective', @(x)sawtoothxy(x(1),x(2)),...
    'x0',[100,-50], 'options',... 
    optiptions(@fmincon,'Algorithm','sqp'));

Create a GlobalSearch object with @StopAfterFive as the output function, and set the iterative display property to 'iter'.
gs = GlobalSearch('OutputFcns','@StopAfterFive','Display','iter');  
7 (Optional) To get the same answer as this example, set the default random number stream.

rng default  
8 Run the problem.

[x fval] = run(gs,problem)

<table>
<thead>
<tr>
<th>Num Pts</th>
<th>F-count</th>
<th>f(x)</th>
<th>Penalty</th>
<th>Current</th>
<th>Threshold</th>
<th>Local f(x)</th>
<th>exitflag</th>
<th>Local Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
<td>555.7</td>
<td></td>
<td></td>
<td></td>
<td>555.7</td>
<td>0</td>
<td>Initial Point</td>
</tr>
<tr>
<td>200</td>
<td>1479</td>
<td>1.547e-15</td>
<td></td>
<td>1.547e-15</td>
<td>1</td>
<td>1.547e-15</td>
<td>1</td>
<td>Stage 1 Local</td>
</tr>
</tbody>
</table>

GlobalSearch stopped by the output or plot function.

1 out of 2 local solver runs converged with a positive local solver exit flag.

x =

1.0e-07 *

0.0414 0.1298

fval =

1.5467e-15

The run stopped early because GlobalSearch found a point with a function value less than 0.5.

**No Parallel Output Functions**

While MultiStart can run in parallel, it does not support global output functions and plot functions in parallel. Furthermore, while local output functions and plot functions run on workers when MultiStart runs in parallel, the effect differs from running serially. Local output and plot functions do not create a display when running on workers. You do not see any other effects of output and plot functions until the worker passes its results to the client (the originator of the MultiStart parallel jobs).

For information on running MultiStart in parallel, see “Parallel Computing”.
Plot Functions for GlobalSearch and MultiStart

In this section...

“What Are Plot Functions?” on page 3-40
“MultiStart Plot Function” on page 3-41
“No Parallel Plot Functions” on page 3-43

What Are Plot Functions?

The `PlotFcns` field of the `options` structure specifies one or more functions that an optimization function calls at each iteration. Plot functions plot various measures of progress while the algorithm executes. Pass a function handle or cell array of function handles. The structure of a plot function is the same as the structure of an output function. For more information on this structure, see “OutputFcns” on page 10-3.

Plot functions are specialized output functions (see “Output Functions for GlobalSearch and MultiStart” on page 3-37). There are two predefined plot functions:

- `@gsplotbestf` plots the best objective function value.
- `@gsplotfunccount` plots the number of function evaluations.

Plot function windows have **Pause** and **Stop** buttons. By default, all plots appear in one window.

To use global plot functions:

- Write plot functions using the syntax described in “OutputFcns” on page 10-3.
- Set the `PlotFcns` property of your `GlobalSearch` or `MultiStart` object to the function handle of your plot function. You can use multiple plot functions by setting the `PlotFcns` property to a cell array of function handles.

Details of Built-In Plot Functions

The built-in plot functions have characteristics that can surprise you.

- `@gsplotbestf` can have plots that are not strictly decreasing. This is because early values can result from local solver runs with negative exit flags (such as infeasible solutions). A subsequent local solution with positive exit flag is better even if its function value is higher. Once a local solver returns a value with a positive exit flag, the plot is monotone decreasing.
• @gsplotfunccount might not plot the total number of function evaluations. This is because GlobalSearch can continue to perform function evaluations after it calls the plot function for the last time. For more information, see “GlobalSearch Algorithm” on page 3-46Properties for GlobalSearch.

**MultiStart Plot Function**

This example plots the number of local solver runs it takes to obtain a better local minimum for MultiStart. The example also uses a built-in plot function to show the current best function value.

The example problem is the same as in “Find Global or Multiple Local Minima” on page 3-72, with additional bounds.

The example uses persistent variables to store previous best values. The plot function examines the best function value after each local solver run, available in the bestfval field of the optimValues structure. If the value is not lower than the previous best, the plot function adds 1 to the number of consecutive calls with no improvement and draws a bar chart. If the value is lower than the previous best, the plot function starts a new bar in the chart with value 1. Before plotting, the plot function takes a logarithm of the number of consecutive calls. The logarithm helps keep the plot legible, since some values can be much larger than others.

To store local results using nested functions instead of persistent variables, see “Example of a Nested Output Function” in the MATLAB Mathematics documentation.

1 Write the objective function:

```matlab
function f = sawtoothxy(x,y)
 [t r] = cart2pol(x,y); % change to polar coordinates
 h = cos(2*t - 1/2)/2 + cos(t) + 2;
 g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
 .*r.^2./(r+1);
 f = g.*h;
```

2 Save `sawtoothxy.m` as a file in a folder on your MATLAB path.

3 Write the plot function:

```matlab
function stop = NumberToNextBest(optimValues, state)
 persistent bestfv bestcounter
 stop = false;
 switch state
```
case 'init'
    % Initialize variable to record best function value.
    bestfv = [];
    % Initialize counter to record number of
    % local solver runs to find next best minimum.
    bestcounter = 1;
    % Create the histogram.
    bar(log(bestcounter),'tag','NumberToNextBest');
    xlabel('Number of New Best Fval Found');
    ylabel('Log Number of Local Solver Runs');
    title('Number of Local Solver Runs to Find Lower Minimum')
end

case 'iter'
    % Find the axes containing the histogram.
    NumToNext = ... 
    findobj(get(gca,'Children'),'Tag','NumberToNextBest');
    % Update the counter that records number of local
    % solver runs to find next best minimum.
    if ~isequal(optimValues.bestfval, bestfv)
        bestfv = optimValues.bestfval;
        bestcounter = [bestcounter 1];
    else
        bestcounter(end) = bestcounter(end) + 1;
    end
end

% Update the histogram.
set(NumToNext,'Ydata',log(bestcounter))

end

4 Save NumberToNextBest.m as a file in a folder on your MATLAB path.
5 Create the problem structure and global solver. Set lower bounds of [-3e3, -4e3],
upper bounds of [4e3, 3e3] and set the global solver to use the plot functions:

problem = createOptimProblem('fmincon',... 
    'objective', @(x) sawtoothxy(x(1),x(2)),... 
    'x0', [100,-50], 'lb', [-3e3, -4e3],... 
    'ub', [4e3,3e3], 'options',... 
    optimoptions(@fmincon,'Algorithm','sqp'));

ms = MultiStart('PlotFcns',{@NumberToNextBest,@gsplotbestf});
6 Run the global solver for 100 local solver runs:

[x fv] = run(ms,problem,100);
The plot functions produce the following figure (your results can differ, since the solution process is stochastic):

![Plot Functions](image)

**No Parallel Plot Functions**

While MultiStart can run in parallel, it does not support global output functions and plot functions in parallel. Furthermore, while local output functions and plot functions run on workers when MultiStart runs in parallel, the effect differs from running serially. Local output and plot functions do not create a display when running on workers. You do not see any other effects of output and plot functions until the worker passes its results to the client (the originator of the MultiStart parallel jobs).

For information on running MultiStart in parallel, see “Parallel Computing”.

---

7
How GlobalSearch and MultiStart Work

In this section...

“Multiple Runs of a Local Solver” on page 3-44
“Differences Between the Solver Objects” on page 3-44
“GlobalSearch Algorithm” on page 3-46
“MultiStart Algorithm” on page 3-50
“Bibliography” on page 3-52

Multiple Runs of a Local Solver

GlobalSearch and MultiStart have similar approaches to finding global or multiple minima. Both algorithms start a local solver (such as fmincon) from multiple start points. The algorithms use multiple start points to sample multiple basins of attraction. For more information, see “Basins of Attraction” on page 1-13.

Differences Between the Solver Objects

GlobalSearch and MultiStart Algorithm Overview contains a sketch of the GlobalSearch and MultiStart algorithms.
GlobalSearch and MultiStart Algorithm Overview

The main differences between GlobalSearch and MultiStart are:

- **GlobalSearch** uses a scatter-search mechanism for generating start points. **MultiStart** uses uniformly distributed start points within bounds, or user-supplied start points.
- **GlobalSearch** analyzes start points and rejects those points that are unlikely to improve the best local minimum found so far. **MultiStart** runs all start points (or, optionally, all start points that are feasible with respect to bounds or inequality constraints).
- **MultiStart** gives a choice of local solver: `fmincon`, `fminunc`, `lsqcurvefit`, or `lsqnonlin`. The GlobalSearch algorithm uses `fmincon`.
- **MultiStart** can run in parallel, distributing start points to multiple processors for local solution. To run MultiStart in parallel, see “How to Use Parallel Processing” on page 9-12.

Deciding Which Solver to Use

The differences between these solver objects boil down to the following decision on which to use:
• Use **GlobalSearch** to find a single global minimum most efficiently on a single processor.

• Use **MultiStart** to:
  • Find multiple local minima.
  • Run in parallel.
  • Use a solver other than **fmincon**.
  • Search thoroughly for a global minimum.
  • Explore your own start points.

**GlobalSearch Algorithm**

For a description of the algorithm, see Ugray et al. [1].

When you run a **GlobalSearch** object, the algorithm performs the following steps:

1. “Run fmincon from x0” on page 3-46
2. “Generate Trial Points” on page 3-47
3. “Obtain Stage 1 Start Point, Run” on page 3-47
4. “Initialize Basins, Counters, Threshold” on page 3-47
5. “Begin Main Loop” on page 3-48
6. “Examine Stage 2 Trial Point to See if fmincon Runs” on page 3-48
7. “When fmincon Runs” on page 3-48
8. “When fmincon Does Not Run” on page 3-49
9. “Create GlobalOptimSolution” on page 3-50

**Run fmincon from x0**

**GlobalSearch** runs **fmincon** from the start point you give in the **problem** structure. If this run converges, **GlobalSearch** records the start point and end point for an initial estimate on the radius of a basin of attraction. Furthermore, **GlobalSearch** records the final objective function value for use in the **score** function (see “Obtain Stage 1 Start Point, Run” on page 3-47).

The score function is the sum of the objective function value at a point and a multiple of the sum of the constraint violations. So a feasible point has score equal to its objective
function value. The multiple for constraint violations is initially 1000. GlobalSearch updates the multiple during the run.

**Generate Trial Points**

GlobalSearch uses the scatter search algorithm to generate a set of NumTrialPoints trial points. Trial points are potential start points. For a description of the scatter search algorithm, see Glover [2]. GlobalSearch generates trial points within any finite bounds you set (lb and ub). Unbounded components have artificial bounds imposed: lb = -1e4 + 1, ub = 1e4 + 1. This range is not symmetric about the origin so that the origin is not in the scatter search. Components with one-sided bounds have artificial bounds imposed on the unbounded side, shifted by the finite bounds to keep lb < ub.

**Obtain Stage 1 Start Point, Run**

GlobalSearch evaluates the score function of a set of NumStageOnePoints trial points. It then takes the point with the best score and runs fmincon from that point. GlobalSearch removes the set of NumStageOnePoints trial points from its list of points to examine.

**Initialize Basins, Counters, Threshold**

The localSolverThreshold is initially the smaller of the two objective function values at the solution points. The solution points are the fmincon solutions starting from x0 and from the Stage 1 start point. If both of these solution points do not exist or are infeasible, localSolverThreshold is initially the penalty function value of the Stage 1 start point.

The GlobalSearch heuristic assumption is that basins of attraction are spherical. The initial estimate of basins of attraction for the solution point from x0 and the solution point from Stage 1 are spheres centered at the solution points. The radius of each sphere is the distance from the initial point to the solution point. These estimated basins can overlap.

There are two sets of counters associated with the algorithm. Each counter is the number of consecutive trial points that:

- Lie within a basin of attraction. There is one counter for each basin.
- Have score function greater than localSolverThreshold. For a definition of the score, see “Run fmincon from x0” on page 3-46.

All counters are initially 0.
Begin Main Loop

GlobalSearch repeatedly examines a remaining trial point from the list, and performs the following steps. It continually monitors the time, and stops the search if elapsed time exceeds MaxTime seconds.

Examine Stage 2 Trial Point to See if fmincon Runs

Call the trial point p. Run fmincon from p if the following conditions hold:

- p is not in any existing basin. The criterion for every basin i is:
  \[ |p - \text{center}(i)| > \text{DistanceThresholdFactor} \times \text{radius}(i). \]

DistanceThresholdFactor is an option (default value 0.75).

- radius is an estimated radius that updates in Update Basin Radius and Threshold and React to Large Counter Values.
- score(p) < localSolverThreshold.
- (optional) p satisfies bound and/or inequality constraints. This test occurs if you set the StartPointsToRun property of the GlobalSearch object to 'bounds' or 'bounds-ineqs'.

When fmincon Runs

1 Reset Counters

Set the counters for basins and threshold to 0.

2 Update Solution Set

If fmincon runs starting from p, it can yield a positive exit flag, which indicates convergence. In that case, GlobalSearch updates the vector of GlobalOptimSolution objects. Call the solution point xp and the objective function value fp. There are two cases:

- For every other solution point xq with objective function value fq,
  \[ |xq - xp| > \text{TolX} \times \max(1,|xp|) \]
  or
  \[ |fq - fp| > \text{TolFun} \times \max(1,|fp|). \]
In this case, GlobalSearch creates a new element in the vector of GlobalOptimSolution objects. For details of the information contained in each object, see GlobalOptimSolution.

- For some other solution point \( x_q \) with objective function value \( f_q \),

\[
|x_q - x_p| \leq \text{TolX} \cdot \max(1,|x_p|)
\]

and

\[
|f_q - f_p| \leq \text{TolFun} \cdot \max(1,|f_p|).
\]

In this case, GlobalSearch regards \( x_p \) as equivalent to \( x_q \). The GlobalSearch algorithm modifies the GlobalOptimSolution of \( x_q \) by adding \( p \) to the cell array of \( X_0 \) points.

There is one minor tweak that can happen to this update. If the exit flag for \( x_q \) is greater than 1, and the exit flag for \( x_p \) is 1, then \( x_p \) replaces \( x_q \). This replacement can lead to some points in the same basin being more than a distance of TolX from \( x_p \).

### 3 Update Basin Radius and Threshold

If the exit flag of the current fmincon run is positive:

- **a** Set threshold to the score value at start point \( p \).
- **b** Set basin radius for \( x_p \) equal to the maximum of the existing radius (if any) and the distance between \( p \) and \( x_p \).

### 4 Report to Iterative Display

When the GlobalSearch Display property is 'iter', every point that fmincon runs creates one line in the GlobalSearch iterative display.

### When fmincon Does Not Run

#### 1 Update Counters

Increment the counter for every basin containing \( p \). Reset the counter of every other basin to 0.

Increment the threshold counter if \( \text{score}(p) \geq \text{localSolverThreshold} \). Otherwise, reset the counter to 0.
2 React to Large Counter Values

For each basin with counter equal to \( \text{MaxWaitCycle} \), multiply the basin radius by \( 1 - \text{BasinRadiusFactor} \). Reset the counter to 0. (Both \( \text{MaxWaitCycle} \) and \( \text{BasinRadiusFactor} \) are settable properties of the \text{GlobalSearch} object.)

If the threshold counter equals \( \text{MaxWaitCycle} \), increase the threshold:
new threshold = threshold + \( \text{PenaltyThresholdFactor} \times (1 + \text{abs(threshold)}) \).

Reset the counter to 0.

3 Report to Iterative Display

Every 200th trial point creates one line in the \text{GlobalSearch} iterative display.

Create \text{GlobalOptimSolution}

After reaching \( \text{MaxTime} \) seconds or running out of trial points, \text{GlobalSearch} creates a vector of \text{GlobalOptimSolution} objects. \text{GlobalSearch} orders the vector by objective function value, from lowest (best) to highest (worst). This concludes the algorithm.

\textbf{MultiStart Algorithm}

When you run a \text{MultiStart} object, the algorithm performs the following steps:

- “Generate Start Points” on page 3-50
- “Filter Start Points (Optional)” on page 3-51
- “Run Local Solver” on page 3-51
- “Check Stopping Conditions” on page 3-51
- “Create GlobalOptimSolution Object” on page 3-51

\textbf{Generate Start Points}

If you call \text{MultiStart} with the syntax

\[ [x \ fval] = \text{run}(ms,problem,k) \]

for an integer \( k \), \text{MultiStart} generates \( k - 1 \) start points exactly as if you used a \text{RandomStartPointSet} object. The algorithm also uses the \( x0 \) start point from the \text{problem} structure, for a total of \( k \) start points.

A \text{RandomStartPointSet} object does not have any points stored inside the object. Instead, \text{MultiStart} calls the list method, which generates random points within the
bounds given by the problem structure. If an unbounded component exists, list uses an artificial bound given by the ArtificialBound property of the RandomStartPointSet object.

If you provide a CustomStartPointSet object, MultiStart does not generate start points, but uses the points in the object.

Filter Start Points (Optional)

If you set the StartPointsToRun property of the MultiStart object to 'bounds' or 'bounds-ineqs', MultiStart does not run the local solver from infeasible start points. In this context, “infeasible” means start points that do not satisfy bounds, or start points that do not satisfy both bounds and inequality constraints.

The default setting of StartPointsToRun is 'all'. In this case, MultiStart does not discard infeasible start points.

Run Local Solver

MultiStart runs the local solver specified in problem.solver, starting at the points that pass the StartPointsToRun filter. If MultiStart is running in parallel, it sends start points to worker processors one at a time, and the worker processors run the local solver.

The local solver checks whether MaxTime seconds have elapsed at each of its iterations. If so, it exits that iteration without reporting a solution.

When the local solver stops, MultiStart stores the results and continues to the next step.

Report to Iterative Display

When the MultiStart Display property is 'iter', every point that the local solver runs creates one line in the MultiStart iterative display.

Check Stopping Conditions

MultiStart stops when it runs out of start points. It also stops when it exceeds a total run time of MaxTime seconds.

Create GlobalOptimSolution Object

After MultiStart reaches a stopping condition, the algorithm creates a vector of GlobalOptimSolution objects as follows:
1 Sort the local solutions by objective function value (\text{Fval}) from lowest to highest. For the \text{lsqnonlin} and \text{lsqcurvefit} local solvers, the objective function is the norm of the residual.

2 Loop over the local solutions \( j \) beginning with the lowest (best) \text{Fval}.

3 Find all the solutions \( k \) satisfying both:

\[
|Fval(k) - Fval(j)| \leq TolFun*\max(1,|Fval(j)|)
\]

\[
|x(k) - x(j)| \leq TolX*\max(1,|x(j)|)
\]

4 Record \( j, Fval(j) \), the local solver output structure for \( j \), and a cell array of the start points for \( j \) and all the \( k \). Remove those points \( k \) from the list of local solutions. This point is one entry in the vector of \text{GlobalOptimSolution} objects.

The resulting vector of \text{GlobalOptimSolution} objects is in order by \text{Fval}, from lowest (best) to highest (worst).

\textbf{Report to Iterative Display}

After examining all the local solutions, \text{MultiStart} gives a summary to the iterative display. This summary includes the number of local solver runs that converged, the number that failed to converge, and the number that had errors.

\textbf{Bibliography}


Can You Certify a Solution Is Global?

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“No Guarantees” on page 3-53</td>
</tr>
<tr>
<td>“Check if a Solution Is a Local Solution with patternsearch” on page 3-53</td>
</tr>
<tr>
<td>“Identify a Bounded Region That Contains a Global Solution” on page 3-54</td>
</tr>
<tr>
<td>“Use MultiStart with More Start Points” on page 3-55</td>
</tr>
</tbody>
</table>

No Guarantees

How can you tell if you have located the global minimum of your objective function? The short answer is that you cannot; you have no guarantee that the result of a Global Optimization Toolbox solver is a global optimum.

However, you can use the strategies in this section for investigating solutions.

Check if a Solution Is a Local Solution with patternsearch

Before you can determine if a purported solution is a global minimum, first check that it is a local minimum. To do so, run patternsearch on the problem.

To convert the problem to use patternsearch instead of fmincon or fminunc, enter

```matlab
problem.solver = 'patternsearch';
```

Also, change the start point to the solution you just found, and clear the options:

```matlab
problem.x0 = x;
problem.options = [];
```

For example, Check Nearby Points (in the Optimization Toolbox documentation) shows the following:

```matlab
options = optimoptions(@fmincon,'Algorithm','active-set');
ffun = @(x)(x(1)-(x(1)-x(2))^2);
problem = createOptimProblem('fmincon', ...
 'objective',ffun,'x0',[1/2 1/3], ...
 'lb',[0 -1],'ub',[1 1],'options',options);
[x fval exitflag] = fmincon(problem)
```
x =
   1.0e-007 *
    0    0.1614

fval =
   -2.6059e-016

exitflag =
       1

However, checking this purported solution with \texttt{patternsearch} shows that there is a better solution. Start \texttt{patternsearch} from the reported solution \( x \):

\begin{verbatim}
% set the candidate solution \( x \) as the start point
problem.x0 = x;
problem.solver = 'patternsearch';
problem.options = [];
[xp fvalp exitflagp] = patternsearch(problem)
\end{verbatim}

Optimization terminated: mesh size less than options.TolMesh.

xp =
   1.0000   -1.0000

fvalp =
   -3.0000

exitflagp =
       1

\textbf{Identify a Bounded Region That Contains a Global Solution}

Suppose you have a smooth objective function in a bounded region. Given enough time and start points, \texttt{MultiStart} eventually locates a global solution.

Therefore, if you can bound the region where a global solution can exist, you can obtain some degree of assurance that \texttt{MultiStart} locates the global solution.
For example, consider the function

\[ f = x^6 + y^6 + \sin(x + y)(x^2 + y^2) - \cos \left( \frac{x^2}{1 + y^2} \right)(2 + x^4 + x^2y^2 + y^4) . \]

The initial summands \( x^6 + y^6 \) force the function to become large and positive for large values of \(|x|\) or \(|y|\). The components of the global minimum of the function must be within the bounds 
\(-10 \leq x, y \leq 10,\)

since \(10^6\) is much larger than all the multiples of \(10^4\) that occur in the other summands of the function.

You can identify smaller bounds for this problem; for example, the global minimum is between \(-2\) and \(2\). It is more important to identify reasonable bounds than it is to identify the best bounds.

**Use MultiStart with More Start Points**

To check whether there is a better solution to your problem, run `MultiStart` with additional start points. Use `MultiStart` instead of `GlobalSearch` for this task because `GlobalSearch` does not run the local solver from all start points.

For example, see “Example: Searching for a Better Solution” on page 3-60.

**Updating Unconstrained Problem from GlobalSearch**

If you use `GlobalSearch` on an unconstrained problem, change your problem structure before using `MultiStart`. You have two choices in updating a problem structure for an unconstrained problem using `MultiStart`:

- Change the `solver` field to `fminunc`:
  
  \[
  \text{problem.solver} = \text{'fminunc'} ;
  \]

  To avoid a warning if your objective function does not compute a gradient, change the local `options` to have `Algorithm` set to `quasi-newton`:

  \[
  \text{problem.options.Algorithm} = \text{'quasi-newton'} ;
  \]
• Add an artificial constraint, retaining `fmincon` as the local solver:

```matlab
problem.lb = -Inf(size(x0));
```

To search a larger region than the default, see “Refine Start Points” on page 3-57.
Refine Start Points

In this section...

“About Refining Start Points” on page 3-57
“Methods of Generating Start Points” on page 3-58
“Example: Searching for a Better Solution” on page 3-60

About Refining Start Points

If some components of your problem are unconstrained, *GlobalSearch* and *MultiStart* use artificial bounds to generate random start points uniformly in each component. However, if your problem has far-flung minima, you need widely dispersed start points to find these minima.

Use these methods to obtain widely dispersed start points:

- Give widely separated bounds in your problem structure.
- Use a *RandomStartPointSet* object with the *MultiStart* algorithm. Set a large value of the *ArtificialBound* property in the *RandomStartPointSet* object.
- Use a *CustomStartPointSet* object with the *MultiStart* algorithm. Use widely dispersed start points.

There are advantages and disadvantages of each method.

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Give bounds in problem</td>
<td>Automatic point generation</td>
<td>Makes a more complex Hessian</td>
</tr>
<tr>
<td></td>
<td>Can use with <em>GlobalSearch</em></td>
<td>Unclear how large to set the bounds</td>
</tr>
<tr>
<td></td>
<td>Easy to do</td>
<td>Changes problem</td>
</tr>
<tr>
<td></td>
<td>Bounds can be asymmetric</td>
<td>Only uniform points</td>
</tr>
<tr>
<td>Large ArtificialBound in</td>
<td>Automatic point generation</td>
<td>MultiStart only</td>
</tr>
<tr>
<td>RandomStartPointSet</td>
<td>Does not change problem</td>
<td>Only symmetric, uniform points</td>
</tr>
<tr>
<td></td>
<td>Easy to do</td>
<td>Unclear how large to set</td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>ArtificialBound</em></td>
</tr>
</tbody>
</table>
### Methods of Generating Start Points

- “Uniform Grid” on page 3-58
- “Perturbed Grid” on page 3-59
- “Widely Dispersed Points for Unconstrained Components” on page 3-59

#### Uniform Grid

To generate a uniform grid of start points:

1. Generate multidimensional arrays with `ndgrid`. Give the lower bound, spacing, and upper bound for each component.

   For example, to generate a set of three-dimensional arrays with
   
   - First component from –2 through 0, spacing 0.5
   - Second component from 0 through 2, spacing 0.25
   - Third component from –10 through 5, spacing 1

   ```
 [X,Y,Z] = ndgrid(-2:.5:0,0:.25:2,-10:5);
   ```

2. Place the arrays into a single matrix, with each row representing one start point. For example:

   ```
 W = [X(:),Y(:),Z(:)];
   ```

   In this example, `W` is a 720-by-3 matrix.

3. Put the matrix into a `CustomStartPointSet` object. For example:

   ```
 custpts = CustomStartPointSet(W);
   ```

   Call `MultiStart` run with the `CustomStartPointSet` object as the third input. For example,

   ```
 % Assume problem structure and ms MultiStart object exist
 [x fval flag outpt manymins] = run(ms,problem,custpts);
   ```
Perturbed Grid

Integer start points can yield less robust solutions than slightly perturbed start points.

To obtain a perturbed set of start points:

1. Generate a matrix of start points as in steps 1–2 of “Uniform Grid” on page 3-58.
2. Perturb the start points by adding a random normal matrix with 0 mean and relatively small variance.

For the example in “Uniform Grid” on page 3-58, after making the \( W \) matrix, add a perturbation:

\[
\begin{align*}
[X,Y,Z] &= \text{ndgrid}(-2:.5:0,0:.25:2,-10:5); \\
W &= [X(:,),Y(:,),Z(:)]; \\
W &= W + 0.01*\text{randn(size(W))};
\end{align*}
\]

3. Put the matrix into a CustomStartPointSet object. For example:

\[
\text{custpts} = \text{CustomStartPointSet}(W);
\]

Call MultiStart run with the CustomStartPointSet object as the third input. For example,

\[
\text{% Assume problem structure and ms MultiStart object exist} \\
[x \ fval \ flag \ outpt \ manymins] = \text{run(ms,problem,custpts)};
\]

Widely Dispersed Points for Unconstrained Components

Some components of your problem can lack upper or lower bounds. For example:

- Although no explicit bounds exist, there are levels that the components cannot attain. For example, if one component represents the weight of a single diamond, there is an implicit upper bound of 1 kg (the Hope Diamond is under 10 g). In such a case, give the implicit bound as an upper bound.
- There truly is no upper bound. For example, the size of a computer file in bytes has no effective upper bound. The largest size can be in gigabytes or terabytes today, but in 10 years, who knows?

For truly unbounded components, you can use the following methods of sampling. To generate approximately \( 1/n \) points in each region (\( \exp(n),\exp(n+1) \)), use the following formula. If \( u \) is random and uniformly distributed from 0 through 1, then \( r = 2u - 1 \) is uniformly distributed between \(-1\) and \(1\). Take
\[ y = \text{sgn}(r) \left( \exp\left(\frac{1}{|r|}\right) - e \right). \]

\( y \) is symmetric and random. For a variable bounded below by \( \text{lb} \), take

\[ y = \text{lb} + (\exp(1/u) - e). \]

Similarly, for a variable bounded above by \( \text{ub} \), take

\[ y = \text{ub} - (\exp(1/u) - e). \]

For example, suppose you have a three-dimensional problem with

- \( x(1) > 0 \)
- \( x(2) < 100 \)
- \( x(3) \) unconstrained

To make 150 start points satisfying these constraints:

\[
\begin{align*}
u &= \text{rand}(150,3); \\
r1 &= 1./u(:,1); \\
r1 &= \exp(r1) - \exp(1); \\
r2 &= 1./u(:,2); \\
r2 &= -\exp(r2) + \exp(1) + 100; \\
r3 &= 1./(2*u(:,3)-1); \\
r3 &= \text{sign}(r3).* (\exp(\text{abs}(r3)) - \exp(1)); \\
custpts &= \text{CustomStartPointSet}([r1,r2,r3]);
\end{align*}
\]

The following is a variant of this algorithm. Generate a number between 0 and infinity by the method for lower bounds. Use this number as the radius of a point. Generate the other components of the point by taking random numbers for each component and multiply by the radius. You can normalize the random numbers, before multiplying by the radius, so their norm is 1. For a worked example of this method, see “MultiStart Without Bounds, Widely Dispersed Start Points” on page 3-95.

**Example: Searching for a Better Solution**

**MultiStart** fails to find the global minimum in “Multiple Local Minima Via MultiStart” on page 3-76. There are two simple ways to search for a better solution:

- Use more start points
- Give tighter bounds on the search space
Set up the problem structure and `MultiStart` object:

```matlab
problem = createOptimProblem('fminunc',...
 'objective', @(x) sawtoothxy(x(1),x(2)),...
 'x0', [100,-50], 'options',...
 optimoptions(@fminunc, 'Algorithm', 'quasi-newton'));
ms = MultiStart;
```

**Use More Start Points**

Run `MultiStart` on the problem for 200 start points instead of 50:

```matlab
rng(14, 'twister') % for reproducibility
[x fval eflag output manymins] = run(ms, problem, 200)
```

`MultiStart` completed some of the runs from the start points.

51 out of 200 local solver runs converged with a positive local solver exit flag.

```matlab
x =
 1.0e-06 *
 -0.2284 -0.5567
```

```matlab
fval =
 2.1382e-12
```

```matlab
eflag =
 2
```

```matlab
output =
 funcCount: 32760
 localSolverTotal: 200
 localSolverSuccess: 51
 localSolverIncomplete: 149
 localSolverNoSolution: 0
 message: 'MultiStart completed some of the runs from the start poin.'
```
manymins = 1x51 GlobalOptimSolution

Properties:
X
Fval
Exitflag
Output
X0

This time `MultiStart` found the global minimum, and found 51 local minima.

To see the range of local solutions, enter `histogram([manymins.Fval],10)`. 
Tighter Bound on the Start Points

Suppose you believe that the interesting local solutions have absolute values of all components less than 100. The default value of the bound on start points is 1000. To use a different value of the bound, generate a RandomStartPointSet with the ArtificialBound property set to 100:

```matlab
startpts = RandomStartPointSet('ArtificialBound',100,...
 'NumStartPoints',50);
[x fval eflag output manymins] = run(ms,problem,startpts)
```

MultiStart completed some of the runs from the start points.

27 out of 50 local solver runs converged with a positive local solver exit flag.

```matlab
x =
 1.0e-08 *
 0.9725 -0.6198
```

```matlab
fval =
 1.4955e-15
```

```matlab
eflag =
 2
```

```matlab
output =
 funcCount: 7482
 localSolverTotal: 50
 localSolverSuccess: 27
 localSolverIncomplete: 23
 localSolverNoSolution: 0
 message: 'MultiStart completed some of the runs from the start point.'
```

```matlab
manymins =
 1x22 GlobalOptimSolution
```
MultiStart found the global minimum, and found 22 distinct local solutions. To see the range of local solutions, enter `histogram([manymins.Fval],10)`.

Compared to the minima found in “Use More Start Points” on page 3-61, this run found better (smaller) minima, and had a higher percentage of successful runs.
Change Options

In this section...

“How to Determine Which Options to Change” on page 3-65
“How to Determine Which Options to Change” on page 3-66
“How Changing Global Options” on page 3-67

How to Determine Which Options to Change

After you run a global solver, you might want to change some global or local options. To determine which options to change, the guiding principle is:

• To affect the local solver, set local solver options.
• To affect the start points or solution set, change the problem structure, or set the global solver object properties.

For example, to obtain:

• More local minima — Set global solver object properties.
• Faster local solver iterations — Set local solver options.
• Different tolerances for considering local solutions identical (to obtain more or fewer local solutions) — Set global solver object properties.
• Different information displayed at the command line — Decide if you want iterative display from the local solver (set local solver options) or global information (set global solver object properties).
• Different bounds, to examine different regions — Set the bounds in the problem structure.

Examples of Choosing Problem Options

• To start your local solver at points only satisfying inequality constraints, set the StartPointsToRun property in the global solver object to 'bounds-ineqs'. This setting can speed your solution, since local solvers do not have to attempt to find points satisfying these constraints. However, the setting can result in many fewer local solver runs, since the global solver can reject many start points. For an example, see “Optimize Using Only Feasible Start Points” on page 3-80.
• To use the `fmincon` interior-point algorithm, set the local solver `Algorithm` option to 'interior-point'. For an example showing how to do this, see “Examples of Updating Problem Options” on page 3-66.

• For your local solver to have different bounds, set the bounds in the `problem` structure. Examine different regions by setting bounds.

• To see every solution that has positive local exit flag, set the `TolX` property in the global solver object to 0. For an example showing how to do this, see “Changing Global Options” on page 3-67.

### Changing Local Solver Options

There are several ways to change values in a local options structure:

- Update the values using dot notation and `optimoptions`. The syntax is

  ```matlab
 problem.options = optimoptions(problem.options,'Parameter',value,...);
  ```

  You can also replace the local options entirely:

  ```matlab
 problem.options = optimoptions(@solvername,'Parameter',value,...);
  ```

- Use dot notation on one local option. The syntax is

  ```matlab
 problem.options.Parameter = newvalue;
  ```

- Recreate the entire problem structure. For details, see “Create Problem Structure” on page 3-6.

### Examples of Updating Problem Options

1. Create a problem structure:

   ```matlab
 problem = createOptimProblem('fmincon','x0',[-1 2], ...
 'objective',@rosenboth);
   ```

2. Set the problem to use the `sqp` algorithm in `fmincon`:

   ```matlab
 problem.options.Algorithm = 'sqp';
   ```

3. Update the problem to use the gradient in the objective function, have a `TolFun` value of 1e-8, and a `TolX` value of 1e-7:

   ```matlab
 problem.options = optimoptions(problem.options,'GradObj','on', ...
 'TolFun',1e-8,'TolX',1e-7);
   ```
Changing Global Options

There are several ways to change characteristics of a GlobalSearch or MultiStart object:

- Use dot notation. For example, suppose you have a default MultiStart object:

  ```matlab
 ms = MultiStart
  ```

  ```matlab
 MultiStart with properties:
 UseParallel: 0
 Display: 'final'
 TolFun: 1.0000e-06
 TolX: 1.0000e-06
 MaxTime: Inf
 StartPointsToRun: 'all'
 OutputFcns: []
 PlotFcns: []
  ```

  To change `ms` to have its `TolX` value equal to `1e-3`, update the `TolX` field:

  ```matlab
 ms.TolX = 1e-3
  ```

  ```matlab
 MultiStart with properties:
 UseParallel: 0
 Display: 'final'
 TolFun: 1.0000e-06
 TolX: 1.0000e-03
 MaxTime: Inf
 StartPointsToRun: 'all'
 OutputFcns: []
 PlotFcns: []
  ```

- Reconstruct the object starting from the current settings. For example, to set the `TolFun` field in `ms` to `1e-3`, retaining the nondefault value for `TolX`:

  ```matlab
 ms = MultiStart(ms,'TolFun',1e-3)
  ```

  ```matlab
 MultiStart with properties:
 UseParallel: 0
 Display: 'final'
 TolFun: 1.0000e-03
 TolX: 1.0000e-03
 MaxTime: Inf
 StartPointsToRun: 'all'
  ```
Convert a `GlobalSearch` object to a `MultiStart` object, or vice-versa. For example, with the `ms` object from the previous example, create a `GlobalSearch` object with the same values of `TolX` and `TolFun`:

```matlab
gs = GlobalSearch(ms)
```

`GlobalSearch` with properties:
- `NumTrialPoints`: 1000
- `BasinRadiusFactor`: 0.2000
- `DistanceThresholdFactor`: 0.7500
- `MaxWaitCycle`: 20
- `NumStageOnePoints`: 200
- `PenaltyThresholdFactor`: 0.2000
- `Display`: 'final'
- `TolFun`: 1.0000e-03
- `TolX`: 1.0000e-03
- `MaxTime`: Inf
- `StartPointsToRun`: 'all'

`OutputFcns`: []
`PlotFcns`: []
Reproduce Results

In this section...

“Identical Answers with Pseudorandom Numbers” on page 3-69
“Steps to Take in Reproducing Results” on page 3-69
“Example: Reproducing a GlobalSearch or MultiStart Result” on page 3-69
“Parallel Processing and Random Number Streams” on page 3-71

Identical Answers with Pseudorandom Numbers

GlobalSearch and MultiStart use pseudorandom numbers in choosing start points. Use the same pseudorandom number stream again to:

• Compare various algorithm settings.
• Have an example run repeatably.
• Extend a run, with known initial segment of a previous run.

Both GlobalSearch and MultiStart use the default random number stream.

Steps to Take in Reproducing Results

1 Before running your problem, store the current state of the default random number stream:

    stream = rng;

2 Run your GlobalSearch or MultiStart problem.
3 Restore the state of the random number stream:

    rng(stream)

4 If you run your problem again, you get the same result.

Example: Reproducing a GlobalSearch or MultiStart Result

This example shows how to obtain reproducible results for “Find Global or Multiple Local Minima” on page 3-72. The example follows the procedure in “Steps to Take in Reproducing Results” on page 3-69.

1 Store the current state of the default random number stream:
stream = rng;

Create the sawtoothxy function file:

```matlab
def function f = sawtoothxy(x,y)
 [t r] = cart2pol(x,y); % change to polar coordinates
 h = cos(2*pi - 1/2)/2 + cos(t) + 2;
 g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4)^2./(r+1);
 f = g.*h;
end
```

Create the problem structure and GlobalSearch object:

```matlab
problem = createOptimProblem('fmincon',... 'objective', @(x)sawtoothxy(x(1),x(2)),... 'x0', [100,-50], 'options',... optimoptions(@fmincon,'Algorithm','sqp'));
```

Run the problem:

```matlab
[x fval] = run(gs,problem)
```

GlobalSearch stopped because it analyzed all the trial points.

All 3 local solver runs converged with a positive local solver exit flag.

```matlab
x =
 1.0e-007 *
 0.0414 0.1298

fval =
 1.5467e-015
```

You might obtain a different result when running this problem, since the random stream was in an unknown state at the beginning of the run.

 Restore the state of the random number stream:

```matlab
rng(stream)
```
6 Run the problem again. You get the same output.

```matlab
[x fval] = run(gs,problem)
```

<table>
<thead>
<tr>
<th>Num Pts</th>
<th>F-count</th>
<th>f(x)</th>
<th>Penalty</th>
<th>Threshold</th>
<th>f(x)</th>
<th>exitflag</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>465</td>
<td>422.9</td>
<td></td>
<td></td>
<td>422.9</td>
<td>2</td>
<td>Initial Point</td>
</tr>
<tr>
<td>200</td>
<td>1730</td>
<td>1.547e-015</td>
<td></td>
<td></td>
<td>1.547e-015</td>
<td>1</td>
<td>Stage 1 Local</td>
</tr>
</tbody>
</table>

... Output deleted to save space ...

```matlab
x =
1.0e-007 *
0.0414 0.1298
```

```matlab
fval =
1.5467e-015
```

**Parallel Processing and Random Number Streams**

You obtain reproducible results from MultiStart when you run the algorithm in parallel the same way as you do for serial computation. Runs are reproducible because MultiStart generates pseudorandom start points locally, and then distributes the start points to parallel processors. Therefore, the parallel processors do not use random numbers.

To reproduce a parallel MultiStart run, use the procedure described in “Steps to Take in Reproducing Results” on page 3-69. For a description of how to run MultiStart in parallel, see “How to Use Parallel Processing” on page 9-12.
Find Global or Multiple Local Minima

In this section...

“Function to Optimize” on page 3-72
“Single Global Minimum Via GlobalSearch” on page 3-74
“Multiple Local Minima Via MultiStart” on page 3-76

Function to Optimize

This example illustrates how GlobalSearch finds a global minimum efficiently, and how MultiStart finds many more local minima.

The objective function for this example has many local minima and a unique global minimum. In polar coordinates, the function is

\[ f(r,t) = g(r)h(t), \]

where

\[ g(r) = \left( \sin(r) - \frac{\sin(2r)}{2} + \frac{\sin(3r)}{3} - \frac{\sin(4r)}{4} + 4 \right) \frac{r^2}{r + 1}, \]

\[ h(t) = 2 + \cos(t) + \frac{\cos\left(\frac{2t - \frac{1}{2}}{2}\right)}{2}. \]
Find Global or Multiple Local Minima

The global minimum is at $r = 0$, with objective function 0. The function $g(r)$ grows approximately linearly in $r$, with a repeating sawtooth shape. The function $h(t)$ has two local minima, one of which is global.
Single Global Minimum Via GlobalSearch

1. Write a function file to compute the objective:

```matlab
function f = sawtoothxy(x,y)
 [t r] = cart2pol(x,y); % change to polar coordinates
 h = cos(2*t - 1/2)/2 + cos(t) + 2;
 g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) .* r.^2./(r+1);
 f = g.*h;
end
```

2. Create the problem structure. Use the 'sqp' algorithm for fmincon:
```matlab
problem = createOptimProblem('fmincon',
 'objective', @(x) sawtoothxy(x(1), x(2)),
 'x0', [100, -50], 'options',
 optimoptions(@fmincon, 'Algorithm', 'sqp', 'Display', 'off'));

The start point is [100, -50] instead of [0, 0], so GlobalSearch does not start at
the global solution.

3 Add an artificial bound, and validate the problem structure by running fmincon:

```matlab
deployproblem.lb = -Inf([2, 1]);
[x fval] = fmincon(deployproblem)
```

```matlab
x =

45.6965  -107.6645
```

```matlab
fval =

555.6941
```

4 Create the GlobalSearch object, and set iterative display:

```matlab
gs = GlobalSearch('Display', 'iter');
```

5 Run the solver:

```matlab
rng(14, 'twister') % for reproducibility
[x fval] = run(gs, problem)
```

<table>
<thead>
<tr>
<th>Num Pts Analyzed</th>
<th>F-count</th>
<th>Best f(x)</th>
<th>Current Penalty</th>
<th>Threshold Penalty</th>
<th>Local f(x)</th>
<th>Local exitflag</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>200</td>
<td>555.7</td>
<td></td>
<td>0</td>
<td></td>
<td>Initial Point</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1479</td>
<td>1.547e-15</td>
<td></td>
<td>1</td>
<td>1.547e-15</td>
<td>Stage 1 Local</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1580</td>
<td>5.858e+04</td>
<td>1.074</td>
<td>Stage 2 Search</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1680</td>
<td>1.84e+05</td>
<td></td>
<td>Stage 2 Search</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1780</td>
<td>2.683e+04</td>
<td>11.84</td>
<td>Stage 2 Search</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>1880</td>
<td>1.122e+04</td>
<td></td>
<td>Stage 2 Search</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>1980</td>
<td>1.353e+04</td>
<td></td>
<td>Stage 2 Search</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>2080</td>
<td>6.249e+04</td>
<td></td>
<td>Stage 2 Search</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>2180</td>
<td>4.119e+04</td>
<td></td>
<td>Stage 2 Search</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>950</td>
<td>2372</td>
<td>1.547e-15</td>
<td>477</td>
<td>387</td>
<td>1.547e-15</td>
<td>Stage 2 Local</td>
</tr>
<tr>
<td></td>
<td>952</td>
<td>2436</td>
<td>368.4</td>
<td>477</td>
<td>250.7</td>
<td>250.7</td>
<td>Stage 2 Local</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>2484</td>
<td>4.031e+04</td>
<td></td>
<td>530.9</td>
<td></td>
<td>Stage 2 Search</td>
</tr>
</tbody>
</table>

GlobalSearch stopped because it analyzed all the trial points.

3 out of 4 local solver runs converged with a positive local solver exit flag.

```matlab
x =

1.0e-07 *
You can get different results, since GlobalSearch is stochastic.

The solver found three local minima, and it found the global minimum near \([0,0]\).

**Multiple Local Minima Via MultiStart**

1. Write a function file to compute the objective:

   ```matlab
 function f = sawtoothxy(x,y)
 [t r] = cart2pol(x,y); % change to polar coordinates
 h = cos((2*t - 1/2)/2 + cos(t) + 2);
 g = (sin(r) - sin((2*r)/2 + sin(3*r)/3 - sin((4*r)/4 + 4)) ... *
 r.^2./(r+1);
 f = g.*h;
 end
   ```

2. Create the problem structure. Use the `fminunc` solver with the `Algorithm` option set to `'quasi-newton'`. The reasons for these choices are:

   - The problem is unconstrained. Therefore, `fminunc` is the appropriate solver; see “Optimization Decision Table” in the Optimization Toolbox documentation.
   - The default `fminunc` algorithm requires a gradient; see “Choosing the Algorithm” in the Optimization Toolbox documentation. Therefore, set `Algorithm` to `'quasi-newton'`.

   ```matlab
 problem = createOptimProblem('fminunc',...
 'objective', @(x) sawtoothxy(x(1),x(2)),...
 'x0', [100,-50], 'options',...
 optimoptions(@fminunc, 'Algorithm', 'quasi-newton', 'Display', 'off'));
   ```

3. Validate the problem structure by running it:

   ```matlab
 [x fval] = fminunc(problem)
   ```

   ```matlab
 x =
 8.4420 -110.2602
   ```

   ```matlab
 fval =
 435.2573
   ```

4. Create a default MultiStart object:
ms = MultiStart;

5 Run the solver for 50 iterations, recording the local minima:

% rng(1) % uncomment to obtain the same result
[x fval eflag output manymins] = run(ms,problem,50)

MultiStart completed some of the runs from the start points.

10 out of 50 local solver runs converged with a positive local solver exit flag.

x =
   -73.8348    -197.7810

fval =
   766.8260

eflag =
   2

output =
   funcCount: 8583
   localSolverTotal: 50
   localSolverSuccess: 10
   localSolverIncomplete: 40
   localSolverNoSolution: 0
   message: 'MultiStart completed some of the runs from the start points...'

manymins =
   1x10 GlobalOptimSolution array with properties:
      X
      Fval
      Exitflag
      Output
      X0

You can get different results, since MultiStart is stochastic.

The solver did not find the global minimum near [0,0]. It found 10 distinct local minima.

6 Plot the function values at the local minima:

histogram([manymins.Fval],10)
Plot the function values at the three best points:

```plaintext
bestf = [manymins.Fval];
histogram(bestf(1:3),10)
```
MultiStart started `fminunc` from start points with components uniformly distributed between –1000 and 1000. `fminunc` often got stuck in one of the many local minima. `fminunc` exceeded its iteration limit or function evaluation limit 40 times.
Optimize Using Only Feasible Start Points

You can set the `StartPointsToRun` option so that `MultiStart` and `GlobalSearch` use only start points that satisfy inequality constraints. This option can speed your optimization, since the local solver does not have to search for a feasible region. However, the option can cause the solvers to miss some basins of attraction.

There are three settings for the `StartPointsToRun` option:

- `all` — Accepts all start points
- `bounds` — Rejects start points that do not satisfy bounds
- `bounds-ineqs` — Rejects start points that do not satisfy bounds or inequality constraints

For example, suppose your objective function is

```matlab
function y = tiltcircle(x)
vx = x(:)-[4;4]; % ensure vx is in column form
y = vx'*[1;1] + sqrt(16 - vx'*vx); % complex if norm(x-[4;4])>4
```

`tiltcircle` returns complex values for `norm(x - [4 4]) > 4`. 
Write a constraint function that is positive on the set where \( \text{norm}(x - [4 \ 4]) > 4 \)

```matlab
function [c ceq] = myconstraint(x)
 ceq = [];
 cx = x(:) - [4;4]; % ensure x is a column vector
 c = cx'*cx - 16; % negative where tiltcircle(x) is real
```

Set `GlobalSearch` to use only start points satisfying inequality constraints:

```matlab
gs = GlobalSearch('StartPointsToRun','bounds-ineqs');
```

To complete the example, create a problem structure and run the solver:

```matlab
opts = optimoptions(@fmincon,'Algorithm','interior-point');
problem = createOptimProblem('fmincon',...
'x0',[4 4],'objective',@tiltcircle,...
'nonlcon',@myconstraint,'lb',[-10 -10],...
'ub',[10 10],'options',opts);
rng(7,'twister'); % for reproducibility
[x,fval,exitflag,output,solutionset] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.

All 5 local solver runs converged with a positive local solver exit flag.

x =
 1.1716 1.1716

fval =
 -5.6530

exitflag =

 1

output =

 funcCount: 3256
 localSolverTotal: 5
 localSolverSuccess: 5
 localSolverIncomplete: 0
 localSolverNoSolution: 0
 message: 'GlobalSearch stopped because it analyzed all the trial po.'

solutionset =

 1x4 GlobalOptimSolution array with properties:

 X
 Fval
 Exitflag
 Output
 X0
The `tiltcircle` function has just one local minimum. Yet `GlobalSearch (fmincon)` stops at several points. Does this mean `fmincon` makes an error?

The reason that `fmincon` stops at several boundary points is subtle. The `tiltcircle` function has an infinite gradient on the boundary, as you can see from a one-dimensional calculation:

\[
\frac{d}{dx} \sqrt{16 - x^2} = \frac{-x}{\sqrt{16 - x^2}} = \pm \infty \text{ at } |x| = 4.
\]
So there is a huge gradient normal to the boundary. This gradient overwhelms the small additional tilt from the linear term. As far as `fmincon` can tell, boundary points are stationary points for the constrained problem.

This behavior can arise whenever you have a function that has a square root.
MultiStart Using lsqcurvefit or lsqnonlin

This example shows how to fit a function to data using \texttt{lsqcurvefit} together with \texttt{MultiStart}.

Many fitting problems have multiple local solutions. \texttt{MultiStart} can help find the global solution, meaning the best fit. While you can use \texttt{lsqnonlin} as the local solver, this example uses \texttt{lsqcurvefit} simply because it has a convenient syntax.

The model is

\[y = a + b x_1 \sin(cx_2 + d), \]

where the input data is \(x = (x_1, x_2) \), and the parameters \(a, b, c, \) and \(d \) are the unknown model coefficients.

Step 1. Create the objective function.

Write an anonymous function that takes a data matrix \texttt{xdata} with \(N \) rows and two columns, and returns a response vector with \(N \) rows. It also takes a coefficient matrix \(p \), corresponding to the coefficient vector \((a, b, c, d)\).

\[
\text{fitfcn} = @(p,xdata)p(1) + p(2)*xdata(:,1).*\sin(p(3)*xdata(:,2)+p(4));
\]

Step 2. Create the training data.

Create 200 data points and responses. Use the values \(a = -3, b = 1/4, c = 1/2, d = 1 \). Include random noise in the response.

\[
\text{rng default} \quad \text{% for reproducibility}
\text{N = 200; \quad \% number of data points}
\text{preal = [-3,1/4,1/2,1]; \quad \% real coefficients}
\text{xdata = 5*rand(N,2); \quad \% data points}
\text{ydata = fitfcn(preal,xdata) + 0.1*randn(N,1); \quad \% response data with noise}
\]

Step 3. Set bounds and initial point.

Set bounds for \texttt{lsqcurvefit}. There is no reason for \(d \) to exceed \(\pi \) in absolute value, because the sine function takes values in its full range over any interval of width
Assume that the coefficient c must be smaller than 20 in absolute value, because allowing a very high frequency can cause unstable responses or spurious convergence.

```matlab
lb = [-Inf,-Inf,-20,-pi];
ub = [Inf,Inf,20,pi];
```

Set the initial point arbitrarily to (5,5,5,0).

```matlab
p0 = 5*ones(1,4); % Arbitrary initial point
p0(4) = 0; % so the initial point satisfies the bounds
```

Step 4. Find the best local fit.

Fit the parameters to the data, starting at $p0$.

```matlab
[xfitted,errorfitted] = lsqcurvefit(fitfcn,p0,xdata,ydata,lb,ub)
```

Local minimum possible.

`lsqcurvefit` stopped because the final change in the sum of squares relative to its initial value is less than the default value of the function tolerance.

```matlab
xfitted =
    -2.6149   -0.0238    6.0191   -1.6998
```

```matlab
errorfitted =
    28.2524
```

`lsqcurvefit` found a local solution that is not particularly close to the model parameter values (-3,1/4,1/2,1).

Step 5. Set up the problem for MultiStart.

Create a problem structure so `MultiStart` can solve the same problem.

```matlab
problem = createOptimProblem('lsqcurvefit','x0',p0,'objective',fitfcn,...
    'lb',lb,'ub',ub,'xdata',xdata,'ydata',ydata);
```
Step 6. Find a global solution.

Solve the fitting problem using MultiStart with 50 iterations. Plot the smallest error as the number of MultiStart iterations.

```matlab
ms = MultiStart('PlotFcns',@gsplotbestf);
[xmulti,errormulti] = run(ms,problem,50)
```

MultiStart completed the runs from all start points.

All 50 local solver runs converged with a positive local solver exit flag.

```matlab
xmulti =
  -2.9852  -0.2472  -0.4968  -1.0438
```

```matlab
errormulti =
  1.6464
```
MultiStart found a global solution near the parameter values \((-3, -1/4, -1/2, -1)\).
(This is equivalent to a solution near \(p_{real} = (-3, 1/4, 1/2, 1)\), because changing the sign of all the coefficients except the first gives the same numerical values of \(fitfcn\).) The norm of the residual error decreased from about 28 to about 1.6, a decrease of more than a factor of 10.
Parallel MultiStart

In this section...

“Steps for Parallel MultiStart” on page 3-89
“Speedup with Parallel Computing” on page 3-91

Steps for Parallel MultiStart

If you have a multicore processor or access to a processor network, you can use Parallel Computing Toolbox™ functions with MultiStart. This example shows how to find multiple minima in parallel for a problem, using a processor with two cores. The problem is the same as in “Multiple Local Minima Via MultiStart” on page 3-76.

1 Write a function file to compute the objective:

 function f = sawtoothxy(x,y)
 [t r] = cart2pol(x,y); % change to polar coordinates
 h = cos(2*t - 1/2)/2 + cos(t) + 2;
 g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
 .*r.^2./(r+1);
 f = g.*h;
end

2 Create the problem structure:

 problem = createOptimProblem('fminunc',...
 'objective',@(x)sawtoothxy(x(1),x(2)),...
 'x0',[100,-50],
 'options',
 optimoptions(@fminunc,'Algorithm','quasi-newton'));

3 Validate the problem structure by running it:

 [x fval] = fminunc(problem)

 x =
 8.4420 -110.2602

 fval =
 435.2573

4 Create a MultiStart object, and set the object to use parallel processing and iterative display:

 ms = MultiStart('UseParallel',true,'Display','iter');

5 Set up parallel processing:
parpool

Starting parpool using the 'local' profile ... connected to 4 workers.

ans =

Pool with properties:

 Connected: true
 NumWorkers: 4
 Cluster: local
 AttachedFiles: {}
 IdleTimeout: 30 minute(s) (30 minutes remaining)
 SpmdEnabled: true

6 Run the problem on 50 start points:

[x fval eflag output manymins] = run(ms,problem,50);
Running the local solvers in parallel.

<table>
<thead>
<tr>
<th>Run Index</th>
<th>Local exitflag</th>
<th>Local f(x)</th>
<th>Local # iter</th>
<th>Local F-count</th>
<th>First-order optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>2</td>
<td>3953</td>
<td>4</td>
<td>21</td>
<td>0.1626</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1331</td>
<td>45</td>
<td>201</td>
<td>65.02</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>7271</td>
<td>54</td>
<td>201</td>
<td>520.9</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>8249</td>
<td>4</td>
<td>18</td>
<td>2.968</td>
</tr>
<tr>
<td>... Many iterations omitted ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>2</td>
<td>2740</td>
<td>5</td>
<td>21</td>
<td>0.0422</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>8501</td>
<td>48</td>
<td>201</td>
<td>424.8</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>1225</td>
<td>40</td>
<td>201</td>
<td>21.89</td>
</tr>
</tbody>
</table>

MultiStart completed some of the runs from the start points.

17 out of 50 local solver runs converged with a positive local solver exit flag.

Notice that the run indexes look random. Parallel MultiStart runs its start points in an unpredictable order.

Notice that MultiStart confirms parallel processing in the first line of output, which states: “Running the local solvers in parallel.”

7 When finished, shut down the parallel environment:

delete(gcp)
Parallel pool using the 'local' profile is shutting down.

For an example of how to obtain better solutions to this problem, see “Example: Searching for a Better Solution” on page 3-60. You can use parallel processing along with the techniques described in that example.

Speedup with Parallel Computing

The results of MultiStart runs are stochastic. The timing of runs is stochastic, too. Nevertheless, some clear trends are apparent in the following table. The data for the table came from one run at each number of start points, on a machine with two cores.

<table>
<thead>
<tr>
<th>Start Points</th>
<th>Parallel Seconds</th>
<th>Serial Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>100</td>
<td>4.9</td>
<td>5.7</td>
</tr>
<tr>
<td>200</td>
<td>8.3</td>
<td>10</td>
</tr>
<tr>
<td>500</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>1000</td>
<td>31</td>
<td>46</td>
</tr>
</tbody>
</table>

Parallel computing can be slower than serial when you use only a few start points. As the number of start points increases, parallel computing becomes increasingly more efficient than serial.

There are many factors that affect speedup (or slowdown) with parallel processing. For more information, see “Improving Performance with Parallel Computing” in the Optimization Toolbox documentation.
Isolated Global Minimum

In this section...

“Difficult-To-Locate Global Minimum” on page 3-92
“Default Settings Cannot Find the Global Minimum — Add Bounds” on page 3-93
“GlobalSearch with Bounds and More Start Points” on page 3-94
“MultiStart with Bounds and Many Start Points” on page 3-95
“MultiStart Without Bounds, Widely Dispersed Start Points” on page 3-95
“MultiStart with a Regular Grid of Start Points” on page 3-96
“MultiStart with Regular Grid and Promising Start Points” on page 3-97

Difficult-To-Locate Global Minimum

Finding a start point in the basin of attraction of the global minimum can be difficult when the basin is small or when you are unsure of the location of the minimum. To solve this type of problem you can:

• Add sensible bounds
• Take a huge number of random start points
• Make a methodical grid of start points
• For an unconstrained problem, take widely dispersed random start points

This example shows these methods and some variants.

The function \(-\text{sech}(x)\) is nearly 0 for all \(|x| > 5\), and \(-\text{sech}(0) = -1\). The example is a two-dimensional version of the sech function, with one minimum at \([1, 1]\), the other at \([1e5, -1e5]\):

\[
f(x,y) = -10\text{sech}(|x - (1,1)|) - 20\text{sech}(0.0003(|x - (1e5,-1e5)|)) - 1.
\]

\(f\) has a global minimum of \(-21\) at \((1e5,-1e5)\), and a local minimum of \(-11\) at \((1,1)\).
The minimum at (1e5,–1e5) shows as a narrow spike. The minimum at (1,1) does not show since it is too narrow.

The following sections show various methods of searching for the global minimum. Some of the methods are not successful on this problem. Nevertheless, you might find each method useful for different problems.

Default Settings Cannot Find the Global Minimum — Add Bounds

GlobalSearch and MultiStart cannot find the global minimum using default global options, since the default start point components are in the range (–9999,10001) for GlobalSearch and (–1000,1000) for MultiStart.
With additional bounds of $-1e6$ and $1e6$ in problem, GlobalSearch usually does not find the global minimum:

$x_1 = [1;1]$; $x_2 = [1e5;-1e5]$;
$f = @(x) -10*\text{sech}(\text{norm}(x(:)-x_1)) - 20*\text{sech}(\text{norm}(x(:)-x_2)*3e-4) -1$;
$opts = \text{optimoptions}(@\text{fmincon},'\text{Algorithm}','\text{active-set}')$;
$\text{problem} = \text{createOptimProblem}('\text{fmincon}','x0',[0,0],'\text{objective}',f,...$
$'\text{lb'},[-1e6;-1e6],'\text{ub'},[1e6;1e6],'\text{options}',opts)$;
$gs = \text{GlobalSearch};$
$\text{rng}(14, '\text{twister}') \% \text{for reproducibility}$
$[\text{xfinal} \ \text{fval}] = \text{run}(gs, \text{problem})$

GlobalSearch stopped because it analyzed all the trial points.

All 32 local solver runs converged with a positive local solver exit flag.

$\text{xfinal} =$

1.0000
1.0000

$fval =$

-11.0000

GlobalSearch with Bounds and More Start Points

To find the global minimum, you can search more points. This example uses 1e5 start points, and a MaxTime of 300 s:

$gs.\text{NumTrialPoints} = 1e5;$
$gs.\text{MaxTime} = 300;$
$[\text{xg} \ \text{fvalg}] = \text{run}(gs, \text{problem})$

GlobalSearch stopped because maximum time is exceeded.

GlobalSearch called the local solver 2186 times before exceeding the clock time limit (MaxTime = 300 seconds). 1943 local solver runs converged with a positive local solver exit flag.

$xg =$

1.0e+04 *
10.0000 -10.0000

$fvalg =$
-21.0000

In this case, GlobalSearch found the global minimum.

MultiStart with Bounds and Many Start Points

Alternatively, you can search using MultiStart with many start points. This example uses 1e5 start points, and a MaxTime of 300 s:

```matlab
ms = MultiStart(gs);
[xm fvalm] = run(ms,problem,1e5)
```

MultiStart stopped because maximum time was exceeded.

MultiStart called the local solver 17266 times before exceeding the clock time limit (MaxTime = 300 seconds). 17266 local solver runs converged with a positive local solver exit flag.

```matlab
xm = 1.0000 1.0000
```

```matlab
fvalm = -11.0000
```

In this case, MultiStart failed to find the global minimum.

MultiStart Without Bounds, Widely Dispersed Start Points

You can also use MultiStart to search an unbounded region to find the global minimum. Again, you need many start points to have a good chance of finding the global minimum.

The first five lines of code generate 10,000 widely dispersed random start points using the method described in “Widely Dispersed Points for Unconstrained Components” on page 3-59. newprob is a problem structure using the fminunc local solver and no bounds:

```matlab
rng(0,'twister') % for reproducibility
u = rand(1e4,1);
u = 1./u;
u = exp(u) - exp(1);
```
s = rand(1e4,1)*2*pi;
stpts = [u.*cos(s),u.*sin(s)];
startpts = CustomStartPointSet(stpts);

opts = optimoptions(@fminunc,'Algorithm','quasi-newton');
newprob = createOptimProblem('fminunc','x0',[0;0],'objective',f,...
 'options',opts);
[xcust fcust] = run(ms,newprob,startpts)

MultiStart completed the runs from all start points.

All 10000 local solver runs converged with a positive
local solver exit flag.

xcust =
 1.0e+05 *
 1.0000
 -1.0000

fcust =
 -21.0000

In this case, MultiStart found the global minimum.

MultiStart with a Regular Grid of Start Points

You can also use a grid of start points instead of random start points. To learn how to
construct a regular grid for more dimensions, or one that has small perturbations, see
“Uniform Grid” on page 3-58 or “Perturbed Grid” on page 3-59.

xx = -1e6:1e4:1e6;
[xxx yyy] = meshgrid(xx,xx);
z = [xxx(:),yyy(:)];
bigstart = CustomStartPointSet(z);
[xgrid fgrid] = run(ms,newprob,bigstart)

MultiStart completed the runs from all start points.

All 10000 local solver runs converged with a positive
local solver exit flag.

xgrid =
 1.0e+004 *
In this case, MultiStart found the global minimum.

MultiStart with Regular Grid and Promising Start Points

Making a regular grid of start points, especially in high dimensions, can use an inordinate amount of memory or time. You can filter the start points to run only those with small objective function value.

To perform this filtering most efficiently, write your objective function in a vectorized fashion. For information, see “Write a Vectorized Function” on page 2-3 or “Vectorize the Objective and Constraint Functions” on page 4-80. The following function handle computes a vector of objectives based on an input matrix whose rows represent start points:

```matlab
x1 = [1;1]; x2 = [1e5;-1e5];
g = @(x) -10*sech(sqrt((x(:,1)-x1(1)).^2 + (x(:,2)-x1(2)).^2)) ... -20*sech(sqrt((x(:,1)-x2(1)).^2 + (x(:,2)-x2(2)).^2))-1;
```

Suppose you want to run the local solver only for points where the value is less than –2. Start with a denser grid than in “MultiStart with a Regular Grid of Start Points” on page 3-96, then filter out all the points with high function value:

```matlab
xx = -1e6:1e3:1e6;
[xxx yyy] = meshgrid(xx,xx);
z = [xxx(:),yyy(:)];
idx = g(z) < -2; % index of promising start points
zz = z(idx,:);
smallstartset = CustomStartPointSet(zz);
 opts = optimoptions(@fminunc,'Algorithm','quasi-newton','Display','off');
newprobg = createOptimProblem('fminunc','x0',[0,0],... 'objective',g,'options',opts);
% row vector x0 since g expects rows
[xfew ffew] = run(ms,newprobg,smallstartset)
```

MultiStart completed the runs from all start points.
All 2 local solver runs converged with a positive local solver exit flag.

\[
\begin{array}{c}
\text{xfew} = \\
\quad 100000 \quad -100000 \\
\text{ffew} = \\
\quad -21
\end{array}
\]

In this case, MultiStart found the global minimum. There are only two start points in smallstartset, one of which is the global minimum.
Using Direct Search

- “What Is Direct Search?” on page 4-2
- “Optimize Using Pattern Search” on page 4-3
- “Optimize Using the GPS Algorithm” on page 4-8
- “Pattern Search Terminology” on page 4-12
- “How Pattern Search Polling Works” on page 4-15
- “Searching and Polling” on page 4-26
- “Setting Solver Tolerances” on page 4-31
- “Search and Poll” on page 4-32
- “Nonlinear Constraint Solver Algorithm” on page 4-37
- “Custom Plot Function” on page 4-39
- “Set Options” on page 4-44
- “Polling Types” on page 4-47
- “Set Mesh Options” on page 4-58
- “Constrained Minimization Using patternsearch” on page 4-69
- “Use Cache” on page 4-75
- “Vectorize the Objective and Constraint Functions” on page 4-80
- “Optimize an ODE in Parallel” on page 4-85
What Is Direct Search?

Direct search is a method for solving optimization problems that does not require any information about the gradient of the objective function. Unlike more traditional optimization methods that use information about the gradient or higher derivatives to search for an optimal point, a direct search algorithm searches a set of points around the current point, looking for one where the value of the objective function is lower than the value at the current point. You can use direct search to solve problems for which the objective function is not differentiable, or is not even continuous.

Global Optimization Toolbox functions include three direct search algorithms called the generalized pattern search (GPS) algorithm, the generating set search (GSS) algorithm, and the mesh adaptive search (MADS) algorithm. All are pattern search algorithms that compute a sequence of points that approach an optimal point. At each step, the algorithm searches a set of points, called a mesh, around the current point—the point computed at the previous step of the algorithm. The mesh is formed by adding the current point to a scalar multiple of a set of vectors called a pattern. If the pattern search algorithm finds a point in the mesh that improves the objective function at the current point, the new point becomes the current point at the next step of the algorithm.

The GPS algorithm uses fixed direction vectors. The GSS algorithm is identical to the GPS algorithm, except when there are linear constraints, and when the current point is near a linear constraint boundary. The MADS algorithm uses a random selection of vectors to define the mesh. For details, see “Patterns” on page 4-12.
Optimize Using Pattern Search

In this section...

“Call patternsearch at the Command Line” on page 4-3
“Pattern Search on Unconstrained Problems” on page 4-3
“Pattern Search on Constrained Problems” on page 4-4
“Additional Output Arguments” on page 4-5
“Use the Optimization App for Pattern Search” on page 4-5

Call patternsearch at the Command Line

To perform a pattern search on an unconstrained problem at the command line, call the function patternsearch with the syntax

\[[x \ fval] = \text{patternsearch}(@\text{objfun}, \ x0) \]

where

- @objfun is a handle to the objective function.
- x0 is the starting point for the pattern search.

The results are:

- x — Point at which the final value is attained
- fval — Final value of the objective function

Pattern Search on Unconstrained Problems

For an unconstrained problem, call patternsearch with the syntax

\[[x \ fval] = \text{patternsearch}(@\text{objectfun}, \ x0) \]

The output arguments are

- x — The final point
- fval — The value of the objective function at x
The required input arguments are

- @objectfun — A function handle to the objective function objectfun, which you can write as a function file. See “Compute Objective Functions” on page 2-2 to learn how to do this.
- x0 — The initial point for the pattern search algorithm.

As an example, you can run the example described in “Optimize Using the GPS Algorithm” on page 4-8 from the command line by entering

```matlab
[x fval] = patternsearch(@ps_example, [2.1 1.7])
```

This returns

Optimization terminated: mesh size less than options.TolMesh.

```plaintext
x =
   -4.7124   -0.0000
fval =
   -2.0000
```

Pattern Search on Constrained Problems

If your problem has constraints, use the syntax

```matlab
[x fval] = patternsearch(@objfun, x0, A, b, Aeq, beq, lb, ub, nonlcon)
```

where

- A is a matrix and b is vector that represent inequality constraints of the form \(A \cdot x \leq b \).
- Aeq is a matrix and beq is a vector that represent equality constraints of the form \(Aeq \cdot x = beq \).
- lb and ub are vectors representing bound constraints of the form \(lb \leq x \) and \(x \leq ub \), respectively.
- nonlcon is a function that returns the nonlinear equality and inequality vectors, \(c \) and \(ceq \), respectively. The function is minimized such that \(c(x) \leq 0 \) and \(ceq(x) = 0 \).

You only need to pass in the constraints that are part of the problem. For example, if there are no bound constraints or a nonlinear constraint function, use the syntax
[x fval] = patternsearch(@objfun,x0,A,b,Aeq,beq)

Use empty brackets [] for constraint arguments that are not needed for the problem. For example, if there are no inequality constraints or a nonlinear constraint function, use the syntax

[x fval] = patternsearch(@objfun,x0,[],[],Aeq,beq,lb,ub)

Additional Output Arguments

To get more information about the performance of the pattern search, you can call patternsearch with the syntax

[x fval exitflag output] = patternsearch(@objfun,x0)

Besides x and fval, this returns the following additional output arguments:

• exitflag — Integer indicating whether the algorithm was successful
• output — Structure containing information about the performance of the solver

For more information about these arguments, see the patternsearch reference page.

Use the Optimization App for Pattern Search

To open the Optimization app, enter

optimtool('patternsearch')

at the command line, or enter optimtool and then choose patternsearch from the Solver menu.
You can also start the tool from the MATLAB Apps tab.
To use the Optimization app, first enter the following information:

- **Objective function** — The objective function you want to minimize. Enter the objective function in the form @\text{objfun}, where \text{objfun.m} is a file that computes the objective function. The @ sign creates a function handle to \text{objfun}.

- **Start point** — The initial point at which the algorithm starts the optimization.

In the **Constraints** pane, enter linear constraints, bounds, or a nonlinear constraint function as a function handle for the problem. If the problem is unconstrained, leave these fields blank.

Then, click **Start**. The tool displays the results of the optimization in the **Run solver and view results** pane.

In the **Options** pane, set the options for the pattern search. To view the options in a category, click the + sign next to it.

“Finding the Minimum of the Function” on page 4-8 gives an example of using the Optimization app.

For more information, see “Optimization App” in the Optimization Toolbox documentation.
Optimize Using the GPS Algorithm

In this section...

“Objective Function” on page 4-8
“Finding the Minimum of the Function” on page 4-8
“Plotting the Objective Function Values and Mesh Sizes” on page 4-10

Objective Function

This example uses the objective function, ps_example, which is included with Global Optimization Toolbox software. View the code for the function by entering

type ps_example

The following figure shows a plot of the function.

Finding the Minimum of the Function

To find the minimum of ps_example, perform the following steps:
1. Enter

```
optimtool
```

and then choose the patternsearch solver.

2. In the **Objective function** field of the Optimization app, enter `@ps_example`.

3. In the **Start point** field, type `[2.1 1.7]`.

Leave the fields in the **Constraints** pane blank because the problem is unconstrained.

4. Click **Start** to run the pattern search.

The **Run solver and view results** pane displays the results of the pattern search.

The reason the optimization terminated is that the mesh size became smaller than the acceptable tolerance value for the mesh size, defined by the **Mesh tolerance** parameter in the **Stopping criteria** pane. The minimum function value is approximately –2. The **Final point** pane displays the point at which the minimum occurs.
Plotting the Objective Function Values and Mesh Sizes

To see the performance of the pattern search, display plots of the best function value and mesh size at each iteration. First, select the following check boxes in the Plot functions pane:

- Best function value
- Mesh size

Then click **Start** to run the pattern search. This displays the following plots.
The upper plot shows the objective function value of the best point at each iteration. Typically, the objective function values improve rapidly at the early iterations and then level off as they approach the optimal value.

The lower plot shows the mesh size at each iteration. The mesh size increases after each successful iteration and decreases after each unsuccessful one, explained in “How Pattern Search Polling Works” on page 4-15.
Pattern Search Terminology

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Patterns” on page 4-12</td>
</tr>
<tr>
<td>“Meshes” on page 4-13</td>
</tr>
<tr>
<td>“Polling” on page 4-14</td>
</tr>
<tr>
<td>“Expanding and Contracting” on page 4-14</td>
</tr>
</tbody>
</table>

Patterns

A *pattern* is a set of vectors \(\{v_i\} \) that the pattern search algorithm uses to determine which points to search at each iteration. The set \(\{v_i\} \) is defined by the number of independent variables in the objective function, \(N \), and the positive basis set. Two commonly used positive basis sets in pattern search algorithms are the maximal basis, with \(2N \) vectors, and the minimal basis, with \(N+1 \) vectors.

With GPS, the collection of vectors that form the pattern are fixed-direction vectors. For example, if there are three independent variables in the optimization problem, the default for a \(2N \) positive basis consists of the following pattern vectors:

\[
\begin{align*}
v_1 &= [1 \\ 0 \\ 0] \\
v_2 &= [0 \\ 1 \\ 0] \\
v_3 &= [0 \\ 0 \\ 1] \\
v_4 &= [-1 \\ 0 \\ 0] \\
v_5 &= [0 \\ -1 \\ 0] \\
v_6 &= [0 \\ 0 \\ -1]
\end{align*}
\]

An \(N+1 \) positive basis consists of the following default pattern vectors.

\[
\begin{align*}
v_1 &= [1 \\ 0 \\ 0] \\
v_2 &= [0 \\ 1 \\ 0] \\
v_3 &= [0 \\ 0 \\ 1] \\
v_4 &= [-1 \\ -1 \\ -1]
\end{align*}
\]

With GSS, the pattern is identical to the GPS pattern, except when there are linear constraints and the current point is near a constraint boundary. For a description of the way in which GSS forms a pattern with linear constraints, see Kolda, Lewis, and Torczon [1]. The GSS algorithm is more efficient than the GPS algorithm when you have linear constraints. For an example showing the efficiency gain, see “Compare the Efficiency of Poll Options” on page 4-51.

With MADS, the collection of vectors that form the pattern are randomly selected by the algorithm. Depending on the poll method choice, the number of vectors selected will be
2N or N+1. As in GPS, 2N vectors consist of N vectors and their N negatives, while N+1 vectors consist of N vectors and one that is the negative of the sum of the others.

References

Meshes

At each step, patternsearch searches a set of points, called a mesh, for a point that improves the objective function. patternsearch forms the mesh by

1. Generating a set of vectors \{d_i\} by multiplying each pattern vector \(v_i \) by a scalar \(\Delta^m \). \(\Delta^m \) is called the mesh size.

2. Adding the \{d_i\} to the current point—the point with the best objective function value found at the previous step.

For example, using the GPS algorithm. suppose that:

- The current point is \([1.6 \ 3.4]\).
- The pattern consists of the vectors

\[
v_1 = [1 \quad 0] \\
v_2 = [0 \quad 1] \\
v_3 = [-1 \quad 0] \\
v_4 = [0 \quad -1]
\]

- The current mesh size \(\Delta^m \) is 4.

The algorithm multiplies the pattern vectors by 4 and adds them to the current point to obtain the following mesh:

\[
\begin{align*}
[1.6 \ 3.4] + 4*[1 \ 0] &= [5.6 \ 3.4] \\
[1.6 \ 3.4] + 4*[0 \ 1] &= [1.6 \ 7.4] \\
[1.6 \ 3.4] + 4*[-1 \ 0] &= [-2.4 \ 3.4]
\end{align*}
\]
\[[1.6 \ 3.4] + 4*[0 \ -1] = [1.6 \ -0.6] \]

The pattern vector that produces a mesh point is called its *direction*.

Polling

At each step, the algorithm polls the points in the current mesh by computing their objective function values. When the **Complete poll** option has the (default) setting Off, the algorithm stops polling the mesh points as soon as it finds a point whose objective function value is less than that of the current point. If this occurs, the poll is called *successful* and the point it finds becomes the current point at the next iteration.

The algorithm only computes the mesh points and their objective function values up to the point at which it stops the poll. If the algorithm fails to find a point that improves the objective function, the poll is called *unsuccessful* and the current point stays the same at the next iteration.

When the **Complete poll** option has the setting On, the algorithm computes the objective function values at all mesh points. The algorithm then compares the mesh point with the smallest objective function value to the current point. If that mesh point has a smaller value than the current point, the poll is successful.

Expanding and Contracting

After polling, the algorithm changes the value of the mesh size Δ^m. The default is to multiply Δ^m by 2 after a successful poll, and by 0.5 after an unsuccessful poll.
How Pattern Search Polling Works

In this section...

“Context” on page 4-15
“Successful Polls” on page 4-16
“An Unsuccessful Poll” on page 4-19
“Displaying the Results at Each Iteration” on page 4-20
“More Iterations” on page 4-20
“Poll Method” on page 4-21
“Complete Poll” on page 4-23
“Stopping Conditions for the Pattern Search” on page 4-23
“Robustness of Pattern Search” on page 4-25

Context

`patternsearch` finds a sequence of points, \(x_0, x_1, x_2, \ldots \), that approach an optimal point. The value of the objective function either decreases or remains the same from each point in the sequence to the next. This section explains how pattern search works for the function described in “Optimize Using the GPS Algorithm” on page 4-8.

To simplify the explanation, this section describes how the generalized pattern search (GPS) works using a maximal positive basis of \(2N \), with `Scale` set to `Off` in `Mesh` options.
This section does not show how the `patternsearch` algorithm works with bounds or linear constraints. For bounds and linear constraints, `patternsearch` modifies poll points to be feasible, meaning to satisfy all bounds and linear constraints.

This section does not encompass nonlinear constraints. To understand how `patternsearch` works with nonlinear constraints, see “Nonlinear Constraint Solver Algorithm” on page 4-37.

The problem setup:

Successful Polls

The pattern search begins at the initial point \(x_0 \) that you provide. In this example, \(x_0 = [2.1 \ 1.7] \).

Iteration 1

At the first iteration, the mesh size is 1 and the GPS algorithm adds the pattern vectors to the initial point \(x_0 = [2.1 \ 1.7] \) to compute the following mesh points:
The algorithm computes the objective function at the mesh points in the order shown above. The following figure shows the value of ps_example at the initial point and mesh points.

The algorithm polls the mesh points by computing their objective function values until it finds one whose value is smaller than 4.6347, the value at x0. In this case, the first such point it finds is \([1.1 \, 1.7]\), at which the value of the objective function is 4.5146, so the poll at iteration 1 is successful. The algorithm sets the next point in the sequence equal to \(x_1 = [1.1 \, 1.7]\).

Note By default, the GPS pattern search algorithm stops the current iteration as soon as it finds a mesh point whose fitness value is smaller than that of the current point.
Consequently, the algorithm might not poll all the mesh points. You can make the algorithm poll all the mesh points by setting **Complete poll** to **On**.

Iteration 2

After a successful poll, the algorithm multiplies the current mesh size by 2, the default value of **Expansion factor** in the **Mesh** options pane. Because the initial mesh size is 1, at the second iteration the mesh size is 2. The mesh at iteration 2 contains the following points:

\[
\begin{align*}
2\cdot[1 \ 0] + x_1 &= [3.1 \ 1.7] \\
2\cdot[0 \ 1] + x_1 &= [1.1 \ 3.7] \\
2\cdot[-1 \ 0] + x_1 &= [-0.9 \ 1.7] \\
2\cdot[0 \ -1] + x_1 &= [1.1 \ -0.3]
\end{align*}
\]

The following figure shows the point \(x_1\) and the mesh points, together with the corresponding values of \(ps_example\).

![Objective Function Values at x1 and Mesh Points](image)

The algorithm polls the mesh points until it finds one whose value is smaller than 4.5146, the value at \(x_1\). The first such point it finds is \([-0.9 \ 1.7]\), at which the value of the objective function is 3.25, so the poll at iteration 2 is again successful. The algorithm sets the second point in the sequence equal to
\[x_2 = [-0.9 \ 1.7] \]

Because the poll is successful, the algorithm multiplies the current mesh size by 2 to get a mesh size of 4 at the third iteration.

An Unsuccessful Poll

By the fourth iteration, the current point is
\[x_3 = [-4.9 \ 1.7] \]

and the mesh size is 8, so the mesh consists of the points

\[
\begin{align*}
8*[1 & 0] + x_3 &= [3.1 \ 1.7] \\
8*[0 & 1] + x_3 &= [-4.9 \ 9.7] \\
8*[1 & -1] + x_3 &= [-12.9 \ 1.7] \\
8*[0 & -1] + x_3 &= [-4.9 \ -1.3]
\end{align*}
\]

The following figure shows the mesh points and their objective function values.

![Objective Function Values at x3 and Mesh Points](image)

At this iteration, none of the mesh points has a smaller objective function value than the value at \(x_3 \), so the poll is *unsuccessful*. In this case, the algorithm does not change the current point at the next iteration. That is,
\[x_4 = x_3; \]

At the next iteration, the algorithm multiplies the current mesh size by 0.5, the default value of **Contraction factor** in the **Mesh** options pane, so that the mesh size at the next iteration is 4. The algorithm then polls with a smaller mesh size.

Displaying the Results at Each Iteration

You can display the results of the pattern search at each iteration by setting **Level of display** to **Iterative** in the **Display to command window** options. This enables you to evaluate the progress of the pattern search and to make changes to **options** if necessary.

With this setting, the pattern search displays information about each iteration at the command line. The first four iterations are

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>(f(x))</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4.63474</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4.51464</td>
<td>2</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>3.25</td>
<td>4</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>-0.264905</td>
<td>8</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>-0.264905</td>
<td>4</td>
<td>Refine Mesh</td>
</tr>
</tbody>
</table>

The entry **Successful Poll** below **Method** indicates that the current iteration was successful. For example, the poll at iteration 2 is successful. As a result, the objective function value of the point computed at iteration 2, displayed below \(f(x) \), is less than the value at iteration 1.

At iteration 4, the entry **Refine Mesh** tells you that the poll is unsuccessful. As a result, the function value at iteration 4 remains unchanged from iteration 3.

By default, the pattern search doubles the mesh size after each successful poll and halves it after each unsuccessful poll.

More Iterations

The pattern search performs 60 iterations before stopping. The following plot shows the points in the sequence computed in the first 13 iterations of the pattern search.
The numbers below the points indicate the first iteration at which the algorithm finds the point. The plot only shows iteration numbers corresponding to successful polls, because the best point doesn't change after an unsuccessful poll. For example, the best point at iterations 4 and 5 is the same as at iteration 3.

Poll Method

At each iteration, the pattern search polls the points in the current mesh—that is, it computes the objective function at the mesh points to see if there is one whose function value is less than the function value at the current point. “How Pattern Search Polling Works” on page 4-15 provides an example of polling. You can specify the pattern that defines the mesh by the **Poll method** option. The default pattern, GPS **Positive basis 2N**, consists of the following $2N$ directions, where N is the number of independent variables for the objective function.

```
[1 0 0...0]
[0 1 0...0]
...
[0 0 0...1]
```
For example, if the objective function has three independent variables, the **GPS Positive basis 2N**, consists of the following six vectors.

\[
\begin{bmatrix}
-1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & -1
\end{bmatrix}
\]

Alternatively, you can set **Poll method** to **GPS Positive basis NP1**, the pattern consisting of the following \(N + 1 \) directions.

\[
\begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
\ldots \\
0 & 0 & 0 & \ldots & 1 \\
-1 & -1 & -1 & \ldots & -1
\end{bmatrix}
\]

For example, if objective function has three independent variables, the **GPS Positive basis Np1**, consists of the following four vectors.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{bmatrix}
\]

A pattern search will sometimes run faster using **GPS Positive basis Np1** rather than the **GPS Positive basis 2N** as the **Poll method**, because the algorithm searches fewer points at each iteration. Although not being addressed in this example, the same is true when using the **MADS Positive basis Np1** over the **MADS Positive basis 2N**, and similarly for GSS. For example, if you run a pattern search on the example described in “Linearly Constrained Problem” on page 4-69, the algorithm performs 1588 function evaluations with **GPS Positive basis 2N**, the default **Poll method**, but only 877 function evaluations using **GPS Positive basis Np1**. For more detail, see “Compare the Efficiency of Poll Options” on page 4-51.

However, if the objective function has many local minima, using **GPS Positive basis 2N** as the **Poll method** might avoid finding a local minimum that is not the global
minimum, because the search explores more points around the current point at each iteration.

Complete Poll

By default, if the pattern search finds a mesh point that improves the value of the objective function, it stops the poll and sets that point as the current point for the next iteration. When this occurs, some mesh points might not get polled. Some of these unpollled points might have an objective function value that is even lower than the first one the pattern search finds.

For problems in which there are several local minima, it is sometimes preferable to make the pattern search poll all the mesh points at each iteration and choose the one with the best objective function value. This enables the pattern search to explore more points at each iteration and thereby potentially avoid a local minimum that is not the global minimum. In the Optimization app you can make the pattern search poll the entire mesh setting **Complete poll** to **On** in **Poll** options. At the command line, use `psoptimset` to set the `CompletePoll` option to `'on'`.

Stopping Conditions for the Pattern Search

The criteria for stopping the pattern search algorithm are listed in the **Stopping criteria** section of the Optimization app:
The algorithm stops when any of the following conditions occurs:

- The mesh size is less than **Mesh tolerance**.
- The number of iterations performed by the algorithm reaches the value of **Max iteration**.
- The total number of objective function evaluations performed by the algorithm reaches the value of **Max function evaluations**.
- The time, in seconds, the algorithm runs until it reaches the value of **Time limit**.
- The distance between the point found in two consecutive iterations and the mesh size are both less than **X tolerance**.
• The change in the objective function in two consecutive iterations is less than \textit{Function tolerance} and the mesh size is less than \textit{X tolerance}.

\textbf{Nonlinear constraint tolerance} is not used as stopping criterion. It determines the feasibility with respect to nonlinear constraints.

The MADS algorithm uses an additional parameter called the poll parameter, Δ_p, in the mesh size stopping criterion:

$$
\Delta_p = \begin{cases}
N\sqrt{\Delta_m} & \text{for positive basis } N+1 \text{ poll} \\
\sqrt{\Delta_m} & \text{for positive basis } 2N \text{ poll},
\end{cases}
$$

where Δ_m is the mesh size. The MADS stopping criterion is: $\Delta_p \leq \text{Mesh tolerance}$.

\textbf{Robustness of Pattern Search}

The pattern search algorithm is robust in relation to objective function failures. This means \texttt{patternsearch} tolerates function evaluations resulting in NaN, Inf, or complex values. When the objective function at the initial point x_0 is a real, finite value, \texttt{patternsearch} treats poll point failures as if the objective function values are large, and ignores them.

For example, if all points in a poll evaluate to NaN, \texttt{patternsearch} considers the poll unsuccessful, shrinks the mesh, and reevaluates. If even one point in a poll evaluates to a smaller value than any seen yet, \texttt{patternsearch} considers the poll successful, and expands the mesh.
Searching and Polling

<table>
<thead>
<tr>
<th>In this section…</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Definition of Search” on page 4-26</td>
</tr>
<tr>
<td>“How to Use a Search Method” on page 4-28</td>
</tr>
<tr>
<td>“Search Types” on page 4-29</td>
</tr>
<tr>
<td>“When to Use Search” on page 4-29</td>
</tr>
</tbody>
</table>

Definition of Search

In `patternsearch`, a `search` is an algorithm that runs before a poll. The search attempts to locate a better point than the current point. (Better means one with lower objective function value.) If the search finds a better point, the better point becomes the current point, and no polling is done at that iteration. If the search does not find a better point, `patternsearch` performs a poll.

By default, `patternsearch` does not use search. To search, see “How to Use a Search Method” on page 4-28.

The figure `patternsearch With a Search Method` contains a flow chart of direct search including using a search method.
patternsearch With a Search Method
Iteration limit applies to all built-in search methods except those that are poll methods. If you select an iteration limit for the search method, the search is enabled until the iteration limit is reached. Afterwards, `patternsearch` stops searching and only polls.

How to Use a Search Method

To use search in `patternsearch`:

- In Optimization app, choose a **Search method** in the **Search** pane.

- At the command line, create an options structure with a search method using `psoptimset`. For example, to use Latin hypercube search:

  ```
  opts = psoptimset('SearchMethod',@searchlhs);
  ```

 For more information, including a list of all built-in search methods, consult the `psoptimset` function reference page, and the “Search Options” on page 10-13 section of the options reference.

 You can write your own search method. Use the syntax described in “Structure of the Search Function” on page 10-16. To use your search method in a pattern search, give its function handle as the **Custom Function (SearchMethod)** option.
Search Types

- **Poll methods** — You can use any poll method as a search algorithm. *patternsearch* conducts one poll step as a search. For this type of search to be beneficial, your search type should be different from your poll type. (*patternsearch* does not search if the selected search method is the same as the poll type.) Therefore, use a MADS search with a GSS or GPS poll, or use a GSS or GPS search with a MADS poll.

- **fminsearch**, also called Nelder-Mead — *fminsearch* is for unconstrained problems only. *fminsearch* runs to its natural stopping criteria; it does not take just one step. Therefore, use *fminsearch* for just one iteration. This is the default setting. To change settings, see “Search Options” on page 10-13.

- **ga** — *ga* runs to its natural stopping criteria; it does not take just one step. Therefore, use *ga* for just one iteration. This is the default setting. To change settings, see “Search Options” on page 10-13.

- Latin hypercube search — Described in “Search Options” on page 10-13. By default, searches $15n$ points, where n is the number of variables, and only searches during the first iteration. To change settings, see “Search Options” on page 10-13.

When to Use Search

There are two main reasons to use a search method:

- To speed an optimization (see “Search Methods for Increased Speed” on page 4-29)
- To obtain a better local solution, or to obtain a global solution (see “Search Methods for Better Solutions” on page 4-30)

Search Methods for Increased Speed

Generally, you do not know beforehand whether a search method speeds an optimization or not. So try a search method when:

- You are performing repeated optimizations on similar problems, or on the same problem with different parameters.
- You can experiment with different search methods to find a lower solution time.

Search does not always speed an optimization. For one example where it does, see “Search and Poll” on page 4-32.
Search Methods for Better Solutions

Since search methods run before poll methods, using search can be equivalent to choosing a different starting point for your optimization. This comment holds for the Nelder-Mead, \textit{ga}, and Latin hypercube search methods, all of which, by default, run once at the beginning of an optimization. \textit{ga} and Latin hypercube searches are stochastic, and can search through several basins of attraction.
Setting Solver Tolerances

Tolerance refers to how small a parameter, such as a mesh size, can become before the search is halted or changed in some way. You can specify the value of the following tolerances using `psoptimset` or the Optimization app:

- **Mesh tolerance** — When the current mesh size is less than the value of **Mesh tolerance**, the algorithm halts.
- **X tolerance** — After a successful poll, if the distance from the previous best point to the current best point is less than the value of **X tolerance**, the algorithm halts.
- **Function tolerance** — After a successful poll, if the difference between the function value at the previous best point and function value at the current best point is less than the value of **Function tolerance**, the algorithm halts.
- **Nonlinear constraint tolerance** — The algorithm treats a point to be feasible if constraint violation is less than **TolCon**.
- **Bind tolerance** — Bind tolerance applies to linearly constrained problems. It specifies how close a point must get to the boundary of the feasible region before a linear constraint is considered to be active. When a linear constraint is active, the pattern search polls points in directions parallel to the linear constraint boundary as well as the mesh points.

Usually, you should set **Bind tolerance** to be at least as large as the maximum of **Mesh tolerance**, **X tolerance**, and **Function tolerance**.
Search and Poll

Using a Search Method

In addition to polling the mesh points, the pattern search algorithm can perform an optional step at every iteration, called search. At each iteration, the search step applies another optimization method to the current point. If this search does not improve the current point, the poll step is performed.

The following example illustrates the use of a search method on the problem described in “Linearly Constrained Problem” on page 4-69. To set up the example, enter the following commands at the MATLAB prompt to define the initial point and constraints.

```matlab
x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];
```

Then enter the settings shown in the following figures in the Optimization app.
For comparison, click **Start** to run the example without a search method. This displays the plots shown in the following figure.
To see the effect of using a search method, select **MADS Positive Basis 2N** in the **Search method** field in **Search** options.

This sets the search method to be a pattern search using the pattern for **MADS Positive Basis 2N**. Then click **Start** to run the pattern search. This displays the following plots.
Note that using the search method reduces the total function evaluations—from 1206 to 1159—and reduces the number of iterations from 106 to 97.

Search Using a Different Solver

`patternsearch` takes a long time to minimize Rosenbrock's function. The function is

\[f(x) = 100 \left(x_2 - x_1^2 \right)^2 + (1 - x_1)^2. \]

Rosenbrock's function is described and plotted in “Solve a Constrained Nonlinear Problem” in the Optimization Toolbox documentation. The `dejong2fcn.m` file, which is included in the toolbox, calculates this function.
Set `patternsearch` options to `MaxFunEvals = 5000` and `MaxIter = 2000`:

```matlab
t = psoptimset('MaxFunEvals',5000, 'MaxIter',2000);
```

Run `patternsearch` starting from `[-1.9 2]`:

```matlab
[x feval eflag output] = patternsearch(@dejong2fcn,...
                      [-1.9,2],[],[],[],[],[],[],[],[t],);
```

Maximum number of function evaluations exceeded:
increase options.MaxFunEvals.

```matlab
feval
feval =
  0.8560
```

The optimization did not complete, and the result is not very close to the optimal value of 0.

3 Set the options to use `fminsearch` as the search method:

```matlab
t = psoptimset(t, 'SearchMethod', @searchneldermead);
```

Rerun the optimization, the results are much better:

```matlab
[x2 feval2 eflag2 output2] = patternsearch(@dejong2fcn,...
                      [-1.9,2],[],[],[],[],[],[],[],[t],);
```

Optimization terminated: mesh size less than options.TolMesh.

```matlab
feval2
feval2 =
  4.0686e-010
```

`fminsearch` is not as closely tied to coordinate directions as the default GPS `patternsearch` poll method. Therefore, `fminsearch` is more efficient at getting close to the minimum of Rosenbrock's function. Adding the search method in this case is effective.
Nonlinear Constraint Solver Algorithm

The pattern search algorithm uses the Augmented Lagrangian Pattern Search (ALPS) algorithm to solve nonlinear constraint problems. The optimization problem solved by the ALPS algorithm is

$$\min_{x} f(x)$$

such that

$$c_i(x) \leq 0, \ i = 1 \ldots m$$
$$ceq_i(x) = 0, \ i = m + 1 \ldots mt$$
$$A \cdot x \leq b$$
$$Aeq \cdot x = beq$$
$$lb \leq x \leq ub,$$

where $c(x)$ represents the nonlinear inequality constraints, $ceq(x)$ represents the equality constraints, m is the number of nonlinear inequality constraints, and mt is the total number of nonlinear constraints.

The ALPS algorithm attempts to solve a nonlinear optimization problem with nonlinear constraints, linear constraints, and bounds. In this approach, bounds and linear constraints are handled separately from nonlinear constraints. A subproblem is formulated by combining the objective function and nonlinear constraint function using the Lagrangian and the penalty parameters. A sequence of such optimization problems are approximately minimized using a pattern search algorithm such that the linear constraints and bounds are satisfied.

Each subproblem solution represents one iteration. The number of function evaluations per iteration is therefore much higher when using nonlinear constraints than otherwise.

A subproblem formulation is defined as

$$\Theta(x, \lambda, s, \rho) = f(x) - \sum_{i=1}^{m} \lambda_i s_i \log(s_i - c_i(x)) + \sum_{i=m+1}^{mt} \lambda_i ceq_i(x) + \frac{\rho}{2} \sum_{i=m+1}^{mt} ceq_i(x)^2,$$

where
• The components λ_i of the vector λ are nonnegative and are known as Lagrange multiplier estimates
• The elements s_i of the vector s are nonnegative shifts
• ρ is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter (InitialPenalty).

The pattern search minimizes a sequence of subproblems, each of which is an approximation of the original problem. Each subproblem has a fixed value of λ, s, and ρ. When the subproblem is minimized to a required accuracy and satisfies feasibility conditions, the Lagrangian estimates are updated. Otherwise, the penalty parameter is increased by a penalty factor (PenaltyFactor). This results in a new subproblem formulation and minimization problem. These steps are repeated until the stopping criteria are met.

Each subproblem solution represents one iteration. The number of function evaluations per iteration is therefore much higher when using nonlinear constraints than otherwise.

For a complete description of the algorithm, see the following references:

References

Custom Plot Function

In this section...

“About Custom Plot Functions” on page 4-39
“Creating the Custom Plot Function” on page 4-39
“Setting Up the Problem” on page 4-40
“Using the Custom Plot Function” on page 4-41
“How the Plot Function Works” on page 4-42

About Custom Plot Functions

To use a plot function other than those included with the software, you can write your own custom plot function that is called at each iteration of the pattern search to create the plot. This example shows how to create a plot function that displays the logarithmic change in the best objective function value from the previous iteration to the current iteration. More plot function details are available in “Plot Options” on page 10-29.

Creating the Custom Plot Function

To create the plot function for this example, copy and paste the following code into a new function file in the MATLAB Editor:

```matlab
function stop = psplotchange(optimvalues, flag)
% PSPLOTCHANGE Plots the change in the best objective function
% value from the previous iteration.

% Best objective function value in the previous iteration
persistent last_best

stop = false;
if(strcmp(flag,'init'))
    set(gca,'Yscale','log'); %Set up the plot
    hold on;
    xlabel('Iteration');
    ylabel('Log Change in Values');
    title(['Change in Best Function Value']);
    end

% Best objective function value in the current iteration
best = min(optimvalues.fval);
% Set last_best to best
if optimvalues.iteration == 0
    last_best = best;
end
```

4-39
else
 % Change in objective function value
 change = last_best - best;
 plot(optimvalues.iteration, change, '.r');
end

Then save the file as \texttt{psplotchange.m} in a folder on the MATLAB path.

Setting Up the Problem

The problem is the same as “Linearly Constrained Problem” on page 4-69. To set up the problem:

1. Enter the following at the MATLAB command line:

 \begin{verbatim}
 x0 = [2 1 0 9 1 0];
 Aineq = [-8 7 3 -4 9 0];
 bineq = 7;
 Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
 beq = [84 62 65 1];
 \end{verbatim}

2. Enter \texttt{optimtool} to open the Optimization app.
3. Choose the \texttt{patternsearch} solver.
4. Set up the problem to match the following figure.
Since this is a linearly constrained problem, set the Poll method to GSS Positive basis 2N.

Using the Custom Plot Function

To use the custom plot function, select Custom function in the Plot functions pane and enter `@psplotchange` in the field to the right. To compare the custom plot with the best function value plot, also select Best function value.

Now, when you run the example, the pattern search tool displays the plots shown in the following figure.
Note that because the scale of the y-axis in the lower custom plot is logarithmic, the plot will only show changes that are greater than 0.

How the Plot Function Works

The plot function uses information contained in the following structures, which the Optimization app passes to the function as input arguments:

- **optimvalues** — Structure containing the current state of the solver
- **flag** — String indicating the current status of the algorithm

The most important statements of the custom plot function, `psplotchange.m`, are summarized in the following table.
Custom Plot Function Statements

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>persistent last_best</td>
<td>Creates the persistent variable last_best, the best objective function value in the previous generation. Persistent variables are preserved over multiple calls to the plot function.</td>
</tr>
<tr>
<td>set(gca,'Yscale','log')</td>
<td>Sets up the plot before the algorithm starts.</td>
</tr>
<tr>
<td>best = min(optimvalues.fval)</td>
<td>Sets best equal to the minimum objective function value. The field optimvalues.fval contains the objective function value in the current iteration. The variable best is the minimum objective function value. For a complete description of the fields of the structure optimvalues, see “Structure of the Plot Functions” on page 10-11.</td>
</tr>
<tr>
<td>change = last_best - best</td>
<td>Sets the variable change to the best objective function value at the previous iteration minus the best objective function value in the current iteration.</td>
</tr>
<tr>
<td>plot(optimvalues.iteration, change, '.r')</td>
<td>Plots the variable change at the current objective function value, for the current iteration contained in optimvalues.iteration.</td>
</tr>
</tbody>
</table>
Set Options

In this section...

“Set Options Using psoptimset” on page 4-44
“Create Options and Problems Using the Optimization App” on page 4-46

Set Options Using psoptimset

You can specify any available patternsearch options by passing an options structure as an input argument to patternsearch using the syntax

[x fval] = patternsearch(@fitnessfun,nvars, ...
 A,b,Aeq,beq,lb,ub,nonlcon,options)

Pass in empty brackets [] for any constraints that do not appear in the problem.

You create the options structure using the function psoptimset.

options = psoptimset(@patternsearch)

This returns the options structure with the default values for its fields.

options =

 TolMesh: 1.0000e-06
 TolCon: 1.0000e-06
 TolX: 1.0000e-06
 TolFun: 1.0000e-06
 TolBind: 1.0000e-03
 MaxIter: '100*numberofvariables'
 MaxFunEvals: '2000*numberofvariables'
 TimeLimit: Inf
 MeshContraction: 0.5000
 MeshExpansion: 2
 MeshAccelerator: 'off'
 MeshRotate: 'on'
 InitialMeshSize: 1
 ScaleMesh: 'on'
 MaxMeshSize: Inf
 InitialPenalty: 10
 PenaltyFactor: 100
 PollMethod: 'gpspositivebasis2n'
 CompletePoll: 'off'
PollingOrder: 'consecutive'
SearchMethod: []
CompleteSearch: 'off'
 Display: 'final'
OutputFcns: []
PlotFcns: []
PlotInterval: 1
 Cache: 'off'
CacheSize: 10000
CacheTol: 2.2204e-16
Vectorized: 'off'
UseParallel: 0

The `patternsearch` function uses these default values if you do not pass in `options` as an input argument.

The value of each option is stored in a field of the `options` structure, such as `options.MeshExpansion`. You can display any of these values by entering `options` followed by the name of the field. For example, to display the mesh expansion factor for the pattern search, enter

```matlab
options.MeshExpansion
```

```matlab
ans =
  2
```

To create an `options` structure with a field value that is different from the default, use `psoptimset`. For example, to change the mesh expansion factor to 3 instead of its default value 2, enter

```matlab
options = psoptimset('MeshExpansion',3);
```

This creates the `options` structure with all values set to empty except for `MeshExpansion`, which is set to 3. (An empty field causes `patternsearch` to use the default value.)

If you now call `patternsearch` with the argument `options`, the pattern search uses a mesh expansion factor of 3.

If you subsequently decide to change another field in the `options` structure, such as setting `PlotFcns` to `@psplotmeshsize`, which plots the mesh size at each iteration, call `psoptimset` with the syntax

```matlab
options = psoptimset(options, 'PlotFcns', @psplotmeshsize)
```
This preserves the current values of all fields of options except for PlotFcns, which is changed to @plotmeshsize. Note that if you omit the options input argument, psoptimset resets MeshExpansion to its default value, which is 2.

You can also set both MeshExpansion and PlotFcns with the single command

\[
\text{options} = \text{psoptimset}('\text{MeshExpansion}',3, '\text{PlotFcns}', @\text{plotmeshsize})
\]

Create Options and Problems Using the Optimization App

As an alternative to creating the options structure using psoptimset, you can set the values of options in the Optimization app and then export the options to a structure in the MATLAB workspace, as described in the “Importing and Exporting Your Work” section of the Optimization Toolbox documentation. If you export the default options in the Optimization app, the resulting options structure has the same settings as the default structure returned by the command

\[
\text{options} = \text{psoptimset}
\]

except for the default value of 'Display', which is 'final' when created by psoptimset, but 'none' when created in the Optimization app.

You can also export an entire problem from the Optimization app and run it from the command line. Enter

\[
\text{patternsearch(problem)}
\]

where problem is the name of the exported problem.
Polling Types

In this section...

“Using a Complete Poll in a Generalized Pattern Search” on page 4-47
“Compare the Efficiency of Poll Options” on page 4-51

Using a Complete Poll in a Generalized Pattern Search

As an example, consider the following function.

\[
f(x_1, x_2) = \begin{cases}
 x_1^2 + x_2^2 - 25 & \text{for } x_1^2 + x_2^2 \leq 25 \\
 x_1^2 + (x_2 - 9)^2 - 16 & \text{for } x_1^2 + (x_2 - 9)^2 \leq 16 \\
 0 & \text{otherwise.}
\end{cases}
\]

The following figure shows a plot of the function.
The global minimum of the function occurs at (0, 0), where its value is -25. However, the function also has a local minimum at (0, 9), where its value is -16.

To create a file that computes the function, copy and paste the following code into a new file in the MATLAB Editor.

```matlab
function z = poll_example(x)
if x(1)^2 + x(2)^2 <= 25
    z = x(1)^2 + x(2)^2 - 25;
elseif x(1)^2 + (x(2) - 9)^2 <= 16
    z = x(1)^2 + (x(2) - 9)^2 - 16;
else
    z = 0;
end
```

Then save the file as `poll_example.m` in a folder on the MATLAB path.

To run a pattern search on the function, enter the following in the Optimization app:
• Set **Solver** to **patternsearch**.
• Set **Objective function** to **@poll_example**.
• Set **Start point** to **[0 5]**.
• Set **Level of display** to **Iterative** in the **Display to command window** options.

Click **Start** to run the pattern search with **Complete poll** set to **Off**, its default value. The Optimization app displays the results in the **Run solver and view results** pane, as shown in the following figure.

The pattern search returns the local minimum at (0, 9). At the initial point, (0, 5), the objective function value is 0. At the first iteration, the search polls the following mesh points.

\[
\begin{align*}
 f((0, 5) + (1, 0)) &= f(1, 5) = 0 \\
 f((0, 5) + (0, 1)) &= f(0, 6) = -7
\end{align*}
\]

As soon as the search polls the mesh point (0, 6), at which the objective function value is less than at the initial point, it stops polling the current mesh and sets the current point at the next iteration to (0, 6). Consequently, the search moves toward the local minimum at (0, 9) at the first iteration. You see this by looking at the first two lines of the command line display.

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-7</td>
<td>2</td>
<td>Successful Poll</td>
</tr>
</tbody>
</table>
Note that the pattern search performs only two evaluations of the objective function at the first iteration, increasing the total function count from 1 to 3.

Next, set **Complete poll** to **On** and click **Start**. The **Run solver and view results** pane displays the following results.

This time, the pattern search finds the global minimum at (0, 0). The difference between this run and the previous one is that with **Complete poll** set to **On**, at the first iteration the pattern search polls all four mesh points.

\[
\begin{align*}
 f((0, 5) + (1, 0)) &= f(1, 5) = 0 \\
 f((0, 5) + (0, 1)) &= f(0, 6) = -6 \\
 f((0, 5) + (-1, 0)) &= f(-1, 5) = 0 \\
 f((0, 5) + (0, -1)) &= f(0, 4) = -9
\end{align*}
\]

Because the last mesh point has the lowest objective function value, the pattern search selects it as the current point at the next iteration. The first two lines of the command-line display show this.

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>-9</td>
<td>2</td>
<td>Successful Poll</td>
</tr>
</tbody>
</table>

In this case, the objective function is evaluated four times at the first iteration. As a result, the pattern search moves toward the global minimum at (0, 0).
The following figure compares the sequence of points returned when Complete poll is set to Off with the sequence when Complete poll is On.

Compare the Efficiency of Poll Options

This example shows how several poll options interact in terms of iterations and total function evaluations. The main results are:

- GSS is more efficient than GPS or MADS for linearly constrained problems.
- Whether setting CompletePoll to 'on' increases efficiency or decreases efficiency is unclear, although it affects the number of iterations.
- Similarly, whether having a 2N poll is more or less efficient than having an Np1 poll is also unclear. The most efficient poll is GSS Positive Basis Np1 with Complete poll set to on. The least efficient is MADS Positive Basis Np1 with Complete poll set to on.
Note: The efficiency of an algorithm depends on the problem. GSS is efficient for linearly constrained problems. However, predicting the efficiency implications of the other poll options is difficult, as is knowing which poll type works best with other constraints.

Problem setup

The problem is the same as in “Performing a Pattern Search on the Example” on page 4-70. This linearly constrained problem uses the `lincontest7` file that comes with the toolbox:

1. Enter the following into your MATLAB workspace:

   ```matlab
   x0 = [2 1 0 9 1 0];
   Aineq = [-8 7 3 -4 9 0];
   bineq = 7;
   Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
   beq = [84 62 65 1];
   ```

2. Open the Optimization app by entering `optimtool` at the command line.
3. Choose the `patternsearch` solver.
4. Enter the problem and constraints as pictured.

5. Ensure that the **Poll method** is GPS Positive basis 2N.
Generate the Results

1. Run the optimization.

2. Choose **File > Export to Workspace**.

3. Export the results to a structure named `gps2noff`.
4 Set **Options > Poll > Complete poll** to on.

5 Run the optimization.

6 Export the result to a structure named **gps2non**.

7 Set **Options > Poll > Poll method** to **GPS Positive basis Np1** and set **Complete poll** to off.

8 Run the optimization.

9 Export the result to a structure named **gpsnp1off**.

10 Set **Complete poll** to on.

11 Run the optimization.

12 Export the result to a structure named **gpsnp1on**.

13 Continue in a like manner to create solution structures for the other poll methods with **Complete poll** set on and off: gss2noff, gss2non, gssnp1off, gssnp1on, mads2noff, mads2non, madsnp1off, and madsnp1on.
Examine the Results

You have the results of 12 optimization runs. The following table shows the efficiency of the runs, measured in total function counts and in iterations. Your MADS results could differ, since MADS is a stochastic algorithm.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Function Count</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS2N, complete poll off</td>
<td>1462</td>
<td>136</td>
</tr>
<tr>
<td>GPS2N, complete poll on</td>
<td>1396</td>
<td>96</td>
</tr>
<tr>
<td>GPSNp1, complete poll off</td>
<td>864</td>
<td>118</td>
</tr>
<tr>
<td>GPSNp1, complete poll on</td>
<td>1007</td>
<td>104</td>
</tr>
<tr>
<td>GSS2N, complete poll off</td>
<td>758</td>
<td>84</td>
</tr>
<tr>
<td>GSS2N, complete poll on</td>
<td>889</td>
<td>74</td>
</tr>
<tr>
<td>GSSNp1, complete poll off</td>
<td>533</td>
<td>94</td>
</tr>
<tr>
<td>GSSNp1, complete poll on</td>
<td>491</td>
<td>70</td>
</tr>
<tr>
<td>MADS2N, complete poll off</td>
<td>922</td>
<td>162</td>
</tr>
<tr>
<td>MADS2N, complete poll on</td>
<td>2285</td>
<td>273</td>
</tr>
<tr>
<td>MADSNp1, complete poll off</td>
<td>1155</td>
<td>201</td>
</tr>
<tr>
<td>MADSNp1, complete poll on</td>
<td>1651</td>
<td>201</td>
</tr>
</tbody>
</table>

To obtain, say, the first row in the table, enter `gps2noff.output.funccount` and `gps2noff.output.iterations`. You can also examine a structure in the Variables editor by double-clicking the structure in the Workspace Browser, and then double-clicking the `output` structure.
The main results gleaned from the table are:

- Setting **Complete poll** to **on** generally lowers the number of iterations for GPS and GSS, but the change in number of function evaluations is unpredictable.
- Setting **Complete poll** to **on** does not necessarily change the number of iterations for MADS, but substantially increases the number of function evaluations.
- The most efficient algorithm/options settings, with efficiency meaning lowest function count:

 1. **GSS Positive basis Np1** with **Complete poll** set to **on** (function count 491)
2. GSS Positive basis Np1 with Complete poll set to off (function count 533)
3. GSS Positive basis 2N with Complete poll set to off (function count 758)
4. GSS Positive basis 2N with Complete poll set to on (function count 889)

The other poll methods had function counts exceeding 900.

- For this problem, the most efficient poll is GSS Positive Basis Np1 with Complete poll set to on, although the Complete poll setting makes only a small difference. The least efficient poll is MADS Positive Basis 2N with Complete poll set to on. In this case, the Complete poll setting makes a substantial difference.
Set Mesh Options

In this section...

“Mesh Expansion and Contraction” on page 4-58
“Mesh Accelerator” on page 4-65

Mesh Expansion and Contraction

The *Expansion factor* and *Contraction factor* options, in *Mesh* options, control how much the mesh size is expanded or contracted at each iteration. With the default *Expansion factor* value of 2, the pattern search multiplies the mesh size by 2 after each successful poll. With the default *Contraction factor* value of 0.5, the pattern search multiplies the mesh size by 0.5 after each unsuccessful poll.

You can view the expansion and contraction of the mesh size during the pattern search by selecting *Mesh size* in the *Plot functions* pane. To also display the values of the mesh size and objective function at the command line, set *Level of display* to *Iterative* in the *Display to command window* options.

For example, set up the problem described in “Linearly Constrained Problem” on page 4-69 as follows:

1. Enter the following at the command line:

   ```
   x0 = [2 1 0 9 1 0];
   Aineq = [-8 7 3 -4 9 0];
   bineq = 7;
   Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
   beq = [84 62 65 1];
   ```

2. Set up your problem in the Optimization app to match the following figures.
Set Mesh Options

Problem Setup and Results

Solver: patternsearch - Pattern Search

Problem
Objective function: @lincontest7
Start point: x0

Constraints:
Linear inequalities: A: Aineq b: bineq
Linear equalities: Aeq: Aeq beq: beq
Bounds: Lower: Upper:
Nonlinear constraint function:

Poll
Poll method: GSS Positive basis 2N
Complete poll: off
Polling order: Consecutive

Plot functions
Plot interval: 1

Best function value: Mesh size
Best point: Max constraint
Custom function:
3 Run the optimization.

The Optimization app displays the following plot.
To see the changes in mesh size more clearly, change the y-axis to logarithmic scaling as follows:

1. Select **Axes Properties** from the **Edit** menu in the plot window.
2. In the Properties Editor, select the **Y Axis** tab.
3. Set **Scale** to **Log**.

Updating these settings in the MATLAB Property Editor shows the plot in the following figure.
The first 5 iterations result in successful polls, so the mesh sizes increase steadily during this time. You can see that the first unsuccessful poll occurs at iteration 6 by looking at the command-line display:

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2273.76</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2251.69</td>
<td>2</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2209.86</td>
<td>4</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2135.43</td>
<td>8</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2023.48</td>
<td>16</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1947.23</td>
<td>32</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>1947.23</td>
<td>16</td>
<td>Refine Mesh</td>
</tr>
</tbody>
</table>

Note that at iteration 5, which is successful, the mesh size doubles for the next iteration. But at iteration 6, which is unsuccessful, the mesh size is multiplied 0.5.

To see how Expansion factor and Contraction factor affect the pattern search, make the following changes:

- Set Expansion factor to 3.0.
• Set **Contraction factor** to 2/3.

Then click **Start**. The **Run solver and view results** pane shows that the final point is approximately the same as with the default settings of **Expansion factor** and **Contraction factor**, but that the pattern search takes longer to reach that point.
When you change the scaling of the y-axis to logarithmic, the mesh size plot appears as shown in the following figure.
Note that the mesh size increases faster with Expansion factor set to 3.0, as compared with the default value of 2.0, and decreases more slowly with Contraction factor set to 0.75, as compared with the default value of 0.5.

Mesh Accelerator

The mesh accelerator can make a pattern search converge faster to an optimal point by reducing the number of iterations required to reach the mesh tolerance. When the mesh size is below a certain value, the pattern search contracts the mesh size by a factor smaller than the Contraction factor factor. Mesh accelerator applies only to the GPS and GSS algorithms.

Note For best results, use the mesh accelerator for problems in which the objective function is not too steep near the optimal point, or you might lose some accuracy. For differentiable problems, this means that the absolute value of the derivative is not too large near the solution.
To use the mesh accelerator, set **Accelerator** to **On** in the **Mesh** options. Or, at the command line, set the **MeshAccelerator** option to ‘**on**’.

For example, set up the problem described in “Linearly Constrained Problem” on page 4-69 as follows:

1. Enter the following at the command line:

   ```
   x0  = [2 1 0 9 1 0];
   Aineq = [-8 7 3 -4 9 0];
   bineq = 7;
   Aeq  = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
   beq  = [84 62 65 1];
   ```

2. Set up your problem in the Optimization app to match the following figures.

![Problem Setup and Results](image)
3 Run the optimization.

The number of iterations required to reach the mesh tolerance is 78, as compared with 84 when Accelerator is set to Off.

You can see the effect of the mesh accelerator by setting Level of display to Iterative in Display to command window. Run the example with Accelerator set to On, and then run it again with Accelerator set to Off. The mesh sizes are the same until iteration 70, but differ at iteration 71. The MATLAB Command Window displays the following lines for iterations 70 and 71 with Accelerator set to Off.

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>618</td>
<td>1919.54</td>
<td>6.104e-05</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>71</td>
<td>630</td>
<td>1919.54</td>
<td>3.052e-05</td>
<td>Refine Mesh</td>
</tr>
</tbody>
</table>

Note that the mesh size is multiplied by 0.5, the default value of Contraction factor.

For comparison, the Command Window displays the following lines for the same iteration numbers with Accelerator set to On.

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4-67
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>618</td>
<td>1919.54</td>
<td>6.104e-05</td>
<td>Refine Mesh</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>630</td>
<td>1919.54</td>
<td>1.526e-05</td>
<td>Refine Mesh</td>
<td></td>
</tr>
</tbody>
</table>

In this case the mesh size is multiplied by 0.25.
Constrained Minimization Using patternsearch

In this section...

“Linearly Constrained Problem” on page 4-69
“Nonlinearly Constrained Problem” on page 4-72

Linearly Constrained Problem

Problem Description

This section presents an example of performing a pattern search on a constrained minimization problem. The example minimizes the function

\[
F(x) = \frac{1}{2} x^T H x + f^T x,
\]

where

\[
H = \begin{bmatrix}
36 & 17 & 19 & 12 & 8 & 15 \\
17 & 33 & 18 & 11 & 7 & 14 \\
19 & 18 & 43 & 13 & 8 & 16 \\
12 & 11 & 13 & 18 & 6 & 11 \\
8 & 7 & 8 & 6 & 9 & 8 \\
15 & 14 & 16 & 11 & 8 & 29 \\
\end{bmatrix},
\]

\[
f = \begin{bmatrix}
20 & 15 & 21 & 18 & 29 & 24 \\
\end{bmatrix},
\]

subject to the constraints

\[
A \cdot x \leq b,
\]

\[
A_{eq} \cdot x = beq,
\]

where
Performing a Pattern Search on the Example

To perform a pattern search on the example, first enter

```
optimtool('patternsearch')
```

to open the Optimization app, or enter `optimtool` and then choose `patternsearch` from the **Solver** menu. Then type the following function in the **Objective function** field:

```
@lincontest7
```

`lincontest7` is a file included in Global Optimization Toolbox software that computes the objective function for the example. Because the matrices and vectors defining the starting point and constraints are large, it is more convenient to set their values as variables in the MATLAB workspace first and then enter the variable names in the Optimization app. To do so, enter

```
x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 3];
beq = [84 62 65 1];
```

Then, enter the following in the Optimization app:

- Set **Start point** to `x0`.
- Set the following **Linear inequalities**:
 - Set `A` to `Aineq`.
 - Set `b` to `bineq`.
 - Set `Aeq` to `Aeq`.
 - Set `beq` to `beq`.
The following figure shows these settings in the Optimization app.

![Problem Setup and Results](image)

Since this is a linearly constrained problem, set the **Poll method** to **GSS Positive basis 2N**. For more information about the efficiency of the GSS search methods for linearly constrained problems, see “Compare the Efficiency of Poll Options” on page 4-51.

![Poll setup](image)

Then click **Start** to run the pattern search. When the search is finished, the results are displayed in **Run solver and view results** pane, as shown in the following figure.
Nonlinearly Constrained Problem

Suppose you want to minimize the simple objective function of two variables \(x_1\) and \(x_2\),

\[
\min_x f(x) = \left(4 - 2.1x_1^2 + x_1^{4/3}\right)x_1^2 + x_1x_2 + \left(-4 + 4x_2^2\right)x_2^2
\]

subject to the following nonlinear inequality constraints and bounds

\[
\begin{align*}
x_1x_2 + x_1 - x_2 + 1.5 & \leq 0 \quad \text{(nonlinear constraint)} \\
10 - x_1x_2 & \leq 0 \quad \text{(nonlinear constraint)} \\
0 & \leq x_1 \leq 1 \quad \text{(bound)} \\
0 & \leq x_2 \leq 13 \quad \text{(bound)}
\end{align*}
\]

Begin by creating the objective and constraint functions. First, create a file named simple_objective.m as follows:

```matlab
function y = simple_objective(x)
    y = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 + 4*x(2)^2)*x(2)^2;
```
The pattern search solver assumes the objective function will take one input x where x has as many elements as number of variables in the problem. The objective function computes the value of the function and returns that scalar value in its one return argument y.

Then create a file named `simple_constraint.m` containing the constraints:

```matlab
function [c, ceq] = simple_constraint(x)
c = [1.5 + x(1)*x(2) + x(1) - x(2);
- x(1)*x(2) + 10];
ceq = [];
```

The pattern search solver assumes the constraint function will take one input x, where x has as many elements as the number of variables in the problem. The constraint function computes the values of all the inequality and equality constraints and returns two vectors, c and ceq, respectively.

Next, to minimize the objective function using the `patternsearch` function, you need to pass in a function handle to the objective function as well as specifying a start point as the second argument. Lower and upper bounds are provided as LB and UB respectively. In addition, you also need to pass a function handle to the nonlinear constraint function.

```matlab
ObjectiveFunction = @simple_objective;
X0 = [0 0];   % Starting point
LB = [0 0];   % Lower bound
UB = [1 13];  % Upper bound
ConstraintFunction = @simple_constraint;
[x,fval] = patternsearch(ObjectiveFunction,X0,[],[],[],[],LB,UB,ConstraintFunction)
```

Optimization terminated: mesh size less than options.TolMesh and constraint violation is less than options.TolCon.

```matlab
x =
    0.8122    12.3122
fval =
    9.1324e+004
```

Next, plot the results. Create an options structure using `psoptimset` that selects two plot functions. The first plot function `psplotbestf` plots the best objective function value at every iteration. The second plot function `psplotmaxconstr` plots the maximum constraint violation at every iteration.

Note: You can also visualize the progress of the algorithm by displaying information to the Command Window using the 'Display' option.
options = psoptimset('PlotFcns',{@psplotbestf,@psplotmaxconstr},'Display','iter');
[x,fval] = patternsearch(ObjectiveFunction,X0,[],[],[],[],LB,UB,ConstraintFunction,options);

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>constraint</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0.8919</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>113580</td>
<td>0</td>
<td>0.001</td>
<td>Increase penalty</td>
</tr>
<tr>
<td>2</td>
<td>105</td>
<td>91324</td>
<td>1.788e-07</td>
<td>1e-05</td>
<td>Increase penalty</td>
</tr>
<tr>
<td>3</td>
<td>192</td>
<td>91324</td>
<td>1.187e-11</td>
<td>1e-07</td>
<td>Increase penalty</td>
</tr>
</tbody>
</table>

Optimization terminated: mesh size less than options.TolMesh and constraint violation is less than options.TolCon.

x =
0.8122 12.3122

fval =
9.1324e+004

Best Objective Function Value and Maximum Constraint Violation at Each Iteration
Use Cache

Typically, at any given iteration of a pattern search, some of the mesh points might coincide with mesh points at previous iterations. By default, the pattern search recomputes the objective function at these mesh points even though it has already computed their values and found that they are not optimal. If computing the objective function takes a long time—say, several minutes—this can make the pattern search run significantly longer.

You can eliminate these redundant computations by using a cache, that is, by storing a history of the points that the pattern search has already visited. To do so, set `Cache` to `On` in `Cache` options. At each poll, the pattern search checks to see whether the current mesh point is within a specified tolerance, `Tolerance`, of a point in the cache. If so, the search does not compute the objective function for that point, but uses the cached function value and moves on to the next point.

Note When `Cache` is set to `On`, the pattern search might fail to identify a point in the current mesh that improves the objective function because it is within the specified tolerance of a point in the cache. As a result, the pattern search might run for more iterations with `Cache` set to `On` than with `Cache` set to `Off`. It is generally a good idea to keep the value of `Tolerance` very small, especially for highly nonlinear objective functions.

For example, set up the problem described in “Linearly Constrained Problem” on page 4-69 as follows:

1. Enter the following at the command line:

   ```
   x0 = [2 1 0 9 1 0];
   Aineq = [-8 7 3 -4 9 0];
   bineq = 7;
   Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
   beq = [84 62 65 1];
   ```

2. Set up your problem in the Optimization app to match the following figures.
Using Direct Search

Problem Setup and Results

Solver: patternsearch - Pattern Search

Objective function: @lincontest7

Start point: x0

Constraints:
- Linear inequalities: A: Aineq, b: bineq
- Linear equalities: Aeq: Aeq, beq: beq
- Bounds: Lower: , Upper:
- Nonlinear constraint function:

Poll

- **Poll method:** GSS Positive basis 2N
- **Complete poll:** off
- **Polling order:** Consecutive

Cache

- **Cache:** off
3 Run the optimization.

After the pattern search finishes, the plots appear as shown in the following figure.
Note that the total function count is 758.

Now, set **Cache** to **On** and run the example again. This time, the plots appear as shown in the following figure.
This time, the total function count is reduced to 734.
Vectorize the Objective and Constraint Functions

In this section...

“Vectorize for Speed” on page 4-80
“Vectorized Objective Function” on page 4-80
“Vectorized Constraint Functions” on page 4-83
“Example of Vectorized Objective and Constraints” on page 4-83

Vectorize for Speed

Direct search often runs faster if you vectorize the objective and nonlinear constraint functions. This means your functions evaluate all the points in a poll or search pattern at once, with one function call, without having to loop through the points one at a time. Therefore, the option Vectorized = 'on' works only when CompletePoll or CompleteSearch is also set to 'on'. However, when you set Vectorized = 'on', patternsearch checks that the objective and any nonlinear constraint functions give outputs of the correct shape for vectorized calculations, regardless of the setting of the CompletePoll or CompleteSearch options.

If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be vectorized in order for the algorithm to compute in a vectorized manner.

Note: Write your vectorized objective function or nonlinear constraint function to accept a matrix with an arbitrary number of points. patternsearch sometimes evaluates a single point even during a vectorized calculation.

Vectorized Objective Function

A vectorized objective function accepts a matrix as input and generates a vector of function values, where each function value corresponds to one row or column of the input matrix. patternsearch resolves the ambiguity in whether the rows or columns of the matrix represent the points of a pattern as follows. Suppose the input matrix has \(m \) rows and \(n \) columns:

- If the initial point \(x_0 \) is a column vector of size \(m \), the objective function takes each column of the matrix as a point in the pattern and returns a row vector of size \(n \).
• If the initial point x_0 is a row vector of size n, the objective function takes each row of the matrix as a point in the pattern and returns a column vector of size m.

• If the initial point x_0 is a scalar, `patternsearch` assumes that x_0 is a row vector. Therefore, the input matrix has one column ($n = 1$, the input matrix is a vector), and each entry of the matrix represents one row for the objective function to evaluate. The output of the objective function in this case is a column vector of size m.

Pictorially, the matrix and calculation are represented by the following figure.

Structure of Vectorized Functions

For example, suppose the objective function is
If the initial vector \mathbf{x}_0 is a column vector, such as $[0;0]$, a function for vectorized evaluation is

```matlab
function f = vectorizedc(x)

f = x(1,:).^4+x(2,:).^4-4*x(1,:).^2-2*x(2,:).^2 ... 
+3*x(1,:)-.5*x(2,:);
```

If the initial vector \mathbf{x}_0 is a row vector, such as $[0,0]$, a function for vectorized evaluation is

```matlab
function f = vectorizedr(x)

f = x(:,1).^4+x(:,2).^4-4*x(:,1).^2-2*x(:,2).^2 ... 
+3*x(:,1)-.5*x(:,2);
```

Tip If you want to use the same objective (fitness) function for both pattern search and genetic algorithm, write your function to have the points represented by row vectors, and write \mathbf{x}_0 as a row vector. The genetic algorithm always takes individuals as the rows of a matrix. This was a design decision—the genetic algorithm does not require a user-supplied population, so needs to have a default format.

To minimize `vectorizedc`, enter the following commands:

```matlab
options=psoptimset('Vectorized','on','CompletePoll','on');
x0=[0;0];
[x fval]=patternsearch(@vectorizedc,x0,...
    [],[],[],[],[],[],[],options)
```

MATLAB returns the following output:

Optimization terminated: mesh size less than options.TolMesh.

```matlab
x =
   -1.5737
    1.0575

fval =
   -10.0088
```
Vectorized Constraint Functions

Only nonlinear constraints need to be vectorized; bounds and linear constraints are handled automatically. If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be vectorized in order for the algorithm to compute in a vectorized manner.

The same considerations hold for constraint functions as for objective functions: the initial point \(x_0 \) determines the type of points (row or column vectors) in the poll or search. If the initial point is a row vector of size \(k \), the matrix \(x \) passed to the constraint function has \(k \) columns. Similarly, if the initial point is a column vector of size \(k \), the matrix of poll or search points has \(k \) rows. The figure Structure of Vectorized Functions may make this clear. If the initial point is a scalar, \texttt{patternsearch} assumes that it is a row vector.

Your nonlinear constraint function returns two matrices, one for inequality constraints, and one for equality constraints. Suppose there are \(n_c \) nonlinear inequality constraints and \(n_{ceq} \) nonlinear equality constraints. For row vector \(x_0 \), the constraint matrices have \(n_c \) and \(n_{ceq} \) columns respectively, and the number of rows is the same as in the input matrix. Similarly, for a column vector \(x_0 \), the constraint matrices have \(n_c \) and \(n_{ceq} \) rows respectively, and the number of columns is the same as in the input matrix. In figure Structure of Vectorized Functions, “Results” includes both \(n_c \) and \(n_{ceq} \).

Example of Vectorized Objective and Constraints

Suppose that the nonlinear constraints are

\[
\frac{x_1^2}{9} + \frac{x_2^2}{4} \leq 1 \text{ (the interior of an ellipse)},
\]

\[
x_2 \geq \cosh(x_1) - 1.
\]

Write a function for these constraints for row-form \(x_0 \) as follows:

```matlab
function [c ceq] = ellipsecosh(x)
    c(:,1)=x(:,1).^2/9+x(:,2).^2/4-1;
    c(:,2)=cosh(x(:,1))-x(:,2)-1;
    ceq=[];
```

Minimize \(\text{vectorizedr} \) (defined in “Vectorized Objective Function” on page 4-80) subject to the constraints \(\text{ellipsecosh} \):

\[
x_0 = [0,0];
\]
\[
\text{options} = \text{psoptimset}('\text{Vectorized}', 'on', '\text{CompletePoll}', 'on');
\]
\[
[x \ fval] = \text{patternsearch}(\text{@vectorizedr}, x_0, \ldots
\]
\[
\ldots[][],[],[],[],[],[],[],\ldots\text{@ellipsecosh}, \text{options})
\]
MATLAB returns the following output:

Optimization terminated: mesh size less than \(\text{options.TolMesh} \) and constraint violation is less than \(\text{options.TolCon} \).

\[
x = \\
-1.3516 \quad 1.0612
\]

\[
fval = \\
-9.5394
\]
Optimize an ODE in Parallel

This example shows how to optimize parameters of an ODE.

It also shows how to avoid computing the objective and nonlinear constraint function twice when the ODE solution returns both. The example compares patternsearch and ga in terms of time to run the solver and the quality of the solutions.

You need a Parallel Computing Toolbox license to use parallel computing.

Step 1. Define the problem.

The problem is to change the position and angle of a cannon to fire a projectile as far as possible beyond a wall. The cannon has a muzzle velocity of 300 m/s. The wall is 20 m high. If the cannon is too close to the wall, it has to fire at too steep an angle, and the projectile does not travel far enough. If the cannon is too far from the wall, the projectile does not travel far enough either.

Air resistance slows the projectile. The resisting force is proportional to the square of the velocity, with proportionality constant 0.02. Gravity acts on the projectile, accelerating it downward with constant 9.81 m/s\(^2\). Therefore, the equations of motion for the trajectory \(x(t) \) are

\[
\frac{d^2 x(t)}{dt^2} = -0.02 \|v(t)\| \, v(t) - (0, 9.81),
\]

where \(v(t) = \frac{dx(t)}{dt} \).

The initial position \(x_0 \) and initial velocity \(x_{p0} \) are 2-D vectors. However, the initial height \(x_0(2) \) is 0, so the initial position depends only on the scalar \(x_0(1) \). And the initial velocity \(x_{p0} \) has magnitude 300 (the muzzle velocity), so depends only on the initial angle, a scalar. For an initial angle \(\theta \), \(x_{p0} = 300 \left(\cos(\theta), \sin(\theta) \right) \).

Therefore, the optimization problem depends only on two scalars, so it is a 2-D problem. Use the horizontal distance and the angle as the decision variables.

Step 2. Formulate the ODE model.

ODE solvers require you to formulate your model as a first-order system. Augment the trajectory vector \((x_1(t), x_2(t)) \) with its time derivative \((x'_1(t), x'_2(t)) \) to form a 4-D trajectory vector. In terms of this augmented vector, the differential equation becomes
\[
\frac{d}{dt} x(t) = \begin{bmatrix}
 x_3(t) \\
 x_4(t) \\
 -0.02 \left\| (x_3(t), x_4(t)) \right\| x_3(t) \\
 -0.02 \left\| (x_3(t), x_4(t)) \right\| x_4(t) - 9.81
\end{bmatrix}.
\]

Write the differential equation as a function file, and save it on your MATLAB path.

```matlab
function f = cannonfodder(t,x)
    f = [x(3);x(4);x(3);x(4)]; % initial, gets f(1) and f(2) correct
    nrm = norm(x(3:4)) * .02; % norm of the velocity times constant
    f(3) = -x(3)*nrm; % horizontal acceleration
    f(4) = -x(4)*nrm - 9.81; % vertical acceleration
```

Visualize the solution of the ODE starting 30 m from the wall at an angle of \(\pi/3\).
Code for generating the figure

```matlab
x0 = [-30;0;300*cos(pi/3);300*sin(pi/3)];
sol = ode45(@cannonfodder,[0,10],x0);
% Find the time when the projectile lands
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
t = linspace(0,zerofnd); % equal times for plot
xs = deval(sol,t,1); % interpolated x values
ys = deval(sol,t,2); % interpolated y values
plot(xs,ys)
hold on
plot([0,0],[0,20],'k') % Draw the wall
xlabel('Horizontal distance')
ylabel('Trajectory height')
```

The problem is to find initial position $x_0(1)$ and initial angle $x_0(2)$ to maximize the distance from the wall the projectile lands. Because this is a maximization problem, minimize the negative of the distance (see “Maximizing vs. Minimizing” on page 2-5).

To use patternsearch to solve this problem, you must provide the objective, constraint, initial guess, and options.

These two files are the objective and constraint functions. Copy them to a folder on your MATLAB path.

```matlab
function f = cannonobjective(x)
x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

sol = ode45(@cannonfodder,[0,15],x0);

% Find the time t when y_2(t) = 0
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
% Then find the x-position at that time
f = deval(sol,zerofnd,1);

f = -f; % take negative of distance for maximization
```

```matlab
function [c,ceq] = cannonconstraint(x)

ceq = [];
x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

sol = ode45(@cannonfodder,[0,15],x0);

if sol.y(1,end) <= 0 % projectile never reaches wall
    c = 20 - sol.y(2,end);
else
    % Find when the projectile crosses x = 0
    zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(2),sol.x(end)]);
    % Then find the height there, and subtract from 20
    c = 20 - deval(sol,zerofnd,2);
```

```
end

Notice that the objective and constraint functions set their input variable \( x_0 \) to a 4-D initial point for the ODE solver. The ODE solver does not stop if the projectile hits the wall. Instead, the constraint function simply becomes positive, indicating an infeasible initial value.

The initial position \( x_0(1) \) cannot be above 0, and it is futile to have it be below –200. (It should be near –20 because, with no air resistance, the longest trajectory would start at –20 at an angle \( \pi/4 \).) Similarly, the initial angle \( x_0(2) \) cannot be below 0, and cannot be above \( \pi/2 \). Set bounds slightly away from these initial values:

\[
\begin{align*}
    \text{lb} &= [-200;0.05]; \\
    \text{ub} &= [-1;\pi/2-.05]; \\
    \text{x0} &= [-30,\pi/3]; & \text{ initial guess}
\end{align*}
\]

Set the CompletePoll option to 'on'. This gives a higher-quality solution, and enables direct comparison with parallel processing, because computing in parallel requires this setting.

\[
\text{opts} = \text{psoptimset}('\text{CompletePoll}','\text{on}');
\]

Call \text{patternsearch} to solve the problem.

\[
\begin{align*}
    \text{tic} & \quad \text{time the solution} \\
    [\text{xsolution},\text{distance},\text{eflag},\text{outpt}] &= \text{patternsearch}(\text{@cannonobjective},\text{x0},... \\
    & \quad [],[],[],[],\text{lb},\text{ub},\text{@cannonconstraint},\text{opts}) \\
    \text{toc}
\end{align*}
\]

Optimization terminated: mesh size less than options.TolMesh and constraint violation is less than options.TolCon.

\[
\begin{align*}
    \text{xsolution} &= \ -28.8123 \quad 0.6095 \\
    \text{distance} &= \ -125.9880 \\
    \text{eflag} &= \ 1 \\
    \text{outpt} &= \begin{align*}
        \text{function: @cannonobjective}
    \end{align*}
\]
Using Direct Search

problemtype: 'nonlinearconstr'
pollmethod: 'gpspositivebasis2n'
maxconstraint: 0
searchmethod: []
iterations: 5
funcount: 269
meshsize: 8.9125e-07
rngstate: [1x1 struct]
message: 'Optimization terminated: mesh size less than options.TolMesh...'

Elapsed time is 3.174088 seconds.

Starting the projectile about 29 m from the wall at an angle 0.6095 radian results in the farthest distance, about 126 m. The reported distance is negative because the objective function is the negative of the distance to the wall.

Visualize the solution.

x0 = [xsolution(1);0;300*cos(xsolution(2));300*sin(xsolution(2))];
sol = ode45(@cannonfodder,[0,15],x0);
% Find the time when the projectile lands
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
t = linspace(0,zerofnd); % equal times for plot
xs = deval(sol,t,1); % interpolated x values
ys = deval(sol,t,2); % interpolated y values
plot(xs,ys)
hold on
plot([0,0],[0,20],'k') % Draw the wall
xlabel('Horizontal distance')
ylabel('Trajectory height')
legend('Trajectory','Wall','Location','NW')
ylim([0 70])
hold off
Step 4. Avoid calling the expensive subroutine twice.

Both the objective and nonlinear constraint function call the ODE solver to calculate their values. Use the technique in “Objective and Nonlinear Constraints in the Same Function” to avoid calling the solver twice. The `runcannon` file implements this technique. Copy this file to a folder on your MATLAB path.

```matlab
function [x,f,eflag,outpt] = runcannon(x0,opts)

if nargin == 1 % No options supplied
 opts = [];
end

xLast = []; % Last place ode solver was called
```

Trajectory height

Horizontal distance
sol = []; % ODE solution structure

fun = @objfun; % the objective function, nested below
cfun = @constr; % the constraint function, nested below

lb = [-200;0.05];
ub = [-1;pi/2-.05];

% Call patternsearch
[x,f,eflag,outpt] = patternsearch(fun,x0,[],[],[],[],lb,ub,cfun,opts);

function y = objfun(x)
    if ~isequal(x,xLast) % Check if computation is necessary
        x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
        sol = ode45(@cannonfodder,[0,15],x0);
        xLast = x;
    end
    % Now compute objective function
    % First find when the projectile hits the ground
    zeroofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
    % Then compute the x-position at that time
    y = deval(sol,zeroofnd,1);
    y = -y; % take negative of distance
end

function [c,ceq] = constr(x)
    ceq = [];
    if ~isequal(x,xLast) % Check if computation is necessary
        x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
        sol = ode45(@cannonfodder,[0,15],x0);
        xLast = x;
    end
    % Now compute constraint functions
    % First find when the projectile crosses x = 0
    zeroofnd = fzero(@(r)deval(sol,r,1),[sol.x(1),sol.x(end)]);
    % Then find the height there, and subtract from 20
    c = 20 - deval(sol,zeroofnd,2);
end

% Reinitialize the problem and time the call to runcannon.
x0 = [-30;pi/3];
tic
Optimize an ODE in Parallel

[xsolution,distance,eflag,outpt] = runcannon(x0,opts);
toc

Elapsed time is 2.610590 seconds.

The solver ran faster than before. If you examine the solution, you see that the output is identical.

**Step 5. Compute in parallel.**

Try to save more time by computing in parallel. Begin by opening a parallel pool of workers.

parpool

Starting parpool using the 'local' profile ... connected to 4 workers.

ans =

Pool with properties:

    Connected: true
    NumWorkers: 4
    Cluster: local
    AttachedFiles: {}
    IdleTimeout: 30 minute(s) (30 minutes remaining)
    SpmdEnabled: true

Set the options to use parallel computing, and rerun the solver.

opts = psoptimset(opts,'UseParallel',true);
x0 = [-30;pi/3];
tic
[xsolution,distance,eflag,outpt] = runcannon(x0,opts);
toc

Elapsed time is 3.917971 seconds.

In this case, parallel computing was slower. If you examine the solution, you see that the output is identical.

**Step 6. Compare with the genetic algorithm.**

You can also try to solve the problem using the genetic algorithm. However, the genetic algorithm is usually slower and less reliable.
The \texttt{runcannonga} file calls the genetic algorithm and avoids double evaluation of the ODE solver. It resembles \texttt{runcannon}, but calls \texttt{ga} instead of \texttt{patternsearch}, and also checks whether the trajectory reaches the wall. Copy this file to a folder on your MATLAB path.

\begin{verbatim}
function [x,f,eflag,outpt] = runcannonga(opts)

if nargin == 1 % No options supplied
    opts = [];
end

xLast = []; % Last place ode solver was called
sol = []; % ODE solution structure

fun = @objfun; % the objective function, nested below
cfun = @constr; % the constraint function, nested below

lb = [-200;0.05];
ub = [-1;pi/2-.05];

% Call ga
[x,f,eflag,outpt] = ga(fun,2,[],[],[],lb,ub,cfun,opts);

function y = objfun(x)
    if ~isequal(x,xLast) % Check if computation is necessary
        x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
        sol = ode45(@cannonfodder,[0,15],x0);
        xLast = x;
    end
    % Now compute objective function
    % First find when the projectile hits the ground
    zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
    % Then compute the x-position at that time
    y = deval(sol,zerofnd,1);
    y = -y; % take negative of distance
end

function [c,ceq] = constr(x)
    ceq = [];
    if ~isequal(x,xLast) % Check if computation is necessary
        x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
        sol = ode45(@cannonfodder,[0,15],x0);
        xLast = x;
    end
end
\end{verbatim}
% Now compute constraint functions
if sol.y(1,end) <= 0 % projectile never reaches wall
    c = 20 - sol.y(2,end);
else
    % Find when the projectile crosses x = 0
    zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(2),sol.x(end)]);
    % Then find the height there, and subtract from 20
    c = 20 - deval(sol,zerofnd,2);
end
end

Call runcannonga in parallel.

opts = gaoptimset('UseParallel',true);
rng default % for reproducibility
tic
[xsolution,distance,eflag,outpt] = runcannonga(opts)
toc

Optimization terminated: average change in the fitness value less than options.TolFun and constraint violation is less than options.TolCon.

xsolution =
    -17.9172    0.8417

distance =
    -116.6263

eflag =
    1

outpt =
    problemtype: 'nonlinearconstr'
    rngstate: [1x1 struct]
    generations: 5
    funccount: 20212
    message: [1x140 char]
    maxconstraint: 0

Elapsed time is 119.630284 seconds.
The `ga` solution is not as good as the `patternsearch` solution: 117 m versus 126 m. `ga` took much more time: about 120 s versus under 5 s.

**Related Examples**
- “Objective and Nonlinear Constraints in the Same Function”

**More About**
- “Parallel Computing”
Using the Genetic Algorithm

• “What Is the Genetic Algorithm?” on page 5-2
• “Optimize Using ga” on page 5-3
• “Minimize Rastrigin's Function” on page 5-6
• “Genetic Algorithm Terminology” on page 5-15
• “How the Genetic Algorithm Works” on page 5-18
• “Mixed Integer Optimization” on page 5-27
• “Solving a Mixed Integer Engineering Design Problem Using the Genetic Algorithm” on page 5-37
• “Nonlinear Constraint Solver Algorithms” on page 5-49
• “Create Custom Plot Function” on page 5-52
• “Reproduce Results in Optimization App” on page 5-56
• “Resume ga” on page 5-57
• “Options and Outputs” on page 5-63
• “Use Exported Options and Problems” on page 5-67
• “Reproduce Results” on page 5-68
• “Run ga from a File” on page 5-70
• “Population Diversity” on page 5-73
• “Fitness Scaling” on page 5-84
• “Vary Mutation and Crossover” on page 5-88
• “Global vs. Local Minima Using ga” on page 5-97
• “Include a Hybrid Function” on page 5-104
• “Set Maximum Number of Generations” on page 5-108
• “Vectorize the Fitness Function” on page 5-110
• “Constrained Minimization Using ga” on page 5-112
What Is the Genetic Algorithm?

The genetic algorithm is a method for solving both constrained and unconstrained optimization problems that is based on natural selection, the process that drives biological evolution. The genetic algorithm repeatedly modifies a population of individual solutions. At each step, the genetic algorithm selects individuals at random from the current population to be parents and uses them to produce the children for the next generation. Over successive generations, the population "evolves" toward an optimal solution. You can apply the genetic algorithm to solve a variety of optimization problems that are not well suited for standard optimization algorithms, including problems in which the objective function is discontinuous, nondifferentiable, stochastic, or highly nonlinear. The genetic algorithm can address problems of mixed integer programming, where some components are restricted to be integer-valued.

The genetic algorithm uses three main types of rules at each step to create the next generation from the current population:

- *Selection rules* select the individuals, called parents, that contribute to the population at the next generation.
- *Crossover rules* combine two parents to form children for the next generation.
- *Mutation rules* apply random changes to individual parents to form children.

The genetic algorithm differs from a classical, derivative-based, optimization algorithm in two main ways, as summarized in the following table.

<table>
<thead>
<tr>
<th>Classical Algorithm</th>
<th>Genetic Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generates a single point at each iteration. The sequence of points approaches an optimal solution.</td>
<td>Generates a population of points at each iteration. The best point in the population approaches an optimal solution.</td>
</tr>
<tr>
<td>Selects the next point in the sequence by a deterministic computation.</td>
<td>Selects the next population by computation which uses random number generators.</td>
</tr>
</tbody>
</table>
Optimize Using ga

In this section...

“Calling the Function ga at the Command Line” on page 5-3
“Use the Optimization App” on page 5-3

Calling the Function ga at the Command Line

To use the genetic algorithm at the command line, call the genetic algorithm function ga with the syntax

\[ [x \ fval] = \text{ga}(@\text{fitnessfun}, \text{nvars}, \text{options}) \]

where

- @fitnessfun is a handle to the fitness function.
- nvars is the number of independent variables for the fitness function.
- options is a structure containing options for the genetic algorithm. If you do not pass in this argument, ga uses its default options.

The results are given by

- \( x \) — Point at which the final value is attained
- \( fval \) — Final value of the fitness function

For an example, see “Finding the Minimum from the Command Line” on page 5-10.

Using the function ga is convenient if you want to

- Return results directly to the MATLAB workspace
- Run the genetic algorithm multiple times with different options, by calling ga from a file

Use the Optimization App

To open the Optimization app, enter

\[ \text{optimtool('ga')} \]
at the command line, or enter `optimtool` and then choose `ga` from the **Solver** menu.
You can also start the tool from the MATLAB Apps tab.

To use the Optimization app, you must first enter the following information:

- **Fitness function** — The objective function you want to minimize. Enter the fitness function in the form `@fitnessfun`, where `fitnessfun.m` is a file that computes the fitness function. “Compute Objective Functions” on page 2-2 explains how write this file. The `@` sign creates a function handle to `fitnessfun`.

- **Number of variables** — The length of the input vector to the fitness function. For the function `my_fun` described in “Compute Objective Functions” on page 2-2, you would enter 2.

You can enter constraints or a nonlinear constraint function for the problem in the **Constraints** pane. If the problem is unconstrained, leave these fields blank.

To run the genetic algorithm, click the **Start** button. The tool displays the results of the optimization in the Run solver and view results pane.

You can change the options for the genetic algorithm in the **Options** pane. To view the options in one of the categories listed in the pane, click the + sign next to it.

For more information,

- See “Optimization App” in the Optimization Toolbox documentation.
- See “Minimize Rastrigin's Function” on page 5-6 for an example of using the tool.
Minimize Rastrigin's Function

In this section...

“Rastrigin's Function” on page 5-6
“Finding the Minimum of Rastrigin's Function” on page 5-8
“Finding the Minimum from the Command Line” on page 5-10
“Displaying Plots” on page 5-11

Rastrigin's Function

This section presents an example that shows how to find the minimum of Rastrigin's function, a function that is often used to test the genetic algorithm.

For two independent variables, Rastrigin's function is defined as

\[ Ras(x) = 20 + x_1^2 + x_2^2 - 10(\cos 2\pi x_1 + \cos 2\pi x_2) \]

Global Optimization Toolbox software contains the `rastriginsfcn.m` file, which computes the values of Rastrigin's function. The following figure shows a plot of Rastrigin's function.
As the plot shows, Rastrigin's function has many local minima—the “valleys” in the plot. However, the function has just one global minimum, which occurs at the point [0 0] in the x-y plane, as indicated by the vertical line in the plot, where the value of the function is 0. At any local minimum other than [0 0], the value of Rastrigin's function is greater than 0. The farther the local minimum is from the origin, the larger the value of the function is at that point.

Rastrigin's function is often used to test the genetic algorithm, because its many local minima make it difficult for standard, gradient-based methods to find the global minimum.

The following contour plot of Rastrigin's function shows the alternating maxima and minima.
Finding the Minimum of Rastrigin's Function

This section explains how to find the minimum of Rastrigin's function using the genetic algorithm.

**Note** Because the genetic algorithm uses random number generators, the algorithm returns slightly different results each time you run it.

To find the minimum, do the following steps:

1. Enter `optimtool('ga')` at the command line to open the Optimization app.
2. Enter the following in the Optimization app:
   - In the **Fitness function** field, enter `@rastrignsfcn`.
• In the **Number of variables** field, enter 2, the number of independent variables for Rastrigin's function.

The **Fitness function** and **Number of variables** fields should appear as shown in the following figure.

![Fitness function and Number of variables](image)

3. Click the **Start** button in the **Run solver and view results** pane, as shown in the following figure.

![Run solver and view results](image)

While the algorithm is running, the **Current iteration** field displays the number of the current generation. You can temporarily pause the algorithm by clicking the **Pause** button. When you do so, the button name changes to **Resume**. To resume the algorithm from the point at which you paused it, click **Resume**.

When the algorithm is finished, the **Run solver and view results** pane appears as shown in the following figure. Your numerical results might differ from those in the figure, since **ga** is stochastic.
Using the Genetic Algorithm

The display shows:

- The final value of the fitness function when the algorithm terminated:

  \[
  \text{Objective function value: 5.550533778020394E-4}
  \]

  Note that the value shown is very close to the actual minimum value of Rastrigin's function, which is 0. “Setting the Initial Range” on page 5-73, “Setting the Amount of Mutation” on page 5-88, and “Set Maximum Number of Generations” on page 5-108 describe some ways to get a result that is closer to the actual minimum.

- The reason the algorithm terminated.

  \[
  \text{Optimization terminated: maximum number of generations exceeded.}
  \]

- The final point, which in this example is \([-0.002 \ -0.001]\).

Finding the Minimum from the Command Line

To find the minimum of Rastrigin's function from the command line, enter

\[
\text{rng(1,'twister')} \quad \% \text{ for reproducibility}
\]
\[
[x \ fval \ exitflag] = \text{ga(@rastriginsfcn, 2)}
\]

This returns

\[
\text{Optimization terminated:}
\]
average change in the fitness value less than options.TolFun.

\[ x = \begin{bmatrix} -1.0421 \\ -1.0018 \end{bmatrix} \]

\[ fval = 2.4385 \]

\[ \text{exitflag} = 1 \]

• \( x \) is the final point returned by the algorithm.
• \( fval \) is the fitness function value at the final point.
• \( \text{exitflag} \) is integer value corresponding to the reason that the algorithm terminated.

**Note:** Because the genetic algorithm uses random number generators, the algorithm returns slightly different results each time you run it.

### Displaying Plots

The Optimization app **Plot functions** pane enables you to display various plots that provide information about the genetic algorithm while it is running. This information can help you change options to improve the performance of the algorithm. For example, to plot the best and mean values of the fitness function at each generation, select the box next to **Best fitness**, as shown in the following figure.
When you click **Start**, the Optimization app displays a plot of the best and mean values of the fitness function at each generation.

Try this on “Minimize Rastrigin's Function” on page 5-6:

When the algorithm stops, the plot appears as shown in the following figure.
The points at the bottom of the plot denote the best fitness values, while the points above them denote the averages of the fitness values in each generation. The plot also displays the best and mean values in the current generation numerically at the top.

To get a better picture of how much the best fitness values are decreasing, you can change the scaling of the y-axis in the plot to logarithmic scaling. To do so,

1. Select **Axes Properties** from the **Edit** menu in the plot window to open the Property Editor attached to your figure window as shown below.

   ![Property Editor](image)

2. Click the **Y Axis** tab.
3. In the **Y Scale** pane, select **Log**.

   The plot now appears as shown in the following figure.
Typically, the best fitness value improves rapidly in the early generations, when the individuals are farther from the optimum. The best fitness value improves more slowly in later generations, whose populations are closer to the optimal point.

**Note** When you display more than one plot, you can open a larger version of a plot in a separate window. Right-click (Ctrl-click for Mac) on a blank area in a plot while `ga` is running, or after it has stopped, and choose the sole menu item.

“Plot Options” on page 10-29 describes the types of plots you can create.
# Genetic Algorithm Terminology

In this section...

- “Fitness Functions” on page 5-15
- “Individuals” on page 5-15
- “Populations and Generations” on page 5-15
- “Diversity” on page 5-16
- “Fitness Values and Best Fitness Values” on page 5-16
- “Parents and Children” on page 5-17

## Fitness Functions

The *fitness function* is the function you want to optimize. For standard optimization algorithms, this is known as the objective function. The toolbox software tries to find the minimum of the fitness function.

Write the fitness function as a file or anonymous function, and pass it as a function handle input argument to the main genetic algorithm function.

## Individuals

An *individual* is any point to which you can apply the fitness function. The value of the fitness function for an individual is its score. For example, if the fitness function is

\[
f(x_1, x_2, x_3) = (2x_1 + 1)^2 + (3x_2 + 4)^2 + (x_3 - 2)^2,
\]

the vector \((2, -3, 1)\), whose length is the number of variables in the problem, is an individual. The score of the individual \((2, -3, 1)\) is \(f(2, -3, 1) = 51\).

An individual is sometimes referred to as a *genome* and the vector entries of an individual as *genes*.

## Populations and Generations

A *population* is an array of individuals. For example, if the size of the population is 100 and the number of variables in the fitness function is 3, you represent the population by
a 100-by-3 matrix. The same individual can appear more than once in the population. For example, the individual (2, -3, 1) can appear in more than one row of the array.

At each iteration, the genetic algorithm performs a series of computations on the current population to produce a new population. Each successive population is called a new generation.

**Diversity**

*Diversity* refers to the average distance between individuals in a population. A population has high diversity if the average distance is large; otherwise it has low diversity. In the following figure, the population on the left has high diversity, while the population on the right has low diversity.

Diversity is essential to the genetic algorithm because it enables the algorithm to search a larger region of the space.

**Fitness Values and Best Fitness Values**

The *fitness value* of an individual is the value of the fitness function for that individual. Because the toolbox software finds the minimum of the fitness function, the *best* fitness value for a population is the smallest fitness value for any individual in the population.
Parents and Children

To create the next generation, the genetic algorithm selects certain individuals in the current population, called *parents*, and uses them to create individuals in the next generation, called *children*. Typically, the algorithm is more likely to select parents that have better fitness values.
How the Genetic Algorithm Works

In this section...

“Outline of the Algorithm” on page 5-18
“Initial Population” on page 5-19
“Creating the Next Generation” on page 5-19
“Plots of Later Generations” on page 5-21
“Stopping Conditions for the Algorithm” on page 5-22
“Selection” on page 5-25
“Reproduction Options” on page 5-25
“Mutation and Crossover” on page 5-26

Outline of the Algorithm

The following outline summarizes how the genetic algorithm works:

1  The algorithm begins by creating a random initial population.
2  The algorithm then creates a sequence of new populations. At each step, the algorithm uses the individuals in the current generation to create the next population. To create the new population, the algorithm performs the following steps:
   a  Scores each member of the current population by computing its fitness value.
   b  Scales the raw fitness scores to convert them into a more usable range of values.
   c  Selects members, called parents, based on their fitness.
   d  Some of the individuals in the current population that have lower fitness are chosen as elite. These elite individuals are passed to the next population.
   e  Produces children from the parents. Children are produced either by making random changes to a single parent—mutation—or by combining the vector entries of a pair of parents—crossover.
   f  Replaces the current population with the children to form the next generation.
3  The algorithm stops when one of the stopping criteria is met. See “Stopping Conditions for the Algorithm” on page 5-22.
**Initial Population**

The algorithm begins by creating a random initial population, as shown in the following figure.

In this example, the initial population contains 20 individuals, which is the default value of **Population size** in the **Population** options. Note that all the individuals in the initial population lie in the upper-right quadrant of the picture, that is, their coordinates lie between 0 and 1, because the default value of **Initial range** in the **Population** options is [0; 1].

If you know approximately where the minimal point for a function lies, you should set **Initial range** so that the point lies near the middle of that range. For example, if you believe that the minimal point for Rastrigin's function is near the point [0 0], you could set **Initial range** to be [-1; 1]. However, as this example shows, the genetic algorithm can find the minimum even with a less than optimal choice for **Initial range**.

**Creating the Next Generation**

At each step, the genetic algorithm uses the current population to create the children that make up the next generation. The algorithm selects a group of individuals in the
current population, called *parents*, who contribute their *genes*—the entries of their vectors—to their children. The algorithm usually selects individuals that have better fitness values as parents. You can specify the function that the algorithm uses to select the parents in the **Selection function** field in the **Selection** options.

The genetic algorithm creates three types of children for the next generation:

- *Elite children* are the individuals in the current generation with the best fitness values. These individuals automatically survive to the next generation.
- *Crossover children* are created by combining the vectors of a pair of parents.
- *Mutation children* are created by introducing random changes, or mutations, to a single parent.

The following schematic diagram illustrates the three types of children.

```
Elite child
```

```
Crossover child
```

```
Mutation child
```

“Mutation and Crossover” on page 5-26 explains how to specify the number of children of each type that the algorithm generates and the functions it uses to perform crossover and mutation.

The following sections explain how the algorithm creates crossover and mutation children.

**Crossover Children**

The algorithm creates crossover children by combining pairs of parents in the current population. At each coordinate of the child vector, the default crossover function
randomly selects an entry, or gene, at the same coordinate from one of the two parents and assigns it to the child. For problems with linear constraints, the default crossover function creates the child as a random weighted average of the parents.

**Mutation Children**

The algorithm creates mutation children by randomly changing the genes of individual parents. By default, for unconstrained problems the algorithm adds a random vector from a Gaussian distribution to the parent. For bounded or linearly constrained problems, the child remains feasible.

The following figure shows the children of the initial population, that is, the population at the second generation, and indicates whether they are elite, crossover, or mutation children.

![Plots of Later Generations](image)

**Plots of Later Generations**

The following figure shows the populations at iterations 60, 80, 95, and 100.
As the number of generations increases, the individuals in the population get closer together and approach the minimum point \([0 \ 0]\).

**Stopping Conditions for the Algorithm**

The genetic algorithm uses the following conditions to determine when to stop:

- **Generations** — The algorithm stops when the number of generations reaches the value of *Generations*.
- **Time limit** — The algorithm stops after running for an amount of time in seconds equal to *Time limit*.
- **Fitness limit** — The algorithm stops when the value of the fitness function for the best point in the current population is less than or equal to *Fitness limit*.
- **Stall generations** — The algorithm stops when the average relative change in the fitness function value over *Stall generations* is less than *Function tolerance*.
- **Stall time limit** — The algorithm stops if there is no improvement in the objective function during an interval of time in seconds equal to **Stall time limit**.
- **Stall test** — The stall condition is either *average change* or *geometric weighted*. For *geometric weighted*, the weighting function is \(1/2^n\), where \(n\) is the number of generations prior to the current. Both stall conditions apply to the relative change in the fitness function over **Stall generations**.
- **Function Tolerance** — The algorithm runs until the average relative change in the fitness function value over **Stall generations** is less than **Function tolerance**.
- **Nonlinear constraint tolerance** — The **Nonlinear constraint tolerance** is not used as stopping criterion. It is used to determine the feasibility with respect to nonlinear constraints. Also, a point is feasible with respect to linear constraints when the constraint violation is below the square root of **Nonlinear constraint tolerance**.

The algorithm stops as soon as any one of these conditions is met. You can specify the values of these criteria in the **Stopping criteria** pane in the Optimization app. The default values are shown in the pane.
When you run the genetic algorithm, the **Run solver and view results** panel displays the criterion that caused the algorithm to stop.

The options **Stall time limit** and **Time limit** prevent the algorithm from running too long. If the algorithm stops due to one of these conditions, you might improve your results by increasing the values of **Stall time limit** and **Time limit**.
Selection

The selection function chooses parents for the next generation based on their scaled values from the fitness scaling function. An individual can be selected more than once as a parent, in which case it contributes its genes to more than one child. The default selection option, **Stochastic uniform**, lays out a line in which each parent corresponds to a section of the line of length proportional to its scaled value. The algorithm moves along the line in steps of equal size. At each step, the algorithm allocates a parent from the section it lands on.

A more deterministic selection option is **Remainder**, which performs two steps:

- In the first step, the function selects parents deterministically according to the integer part of the scaled value for each individual. For example, if an individual's scaled value is 2.3, the function selects that individual twice as a parent.
- In the second step, the selection function selects additional parents using the fractional parts of the scaled values, as in stochastic uniform selection. The function lays out a line in sections, whose lengths are proportional to the fractional part of the scaled value of the individuals, and moves along the line in equal steps to select the parents.

Note that if the fractional parts of the scaled values all equal 0, as can occur using **Top** scaling, the selection is entirely deterministic.

For details and more selection options, see “Selection Options” on page 10-37.

Reproduction Options

Reproduction options control how the genetic algorithm creates the next generation. The options are

- **Elite count** — The number of individuals with the best fitness values in the current generation that are guaranteed to survive to the next generation. These individuals are called *elite children*. The default value of **Elite count** is 2.

  When **Elite count** is at least 1, the best fitness value can only decrease from one generation to the next. This is what you want to happen, since the genetic algorithm minimizes the fitness function. Setting **Elite count** to a high value causes the fittest individuals to dominate the population, which can make the search less effective.

- **Crossover fraction** — The fraction of individuals in the next generation, other than elite children, that are created by crossover. “Setting the Crossover Fraction” on page
5-90 describes how the value of **Crossover fraction** affects the performance of the genetic algorithm.

### Mutation and Crossover

The genetic algorithm uses the individuals in the current generation to create the children that make up the next generation. Besides elite children, which correspond to the individuals in the current generation with the best fitness values, the algorithm creates

- Crossover children by selecting vector entries, or genes, from a pair of individuals in the current generation and combines them to form a child
- Mutation children by applying random changes to a single individual in the current generation to create a child

Both processes are essential to the genetic algorithm. Crossover enables the algorithm to extract the best genes from different individuals and recombine them into potentially superior children. Mutation adds to the diversity of a population and thereby increases the likelihood that the algorithm will generate individuals with better fitness values.

See “Creating the Next Generation” on page 5-19 for an example of how the genetic algorithm applies mutation and crossover.

You can specify how many of each type of children the algorithm creates as follows:

- **Elite count**, in Reproduction options, specifies the number of elite children.
- **Crossover fraction**, in Reproduction options, specifies the fraction of the population, other than elite children, that are crossover children.

For example, if the **Population size** is 20, the **Elite count** is 2, and the **Crossover fraction** is 0.8, the numbers of each type of children in the next generation are as follows:

- There are two elite children.
- There are 18 individuals other than elite children, so the algorithm rounds 0.8*18 = 14.4 to 14 to get the number of crossover children.
- The remaining four individuals, other than elite children, are mutation children.
Mixed Integer Optimization

In this section...

“Solving Mixed Integer Optimization Problems” on page 5-27
“Characteristics of the Integer ga Solver” on page 5-29
“Integer ga Algorithm” on page 5-35

Solving Mixed Integer Optimization Problems

gp can solve problems when certain variables are integer-valued. Give PntCon, a vector of the x components that are integers:

\[ [x, fval, exitflag] = ga(fitnessfcn, nvars, A, b, [], [], ... \]
\[ lb, ub, nonlcon, IntCon, options) \]

IntCon is a vector of positive integers that contains the x components that are integer-valued. For example, if you want to restrict x(2) and x(10) to be integers, set IntCon to [2, 10].

Note: Restrictions exist on the types of problems that gp can solve with integer variables. In particular, gp does not accept any equality constraints when there are integer variables. For details, see “Characteristics of the Integer gp Solver” on page 5-29.

Tip gp solves integer problems best when you provide lower and upper bounds for every x component.

Mixed Integer Optimization of Rastrigin's Function

This example shows how to find the minimum of Rastrigin's function restricted so the first component of x is an integer. The components of x are further restricted to be in the region \( 5\pi \leq x(1) \leq 20\pi, \ -20\pi \leq x(2) \leq -4\pi \).

Set up the bounds for your problem

\[ lb = [5*pi, -20*pi]; \]
\[ ub = [20*pi, -4*pi]; \]
Set a plot function so you can view the progress of ga

```matlab
opts = gaoptimset('PlotFcns', @gaplotbestf);
```

Call the ga solver where x(1) has integer values

```matlab
rng(1,'twister') % for reproducibility
IntCon = 1;
[x,fval,exitflag] = ga(@rastriginsfcn,2,[],[],[],[],...
 1b,ub,[],IntCon,opts)
```

Optimization terminated: average change in the penalty fitness value less than options.TolFun
and constraint violation is less than options.TolCon.

```matlab
x =

 16.0000 -12.9325
```

```matlab
fval =

 424.1355
```

```matlab
exitflag =

 1
```
ga converges quickly to the solution.

**Characteristics of the Integer ga Solver**

There are some restrictions on the types of problems that ga can solve when you include integer constraints:

- No linear equality constraints. You must have \( A_{eq} = [] \) and \( b_{eq} = [] \). For a possible workaround, see “No Equality Constraints” on page 5-30.
- No nonlinear equality constraints. Any nonlinear constraint function must return \([\)]\) for the nonlinear equality constraint. For a possible workaround, see “Example: Integer Programming with a Nonlinear Equality Constraint” on page 5-30.
• Only doubleVector population type.
• No custom creation function (CreationFcn option), crossover function (CrossoverFcn option), mutation function (MutationFcn option), or initial scores (InitialScores option). If you supply any of these, ga overrides their settings.
• ga uses only the binary tournament selection function (SelectionFcn option), and overrides any other setting.
• No hybrid function. ga overrides any setting of the HybridFcn option.
• ga ignores the ParetoFraction, DistanceMeasureFcn, InitialPenalty, and PenaltyFactor options.

The listed restrictions are mainly natural, not arbitrary. For example:

• There are no hybrid functions that support integer constraints. So ga does not use hybrid functions when there are integer constraints.
• To obtain integer variables, ga uses special creation, crossover, and mutation functions.

**No Equality Constraints**

You cannot use equality constraints and integer constraints in the same problem. You can try to work around this restriction by including two inequality constraints for each linear equality constraint. For example, to try to include the constraint

\[ 3x_1 - 2x_2 = 5, \]

create two inequality constraints:

\[ 3x_1 - 2x_2 \leq 5 \]
\[ 3x_1 - 2x_2 \geq 5. \]

To write these constraints in the form \( A x \leq b \), multiply the second inequality by \(-1\):

\[ -3x_1 + 2x_2 \leq -5. \]

You can try to include the equality constraint using \( A = [3, -2; -3, 2] \) and \( b = [5; -5] \).

Be aware that this procedure can fail; ga has difficulty with simultaneous integer and equality constraints.

**Example: Integer Programming with a Nonlinear Equality Constraint**

This example attempts to locate the minimum of the Ackley function in five dimensions with these constraints:

• \( x(1), x(3), \) and \( x(5) \) are integers.
The Ackley function, described briefly in “Resuming ga From the Final Population” on page 5-57, is difficult to minimize. Adding integer and equality constraints increases the difficulty.

To include the nonlinear equality constraint, give a small tolerance tol that allows the norm of x to be within tol of 4. Without a tolerance, the nonlinear equality constraint is never satisfied, and the solver does not realize when it has a feasible solution.

1 Write the expression norm(x) = 4 as two “less than zero” inequalities:
   \[
   \begin{align*}
   \text{norm}(x) - 4 & \leq 0 \\
   -(\text{norm}(x) - 4) & \leq 0.
   \end{align*}
   \]

2 Allow a small tolerance in the inequalities:
   \[
   \begin{align*}
   \text{norm}(x) - 4 - \text{tol} & \leq 0 \\
   -(\text{norm}(x) - 4) - \text{tol} & \leq 0.
   \end{align*}
   \]

3 Write a nonlinear inequality constraint function that implements these inequalities:

   function [c, ceq] = eqCon(x)
   ceq = [];
   rad = 4;
   tol = 1e-3;
   confcnval = norm(x) - rad;
   c = [confcnval - tol; -confcnval - tol];

4 Set options:

   • StallGenLimit = 50 — Allow the solver to try for a while.
   • TolFun = 1e-10 — Specify a stricter stopping criterion than usual.
   • Generations = 300 — Allow more generations than default.
   • PlotFcns = @gaplotbestfun — Observe the optimization.

   opts = gaoptimset('StallGenLimit',50,'TolFun',1e-10,...
   'Generations',300,'PlotFcns',@gaplotbestfun);

5 Set lower and upper bounds to help the solver:

   nVar = 5;
   lb = -5*ones(1,nVar);
   ub = 5*ones(1,nVar);

6 Solve the problem:

   rng(1,'twister') % for reproducibility
Using the Genetic Algorithm

[x,fval,exitflag] = ga(@ackleyfcn,nVar,[],[],[],[],lb,ub,@eqCon,[1 3 5],opts);

Optimization terminated: stall generations limit exceeded and constraint violation is less than options.TolCon.

Examine the solution:

x,fval,exitflag,norm(x)

x =

-3.0000  0.8233  1.0000 -1.1503  2.0000
fval =
5.1119

exitflag =
3

ans =
4.0001

The odd x components are integers, as specified. The norm of x is 4, to within the given relative tolerance of $10^{-3}$.

Despite the positive exit flag, the solution is not the global optimum. Run the problem again and examine the solution:

```matlab
opts = gaoptimset(opts,'Display','off');
[x2,fval2,exitflag2] = ga(@ackleyfcn,nVar,[],[],[],[],lb,ub,@eqCon,[1 3 5],opts);
```
Examine the second solution:

\[ x_2, f_{val2}, \text{exitflag2}, \text{norm}(x_2) \]

\[
x_2 =
\begin{bmatrix}
-1.0000 \\
-0.9959 \\
-2.0000 \\
0.9960 \\
3.0000
\end{bmatrix}
\]

\[
f_{val2} = 4.2359
\]
exitflag2 = 

    1

ans = 

    3.9980

The second run gives a better solution (lower fitness function value). Again, the odd \( x \) components are integers, and the norm of \( x_2 \) is 4, to within the given relative tolerance of \( 1e^{-3} \).

Be aware that this procedure can fail; \texttt{ga} has difficulty with simultaneous integer and equality constraints.

**Integer \texttt{ga} Algorithm**

Integer programming with \texttt{ga} involves several modifications of the basic algorithm (see “How the Genetic Algorithm Works” on page 5-18). For integer programming:

- Special creation, crossover, and mutation functions enforce variables to be integers. For details, see Deep et al. [2].
- The genetic algorithm attempts to minimize a penalty function, not the fitness function. The penalty function includes a term for infeasibility. This penalty function is combined with binary tournament selection to select individuals for subsequent generations. The penalty function value of a member of a population is:

  - If the member is feasible, the penalty function is the fitness function.
  - If the member is infeasible, the penalty function is the maximum fitness function among feasible members of the population, plus a sum of the constraint violations of the (infeasible) point.

For details of the penalty function, see Deb [1].

**References**

Solving a Mixed Integer Engineering Design Problem Using the Genetic Algorithm

This example shows how to solve a mixed integer engineering design problem using the Genetic Algorithm (ga) solver in Global Optimization Toolbox.

The problem illustrated in this example involves the design of a stepped cantilever beam. In particular, the beam must be able to carry a prescribed end load. We will solve a problem to minimize the beam volume subject to various engineering design constraints.

In this example we will solve two bounded versions of the problem published in [1].

**Stepped Cantilever Beam Design Problem**

A stepped cantilever beam is supported at one end and a load is applied at the free end, as shown in the figure below. The beam must be able to support the given load, $P$, at a fixed distance $L$ from the support. Designers of the beam can vary the width ($b_i$) and height ($h_i$) of each section. We will assume that each section of the cantilever has the same length, $l$. 


**Volume of the beam**

The volume of the beam, \( V \), is the sum of the volume of the individual sections

\[
V = l(b_1 h_1 + b_2 h_2 + b_3 h_3 + b_4 h_4 + b_5 h_5)
\]

**Constraints on the Design : 1 - Bending Stress**

Consider a single cantilever beam, with the centre of coordinates at the centre of its cross section at the free end of the beam. The bending stress at a point \((x, y, z)\) in the beam is given by the following equation

\[
\sigma_b = M(x)y/I
\]

where \( M(x) \) is the bending moment at \( x \), \( x \) is the distance from the end load and \( I \) is the area moment of inertia of the beam.
Now, in the stepped cantilever beam shown in the figure, the maximum moment of each section of the beam is \( PD_i \), where \( D_i \) is the maximum distance from the end load, \( P \), for each section of the beam. Therefore, the maximum stress for the \( i \)-th section of the beam, \( \sigma_i \), is given by

\[
\sigma_i = P D_i (h_i/2)/I_i
\]

where the maximum stress occurs at the edge of the beam, \( y = h_i/2 \). The area moment of inertia of the \( i \)-th section of the beam is given by

\[
I_i = b_i h_i^3/12
\]

Substituting this into the equation for \( \sigma_i \) gives

\[
\sigma_i = 6PD_i/b_i h_i^2
\]

The bending stress in each part of the cantilever should not exceed the maximum allowable stress, \( \sigma_{max} \). Consequently, we can finally state the five bending stress constraints (one for each step of the cantilever)

\[
\frac{6Pl}{b_5 h_5^2} \leq \sigma_{max}
\]

\[
\frac{6P(2l)}{b_4 h_4^2} \leq \sigma_{max}
\]

\[
\frac{6P(3l)}{b_3 h_3^2} \leq \sigma_{max}
\]

\[
\frac{6P(4l)}{b_2 h_2^2} \leq \sigma_{max}
\]

\[
\frac{6P(5l)}{b_1 h_1^2} \leq \sigma_{max}
\]
Constraints on the Design: 2 - End deflection

The end deflection of the cantilever can be calculated using Castigliano's second theorem, which states that

$$\delta = \frac{\partial U}{\partial P}$$

where $\delta$ is the deflection of the beam, $U$ is the energy stored in the beam due to the applied force, $P$.

The energy stored in a cantilever beam is given by

$$U = \int_{0}^{L} \frac{M^2}{2EI} \, dx$$

where $M$ is the moment of the applied force at $x$.

Given that $M = Px$ for a cantilever beam, we can write the above equation as

$$U = \frac{P^2}{2E} \int_{0}^{L} \left( \frac{(x + 4l)^2}{I_1} + \frac{(x + 3l)^2}{I_2} + \frac{(x + 2l)^2}{I_3} + \frac{(x + l)^2}{I_4} + \frac{x^2}{I_5} \right) \, dx$$

where $I_n$ is the area moment of inertia of the $n$-th part of the cantilever. Evaluating the integral gives the following expression for $U$.

$$U = \left( \frac{P^2}{2} \right) \frac{I^3}{3E} \left( \frac{61}{I_1} + \frac{37}{I_2} + \frac{19}{I_3} + \frac{7}{I_4} + \frac{1}{I_5} \right)$$

Applying Castigliano's theorem, the end deflection of the beam is given by

$$\delta = \frac{Pl^3}{3E} \left( \frac{61}{I_1} + \frac{37}{I_2} + \frac{19}{I_3} + \frac{7}{I_4} + \frac{1}{I_5} \right)$$

Now, the end deflection of the cantilever, $\delta$, should be less than the maximum allowable deflection, $\delta_{\text{max}}$, which gives us the following constraint.

$$\frac{Pl^3}{3E} \left( \frac{61}{I_1} + \frac{37}{I_2} + \frac{19}{I_3} + \frac{7}{I_4} + \frac{1}{I_5} \right) \leq \delta_{\text{max}}$$
**Constraints on the Design : 3 - Aspect ratio**

For each step of the cantilever, the aspect ratio must not exceed a maximum allowable aspect ratio, $a_{max}$. That is,

$$h_i/b_i \leq a_{max} \text{ for } i = 1, \ldots, 5$$

**State the Optimization Problem**

We are now able to state the problem to find the optimal parameters for the stepped cantilever beam given the stated constraints.

Let $x_1 = b_1, x_2 = h_1, x_3 = b_2, x_4 = h_2, x_5 = b_3, x_6 = h_3, x_7 = b_4, x_8 = h_4, x_9 = b_5$ and $x_{10} = h_5$

Minimize:

$$V = l(x_1x_2 + x_3x_4 + x_5x_6 + x_7x_8 + x_9x_{10})$$

Subject to:

$$\frac{6Pl}{x_9x_{10}^2} \leq \sigma_{max}$$

$$\frac{6P(2l)}{x_7x_8^2} \leq \sigma_{max}$$

$$\frac{6P(3l)}{x_5x_6^2} \leq \sigma_{max}$$

$$\frac{6P(4l)}{x_3x_4^2} \leq \sigma_{max}$$

$$\frac{6P(5l)}{x_1x_2^2} \leq \sigma_{max}$$
Using the Genetic Algorithm

\[
\frac{P l^3}{E} \left( \frac{244}{x_1 x_2^3} + \frac{148}{x_3 x_4^3} + \frac{76}{x_5 x_6^3} + \frac{28}{x_7 x_8^3} + \frac{4}{x_9 x_{10}^3} \right) \leq \delta_{max}
\]

\[
x_2/x_1 \leq 20, x_4/x_3 \leq 20, x_6/x_5 \leq 20, x_8/x_7 \leq 20 \text{ and } x_{10}/x_9 \leq 20
\]

The first step of the beam can only be machined to the nearest centimetre. That is, \(x_1\) and \(x_2\) must be integer. The remaining variables are continuous. The bounds on the variables are given below:

\[
1 \leq x_1 \leq 5
\]

\[
30 \leq x_2 \leq 65
\]

\[
2.4 \leq x_3, x_5 \leq 3.1
\]

\[
45 \leq x_4, x_6 \leq 60
\]

\[
1 \leq x_7, x_9 \leq 5
\]

\[
30 \leq x_8, x_{10} \leq 65
\]

Design Parameters for this Problem

For the problem we will solve in this example, the end load that the beam must support is \(P = 50000N\).

The beam lengths and maximum end deflection are:

- Total beam length, \(L = 500cm\)
- Individual section of beam, \(l = 100cm\)
- Maximum beam end deflection, \(\delta_{max} = 2.7cm\)

The maximum allowed stress in each step of the beam, \(\sigma_{max} = 14000N/cm^2\)

Young's modulus of each step of the beam, \(E = 2 \times 10^7N/cm^2\)
Solve the Mixed Integer Optimization Problem

We now solve the problem described in State the Optimization Problem.

Define the Fitness and Constraint Functions

Examine the MATLAB files cantileverVolume.m and cantileverConstraints.m to see how the fitness and constraint functions are implemented.

A note on the linear constraints: When linear constraints are specified to ga, you normally specify them via the A, b, Aeq and beq inputs. In this case we have specified them via the nonlinear constraint function. This is because later in this example, some of the variables will become discrete. When there are discrete variables in the problem it is far easier to specify linear constraints in the nonlinear constraint function. The alternative is to modify the linear constraint matrices to work in the transformed variable space, which is not trivial and maybe not possible. Also, in the mixed integer ga solver, the linear constraints are not treated any differently to the nonlinear constraints regardless of how they are specified.

Set the Bounds

Create vectors containing the lower bound (lb) and upper bound constraints (ub).

```matlab
lb = [1 30 2.4 45 2.4 45 1 30 1 30];
ub = [5 65 3.1 60 3.1 60 5 65 5 65];
```

Set the Options

To obtain a more accurate solution, we increase the PopulationSize, and Generations options from their default values, and decrease the EliteCount and TolFun options. These settings cause ga to use a larger population (increased PopulationSize), to increase the search of the design space (reduced EliteCount), and to keep going until its best member changes by very little (small TolFun). We also specify a plot function to monitor the penalty function value as ga progresses.

Note that there are a restricted set of ga options available when solving mixed integer problems - see Global Optimization Toolbox User's Guide for more details.

```matlab
opts = gaoptimset(...
 'PopulationSize', 150, ...
 'Generations', 200, ...
 'EliteCount', 10, ...
 'TolFun', 1e-8, ...
);
Call ga to Solve the Problem

We can now call ga to solve the problem. In the problem statement x_1 and x_2 are integer variables. We specify this by passing the index vector `[1 2]` to `ga` after the nonlinear constraint input and before the options input. We also seed and set the random number generator here for reproducibility.

```matlab
rng(0, 'twister');
[xbest, fbest, exitflag] = ga(@cantileverVolume, 10, [], [], [], [], ... lb, ub, @cantileverConstraints, [1 2], opts);
```

Optimization terminated: maximum number of generations exceeded.
Analyze the Results

If a problem has integer constraints, ga reformulates it internally. In particular, the fitness function in the problem is replaced by a penalty function which handles the constraints. For feasible population members, the penalty function is the same as the fitness function.

The solution returned from ga is displayed below. Note that the section nearest the support is constrained to have a width (x_1) and height (x_2) which is an integer value and this constraint has been honored by GA.

display(xbest);

xbest =

Columns 1 through 7
3.0000 60.0000 2.8326 56.6516 2.5725 51.4445 2.2126

Columns 8 through 10
44.2423 1.7512 34.9805

We can also ask ga to return the optimal volume of the beam.

fprintf('
Cost function returned by ga = %g
', fbest);

Cost function returned by ga = 63196.6

Add Discrete Non-Integer Variable Constraints

The engineers are now informed that the second and third steps of the cantilever can only have widths and heights that are chosen from a standard set. In this section, we show how to add this constraint to the optimization problem. Note that with the addition of this constraint, this problem is identical to that solved in [1].

First, we state the extra constraints that will be added to the above optimization

- The width of the second and third steps of the beam must be chosen from the following set: [2.4, 2.6, 2.8, 3.1] cm
• The height of the second and third steps of the beam must be chosen from the following set: [45, 50, 55, 60] cm

To solve this problem, we need to be able to specify the variables \(x_3, x_4, x_5 \) and \(x_6 \) as discrete variables. To specify a component \(x_j \) as taking discrete values from the set \(S = v_1, \ldots, v_k \), optimize with \(x_j \) an integer variable taking values from 1 to \(k \), and use \(S(x_j) \) as the discrete value. To specify the range (1 to \(k \)), set 1 as the lower bound and \(k \) as the upper bound.

So, first we transform the bounds on the discrete variables. Each set has 4 members and we will map the discrete variables to an integer in the range [1, 4]. So, to map these variables to be integer, we set the lower bound to 1 and the upper bound to 4 for each of the variables.

\[
lb = [1 \ 30 \ 1 \ 1 \ 1 \ 1 \ 30 \ 1 \ 30];
ub = [5 \ 65 \ 4 \ 4 \ 4 \ 4 \ 5 \ 65 \ 5 \ 65];
\]

Transformed (integer) versions of \(x_3, x_4, x_5 \) and \(x_6 \) will now be passed to the fitness and constraint functions when the \texttt{ga} solver is called. To evaluate these functions correctly, \(x_3, x_4, x_5 \) and \(x_6 \) need to be transformed to a member of the given discrete set in these functions. To see how this is done, examine the MATLAB files \texttt{cantileverVolumeWithDisc.m}, \texttt{cantileverConstraintsWithDisc.m} and \texttt{cantileverMapVariables.m}.

Now we can call \texttt{ga} to solve the problem with discrete variables. In this case \(x_1, \ldots, x_6 \) are integers. This means that we pass the index vector \(1:6 \) to \texttt{ga} to define the integer variables.

\[
\text{rng}(0, \ 'twister');
[xbestDisc, fbestDisc, exitflagDisc] = \text{ga}(@\text{cantileverVolumeWithDisc}, \ldots
10, [], [], [], [], [], lb, ub, @\text{cantileverConstraintsWithDisc}, 1:6, opts);
\]

Optimization terminated: maximum number of generations exceeded.
Analyze the Results

xbestDisc(3:6) are returned from ga as integers (i.e. in their transformed state). We need to reverse the transform to retrieve the value in their engineering units.

xbestDisc = cantileverMapVariables(xbestDisc);
display(xbestDisc);

xbestDisc =

Columns 1 through 7

 3.0000 60.0000 3.1000 55.0000 2.8000 50.0000 2.3036
As before, the solution returned from `ga` honors the constraint that x_1 and x_2 are integers. We can also see that x_3, x_5 are chosen from the set [2.4, 2.6, 2.8, 3.1] cm and x_4, x_6 are chosen from the set [45, 50, 55, 60] cm.

Recall that we have added additional constraints on the variables $x(3), x(4), x(5)$ and $x(6)$. As expected, when there are additional discrete constraints on these variables, the optimal solution has a higher minimum volume. Note further that the solution reported in [1] has a minimum volume of $64558 cm^3$ and that we find a solution which is approximately the same as that reported in [1].

```matlab
fprintf('Cost function returned by ga = %g\n', fbestDisc);
```

Cost function returned by ga = 65226.5

Summary

This example illustrates how to use the genetic algorithm solver, `ga`, to solve a constrained nonlinear optimization problem which has integer constraints. The example also shows how to handle problems that have discrete variables in the problem formulation.

References

Nonlinear Constraint Solver Algorithms

In this section...

“Augmented Lagrangian Genetic Algorithm” on page 5-49
“Penalty Algorithm” on page 5-51

Augmented Lagrangian Genetic Algorithm

By default, the genetic algorithm uses the Augmented Lagrangian Genetic Algorithm (ALGA) to solve nonlinear constraint problems without integer constraints. The optimization problem solved by the ALGA algorithm is

\[
\min_{x} f(x)
\]

such that

\[
\begin{align*}
 c_i(x) &\leq 0, \ i = 1 \ldots m \\
 ceq_i(x) &= 0, \ i = m + 1 \ldots mt \\
 A \cdot x &\leq b \\
 Aeq \cdot x &= beq \\
 lb &\leq x \leq ub,
\end{align*}
\]

where \(c(x)\) represents the nonlinear inequality constraints, \(ceq(x)\) represents the equality constraints, \(m\) is the number of nonlinear inequality constraints, and \(mt\) is the total number of nonlinear constraints.

The Augmented Lagrangian Genetic Algorithm (ALGA) attempts to solve a nonlinear optimization problem with nonlinear constraints, linear constraints, and bounds. In this approach, bounds and linear constraints are handled separately from nonlinear constraints. A subproblem is formulated by combining the fitness function and nonlinear constraint function using the Lagrangian and the penalty parameters. A sequence of such optimization problems are approximately minimized using the genetic algorithm such that the linear constraints and bounds are satisfied.

A subproblem formulation is defined as
\[\Theta(x, \lambda, s, \rho) = f(x) - \sum_{i=1}^{m} \lambda_i s_i \log(s_i - c_i(x)) + \sum_{i=m+1}^{mt} \lambda_i ceq_i(x) + \rho \frac{1}{2} \sum_{i=m+1}^{mt} ceq_i(x)^2, \]

where

- The components \(\lambda_i \) of the vector \(\lambda \) are nonnegative and are known as Lagrange multiplier estimates
- The elements \(s_i \) of the vector \(s \) are nonnegative shifts
- \(\rho \) is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter (InitialPenalty).

The genetic algorithm minimizes a sequence of subproblems, each of which is an approximation of the original problem. Each subproblem has a fixed value of \(\lambda, s, \) and \(\rho \). When the subproblem is minimized to a required accuracy and satisfies feasibility conditions, the Lagrangian estimates are updated. Otherwise, the penalty parameter is increased by a penalty factor (PenaltyFactor). This results in a new subproblem formulation and minimization problem. These steps are repeated until the stopping criteria are met.

Each subproblem solution represents one generation. The number of function evaluations per generation is therefore much higher when using nonlinear constraints than otherwise.

Choose the Augmented Lagrangian algorithm by setting the NonlinConAlgorithm option to 'auglag' using gaoptimset.

For a complete description of the algorithm, see the following references:

References

Penalty Algorithm

The penalty algorithm is similar to the “Integer ga Algorithm” on page 5-35. In its evaluation of the fitness of an individual, ga computes a penalty value as follows:

- If the individual is feasible, the penalty function is the fitness function.
- If the individual is infeasible, the penalty function is the maximum fitness function among feasible members of the population, plus a sum of the constraint violations of the (infeasible) individual.

For details of the penalty function, see Deb [1].

Choose the penalty algorithm by setting the NonlinConAlgorithm option to 'penalty' using gaoptimset. When you make this choice, ga solves the constrained optimization problem as follows.

1. ga defaults to the @gacreationnonlinearfeasible creation function. This function attempts to create a feasible population with respect to all constraints. ga creates enough individuals to match the PopulationSize option. For details, see “Penalty Algorithm” on page 10-48.

2. ga overrides your choice of selection function, and uses @selectiontournament with two individuals per tournament.

3. ga proceeds according to “How the Genetic Algorithm Works” on page 5-18, using the penalty function as the fitness measure.

References

Create Custom Plot Function

About Custom Plot Functions

If none of the plot functions that come with the software is suitable for the output you want to plot, you can write your own custom plot function, which the genetic algorithm calls at each generation to create the plot. This example shows how to create a plot function that displays the change in the best fitness value from the previous generation to the current generation.

Creating the Custom Plot Function

To create the plot function for this example, copy and paste the following code into a new file in the MATLAB Editor.

```matlab
function state = gaplotchange(options, state, flag)
    % GAPLOTCHANGE Plots the logarithmic change in the best score from the previous generation.
    %
    persistent last_best % Best score in the previous generation
    %
    if(strcmp(flag,'init')) % Set up the plot
        xlim([1,options.Generations]);
        axx = gca;
        axx.Yscale = 'log';
        hold on;
        xlabel Generation
        title('Log Absolute Change in Best Fitness Value')
    end

    best = min(state.Score); % Best score in the current generation
    if state.Generation == 0 % Set last_best to best.
        last_best = best;
    else
        % Calculate the change
        diff = best - last_best;
        % Scale the change
        diff = log10(diff);
        % Plot the change
        plot(state.Generation, diff);
    end

    last_best = best;
end
```

5-52
last_best = best;
else
 change = last_best - best; % Change in best score
 last_best = best;
 if change > 0 % Plot only when the fitness improves
 plot(state.Generation,change,'xr');
 end
end

Then save the file as gaplotchange.m in a folder on the MATLAB path.

Using the Plot Function

To use the custom plot function, select Custom in the Plot functions pane and enter @gaplotchange in the field to the right. To compare the custom plot with the best fitness value plot, also select Best fitness.

Now, if you run the example described in “Minimize Rastrigin's Function” on page 5-6, the tool displays plots similar to those shown in the following figure.
The plot only shows changes that are greater than 0, which are improvements in best fitness. The logarithmic scale enables you to see small changes in the best fitness function that the upper plot does not reveal.

How the Plot Function Works

The plot function uses information contained in the following structures, which the genetic algorithm passes to the function as input arguments:

- **options** — The current options settings
- **state** — Information about the current generation
- **flag** — String indicating the current status of the algorithm
The most important lines of the plot function are the following:

- **persistent last_best**

 Creates the persistent variable `last_best`—the best score in the previous generation. Persistent variables are preserved over multiple calls to the plot function.

- **`xlim([1,options.Generations]);`**

 `axx = gca;`

 `axx.Yscale = 'log';`

 Sets up the plot before the algorithm starts. `options.Generations` is the maximum number of generations.

- **`best = min(state.Score)`**

 The field `state.Score` contains the scores of all individuals in the current population. The variable `best` is the minimum score. For a complete description of the fields of the structure `state`, see “Structure of the Plot Functions” on page 10-31.

- **`change = last_best - best`**

 The variable `change` is the best score at the previous generation minus the best score in the current generation.

- **if `change > 0`**

 Plot only if there is a change in the best fitness.

- **`plot(state.Generation,change,'xr')`**

 Plots the change at the current generation, whose number is contained in `state.Generation`.

The code for `gaplotchange` contains many of the same elements as the code for `gaplotbestf`, the function that creates the best fitness plot.
Reproduce Results in Optimization App

To reproduce the results of the last run of the genetic algorithm, select the **Use random states from previous run** check box. This resets the states of the random number generators used by the algorithm to their previous values. If you do not change any other settings in the Optimization app, the next time you run the genetic algorithm, it returns the same results as the previous run.

Normally, you should leave **Use random states from previous run** unselected to get the benefit of randomness in the genetic algorithm. Select the **Use random states from previous run** check box if you want to analyze the results of that particular run or show the exact results to others. After the algorithm has run, you can clear your results using the **Clear Status** button in the **Run solver** settings.

Note: If you select **Include information needed to resume this run**, then selecting **Use random states from previous run** has no effect on the initial population created when you import the problem and run the genetic algorithm on it. The latter option is only intended to reproduce results from the beginning of a new run, not from a resumed run.
Resume ga

In this section...

“Resuming ga From the Final Population” on page 5-57
“Resuming ga From a Previous Run” on page 5-61

Resuming ga From the Final Population

The following example shows how export a problem so that when you import it and click Start, the genetic algorithm resumes from the final population saved with the exported problem. To run the example, enter the following in the Optimization app:

1. Set Fitness function to @ackleyfcn, which computes Ackley's function, a test function provided with the software.
2. Set Number of variables to 10.
3. Select Best fitness in the Plot functions pane.
4. Click Start.

This displays the following plot, or similar.
Suppose you want to experiment by running the genetic algorithm with other options settings, and then later restart this run from its final population with its current options settings. You can do this using the following steps:

1. Click **Export to Workspace**.
2. In the dialog box that appears,
 - Select **Export problem and options to a MATLAB structure named**.
 - Enter a name for the problem and options, such as `ackley_uniform`, in the text field.
 - Select **Include information needed to resume this run**.
The dialog box should now appear as in the following figure.

3 Click **OK**.

This exports the problem and options to a structure in the MATLAB workspace. You can view the structure in the MATLAB Command Window by entering

```matlab
ackley_uniform```

```matlab
ackley_uniform =
```

```matlab
 fitnessfcn: @ackleyfcn
 nvars: 10
 Aineq: []
 bineq: []
 Aeq: []
 beq: []
 lb: []
 ub: []
 nonlcon: []
 intcon: []
 rngstate: []
 solver: 'ga'
 options: [1x1 struct]
```

After running the genetic algorithm with different options settings or even a different fitness function, you can restore the problem as follows:
1. Select **Import Problem** from the **File** menu. This opens the dialog box shown in the following figure.

2. Select **ackley_uniform**.

3. Click **Import**.

This sets the **Initial population** and **Initial scores** fields in the **Population** panel to the final population of the run before you exported the problem. All other options are restored to their setting during that run. When you click **Start**, the genetic algorithm resumes from the saved final population. The following figure shows the best fitness plots from the original run and the restarted run.
Note If, after running the genetic algorithm with the imported problem, you want to restore the genetic algorithm's default behavior of generating a random initial population, delete the population in the Initial population field.

The version of Ackley's function in the toolbox differs from the published version of Ackley's function in Ackley [1]. The toolbox version has another exponential applied, leading to flatter regions, so a more difficult optimization problem.

References


Resuming ga From a Previous Run

By default, ga creates a new initial population each time you run it. However, you might get better results by using the final population from a previous run as the initial population for a new run. To do so, you must have saved the final population from the previous run by calling ga with the syntax

\[ [x,fval,exitflag,output,final_pop] = \text{ga}(@fitnessfcn, nvars); \]

The last output argument is the final population. To run ga using final_pop as the initial population, enter
Using the Genetic Algorithm

options = gaoptimset('InitialPop', final_pop);
[x,fval,exitflag,output,final_pop2] = ...
   ga(@fitnessfcn,nvars,[],[],[],[],[],[],[],options);

You can then use final_pop2, the final population from the second run, as the initial population for a third run.

In Optimization app, you can choose to export a problem in a way that lets you resume the run. Simply check the box Include information needed to resume this run when exporting the problem.

This saves the final population, which becomes the initial population when imported.

If you want to run a problem that was saved with the final population, but would rather not use the initial population, simply delete or otherwise change the initial population in the Options > Population pane.
Options and Outputs

In this section...

“Running ga with the Default Options” on page 5-63
“Setting Options at the Command Line” on page 5-64
“Additional Output Arguments” on page 5-66

Running ga with the Default Options

To run the genetic algorithm with the default options, call `ga` with the syntax

```matlab
[x fval] = ga(@fitnessfun, nvars)
```

The input arguments to `ga` are

- `@fitnessfun` — A function handle to the file that computes the fitness function. “Compute Objective Functions” on page 2-2 explains how to write this file.
- `nvars` — The number of independent variables for the fitness function.

The output arguments are

- `x` — The final point
- `fval` — The value of the fitness function at `x`

For a description of additional input and output arguments, see the reference page for `ga`.

You can run the example described in “Minimize Rastrigin's Function” on page 5-6 from the command line by entering

```matlab
rng(1,'twister') % for reproducibility
[x fval] = ga(@rastriginsfcn, 2)
```

This returns

Optimization terminated:
average change in the fitness value less than options.TolFun.

```matlab
x =
-1.0421 -1.0018
```
Using the Genetic Algorithm

fval =
    2.4385

Setting Options at the Command Line

You can specify any of the options that are available for ga by passing an options structure as an input argument to ga using the syntax

\[ [x \ fval] = \text{ga}(\text{@fitnessfun},nvars,[],[],[],[],[],[],[],\text{options}) \]

This syntax does not specify any linear equality, linear inequality, or nonlinear constraints.

You create the options structure using the function gaoptimset.

\[ \text{options} = \text{gaoptimset}(\text{@ga}) \]

This returns the structure options with the default values for its fields.

\[
\begin{align*}
\text{options} &= \\
\text{PopulationType}: & \quad \text{'doubleVector'} \\
\text{PopInitRange}: & \quad [] \\
\text{PopulationSize}: & \quad \text{'50 when numberOfVariables} \leq 5, \text{else 200'} \\
\text{EliteCount}: & \quad \text{'0.05*PopulationSize'} \\
\text{CrossoverFraction}: & \quad 0.8000 \\
\text{ParetoFraction}: & \quad [] \\
\text{MigrationDirection}: & \quad \text{'forward'} \\
\text{MigrationInterval}: & \quad 20 \\
\text{MigrationFraction}: & \quad 0.2000 \\
\text{Generations}: & \quad \text{'100*numberOfVariables'} \\
\text{TimeLimit}: & \quad \text{Inf} \\
\text{FitnessLimit}: & \quad -\text{Inf} \\
\text{StallGenLimit}: & \quad 50 \\
\text{StallTest}: & \quad \text{'averageChange'} \\
\text{StallTimeLimit}: & \quad \text{Inf} \\
\text{TolFun}: & \quad 1.0000\text{e-06} \\
\text{TolCon}: & \quad 1.0000\text{e-03} \\
\text{InitialPopulation}: & \quad [] \\
\text{InitialScores}: & \quad [] \\
\text{NonlinConAlgorithm}: & \quad \text{'auglag'} \\
\text{InitialPenalty}: & \quad 10 \\
\text{PenaltyFactor}: & \quad 100 \\
\text{PlotInterval}: & \quad 1
\end{align*}
\]
Options and Outputs

CreationFcn: @gacreationuniform
FitnessScalingFcn: @fitscalingrank
SelectionFcn: @selectionstochunif
CrossoverFcn: @crossoverscattered
MutationFcn: {{mutationgaussian} [1] [1]}
DistanceMeasureFcn: []
HybridFcn: []
   Display: 'final'
PlotFcns: []
OutputFcns: []
Vectorized: 'off'
UseParallel: 0

The function `ga` uses these default values if you do not pass in options as an input argument.

The value of each option is stored in a field of the options structure, such as `options.PopulationSize`. You can display any of these values by entering `options` followed by a period and the name of the field. For example, to display the size of the population for the genetic algorithm, enter

`options.PopulationSize`  
`ans = `  
50 when `numberOfVariables <= 5`, else 200

To create an options structure with a field value that is different from the default — for example to set `PopulationSize` to 100 instead of its default value 50 — enter

`options = gaoptimset('PopulationSize',100)`

This creates the options structure with all values set to their defaults except for `PopulationSize`, which is set to 100.

If you now enter,

`ga(@fitnessfun,nvars,[],[],[],[],[],[],[],options)`

`ga` runs the genetic algorithm with a population size of 100.

If you subsequently decide to change another field in the options structure, such as setting `PlotFcns` to `@gaplotbestf`, which plots the best fitness function value at each generation, call `gaoptimset` with the syntax
options = gaoptimset(options,'PlotFcns',@plotbestf)

This preserves the current values of all fields of options except for PlotFcns, which is changed to @plotbestf. Note that if you omit the input argument options, gaoptimset resets PopulationSize to its default value 20.

You can also set both PopulationSize and PlotFcns with the single command

options = gaoptimset('PopulationSize',100,'PlotFcns',@plotbestf)

**Additional Output Arguments**

To get more information about the performance of the genetic algorithm, you can call `ga` with the syntax

\[ [x,fval,exitflag,output,population,scores] = ga(@fitnessfcn, nvars) \]

Besides x and fval, this function returns the following additional output arguments:

- **exitflag** — Integer value corresponding to the reason the algorithm terminated
- **output** — Structure containing information about the performance of the algorithm at each generation
- **population** — Final population
- **scores** — Final scores

See the `ga` reference page for more information about these arguments.
Use Exported Options and Problems

As an alternative to creating an options structure using `gaoptimset`, you can set the values of options in the Optimization app and then export the options to a structure in the MATLAB workspace, as described in the “Importing and Exporting Your Work” section of the Optimization Toolbox documentation. If you export the default options in the Optimization app, the resulting structure `options` has the same settings as the default structure returned by the command

```matlab
options = gaoptimset(@ga)
```

except that the option 'Display' defaults to 'off' in an exported structure, and is 'final' in the default at the command line.

If you export a problem structure, `ga_problem`, from the Optimization app, you can apply `ga` to it using the syntax

```matlab
[x,fval] = ga(ga_problem)
```

The problem structure contains the following fields:

- `fitnessfcn` — Fitness function
- `nvars` — Number of variables for the problem
- `Aineq` — Matrix for inequality constraints
- `Bineq` — Vector for inequality constraints
- `Aeq` — Matrix for equality constraints
- `Beq` — Vector for equality constraints
- `LB` — Lower bound on `x`
- `UB` — Upper bound on `x`
- `nonlcon` — Nonlinear constraint function
- `options` — Options structure
Reproduce Results

Because the genetic algorithm is stochastic—that is, it makes random choices—you get slightly different results each time you run the genetic algorithm. The algorithm uses the default MATLAB pseudorandom number stream. For more information about random number streams, see RandStream. Each time ga calls the stream, its state changes. So that the next time ga calls the stream, it returns a different random number. This is why the output of ga differs each time you run it.

If you need to reproduce your results exactly, you can call ga with an output argument that contains the current state of the default stream, and then reset the state to this value before running ga again. For example, to reproduce the output of ga applied to Rastrigin's function, call ga with the syntax

rng(1,'twister') % for reproducibility
[x fval exitflag output] = ga(@rastriginsfcn, 2);

Suppose the results are

x, fval

x =
   -1.0421  -1.0018
fval =
   2.4385

The state of the stream is stored in output.rngstate:

output

output =
   problemtype: 'unconstrained'
   rngstate: [1x1 struct]
   generations: 52
   funccount: 2650
   message: 'Optimization terminated: average change in the fitness value less.'
   maxconstraint: []

To reset the state, enter

stream = RandStream.getGlobalStream;
stream.State = output.rngstate.state;
If you now run `ga` a second time, you get the same results as before:

```matlab
[x fval exitflag output] = ga(@rastriginsfcn, 2)
```

Optimization terminated: average change in the fitness value less than `options.TolFun`.

```matlab
x =
 -1.0421 -1.0018

fval =
 2.4385

exitflag =
 1

output =
 problemtype: 'unconstrained'
 rngstate: [1x1 struct]
 generations: 52
 funcount: 2650
 message: 'Optimization terminated: average change in the fitness value less than
 options.TolFun.'
 maxconstraint: []
```

You can reproduce your run in the Optimization app by checking the box **Use random states from previous run** in the **Run solver and view results** section.

---

**Note**  If you do not need to reproduce your results, it is better not to set the state of the stream, so that you get the benefit of the randomness in the genetic algorithm.
Run ga from a File

The command-line interface enables you to run the genetic algorithm many times, with different options settings, using a file. For example, you can run the genetic algorithm with different settings for **Crossover fraction** to see which one gives the best results. The following code runs the function `ga` 21 times, varying `options.CrossoverFraction` from 0 to 1 in increments of 0.05, and records the results.

```matlab
options = gaoptimset('Generations',300,'Display','none');
rng default % for reproducibility
record=[];
for n=0:.05:1
 options = gaoptimset(options,'CrossoverFraction',n);
 [x fval]=ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);
 record = [record; fval];
end
```

You can plot the values of `fval` against the crossover fraction with the following commands:

```matlab
plot(0:.05:1, record);
xlabel('Crossover Fraction');
ylabel('fval')
```

The following plot appears.
The plot suggests that you get the best results by setting `options.CrossoverFraction` to a value somewhere between 0.4 and 0.8.

You can get a smoother plot of $f_{\text{val}}$ as a function of the crossover fraction by running `ga` 20 times and averaging the values of $f_{\text{val}}$ for each crossover fraction. The following figure shows the resulting plot.
This plot also suggests the range of best choices for `options.CrossoverFraction` is 0.4 to 0.8.
Population Diversity

**In this section...**

“Importance of Population Diversity” on page 5-73
“Setting the Initial Range” on page 5-73
“Linearly Constrained Population and Custom Plot Function” on page 5-77
“Setting the Population Size” on page 5-82

**Importance of Population Diversity**

One of the most important factors that determines the performance of the genetic algorithm performs is the *diversity* of the population. If the average distance between individuals is large, the diversity is high; if the average distance is small, the diversity is low. Getting the right amount of diversity is a matter of start and error. If the diversity is too high or too low, the genetic algorithm might not perform well.

This section explains how to control diversity by setting the **Initial range** of the population. “Setting the Amount of Mutation” on page 5-88 describes how the amount of mutation affects diversity.

This section also explains how to set the population size.

**Setting the Initial Range**

By default, `ga` creates a random initial population using a creation function. You can specify the range of the vectors in the initial population in the **Initial range** field in Population options.

**Note** The initial range restricts the range of the points in the *initial* population by specifying the lower and upper bounds. Subsequent generations can contain points whose entries do not lie in the initial range. Set upper and lower bounds for all generations in the **Bounds** fields in the Constraints panel.

If you know approximately where the solution to a problem lies, specify the initial range so that it contains your guess for the solution. However, the genetic algorithm can find
the solution even if it does not lie in the initial range, if the population has enough diversity.

The following example shows how the initial range affects the performance of the genetic algorithm. The example uses Rastrigin's function, described in “Minimize Rastrigin's Function” on page 5-6. The minimum value of the function is 0, which occurs at the origin.

To run the example, open the ga solver in the Optimization app by entering optimtool('ga') at the command line. Set the following:

- Set **Fitness function** to @rastriginsfcn.
- Set **Number of variables** to 2.
- Select **Best fitness** in the **Plot functions** pane of the **Options** pane.
- Select **Distance** in the **Plot functions** pane.
- Set **Initial range** in the **Population** pane of the **Options** pane to [1; 1.1].

Click **Start** in **Run solver and view results**. Although the results of genetic algorithm computations are random, your results are similar to the following figure, with a best fitness function value of approximately 2.
The upper plot, which displays the best fitness at each generation, shows little progress in lowering the fitness value. The lower plot shows the average distance between individuals at each generation, which is a good measure of the diversity of a population. For this setting of initial range, there is too little diversity for the algorithm to make progress.

Next, try setting Initial range to \([1;100]\) and running the algorithm. This time the results are more variable. You might obtain a plot with a best fitness value of about 7, as in the following plot. You might obtain different results.
This time, the genetic algorithm makes progress, but because the average distance between individuals is so large, the best individuals are far from the optimal solution.

Finally, set **Initial range** to $[1; 2]$ and run the genetic algorithm. Again, there is variability in the result, but you might obtain a result similar to the following figure. Run the optimization several times, and you eventually obtain a final point near $[0; 0]$, with a fitness function value near 0.
The diversity in this case is better suited to the problem, so ga usually returns a better result than in the previous two cases.

**Linearly Constrained Population and Custom Plot Function**

This example shows how the default creation function for linearly constrained problems, `gacreationlinearfeasible`, creates a well-dispersed population that satisfies linear constraints and bounds. It also contains an example of a custom plot function.

The problem uses the objective function in `lincontest6.m`, a quadratic:
Using the Genetic Algorithm

\[ f(x) = \frac{x_1^2}{2} + x_2^2 - x_1 x_2 - 2x_1 - 6x_2. \]

To see code for the function, enter `type lincontest6` at the command line. The constraints are three linear inequalities:

\[ \begin{align*}
  x_1 + x_2 &\leq 2, \\
  -x_1 + 2x_2 &\leq 2, \\
  2x_1 + x_2 &\leq 3.
\end{align*} \]

Also, the variables \( x_i \) are restricted to be positive.

Create a custom plot function file by cutting and pasting the following code into a new function file in the MATLAB Editor:

```matlab
function state = gaplotshowpopulation2(unused,state,flag,fcn)
% This plot function works in 2-d only
if size(state.Population,2) > 2
 return;
end
if nargin < 4 % check to see if fitness function exists
 fcn = [];
end
% Dimensions to plot
dimensionsToPlot = [1 2];

switch flag
 % Plot initialization
 case 'init'
 pop = state.Population(:,dimensionsToPlot);
 plotHandle = plot(pop(:,1),pop(:,2),'*');
 set(plotHandle,'Tag','gaplotshowpopulation2')
 title('Population plot in two dimension',...
 'interp','none')
 xlabelStr = sprintf('%s %s','Variable ',...
 num2str(dimensionsToPlot(1)));
 ylabelStr = sprintf('%s %s','Variable ',...
 num2str(dimensionsToPlot(2)));
 xlabel(xlabelStr,'interp','none');
 ylabel(ylabelStr,'interp','none');
 hold on;

 % plot the inequalities
 plot([0 1.5],[2 0.5],'m-.') % x1 + x2 <= 2
```

5-78
plot([0 1.5],[1 3.5/2],'m-.'); % -x1 + 2*x2 <= 2
plot([0 1.5],[3 0],'m-.'); % 2*x1 + x2 <= 3
% plot lower bounds
plot([0 0],[0 2],'m-.'); % lb = [ 0 0];
plot([0 1.5],[0 0],'m-.'); % lb = [ 0 0];
set(gca,'xlim',[-0.7,2.2]
set(gca,'ylim',[-0.7,2.7])

% Contour plot the objective function
if ~isempty(fcn) % if there is a fitness function
    range = [-0.5,2;-0.5,2];
    pts = 100;
    span = diff(range')/(pts - 1);
    x = range(1,1): span(1) : range(1,2);
    y = range(2,1): span(2) : range(2,2);

    pop = zeros(pts * pts,2);
    values = zeros(pts,1);
    k = 1;
    for i = 1:pts
        for j = 1:pts
            pop(k,:) = [x(i),y(j)];
            values(k) = fcn(pop(k,:));
            k = k + 1;
        end
    end
    values = reshape(values,pts,pts);
    contour(x,y,values);
    colorbar
end
% Pause for three seconds to view the initial plot
pause(3);
case 'iter'
    pop = state.Population(:,dimensionsToPlot);
    plotHandle = findobj(get(gca,'Children'),'Tag','gaplotshowpopulation2');
    set(plotHandle,'Xdata',pop(:,1),'Ydata',pop(:,2));
end

The custom plot function plots the lines representing the linear inequalities and bound constraints, plots level curves of the fitness function, and plots the population as it evolves. This plot function expects to have not only the usual inputs (options,state,flag), but also a function handle to the fitness function,
Using the Genetic Algorithm

@lincontest6 in this example. To generate level curves, the custom plot function needs the fitness function.

2 At the command line, enter the constraints as a matrix and vectors:

\[
A = \begin{bmatrix} 1 & 1 \\ -1 & 2 \\ 2 & 1 \end{bmatrix}; \quad b = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}; \quad lb = \text{zeros}(2,1);
\]

3 Set options to use gaplotshowpopulation2, and pass in @lincontest6 as the fitness function handle:

\[
\text{options} = \text{gaoptimset('PlotFcns',...}
\]

\[
\{\{@\text{gaplotshowpopulation2},\@\text{lincontest6}\}\};
\]

4 Run the optimization using options:

\[
[x,fval] = \text{ga}(@\text{lincontest6},2,A,b,[],[],lb,[],[],\text{options});
\]

A plot window appears showing the linear constraints, bounds, level curves of the objective function, and initial distribution of the population:
You can see that the initial population is biased to lie on the constraints. This bias exists when there are linear constraints.

The population eventually concentrates around the minimum point:
Setting the Population Size

The Population size field in Population options determines the size of the population at each generation. Increasing the population size enables the genetic algorithm to search more points and thereby obtain a better result. However, the larger the population size, the longer the genetic algorithm takes to compute each generation.

**Note** You should set Population size to be at least the value of Number of variables, so that the individuals in each population span the space being searched.
You can experiment with different settings for **Population size** that return good results without taking a prohibitive amount of time to run.
Fitness Scaling

In this section...

“Scaling the Fitness Scores” on page 5-84
“Comparing Rank and Top Scaling” on page 5-86

Scaling the Fitness Scores

Fitness scaling converts the raw fitness scores that are returned by the fitness function to values in a range that is suitable for the selection function. The selection function uses the scaled fitness values to select the parents of the next generation. The selection function assigns a higher probability of selection to individuals with higher scaled values.

The range of the scaled values affects the performance of the genetic algorithm. If the scaled values vary too widely, the individuals with the highest scaled values reproduce too rapidly, taking over the population gene pool too quickly, and preventing the genetic algorithm from searching other areas of the solution space. On the other hand, if the scaled values vary only a little, all individuals have approximately the same chance of reproduction and the search will progress very slowly.

The default fitness scaling option, Rank, scales the raw scores based on the rank of each individual instead of its score. The rank of an individual is its position in the sorted scores: the rank of the most fit individual is 1, the next most fit is 2, and so on. The rank scaling function assigns scaled values so that

• The scaled value of an individual with rank \( n \) is proportional to \( 1 / \sqrt{n} \).
• The sum of the scaled values over the entire population equals the number of parents needed to create the next generation.

Rank fitness scaling removes the effect of the spread of the raw scores.

The following plot shows the raw scores of a typical population of 20 individuals, sorted in increasing order.
The following plot shows the scaled values of the raw scores using rank scaling.

Because the algorithm minimizes the fitness function, lower raw scores have higher scaled values. Also, because rank scaling assigns values that depend only on an individual's rank, the scaled values shown would be the same for any population of size 20 and number of parents equal to 32.
Comparing Rank and Top Scaling

To see the effect of scaling, you can compare the results of the genetic algorithm using rank scaling with one of the other scaling options, such as Top. By default, top scaling assigns 40 percent of the fittest individuals to the same scaled value and assigns the rest of the individuals to value 0. Using the default selection function, only 40 percent of the fittest individuals can be selected as parents.

The following figure compares the scaled values of a population of size 20 with number of parents equal to 32 using rank and top scaling.

Because top scaling restricts parents to the fittest individuals, it creates less diverse populations than rank scaling. The following plot compares the variances of distances between individuals at each generation using rank and top scaling.
Vary Mutation and Crossover

In this section...

“Setting the Amount of Mutation” on page 5-88
“Setting the Crossover Fraction” on page 5-90
“Comparing Results for Varying Crossover Fractions” on page 5-95

Setting the Amount of Mutation

The genetic algorithm applies mutations using the option that you specify on the Mutation function pane. The default mutation option, Gaussian, adds a random number, or mutation, chosen from a Gaussian distribution, to each entry of the parent vector. Typically, the amount of mutation, which is proportional to the standard deviation of the distribution, decreases at each new generation. You can control the average amount of mutation that the algorithm applies to a parent in each generation through the Scale and Shrink options:

- **Scale** controls the standard deviation of the mutation at the first generation, which is Scale multiplied by the range of the initial population, which you specify by the Initial range option.
- **Shrink** controls the rate at which the average amount of mutation decreases. The standard deviation decreases linearly so that its final value equals 1 – Shrink times its initial value at the first generation. For example, if Shrink has the default value of 1, then the amount of mutation decreases to 0 at the final step.

You can see the effect of mutation by selecting the plot options Distance and Range, and then running the genetic algorithm on a problem such as the one described in “Minimize Rastrigin's Function” on page 5-6. The following figure shows the plot after setting the random number generator.

```matlab
rng default % for reproducibility
options = gaoptimset('PlotFcns',{@gaplotdistance,@gaplotrange},...
 'StallGenLimit',200); % to get a long run
[x,fval] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);`

The upper plot displays the average distance between points in each generation. As the amount of mutation decreases, so does the average distance between individuals, which is approximately 0 at the final generation. The lower plot displays a vertical line at each generation, showing the range from the smallest to the largest fitness value, as well as mean fitness value. As the amount of mutation decreases, so does the range. These plots show that reducing the amount of mutation decreases the diversity of subsequent generations.

For comparison, the following figure shows the plots for **Distance** and **Range** when you set **Shrink** to 0.5.

```matlab
options = gaoptimset(options,'MutationFcn',{@mutationgaussian,1,.5});
[x,fval] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);
```
With Shrink set to 0.5, the average amount of mutation decreases by a factor of 1/2 by the final generation. As a result, the average distance between individuals decreases less than before.

Setting the Crossover Fraction

The Crossover fraction field, in the Reproduction options, specifies the fraction of each population, other than elite children, that are made up of crossover children. A crossover fraction of 1 means that all children other than elite individuals are crossover children, while a crossover fraction of 0 means that all children are mutation children. The following example show that neither of these extremes is an effective strategy for optimizing a function.
The example uses the fitness function whose value at a point is the sum of the absolute values of the coordinates at the points. That is,

\[f(x_1, x_2, \ldots, x_n) = |x_1| + |x_2| + \cdots + |x_n|. \]

You can define this function as an anonymous function by setting **Fitness function** to

@\(x\) sum(abs(x))

To run the example,

- Set **Fitness function** to @\(x\) sum(abs(x)).
- Set **Number of variables** to 10.
- Set **Initial range** to [-1; 1].
- Select **Best fitness** and **Distance** in the **Plot functions** pane.

Run the example with the default value of 0.8 for **Crossover fraction**, in the **Options > Reproduction** pane. For reproducibility, switch to the command line and enter

\[
\text{rng}(14, 'twister')
\]

Switch back to Optimization app, and click **Run solver and view results > Start**. This returns the best fitness value of approximately 0.0799 and displays the following plots.
To see how the genetic algorithm performs when there is no mutation, set **Crossover fraction** to 1.0 and click **Start**. This returns the best fitness value of approximately 0.66 and displays the following plots.
In this case, the algorithm selects genes from the individuals in the initial population and recombines them. The algorithm cannot create any new genes because there is no mutation. The algorithm generates the best individual that it can using these genes at generation number 8, where the best fitness plot becomes level. After this, it creates new copies of the best individual, which are then are selected for the next generation. By generation number 17, all individuals in the population are the same, namely, the best individual. When this occurs, the average distance between individuals is 0. Since the algorithm cannot improve the best fitness value after generation 8, it stalls after 50 more generations, because Stall generations is set to 50.
Mutation Without Crossover

To see how the genetic algorithm performs when there is no crossover, set Crossover fraction to 0 and click Start. This returns the best fitness value of approximately 3 and displays the following plots.

In this case, the random changes that the algorithm applies never improve the fitness value of the best individual at the first generation. While it improves the individual genes of other individuals, as you can see in the upper plot by the decrease in the mean value of the fitness function, these improved genes are never combined with the genes of the best individual because there is no crossover. As a result, the best fitness plot is level and the algorithm stalls at generation number 50.
Comparing Results for Varying Crossover Fractions

The example `deterministicstudy.m`, which is included in the software, compares the results of applying the genetic algorithm to Rastrigin's function with **Crossover fraction** set to 0, 0.2, 0.4, 0.6, 0.8, and 1. The example runs for 10 generations. At each generation, the example plots the means and standard deviations of the best fitness values in all the preceding generations, for each value of the **Crossover fraction**.

To run the example, enter

deterministicstudy

at the MATLAB prompt. When the example is finished, the plots appear as in the following figure.
The lower plot shows the means and standard deviations of the best fitness values over 10 generations, for each of the values of the crossover fraction. The upper plot shows a color-coded display of the best fitness values in each generation.

For this fitness function, setting \texttt{Crossover fraction} to 0.8 yields the best result. However, for another fitness function, a different setting for \texttt{Crossover fraction} might yield the best result.
Global vs. Local Minima Using ga

In this section...

“Searching for a Global Minimum” on page 5-97
“Running the Genetic Algorithm on the Example” on page 5-99

Searching for a Global Minimum

Sometimes the goal of an optimization is to find the global minimum or maximum of a function—a point where the function value is smaller or larger at any other point in the search space. However, optimization algorithms sometimes return a local minimum—a point where the function value is smaller than at nearby points, but possibly greater than at a distant point in the search space. The genetic algorithm can sometimes overcome this deficiency with the right settings.

As an example, consider the following function

\[f(x) = \begin{cases}
-\exp\left(-\left(\frac{x}{100}\right)^2\right) & \text{for } x \leq 100, \\
-\exp(-1) + (x - 100)(x - 102) & \text{for } x > 100.
\end{cases} \]

The following figure shows a plot of the function.
5 Using the Genetic Algorithm

Code for generating the figure

```matlab
% Code for generating the figure

t = -10:.1:103;
for ii = 1:length(t)
    y(ii) = two_min(t(ii));
end
plot(t,y)
```

The function has two local minima, one at $x = 0$, where the function value is -1, and the other at $x = 101$, where the function value is $-1 - 1/e$. Since the latter value is smaller, the global minimum occurs at $x = 101$.
Running the Genetic Algorithm on the Example

To run the genetic algorithm on this example,

1. Copy and paste the following code into a new file in the MATLAB Editor.

   ```matlab
   function y = two_min(x)
   if x <= 100
       y = -exp(-(x/100).^2);
   else
       y = -exp(-1) + (x-100)*(x-102);
   end
   ```

2. Save the file as `two_min.m` in a folder on the MATLAB path.

3. In the Optimization app,
 - Set **Fitness function** to `@two_min`.
 - Set **Number of variables** to 1.
 - Click Start.

 The genetic algorithm returns a point very close to the local minimum at $x = 0$.

 ![Optimization results](image)

 The following custom plot shows why the algorithm finds the local minimum rather than the global minimum. The plot shows the range of individuals in each generation and the population mean.
Code for Creating the Figure

```matlab
function state = gaplot1drange(options,state,flag)
%gaplot1drange Plots the mean and the range of the population.
% STATE = gaplot1drange(OPTIONS,STATE,FLAG) plots the mean and the range
% (highest and the lowest) of individuals (1-D only).
%
% Example:
% Create an options structure that uses gaplot1drange
% as the plot function
% options = gaoptimset('PlotFcns',@gaplot1drange);
%
% Copyright 2012-2014 The MathWorks, Inc.
```
if isinf(options.Generations) || size(state.Population,2) > 1
 title('Plot Not Available','interp','none');
 return;
end
generation = state.Generation;
score = state.Population;
smean = mean(score);
Y = smean;
L = smean - min(score);
U = max(score) - smean;

switch flag
 case 'init'
 set(gca,'xlim',[1,options.Generations+1]);
 plotRange = errorbar(generation,Y,L,U);
 set(plotRange,'Tag','gaplot1drange');
 title('Range of Population, Mean','interp','none')
 xlabel('Generation','interp','none')
 case 'iter'
 plotRange = findobj(get(gca,'Children'),'Tag','gaplot1drange');
 newX = [get(plotRange,'Xdata') generation];
 newY = [get(plotRange,'Ydata') Y];
 newL = [get(plotRange,'Ldata'); L];
 newU = [get(plotRange,'Udata'); U];
 set(plotRange, 'Xdata',newX,'Ydata',newY,'Ldata',newL,'Udata',newU);
end

Note that all individuals lie between –70 and 70. The population never explores points near the global minimum at \(x = 101 \).

One way to make the genetic algorithm explore a wider range of points—that is, to increase the diversity of the populations—is to increase the Initial range. The Initial range does not have to include the point \(x = 101 \), but it must be large enough so that the algorithm generates individuals near \(x = 101 \). Set Initial range to \([-10;90]\) as shown in the following figure.
Then click Start. The genetic algorithm returns a point very close to 101.

This time, the custom plot shows a much wider range of individuals. There are individuals near 101 from early on, and the population mean begins to converge to 101.
Global vs. Local Minima Using ga

Range of Population, Mean

Generation

-400 -300 -200 -100 0 100 200 300 400

10 20 30 40 50 60 70 80 90 100
Include a Hybrid Function

A hybrid function is an optimization function that runs after the genetic algorithm terminates in order to improve the value of the fitness function. The hybrid function uses the final point from the genetic algorithm as its initial point. You can specify a hybrid function in Hybrid function options.

This example uses Optimization Toolbox function fminunc, an unconstrained minimization function. The example first runs the genetic algorithm to find a point close to the optimal point and then uses that point as the initial point for fminunc.

The example finds the minimum of Rosenbrock's function, which is defined by

\[f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2. \]

The following figure shows a plot of Rosenbrock's function.
Global Optimization Toolbox software contains the `dejong2fcn.m` file, which computes Rosenbrock's function. To see a worked example of a hybrid function, enter

```matlab
hybriddemo
```
at the MATLAB prompt.

To explore the example, first enter `optimtool('ga')` to open the Optimization app to the `ga` solver. Enter the following settings:

- Set **Fitness function** to `@dejong2fcn`.
- Set **Number of variables** to 2.
- Optionally, to get the same pseudorandom numbers as this example, switch to the command line and enter:

```matlab
rng(1,'twister')
```

Before adding a hybrid function, click **Start** to run the genetic algorithm by itself. The genetic algorithm displays the following results in the **Run solver and view results** pane:

![Optimization results](image)

The final point is somewhat close to the true minimum at (1, 1). You can improve this result by setting **Hybrid function** to `fminunc` (in the **Hybrid function** options).
fminunc uses the final point of the genetic algorithm as its initial point. It returns a more accurate result, as shown in the **Run solver and view results** pane.

Specify nondefault options for the hybrid function by creating options at the command line. Use optimset for fminsearch, psoptimset for patternsearch, or optimoptions for fmincon or fminunc. For example:

```matlab
hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');
```

In the Optimization app enter the name of your options structure in the **Options** box under **Hybrid function**:
At the command line, the syntax is as follows:

```matlab
options = gaoptimset('HybridFcn',{@fminunc,hybridopts});
```

`hybridopts` must exist before you set `options`.
Set Maximum Number of Generations

The **Generations** option in **Stopping criteria** determines the maximum number of generations the genetic algorithm runs for—see “Stopping Conditions for the Algorithm” on page 5-22. Increasing the **Generations** option often improves the final result.

As an example, change the settings in the Optimization app as follows:

- Set **Fitness function** to @rastriginsfcn.
- Set **Number of variables** to 10.
- Select **Best fitness** in the **Plot functions** pane.
- Set **Generations** to Inf.
- Set **Stall generations** to Inf.
- Set **Stall time limit** to Inf.

Run the genetic algorithm for approximately 300 generations and click **Stop**. The following figure shows the resulting best fitness plot after 300 generations.
Note that the algorithm *stalls* at approximately generation number 170—that is, there is no immediate improvement in the fitness function after generation 170. If you restore **Stall generations** to its default value of 50, the algorithm could terminate at approximately generation number 220. If the genetic algorithm stalls repeatedly with the current setting for **Generations**, you can try increasing both the **Generations** and **Stall generations** options to improve your results. However, changing other options might be more effective.

Note When **Mutation function** is set to **Gaussian**, increasing the value of **Generations** might actually worsen the final result. This can occur because the Gaussian mutation function decreases the average amount of mutation in each generation by a factor that depends on the value specified in **Generations**. Consequently, the setting for **Generations** affects the behavior of the algorithm.
Vectorize the Fitness Function

In this section...

“Vectorize for Speed” on page 5-110

“Vectorized Constraints” on page 5-111

Vectorize for Speed

The genetic algorithm usually runs faster if you *vectorize* the fitness function. This means that the genetic algorithm only calls the fitness function once, but expects the fitness function to compute the fitness for all individuals in the current population at once. To vectorize the fitness function,

- Write the file that computes the function so that it accepts a matrix with arbitrarily many rows, corresponding to the individuals in the population. For example, to vectorize the function

\[
f(x_1, x_2) = x_1^2 - 2x_1x_2 + 6x_1 + x_2^2 - 6x_2
\]

write the file using the following code:

```matlab
z = x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + x(:,2).^2 - 6*x(:,2);
```

The colon in the first entry of `x` indicates all the rows of `x`, so that `x(:, 1)` is a vector. The `.^` and `.*` operators perform elementwise operations on the vectors.

- In the **User function evaluation** pane, set the **Evaluate fitness and constraint functions** option to **vectorized**.

Note The fitness function, and any nonlinear constraint function, must accept an arbitrary number of rows to use the **Vectorize** option. `ga` sometimes evaluates a single row even during a vectorized calculation.

The following comparison, run at the command line, shows the improvement in speed with **Vectorize** set to **On**.

```matlab
options = gaoptimset('PopulationSize',2000);
 tic; ga(@rastriginsfcn,20,[],[],[],[],[],[],[],options); toc
```
Vectorize the Fitness Function

Optimization terminated: maximum number of generations exceeded.
Elapsed time is 12.054973 seconds.

options=gaoptimset(options,'Vectorize','on');
tic;ga(@rastriginsfcn,20,[],[],[],[],[],[],[],[],options);toc
Optimization terminated: maximum number of generations exceeded.
Elapsed time is 1.860655 seconds.

Vectorized Constraints

If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be vectorized in order for the algorithm to compute in a vectorized manner.

“Vectorize the Objective and Constraint Functions” on page 4-80 contains an example of how to vectorize both for the solver patternsearch. The syntax is nearly identical for ga. The only difference is that patternsearch can have its patterns appear as either row or column vectors; the corresponding vectors for ga are the population vectors, which are always rows.
Constrained Minimization Using ga

Suppose you want to minimize the simple fitness function of two variables \(x_1 \) and \(x_2 \),

\[
\min_x f(x) = 100 \left(x_1^2 - x_2 \right)^2 + (1 - x_1)^2
\]

subject to the following nonlinear inequality constraints and bounds

\[
\begin{align*}
x_1 \cdot x_2 + x_1 - x_2 + 1.5 & \leq 0 \quad \text{(nonlinear constraint)} \\
10 - x_1 \cdot x_2 & \leq 0 \quad \text{(nonlinear constraint)} \\
0 & \leq x_1 \leq 1 \quad \text{(bound)} \\
0 & \leq x_2 \leq 13 \quad \text{(bound)}
\end{align*}
\]

Begin by creating the fitness and constraint functions. First, create a file named `simple_fitness.m` as follows:

```matlab
function y = simple_fitness(x)
y = 100*(x(1)^2 - x(2))^2 + (1 - x(1))^2;
```

(simple_fitness.m ships with Global Optimization Toolbox software.)

The genetic algorithm function, `ga`, assumes the fitness function will take one input \(x \), where \(x \) has as many elements as the number of variables in the problem. The fitness function computes the value of the function and returns that scalar value in its one return argument, \(y \).

Then create a file, `simple_constraint.m`, containing the constraints

```matlab
function [c, ceq] = simple_constraint(x)
c = [1.5 + x(1)*x(2) + x(1) - x(2);...
    -x(1)*x(2) + 10];
ceq = [];
```

(simple_constraint.m ships with Global Optimization Toolbox software.)

The `ga` function assumes the constraint function will take one input \(x \), where \(x \) has as many elements as the number of variables in the problem. The constraint function computes the values of all the inequality and equality constraints and returns two vectors, \(c \) and \(ceq \), respectively.

To minimize the fitness function, you need to pass a function handle to the fitness function as the first argument to the `ga` function, as well as specifying the number of
variables as the second argument. Lower and upper bounds are provided as LB and UB respectively. In addition, you also need to pass a function handle to the nonlinear constraint function.

ObjectiveFunction = @simple_fitness;
nvars = 2; % Number of variables
LB = [0 0]; % Lower bound
UB = [1 13]; % Upper bound
ConstraintFunction = @simple_constraint;
rng(1,'twister') % for reproducibility
[x,fval] = ga(ObjectiveFunction,nvars,...
 [],[],[],[][],LB,UB,ConstraintFunction)

Optimization terminated: average change in the fitness value less than options.TolFun
and constraint violation is less than options.TolCon.

x =
 0.8123 12.3137

fval =
 1.3581e+04

The genetic algorithm solver handles linear constraints and bounds differently from nonlinear constraints. All the linear constraints and bounds are satisfied throughout the optimization. However, ga may not satisfy all the nonlinear constraints at every generation. If ga converges to a solution, the nonlinear constraints will be satisfied at that solution.

ga uses the mutation and crossover functions to produce new individuals at every generation. ga satisfies linear and bound constraints by using mutation and crossover functions that only generate feasible points. For example, in the previous call to ga, the mutation function mutationguassian does not necessarily obey the bound constraints. So when there are bound or linear constraints, the default ga mutation function is mutationadaptfeasible. If you provide a custom mutation function, this custom function must only generate points that are feasible with respect to the linear and bound constraints. All the included crossover functions generate points that satisfy the linear constraints and bounds except the crossoverheuristic function.

To see the progress of the optimization, use the gaoptimset function to create an options structure that selects two plot functions. The first plot function is gaplotbestf,
which plots the best and mean score of the population at every generation. The second plot function is `gaplotmaxconstr`, which plots the maximum constraint violation of nonlinear constraints at every generation. You can also visualize the progress of the algorithm by displaying information to the command window using the 'Display' option.

```matlab
options = gaoptimset('PlotFcns',{@gaplotbestf,@gaplotmaxconstr},'Display','iter');
```

Rerun the `ga` solver.

```matlab
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB,ConstraintFunction,options)
```

<table>
<thead>
<tr>
<th>Generation</th>
<th>f-count</th>
<th>f(x)</th>
<th>constraint</th>
<th>Stall Generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2670</td>
<td>13603.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5282</td>
<td>13578.2</td>
<td>6.006e-06</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>7894</td>
<td>14031</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>16706</td>
<td>14047.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>20606</td>
<td>13573.6</td>
<td>0.0009947</td>
<td>0</td>
</tr>
</tbody>
</table>

Optimization terminated: average change in the fitness value less than options.TolFun and constraint violation is less than options.TolCon.

```matlab
x =

0.8123   12.3103
```

```matlab
fval =

1.3574e+04
```
You can provide a start point for the minimization to the `ga` function by specifying the `InitialPopulation` option. The `ga` function will use the first individual from `InitialPopulation` as a start point for a constrained minimization.

```matlab
X0 = [0.5 0.5]; % Start point (row vector)
options = gaoptimset(options,'InitialPopulation',X0);
```

Now, rerun the `ga` solver.

```matlab
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],...
              LB,UB,ConstraintFunction,options)
```

<table>
<thead>
<tr>
<th>Generation</th>
<th>f-count</th>
<th>f(x)</th>
<th>constraint</th>
<th>Stall Generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2670</td>
<td>13578.1</td>
<td>0.0005084</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5282</td>
<td>13578.2</td>
<td>8.577e-06</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8394</td>
<td>14037.4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Using the Genetic Algorithm

4 14144 13573.5 0.0009953 0
Optimization terminated: average change in the fitness value less than options.TolFun
and constraint violation is less than options.TolCon.

x =

0.8122 12.3103

fval =

1.3574e+04
Particle Swarm Optimization

- “What Is Particle Swarm Optimization?” on page 6-2
- “Optimize Using Particle Swarm” on page 6-3
- “Particle Swarm Output Function” on page 6-7
- “Particle Swarm Optimization Algorithm” on page 6-10
What Is Particle Swarm Optimization?

Particle swarm is a population-based algorithm. In this respect it is similar to the genetic algorithm. A collection of individuals called particles move in steps throughout a region. At each step, the algorithm evaluates the objective function at each particle. After this evaluation, the algorithm decides on the new velocity of each particle. The particles move, then the algorithm reevaluates.

The inspiration for the algorithm is flocks of birds or insects swarming. Each particle is attracted to some degree to the best location it has found so far, and also to the best location any member of the swarm has found. After some steps, the population can coalesce around one location, or can coalesce around a few locations, or can continue to move.

The particleswarm function attempts to optimize using a “Particle Swarm Optimization Algorithm” on page 6-10.
Optimize Using Particle Swarm

This example shows how to optimize using the `particleswarm` solver.

The objective function in this example is De Jong's fifth function, which is included with Global Optimization Toolbox software.

dejong5fcn

This function has 25 local minima.

Try to find the minimum of the function using the default `particleswarm` settings.
fun = @dejong5fcn;
nvars = 2;
 rng default % For reproducibility
 [x,fval,exitflag] = particleswarm(fun,nvars)

Optimization ended: relative change in the objective value
over the last OPTIONS.StallIterLimit iterations is less than OPTIONS.TolFun.

x =
 -31.9521 -16.0176

fval =
 5.9288

exitflag =
 1

Is the solution x the global optimum? It is unclear at this point. Looking at the function plot shows that the function has local minima for components in the range [-50,50]. So restricting the range of the variables to [-50,50] helps the solver locate a global minimum.

lb = [-50;-50];
ub = -lb;
 [x,fval,exitflag] = particleswarm(fun,nvars,lb,ub)

x =
 -16.0079 -31.9697

fval =
 1.9920

exitflag =
 1
This looks promising: the new solution has lower \textit{fval} than the previous one. But is x truly a global solution? Try minimizing again with more particles, to better search the region.

```matlab
options = optimoptions('particleswarm','SwarmSize',100);
[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub,options)
```

Optimization ended: change in the objective value less than options.TolFun.

\[
x = \\
-31.9781 \quad -31.9784
\]

\[
fval = \\
0.9980
\]

\[
exitflag = \\
1
\]

This looks even more promising. But is this answer a global solution, and how accurate is it? Rerun the solver with a hybrid function. \texttt{particleswarm} calls the hybrid function after \texttt{particleswarm} finishes its iterations.

```matlab
options.HybridFcn = @fmincon;
[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub,options)
```

Optimization ended: change in the objective value less than options.TolFun.

\[
x = \\
-31.9783 \quad -31.9784
\]

\[
fval = \\
0.9980
\]

\[
exitflag = \\
1
\]
particleswarm found essentially the same solution as before. This gives you some confidence that particleswarm reports a local minimum and that the final x is the global solution.
Particle Swarm Output Function

This example shows how to use an output function for `particleswarm`. The output function plots the range that the particles occupy in each dimension.

An output function runs after each iteration of the solver. For syntax details, and for the data available to an output function, see the `particleswarm` options reference pages.

Copy the following code into a file named `pswplotranges.m` on your MATLAB path. The code sets up `nplot` subplots, where `nplot` is the number of dimensions in the problem.

```matlab
function stop = pswplotranges(optimValues, state)
    stop = false; % This function does not stop the solver
    switch state
    case 'init'
        nplot = size(optimValues.swarm,2); % Number of dimensions
        for i = 1:nplot % Set up axes for plot
            subplot(nplot,1,i);
            tag = sprintf('psoplotrange_var_%g',i); % Set a tag for the subplot
            semilogy(optimValues.iteration,0,'-k','Tag',tag); % Log-scaled plot
            ylabel(num2str(i))
        end
        xlabel('Iteration','interp','none'); % Iteration number at the bottom
        subplot(nplot,1,1) % Title at the top
        title('Log range of particles by component')
        setappdata(gcf,'t0',tic); % Set up a timer to plot only when needed
    case 'iter'
        nplot = size(optimValues.swarm,2); % Number of dimensions
        for i = 1:nplot
            subplot(nplot,1,i);
            % Calculate the range of the particles at dimension i
            irange = max(optimValues.swarm(:,i)) - min(optimValues.swarm(:,i));
            tag = sprintf('psoplotrange_var_%g',i);
            plotHandle = findobj(get(gca,'Children'),'Tag',tag); % Get the subplot
            xdata = plotHandle.XData; % Get the X data from the plot
            newX = [xdata optimValues.iteration]; % Add the new iteration
            plotHandle.XData = newX; % Put the X data into the plot
            ydata = plotHandle.YData; % Get the Y data from the plot
            newY = [ydata irange]; % Add the new value
            plotHandle.YData = newY; % Put the Y data into the plot
        end
    end
```
if toc(getappdata(gcf,'t0')) > 1/30 % If 1/30 s has passed
drawnow % Show the plot
setappdata(gcf,'t0',tic); % Reset the timer
end

This output function draws a plot with one line per dimension. Each line represents
the range of the particles in the swarm in that dimension. The plot is log-scaled to
accommodate wide ranges. If the swarm converges to a single point, then the range of
each dimension goes to zero. But if the swarm does not converge to a single point, then
the range stays away from zero in some dimensions.

Define the problem in your workspace. The multirosenbrock function is a
generalization of Rosenbrock's function to any even number of dimensions. It has a
global minimum of 0 at the point [1,1,1,1,...]. The multirosenbrock.m file is
included with Global Optimization Toolbox software. See its code by entering type
multirosenbrock.

fun = @multirosenbrock;
nvar = 4; % A 4-D problem
lb = -10*ones(nvar,1); % Bounds to help the solver converge
ub = -lb;

Set the options to use the output function.

options = optimoptions(@particleswarm,'OutputFcns',@pswplotranges);

Set the random number generator to get reproducible output. Then call the solver.

rng default % For reproducibility
[x,fval,eflag] = particleswarm(fun,nvar,lb,ub,options)

Optimization ended: relative change in the objective value
over the last OPTIONS.StallIterLimit iterations is less than OPTIONS.TolFun.

x =

0.9964 0.9930 0.9835 0.9681

fval =
The solver returned a point near the optimum [1, 1, 1, 1]. But the span of the swarm did not converge to zero.

More About

- “Output Function and Plot Function” on page 10-57
Particle Swarm Optimization Algorithm

In this section...

“Algorithm Outline” on page 6-10
“Initialization” on page 6-10
“Iteration Steps” on page 6-11
“Stopping Criteria” on page 6-12

Algorithm Outline

The particle swarm algorithm begins by creating the initial particles, and assigning them initial velocities.

It evaluates the objective function at each particle location, and determines the best (lowest) function value and the best location.

It chooses new velocities, based on the current velocity, the particles’ individual best locations, and the best locations of their neighbors.

It then iteratively updates the particle locations (the new location is the old one plus the velocity, modified to keep particles within bounds), velocities, and neighbors.

Iterations proceed until the algorithm reaches a stopping criterion.

Here are the details of the steps.

Initialization

By default, `particleswarm` creates particles at random uniformly within bounds. If there is an unbounded component, `particleswarm` creates particles with a random uniform distribution from –1000 to 1000. If you have only one bound, `particleswarm` shifts the creation to have the bound as an endpoint, and a creation interval 2000 wide. Particle i has position \(x(i) \), which is a row vector with `nvars` elements. Control the span of the initial swarm using the `InitialSwarmSpan` option.

Similarly, `particleswarm` creates initial particle velocities \(v \) uniformly within the range \([-r, r]\), where \(r \) is the vector of initial ranges. The range of component i is the \(ub(i) - lb(i) \), but for unbounded or semi-unbounded components the range is the `InitialSwarmSpan` option.
particleswarm evaluates the objective function at all particles. It records the current position $p(i)$ of each particle i. In subsequent iterations, $p(i)$ will be the location of the best objective function that particle i has found. And b is the best over all particles: $b = \min(\text{fun}(p(i)))$. d is the location such that $b = \text{fun}(d)$.

particleswarm initializes the neighborhood size N to $\min\text{NeighborhoodSize} = \max(1, \text{floor(SwarmSize} \times \min\text{FractionNeighbors)}).

particleswarm initializes the inertia $W = \max(\text{InertiaRange})$, or if InertiaRange is negative, it sets $W = \min(\text{InertiaRange})$.

particleswarm initializes the stall counter $c = 0$.

For convenience of notation, set the variable $y_1 = \text{SelfAdjustment}$, and $y_2 = \text{SocialAdjustment}$, where SelfAdjustment and SocialAdjustment are options.

Iteration Steps

The algorithm updates the swarm as follows. For particle i, which is at position $x(i)$:

1. Choose a random subset S of N particles other than i.
2. Find $f_{\text{best}}(S)$, the best objective function among the neighbors, and $g(S)$, the position of the neighbor with the best objective function.
3. For u_1 and u_2 uniformly $(0,1)$ distributed random vectors of length $nvars$, update the velocity
 \[v = W \cdot v + y_1 \cdot u_1 \cdot (p - x) + y_2 \cdot u_2 \cdot (g - x). \]
 This update uses a weighted sum of:
 - The previous velocity v
 - The difference between the current position and the best position the particle has seen $p - x$
 - The difference between the current position and the best position in the current neighborhood $g - x$
4. Update the position $x = x + v$.
5. Enforce the bounds. If any component of x is outside a bound, set it equal to that bound.
6. Evaluate the objective function $f = \text{fun}(x)$.

6-11
7 If $f < \text{fun}(p)$, then set $p = x$. This step ensures p has the best position the particle has seen.

8 If $f < b$, then set $b = f$ and $d = x$. This step ensures b has the best objective function in the swarm, and d has the best location.

9 If, in the previous step, the best function value was lowered, then set $\text{flag} = \text{true}$. Otherwise, $\text{flag} = \text{false}$. The value of flag is used in the next step.

10 Update the neighborhood. If $\text{flag} = \text{true}$:

 a Set $c = \max(0,c-1)$.
 b Set N to $\text{minNeighborhoodSize}$.
 c If $c < 2$, then set $W = 2^*W$.
 d If $c > 5$, then set $W = W/2$.
 e Ensure that W is in the bounds of the InertiaRange option.

If $\text{flag} = \text{false}$:

 a Set $c = c+1$.
 b Set $N = \min(N + \text{minNeighborhoodSize},\text{SwarmSize})$.

Stopping Criteria

`particleswarm` iterates until it reaches a stopping criterion.

<table>
<thead>
<tr>
<th>Stopping Option</th>
<th>Stopping Test</th>
<th>Exit Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>StallIterLimit and</td>
<td>Relative change in the best objective function value g over the last</td>
<td>1</td>
</tr>
<tr>
<td>TolFun</td>
<td>StallIterLimit iterations is less than TolFun.</td>
<td></td>
</tr>
<tr>
<td>MaxIter</td>
<td>Number of iterations reaches MaxIter.</td>
<td>0</td>
</tr>
<tr>
<td>OutputFcns or PlotFcns</td>
<td>OutputFcns or PlotFcns can halt the iterations.</td>
<td>-1</td>
</tr>
<tr>
<td>ObjectiveLimit</td>
<td>Best objective function value g is less than or equal to ObjectiveLimit.</td>
<td>-3</td>
</tr>
</tbody>
</table>
Stopping Option

<table>
<thead>
<tr>
<th>Stopping Option</th>
<th>Stopping Test</th>
<th>Exit Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>StallTimeLimit</td>
<td>Best objective function value (g) did not change in the last (\text{StallTimeLimit}) seconds.</td>
<td>-4</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Function run time exceeds (\text{MaxTime}) seconds.</td>
<td>-5</td>
</tr>
</tbody>
</table>

If `particleswarm` stops with exit flag 1, it optionally calls a hybrid function after it exits.
Using Simulated Annealing

• “What Is Simulated Annealing?” on page 7-2
• “Optimize Using Simulated Annealing” on page 7-3
• “Minimize Function with Many Local Minima” on page 7-6
• “Simulated Annealing Terminology” on page 7-10
• “How Simulated Annealing Works” on page 7-12
• “Command Line Simulated Annealing Optimization” on page 7-15
• “Minimization Using Simulated Annealing Algorithm” on page 7-20
What Is Simulated Annealing?

Simulated annealing is a method for solving unconstrained and bound-constrained optimization problems. The method models the physical process of heating a material and then slowly lowering the temperature to decrease defects, thus minimizing the system energy.

At each iteration of the simulated annealing algorithm, a new point is randomly generated. The distance of the new point from the current point, or the extent of the search, is based on a probability distribution with a scale proportional to the temperature. The algorithm accepts all new points that lower the objective, but also, with a certain probability, points that raise the objective. By accepting points that raise the objective, the algorithm avoids being trapped in local minima, and is able to explore globally for more possible solutions. An annealing schedule is selected to systematically decrease the temperature as the algorithm proceeds. As the temperature decreases, the algorithm reduces the extent of its search to converge to a minimum.
Optimize Using Simulated Annealing

In this section...

“Calling simulannealbnd at the Command Line” on page 7-3
“Using the Optimization App” on page 7-3

Calling simulannealbnd at the Command Line

To call the simulated annealing function at the command line, use the syntax

\[[x \text{ fval}] = \text{simulannealbnd}(@objfun,x0,lb,ub,options) \]

where

- @objfun is a function handle to the objective function.
- x0 is an initial guess for the optimizer.
- lb and ub are lower and upper bound constraints, respectively, on x.
- options is a structure containing options for the algorithm. If you do not pass in this argument, simulannealbnd uses its default options.

The results are given by:

- x — Final point returned by the solver
- fval — Value of the objective function at x

The command-line function simulannealbnd is convenient if you want to

- Return results directly to the MATLAB workspace.
- Run the simulated annealing algorithm multiple times with different options by calling simulannealbnd from a file.

“Command Line Simulated Annealing Optimization” on page 7-15 provides a detailed description of using the function simulannealbnd and creating the options structure.

Using the Optimization App

To open the Optimization app, enter
optimtool('simulannealbnd') at the command line, or enter optimtool and then choose simulannealbnd from the Solver menu.

You can also start the tool from the MATLAB Apps tab.
To use the Optimization app, you must first enter the following information:

- **Objective function** — The objective function you want to minimize. Enter the fitness function in the form @fitnessfun, where fitnessfun.m is a file that computes the objective function. “Compute Objective Functions” on page 2-2 explains how write this file. The @ sign creates a function handle to fitnessfun.

- **Number of variables** — The length of the input vector to the fitness function. For the function my_fun described in “Compute Objective Functions” on page 2-2, you would enter 2.

You can enter bounds for the problem in the **Constraints** pane. If the problem is unconstrained, leave these fields blank.

To run the simulated annealing algorithm, click the **Start** button. The tool displays the results of the optimization in the **Run solver and view results** pane.

You can change the options for the simulated annealing algorithm in the **Options** pane. To view the options in one of the categories listed in the pane, click the + sign next to it.

For more information,

- See “Optimization App” in the Optimization Toolbox documentation.
- See “Minimize Using the Optimization App” on page 7-8 for an example of using the tool with the function simulannealbnd.
Minimize Function with Many Local Minima

In this section...

“Description” on page 7-6
“Minimize at the Command Line” on page 7-8
“Minimize Using the Optimization App” on page 7-8

Description

This section presents an example that shows how to find a local minimum of a function using simulated annealing.

De Jong’s fifth function is a two-dimensional function with many (25) local minima:

dejong5fcn
Many standard optimization algorithms get stuck in local minima. Because the simulated annealing algorithm performs a wide random search, the chance of being trapped in local minima is decreased.

Note: Because simulated annealing uses random number generators, each time you run this algorithm you can get different results. See “Reproduce Your Results” on page 7-18 for more information.
Minimize at the Command Line

To run the simulated annealing algorithm without constraints, call `simulannealbnd` at the command line using the objective function in `dejong5fcn.m`, referenced by anonymous function pointer:

```matlab
rng(10,'twister') % for reproducibility
fun = @dejong5fcn;
[x fval] = simulannealbnd(fun,[0 0])
```

This returns

Optimization terminated: change in best function value less than options.TolFun.

```matlab
x =
  -16.1292  -15.8214
fval =
   6.9034
```

where

- `x` is the final point returned by the algorithm.
- `fval` is the objective function value at the final point.

Minimize Using the Optimization App

To run the minimization using the Optimization app,

1. Set up your problem as pictured in the Optimization app
Minimize Function with Many Local Minima

2 Click **Start** under **Run solver and view results**:

Your results can differ from the pictured ones, because *simulannealbnd* uses a random number stream.
Simulated Annealing Terminology

In this section...

“Objective Function” on page 7-10
“Temperature” on page 7-10
“Annealing Parameter” on page 7-11
“Reannealing” on page 7-11

Objective Function

The objective function is the function you want to optimize. Global Optimization Toolbox algorithms attempt to find the minimum of the objective function. Write the objective function as a file or anonymous function, and pass it to the solver as a function handle. For more information, see “Compute Objective Functions” on page 2-2 and “Create Function Handle”.

Temperature

The temperature is a parameter in simulated annealing that affects two aspects of the algorithm:

• The distance of a trial point from the current point (See “Outline of the Algorithm” on page 7-12, Step 1.)
• The probability of accepting a trial point with higher objective function value (See “Outline of the Algorithm” on page 7-12, Step 2.)

Temperature can be a vector with different values for each component of the current point. Typically, the initial temperature is a scalar.

Temperature decreases gradually as the algorithm proceeds. You can specify the initial temperature as a positive scalar or vector in the InitialTemperature option. You can specify the temperature as a function of iteration number as a function handle in the TemperatureFcn option. The temperature is a function of the “Annealing Parameter” on page 7-11, which is a proxy for the iteration number. The slower the rate of temperature decrease, the better the chances are of finding an optimal solution, but the longer the run time. For a list of built-in temperature functions and the syntax of a custom temperature function, see “Temperature Options” on page 10-64.
Annealing Parameter

The *annealing parameter* is a proxy for the iteration number. The algorithm can raise temperature by setting the annealing parameter to a lower value than the current iteration. (See “Reannealing” on page 7-11.) You can specify the temperature schedule as a function handle with the `TemperatureFcn` option.

Reannealing

Annealing is the technique of closely controlling the temperature when cooling a material to ensure that it reaches an optimal state. *Reannealing* raises the temperature after the algorithm accepts a certain number of new points, and starts the search again at the higher temperature. Reannealing avoids the algorithm getting caught at local minima. Specify the reannealing schedule with the `ReannealInterval` option.
How Simulated Annealing Works

Outline of the Algorithm

The simulated annealing algorithm performs the following steps:

1 The algorithm generates a random trial point. The algorithm chooses the distance
 of the trial point from the current point by a probability distribution with a scale
 depending on the current temperature. You set the trial point distance distribution
 as a function with the AnnealingFcn option. Choices:

 - @annealingfast (default) — Step length equals the current temperature, and
 direction is uniformly random.
 - @annealingboltz — Step length equals the square root of temperature, and
 direction is uniformly random.
 - @myfun — Custom annealing algorithm, myfun. For custom annealing function
 syntax, see “Algorithm Settings” on page 10-65.

2 The algorithm determines whether the new point is better or worse than the current
 point. If the new point is better than the current point, it becomes the next point.
 If the new point is worse than the current point, the algorithm can still make it the
 next point. The algorithm accepts a worse point based on an acceptance function.
 Choose the acceptance function with the AcceptanceFcn option. Choices:

 - @acceptancesa (default) — Simulated annealing acceptance function. The
 probability of acceptance is

 \[
 \frac{1}{1 + \exp \left(\frac{\Delta}{\max(T)} \right)},
 \]

 where

 \(\Delta \)
How Simulated Annealing Works

Δ = new objective – old objective.

T_0 = initial temperature of component i

T = the current temperature.

Since both Δ and T are positive, the probability of acceptance is between 0 and 1/2. Smaller temperature leads to smaller acceptance probability. Also, larger Δ leads to smaller acceptance probability.

- @myfun — Custom acceptance function, myfun. For custom acceptance function syntax, see “Algorithm Settings” on page 10-65.

The algorithm systematically lowers the temperature, storing the best point found so far. The TemperatureFcn option specifies the function the algorithm uses to update the temperature. Let k denote the annealing parameter. (The annealing parameter is the same as the iteration number until reannealing.) Options:

- @temperatureexp (default) — $T = T_0 * 0.95^k$.
- @temperaturefast — $T = T_0 / k$.
- @temperatureboltz — $T = T_0 / \log(k)$.
- @myfun — Custom temperature function, myfun. For custom temperature function syntax, see “Temperature Options” on page 10-64.

simulannealbnd reanneals after it accepts ReannealInterval points. Reannealing sets the annealing parameters to lower values than the iteration number, thus raising the temperature in each dimension. The annealing parameters depend on the values of estimated gradients of the objective function in each dimension. The basic formula is

$$k_i = \log \left(\frac{T_0 \max_j (s_j)}{T_i \frac{s_j}{s_i}} \right),$$

where

- k_i = annealing parameter for component i.
- T_0 = initial temperature of component i.
- T_i = current temperature of component i.
- s_i = gradient of objective in direction i times difference of bounds in direction i.

simulannealbnd safeguards the annealing parameter values against Inf and other improper values.
The algorithm stops when the average change in the objective function is small relative to the `TolFun` tolerance, or when it reaches any other stopping criterion. See “Stopping Conditions for the Algorithm” on page 7-14.

For more information on the algorithm, see Ingber [1].

Stopping Conditions for the Algorithm

The simulated annealing algorithm uses the following conditions to determine when to stop:

- **TolFun** — The algorithm runs until the average change in value of the objective function in `StallIterLim` iterations is less than the value of `TolFun`. The default value is 1e-6.
- **MaxIter** — The algorithm stops when the number of iterations exceeds this maximum number of iterations. You can specify the maximum number of iterations as a positive integer or `Inf`. The default value is `Inf`.
- **MaxFunEval** specifies the maximum number of evaluations of the objective function. The algorithm stops if the number of function evaluations exceeds the value of `MaxFunEval`. The default value is $3000 \times \text{number of variables}$.
- **TimeLimit** specifies the maximum time in seconds the algorithm runs before stopping. The default value is `Inf`.
- **ObjectiveLimit** — The algorithm stops when the best objective function value is less than or equal to the value of `ObjectiveLimit`. The default value is `-Inf`.

Bibliography

Command Line Simulated Annealing Optimization

In this section...

“Run simulannealbnd With the Default Options” on page 7-15
“Set Options for simulannealbnd at the Command Line” on page 7-16
“Reproduce Your Results” on page 7-18

Run simulannealbnd With the Default Options

To run the simulated annealing algorithm with the default options, call simulannealbnd with the syntax

\[[x,fval] = \text{simulannealbnd}(@\text{objfun},x0) \]

The input arguments to simulannealbnd are

- \(@\text{objfun } \) — A function handle to the file that computes the objective function. “Compute Objective Functions” on page 2-2 explains how to write this file.
- \(x0 \) — The initial guess of the optimal argument to the objective function.

The output arguments are

- \(x \) — The final point.
- \(fval \) — The value of the objective function at \(x \).

For a description of additional input and output arguments, see the reference pages for simulannealbnd.

You can run the example described in “Minimize Function with Many Local Minima” on page 7-6 from the command line by entering

\[
\text{rng}(10,'\text{twister}') \quad \% \text{ for reproducibility}
\]

\[[x,fval] = \text{simulannealbnd}(@\text{dejong5fcn},[0 \ 0]) \]

This returns

Optimization terminated: change in best function value less than options.TolFun.

\[x = \]

\[
-16.1292 \quad -15.8214
\]
Additional Output Arguments

To get more information about the performance of the algorithm, you can call `simulannealbnd` with the syntax

```
[x,fval,exitflag,output] = simulannealbnd(@objfun,x0)
```

Besides `x` and `fval`, this function returns the following additional output arguments:

- `exitflag` — Flag indicating the reason the algorithm terminated
- `output` — Structure containing information about the performance of the algorithm

See the `simulannealbnd` reference pages for more information about these arguments.

Set Options for `simulannealbnd` at the Command Line

You can specify options by passing an options structure as an input argument to `simulannealbnd` using the syntax

```
[x,fval] = simulannealbnd(@objfun,x0,[],[],options)
```

This syntax does not specify any lower or upper bound constraints.

You create the options structure using the `saoptimset` function:

```
options = saoptimset('simulannealbnd')
```

This returns the structure `options` with the default values for its fields:

```
options =
    AnnealingFcn: @annealingfast
    TemperatureFcn: @temperatureexp
    AcceptanceFcn: @acceptancesa
    TolFun: 1.0000e-006
    StallIterLimit: '500*numberofvariables'
    MaxFunEvals: '3000*numberofvariables'
    TimeLimit: Inf
    MaxIter: Inf
    ObjectiveLimit: -Inf
```
Display: 'final'
DisplayInterval: 10
HybridFcn: []
HybridInterval: 'end'
PlotFcns: []
PlotInterval: 1
OutputFcns: []
InitialTemperature: 100
ReannealInterval: 100
DataType: 'double'

The value of each option is stored in a field of the options structure, such as
options.ReannealInterval. You can display any of these values by entering
options followed by the name of the field. For example, to display the interval for
reannealing used for the simulated annealing algorithm, enter

options.ReannealInterval
ans =
 100

To create an options structure with a field value that is different from the default—for
example, to set ReannealInterval to 300 instead of its default value 100—enter

options = saoptimset('ReannealInterval',300)

This creates the options structure with all values set to their defaults, except for
ReannealInterval, which is set to 300.

If you now enter

simulannealbnd(@objfun,x0,[],[],options)

simulannealbnd runs the simulated annealing algorithm with a reannealing interval of
300.

If you subsequently decide to change another field in the options structure, such as
setting PlotFcns to @saplotbestf, which plots the best objective function value at
each iteration, call saoptimset with the syntax

options = saoptimset(options,'PlotFcns',@saplotbestf)

This preserves the current values of all fields of options except for PlotFcns, which
is changed to @saplotbestf. Note that if you omit the input argument options,
saoptimset resets ReannealInterval to its default value 100.
You can also set both `ReannealInterval` and `PlotFcns` with the single command

```matlab
options = saoptimset('ReannealInterval',300, ...
    'PlotFcns',@saplotbestf)
```

Reproduce Your Results

Because the simulated annealing algorithm is stochastic—that is, it makes random choices—you get slightly different results each time you run it. The algorithm uses the default MATLAB pseudorandom number stream. For more information about random number streams, see `RandStream`. Each time the algorithm calls the stream, its state changes. So the next time the algorithm calls the stream, it returns a different random number.

If you need to reproduce your results exactly, call `simulannealbnd` with the `output` argument. The `output` structure contains the current random number generator state in the `output.rngstate` field. Reset the state before running the function again.

For example, to reproduce the output of `simulannealbnd` applied to De Jong’s fifth function, call `simulannealbnd` with the syntax

```matlab
rng(10,'twister') % for reproducibility
[x,fval,exitflag,output] = simulannealbnd(@dejong5fcn,[0 0]);
```

Suppose the results are

```matlab
x,fval
```

```matlab
x =
    -16.1292   -15.8214
```

```matlab
fval =
    6.9034
```

The state of the random number generator, `rngstate`, is stored in `output.rngstate`:

```matlab
output.rngstate
```

```matlab
ans =
```

```matlab
    state: [625x1 uint32]
    type: 'mt19937ar'
```

Reset the stream by entering
stream = RandStream.getGlobalStream;
stream.State = output.rngstate.state;

If you now run simulannealbnd a second time, you get the same results.

You can reproduce your run in the Optimization app by checking the box **Use random states from previous run** in the **Run solver and view results** section.

Note If you do not need to reproduce your results, it is better not to set the states of **RandStream**, so that you get the benefit of the randomness in these algorithms.
Minimization Using Simulated Annealing Algorithm

This example shows how to create and minimize an objective function using Simulated Annealing in the Global Optimization Toolbox.

A Simple Objective Function

We want to minimize a simple function of two variables

\[
\min_{x} f(x) = (4 - 2.1 \times x_1^2 + x_1^4/3) \times x_1^2 + x_1 \times x_2 + (-4 + 4 \times x_2^2) \times x_2^2;
\]

Coding the Objective Function

We create a MATLAB file named simple_objective.m with the following code in it:

```matlab
function y = simple_objective(x)
    y = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ... 
        (-4 + 4*x(2)^2)*x(2)^2;
end
```

The Simulated Annealing solver assumes the objective function will take one input \(x \) where \(x \) has as many elements as the number of variables in the problem. The objective function computes the scalar value of the objective and returns it in its single return argument \(y \).

Minimizing Using SIMULANNEALBND

To minimize our objective function using the SIMULANNEALBND function, we need to pass in a function handle to the objective function as well as specifying a start point as the second argument.

```matlab
ObjectiveFunction = @simple_objective;
X0 = [0.5 0.5];   % Starting point
[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,X0)
```

Optimization terminated: change in best function value less than options.TolFun.

\[
\begin{align*}
x &= \begin{bmatrix} -0.0896 & 0.7130 \end{bmatrix}
\end{align*}
\]
The first two output arguments returned by SIMULANNEALBND are \(x \), the best point found, and \(f_{\text{val}} \), the function value at the best point. A third output argument, \(\text{exitFlag} \) returns a flag corresponding to the reason SIMULANNEALBND stopped. SIMULANNEALBND can also return a fourth argument, \(\text{output} \), which contains information about the performance of the solver.

Bound Constrained Minimization

SIMULANNEALBND can be used to solve problems with bound constraints. The lower and upper bounds are passed to the solver as vectors. For each dimension \(i \), the solver ensures that \(\text{lb}(i) \leq x(i) \leq \text{ub}(i) \), where \(x \) is a point selected by the solver during simulation. We impose the bounds on our problem by specifying a range \(-64 \leq x(i) \leq 64\) for \(x(i) \).

```matlab
lb = [-64 -64];
ub = [64 64];
```

Now, we can rerun the solver with lower and upper bounds as input arguments.

```matlab
[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,X0,lb,ub);
fprintf('The number of iterations was : %d\n', output.iterations);
```
Simulated annealing mimics the annealing process to solve an optimization problem. It uses a temperature parameter that controls the search. The temperature parameter typically starts off high and is slowly "cooled" or lowered in every iteration. At each iteration a new point is generated and its distance from the current point is proportional to the temperature. If the new point has a better function value it replaces the current point and iteration counter is incremented. It is possible to accept and move forward with a worse point. The probability of doing so is directly dependent on the temperature. This unintuitive step sometime helps identify a new search region in hope of finding a better minimum.

An Objective Function with Additional Arguments

Sometimes we want our objective function to be parameterized by extra arguments that act as constants during the optimization. For example, in the previous objective function, say we want to replace the constants 4, 2.1, and 4 with parameters that we can change to create a family of objective functions. We can re-write the above function to take three additional parameters to give the new minimization problem.

$$\min_{x} f(x) = (a - b x_1^2 + x_1^4/3) x_1^2 + x_1 x_2 + (-c + c x_2^2) x_2^2;$$

a, b, and c are parameters to the objective function that act as constants during the optimization (they are not varied as part of the minimization). One can create a MATLAB file called parameterized_objective.m containing the following code.

```matlab
function y = parameterized_objective(x,a,b,c)
    y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-c + c*x(2)^2)*x(2)^2;
```

Minimizing Using Additional Arguments

Again, we need to pass in a function handle to the objective function as well as a start point as the second argument.
SIMULANNEALBND will call our objective function with just one argument x, but our objective function has four arguments: x, a, b, c. We can use an anonymous function to capture the values of the additional arguments, the constants a, b, and c. We create a function handle 'ObjectiveFunction' to an anonymous function that takes one input x, but calls 'parameterized_objective' with x, a, b and c. The variables a, b, and c have values when the function handle 'ObjectiveFunction' is created, so these values are captured by the anonymous function.

\[
\begin{align*}
a &= 4; \\
b &= 2.1; \\
c &= 4; \quad \text{% define constant values}
\end{align*}
\]

ObjectiveFunction = @(x) parameterized_objective(x,a,b,c);
X0 = [0.5 0.5];
[x,fval] = simulannealbnd(ObjectiveFunction,X0)

Optimization terminated: change in best function value less than options.TolFun.

\[
\begin{align*}
x &= \\
0.0898 & -0.7127
\end{align*}
\]

fval =

\[
\begin{align*}
-1.0316
\end{align*}
\]
Multiobjective Optimization

- “What Is Multiobjective Optimization?” on page 8-2
- “Use gamultiobj” on page 8-5
- “Bibliography” on page 8-14
What Is Multiobjective Optimization?

You might need to formulate problems with more than one objective, since a single objective with several constraints may not adequately represent the problem being faced. If so, there is a vector of objectives,

\[F(x) = [F_1(x), F_2(x), \ldots, F_m(x)], \]

that must be traded off in some way. The relative importance of these objectives is not generally known until the system’s best capabilities are determined and tradeoffs between the objectives fully understood. As the number of objectives increases, tradeoffs are likely to become complex and less easily quantified. The designer must rely on his or her intuition and ability to express preferences throughout the optimization cycle. Thus, requirements for a multiobjective design strategy must enable a natural problem formulation to be expressed, and be able to solve the problem and enter preferences into a numerically tractable and realistic design problem.

Multiobjective optimization is concerned with the minimization of a vector of objectives \(F(x) \) that can be the subject of a number of constraints or bounds:

\[
\min_{x \in \mathbb{R}^n} F(x), \quad \text{subject to} \quad G_i(x) = 0, \ i = 1, \ldots, k_e; \ G_i(x) \leq 0, \ i = k_e + 1, \ldots, k; \ l \leq x \leq u.
\]

Note that because \(F(x) \) is a vector, if any of the components of \(F(x) \) are competing, there is no unique solution to this problem. Instead, the concept of noninferiority in Zadeh [4] (also called Pareto optimality in Censor [1] and Da Cunha and Polak [2]) must be used to characterize the objectives. A noninferior solution is one in which an improvement in one objective requires a degradation of another. To define this concept more precisely, consider a feasible region, \(\Omega \), in the parameter space. \(x \) is an element of the \(n \)-dimensional real numbers \(x \in \mathbb{R}^n \) that satisfies all the constraints, i.e.,

\[
\Omega = \left\{ x \in \mathbb{R}^n \right\},
\]

subject to

\[
G_i(x) = 0, \ i = 1, \ldots, k_e, \\
G_i(x) \leq 0, \ i = k_e + 1, \ldots, k, \\
l \leq x \leq u.
\]
What Is Multiobjective Optimization?

This allows definition of the corresponding feasible region for the objective function space \(\Lambda \):

\[
\Lambda = \left\{ y \in \mathbb{R}^m : y = F(x), x \in \Omega \right\}.
\]

The performance vector \(F(x) \) maps parameter space into objective function space, as represented in two dimensions in the figure Mapping from Parameter Space into Objective Function Space.

A noninferior solution point can now be defined.

Definition: Point \(x^* \in \Omega \) is a noninferior solution if for some neighborhood of \(x^* \) there does not exist a \(\Delta x \) such that \((x^* + \Delta x) \in \Omega \) and

\[
F_i(x^* + \Delta x) \leq F_i(x^*), \quad i = 1, \ldots, m, \quad \text{and}
\]

\[
F_j(x^* + \Delta x) < F_j(x^*) \quad \text{for at least one } j.
\]

In the two-dimensional representation of the figure Set of Noninferior Solutions, the set of noninferior solutions lies on the curve between \(C \) and \(D \). Points \(A \) and \(B \) represent specific noninferior points.
A and B are clearly noninferior solution points because an improvement in one objective, F_1, requires a degradation in the other objective, F_2, i.e., $F_{1B} < F_{1A}$, $F_{2B} > F_{2A}$.

Since any point in Ω that is an inferior point represents a point in which improvement can be attained in all the objectives, it is clear that such a point is of no value. Multiobjective optimization is, therefore, concerned with the generation and selection of noninferior solution points.

Noninferior solutions are also called *Pareto optima*. A general goal in multiobjective optimization is constructing the Pareto optima. The algorithm used in `gamultiobj` is described in Deb [3].
Use gamultiobj

In this section...

“Problem Formulation” on page 8-5
“Use gamultiobj with the Optimization app” on page 8-5
“Multiobjective Optimization with Two Objectives” on page 8-6
“Options and Syntax: Differences from ga” on page 8-13

Problem Formulation

The gamultiobj solver attempts to create a set of Pareto optima for a multiobjective minimization. You may optionally set bounds or other constraints on variables. gamultiobj uses the genetic algorithm for finding local Pareto optima. As in the ga function, you may specify an initial population, or have the solver generate one automatically.

The fitness function for use in gamultiobj should return a vector of type double. The population may be of type double, a bit string vector, or can be a custom-typed vector. As in ga, if you use a custom population type, you must write your own creation, mutation, and crossover functions that accept inputs of that population type, and specify these functions in the following fields, respectively:

• **Creation function** (CreationFcn)
• **Mutation function** (MutationFcn)
• **Crossover function** (CrossoverFcn)

You can set the initial population in a variety of ways. Suppose that you choose a population of size \(m \). (The default population size is 15 times the number of variables \(n \).)

You can set the population:

• As an \(m \)-by-\(n \) matrix, where the rows represent \(m \) individuals.
• As a \(k \)-by-\(n \) matrix, where \(k < m \). The remaining \(m - k \) individuals are generated by a creation function.
• The entire population can be created by a creation function.

Use gamultiobj with the Optimization app

You can access gamultiobj from the Optimization app. Enter
optimtool('gamultiobj')
at the command line, or enter optimtool and then choose gamultiobj from the Solver menu. You can also start the tool from the MATLAB Apps tab.

If the Quick Reference help pane is closed, you can open it by clicking the “>>” button on the upper right: The help pane briefly explains all the available options.

You can create an options structure in the Optimization app, export it to the MATLAB workspace, and use the structure at the command line. For details, see “Importing and Exporting Your Work” in the Optimization Toolbox documentation.

Multiobjective Optimization with Two Objectives

This example has a two-objective fitness function \(f(x) \), where \(x \) is also two-dimensional:

```matlab
function f = mymulti1(x)
    f(1) = x(1)^4 - 10*x(1)^2*x(2) + x(2)^4 - (x(1)^2)*(x(2)^2);
    f(2) = x(2)^4 - (x(1)^2)*(x(2)^2) + x(1)^4 + x(1)*x(2);
Create this function file before proceeding.
```

Performing the Optimization with Optimization App

1. To define the optimization problem, start the Optimization app, and set it as pictured.
2 Set the options for the problem as pictured.
3 Run the optimization by clicking Start under Run solver and view results.

A plot appears in a figure window.
This plot shows the tradeoff between the two components of f. It is plotted in objective function space; see the figure Set of Noninferior Solutions.

The results of the optimization appear in the following table containing both objective function values and the value of the variables.
You can sort the table by clicking a heading. Click the heading again to sort it in the reverse order. The following figures show the result of clicking the heading f_1.
Performing the Optimization at the Command Line

To perform the same optimization at the command line:

1. Set the options:

```matlab
options = gaoptimset('PopulationSize',60,...
    'ParetoFraction',0.7,'PlotFcns',@gaplotpareto);
```

2. Run the optimization using the options:

```matlab
[x,fval,flag,output,population] = gamultiobj(@mymulti1,2,...
    [],[],[],[-5,-5],[5,5],options);
```

Alternate Views

There are other ways of regarding the problem. The following figure contains a plot of the level curves of the two objective functions, the Pareto frontier calculated by `gamultiobj` (boxes), and the x-values of the true Pareto frontier (diamonds connected by a nearly-straight line). The true Pareto frontier points are where the level curves of the objective functions are parallel. They were calculated by finding where the gradients of the objective functions are parallel. The figure is plotted in parameter space; see the figure Mapping from Parameter Space into Objective Function Space.
Contours of objective functions, and Pareto frontier

gamultiobj found the ends of the line segment, meaning it found the full extent of the Pareto frontier.
Options and Syntax: Differences from ga

The syntax and options for `gamultiobj` are similar to those for `ga`, with the following differences:

• `gamultiobj` uses only the `'penalty'` algorithm for nonlinear constraints. See “Nonlinear Constraint Solver Algorithms” on page 5-49.

• `gamultiobj` takes an option `DistanceMeasureFcn`, a function that assigns a distance measure to each individual with respect to its neighbors.

• `gamultiobj` takes an option `ParetoFraction`, a number between 0 and 1 that specifies the fraction of the population on the best Pareto frontier to be kept during the optimization. If there is only one Pareto frontier, this option is ignored.

• `gamultiobj` uses only the `Tournament` selection function.

• `gamultiobj` uses elite individuals differently than `ga`. It sorts noninferior individuals above inferior ones, so it uses elite individuals automatically.

• `gamultiobj` has only one hybrid function, `fgoalattain`.

• `gamultiobj` does not have a stall time limit.

• `gamultiobj` has different plot functions available.

• `gamultiobj` does not have a choice of scaling function.
Bibliography

Parallel Processing

• “Background” on page 9-2
• “How to Use Parallel Processing” on page 9-12
• “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox™” on page 9-19
Background

In this section...

“Parallel Processing Types in Global Optimization Toolbox” on page 9-2
“How Toolbox Functions Distribute Processes” on page 9-3

Parallel Processing Types in Global Optimization Toolbox

Parallel processing is an attractive way to speed optimization algorithms. To use parallel processing, you must have a Parallel Computing Toolbox license, and have a parallel worker pool (`parpool`). For more information, see “How to Use Parallel Processing” on page 9-12.

Global Optimization Toolbox solvers use parallel computing in various ways.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Parallel?</th>
<th>Parallel Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlobalSearch</td>
<td>×</td>
<td>No parallel functionality. However, <code>fmincon</code> can use parallel gradient estimation when run in <code>GlobalSearch</code>. See “Using Parallel Computing in Optimization Toolbox” in the Optimization Toolbox documentation.</td>
</tr>
<tr>
<td>MultiStart</td>
<td>✓</td>
<td>Start points distributed to multiple processors. From these points, local solvers run to completion. For more details, see “MultiStart” on page 9-5 and “How to Use Parallel Processing” on page 9-12.</td>
</tr>
<tr>
<td><code>ga, gamultiobj</code></td>
<td>✓</td>
<td>Population evaluated in parallel, which occurs once per iteration. For more details, see “Genetic Algorithm” on page 9-8 and “How to Use Parallel Processing” on page 9-12. No vectorization of fitness or constraint functions.</td>
</tr>
<tr>
<td><code>particleswarm</code></td>
<td>✓</td>
<td>Population evaluated in parallel, which occurs once per iteration. For more details, see “Particle Swarm” on page 9-10 and “How to Use Parallel Processing” on page 9-12. No vectorization of fitness or constraint functions.</td>
</tr>
</tbody>
</table>
In addition, several solvers have hybrid functions that run after they finish. Some hybrid functions can run in parallel. Also, most `patternsearch` search methods can run in parallel. For more information, see “Parallel Search Functions or Hybrid Functions” on page 9-15.

How Toolbox Functions Distribute Processes

- “parfor Characteristics and Caveats” on page 9-3
- “MultiStart” on page 9-5
- “GlobalSearch” on page 9-6
- “Pattern Search” on page 9-6
- “Genetic Algorithm” on page 9-8
- “Parallel Computing with gamultiobj” on page 9-9
- “Particle Swarm” on page 9-10
- “Simulated Annealing” on page 9-11

parfor Characteristics and Caveats

No Nested parfor Loops

Solvers employ the Parallel Computing Toolbox `parfor` function to perform parallel computations.

Note: `parfor` does not work in parallel when called from within another `parfor` loop.

Suppose, for example, your objective function `userfcn` calls `parfor`, and you want to call `fmincon` using `MultiStart` and parallel processing. Suppose also that the
conditions for parallel gradient evaluation of \texttt{fmincon} are satisfied, as given in “Parallel Optimization Functionality”. The figure When \texttt{parfor} Runs In Parallel shows three cases:

1. The outermost loop is parallel \texttt{MultiStart}. Only that loop runs in parallel.
2. The outermost \texttt{parfor} loop is in \texttt{fmincon}. Only \texttt{fmincon} runs in parallel.
3. The outermost \texttt{parfor} loop is in \texttt{userfcn}. In this case, \texttt{userfcn} can use \texttt{parfor} in parallel.

Bold indicates the function that runs in parallel

```matlab
1 problem = createOptimProblem(fmincon,'objective',@userfcn,...) ms = MultiStart('UseParallel','always'); x = run(ms,problem,10) Only the outermost parfor loop runs in parallel
```

If \texttt{fmincon} \texttt{UseParallel} option = 'always'

```matlab
2 x = fmincon(@userfcn,...) fmincon estimates gradients in parallel
```

If \texttt{fmincon} \texttt{UseParallel} option = 'never'

```matlab
3 x = fmincon(@userfcn,...) userfcn can use parfor in parallel
```

When \texttt{parfor} Runs In Parallel

Parallel Random Numbers Are Not Reproducible

Random number sequences in MATLAB are pseudorandom, determined from a seed, or an initial setting. Parallel computations use seeds that are not necessarily controllable or reproducible. For example, each instance of MATLAB has a default global setting that determines the current seed for random sequences.

For \texttt{patternsearch}, if you select MADS as a poll or search method, parallel pattern search does not have reproducible runs. If you select the genetic algorithm or Latin hypercube as search methods, parallel pattern search does not have reproducible runs.

For \texttt{ga} and \texttt{gamultiobj}, parallel population generation gives nonreproducible results.

\texttt{MultiStart} is different. You can have reproducible runs from parallel \texttt{MultiStart}. Runs are reproducible because \texttt{MultiStart} generates pseudorandom start points...
locally, and then distributes the start points to parallel processors. Therefore, the parallel processors do not use random numbers. For more details, see “Parallel Processing and Random Number Streams” on page 3-71.

Limitations and Performance Considerations

More caveats related to `parfor` appear in the “parfor Limitations” section of the Parallel Computing Toolbox documentation.

For information on factors that affect the speed of parallel computations, and factors that affect the results of parallel computations, see “Improving Performance with Parallel Computing” in the Optimization Toolbox documentation. The same considerations apply to parallel computing with Global Optimization Toolbox functions.

MultiStart

`MultiStart` can automatically distribute a problem and start points to multiple processes or processors. The problems run independently, and `MultiStart` combines the distinct local minima into a vector of `GlobalOptimSolution` objects. `MultiStart` uses parallel computing when you:

- Have a license for Parallel Computing Toolbox software.
- Enable parallel computing with `parpool`, a Parallel Computing Toolbox function.
- Set the `UseParallel` property to `true` in the `MultiStart` object:

  ```
  ms = MultiStart('UseParallel',true);
  ```

When these conditions hold, `MultiStart` distributes a problem and start points to processes or processors one at a time. The algorithm halts when it reaches a stopping condition or runs out of start points to distribute. If the `MultiStart Display` property is 'iter', then `MultiStart` displays:

```
Running the local solvers in parallel.
```

For an example of parallel `MultiStart`, see “Parallel MultiStart” on page 3-89.

Implementation Issues in Parallel MultiStart

`fmincon` cannot estimate gradients in parallel when used with parallel `MultiStart`. This lack of parallel gradient estimation is due to the limitation of `parfor` described in “No Nested parfor Loops” on page 9-3.

`fmincon` can take longer to estimate gradients in parallel rather than in serial. In this case, using `MultiStart` with parallel gradient estimation in `fmincon`
amplifies the slowdown. For example, suppose the MS MultiStart object has UseParallel set to false. Suppose fmincon takes 1 s longer to solve problem with problem.options.UseParallel set to true. Then run(ms,problem,200) takes 200 s longer than the same run with problem.options.UseParallel set to false.

Note: When executing serially, parfor loops run slower than for loops. Therefore, for best performance, set your local solver UseParallel option to false when the MultiStart UseParallel property is true.

Note: Even when running in parallel, a solver occasionally calls the objective and nonlinear constraint functions serially on the host machine. Therefore, ensure that your functions have no assumptions about whether they are evaluated in serial and parallel.

GlobalSearch

GlobalSearch does not distribute a problem and start points to multiple processes or processors. However, when GlobalSearch runs the fmincon local solver, fmincon can estimate gradients by parallel finite differences. fmincon uses parallel computing when you:

- Have a license for Parallel Computing Toolbox software.
- Enable parallel computing with parpool, a Parallel Computing Toolbox function.
- Set the UseParallel option to true with optimoptions. Set this option in the problem structure:

```
opts = optimoptions(@fmincon,'UseParallel',true,'Algorithm','sqp');
problem = createOptimProblem('fmincon','objective',@myobj,...
    'x0',startpt,'options',opts);
```

For more details, see “Using Parallel Computing in Optimization Toolbox” in the Optimization Toolbox documentation.

Pattern Search

patternsearch can automatically distribute the evaluation of objective and constraint functions associated with the points in a pattern to multiple processes or processors. patternsearch uses parallel computing when you:

- Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with `parpool`, a Parallel Computing Toolbox function.
• Set the following options using `psoptimset` or the Optimization app:
 • `CompletePoll` is 'on'.
 • `Vectorized` is 'off' (default).
 • `UseParallel` is true.

When these conditions hold, the solver computes the objective function and constraint values of the pattern search in parallel during a poll. Furthermore, `patternsearch` overrides the setting of the `Cache` option, and uses the default 'off' setting.

Note: Even when running in parallel, `patternsearch` occasionally calls the objective and nonlinear constraint functions serially on the host machine. Therefore, ensure that your functions have no assumptions about whether they are evaluated in serial or parallel.

Parallel Search Function

`patternsearch` can optionally call a search function at each iteration. The search is parallel when you:

• Set `CompleteSearch` to 'on'.
• Do not set the search method to `@searchneldermead` or `custom`.
• Set the search method to a `patternsearch` poll method or Latin hypercube search, and set `UseParallel` to true.
• Or, if you set the search method to `ga`, create a search method option structure with `UseParallel` set to true.

Implementation Issues in Parallel Pattern Search

The limitations on `patternsearch` options, listed in “Pattern Search” on page 9-6, arise partly from the limitations of `parfor`, and partly from the nature of parallel processing:

• `Cache` is overridden to be 'off' — `patternsearch` implements `Cache` as a persistent variable. `parfor` does not handle persistent variables, because the variable could have different settings at different processors.
• **CompletePoll is 'on'** — CompletePoll determines whether a poll stops as soon as \texttt{patternsearch} finds a better point. When searching in parallel, \texttt{parfor} schedules all evaluations simultaneously, and \texttt{patternsearch} continues after all evaluations complete. \texttt{patternsearch} cannot halt evaluations after they start.

• **Vectorized is 'off'** — Vectorized determines whether \texttt{patternsearch} evaluates all points in a pattern with one function call in a vectorized fashion. If **Vectorized is 'on'**, \texttt{patternsearch} does not distribute the evaluation of the function, so does not use \texttt{parfor}.

Genetic Algorithm

\texttt{ga} and \texttt{gamultiobj} can automatically distribute the evaluation of objective and nonlinear constraint functions associated with a population to multiple processors. \texttt{ga} uses parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with \texttt{parpool}, a Parallel Computing Toolbox function.
• Set the following options using \texttt{gaoptimset} or the Optimization app:
 • **Vectorized** is 'off' (default).
 • **UseParallel** is true.

When these conditions hold, \texttt{ga} computes the objective function and nonlinear constraint values of the individuals in a population in parallel.

Note: Even when running in parallel, \texttt{ga} occasionally calls the fitness and nonlinear constraint functions serially on the host machine. Therefore, ensure that your functions have no assumptions about whether they are evaluated in serial or parallel.

Implementation Issues in Parallel Genetic Algorithm

The limitations on options, listed in “Genetic Algorithm” on page 9-8, arise partly from limitations of \texttt{parfor}, and partly from the nature of parallel processing:

• **Vectorized is 'off'** — Vectorized determines whether \texttt{ga} evaluates an entire population with one function call in a vectorized fashion. If **Vectorized is 'on'**, \texttt{ga} does not distribute the evaluation of the function, so does not use \texttt{parfor}.
ga can have a hybrid function that runs after it finishes; see “Include a Hybrid Function” on page 5-104. If you want the hybrid function to take advantage of parallel computation, set its options separately so that UseParallel is true. If the hybrid function is patternsearch, set CompletePoll to 'on' so that patternsearch runs in parallel.

If the hybrid function is fmincon, set the following options with optimoptions to have parallel gradient estimation:

- GradObj must not be 'on' — it can be 'off' or [].
- Or, if there is a nonlinear constraint function, GradConstr must not be 'on' — it can be 'off' or [].

To find out how to write options for the hybrid function, see “Parallel Hybrid Functions” on page 9-17.

Parallel Computing with gamultiobj

Parallel computing with gamultiobj works almost the same as with ga. For detailed information, see “Genetic Algorithm” on page 9-8.

The difference between parallel computing with gamultiobj and ga has to do with the hybrid function. gamultiobj allows only one hybrid function, fgoalattain. This function optionally runs after gamultiobj finishes its run. Each individual in the calculated Pareto frontier, that is, the final population found by gamultiobj, becomes the starting point for an optimization using fgoalattain. These optimizations run in parallel. The number of processors performing these optimizations is the smaller of the number of individuals and the size of your parpool.

For fgoalattain to run in parallel, set its options correctly:

```matlab
fgoalopts = optimoptions(@fgoalattain,'UseParallel',true)
gaoptions = gaoptimset('HybridFcn',{@fgoalattain,fgoalopts});
```

Run gamultiobj with gaoptions, and fgoalattain runs in parallel. For more information about setting the hybrid function, see “Hybrid Function Options” on page 10-49.

gamultiobj calls fgoalattain using a parfor loop, so fgoalattain does not estimate gradients in parallel when used as a hybrid function with gamultiobj. For more information, see “No Nested parfor Loops” on page 9-3.
Particle Swarm

particleswarm can automatically distribute the evaluation of the objective function associated with a population to multiple processors. particleswarm uses parallel computing when you:

- Have a license for Parallel Computing Toolbox software.
- Enable parallel computing with parpool, a Parallel Computing Toolbox function.
- Set the following options using optimoptions:
 - Vectorized is 'off' (default).
 - UseParallel is true.

When these conditions hold, particleswarm computes the objective function of the particles in a population in parallel.

Note: Even when running in parallel, particleswarm occasionally calls the objective function serially on the host machine. Therefore, ensure that your objective function has no assumptions about whether it is evaluated in serial or parallel.

Implementation Issues in Parallel Particle Swarm Optimization

The limitations on options, listed in “Particle Swarm” on page 9-10, arise partly from limitations of parfor, and partly from the nature of parallel processing:

- Vectorized is 'off' — Vectorized determines whether particleswarm evaluates an entire population with one function call in a vectorized fashion. If Vectorized is 'on', particleswarm does not distribute the evaluation of the function, so does not use parfor.

particleswarm can have a hybrid function that runs after it finishes; see “Include a Hybrid Function” on page 5-104. If you want the hybrid function to take advantage of parallel computation, set its options separately so that UseParallel is true. If the hybrid function is patternsearch, set CompletePoll to 'on' so that patternsearch runs in parallel.

If the hybrid function is fmincon, set the GradObj option to 'off' or [] with optimoptions to have parallel gradient estimation.
To find out how to write options for the hybrid function, see “Parallel Hybrid Functions” on page 9-17.

Simulated Annealing

`simulannealbnd` does not run in parallel automatically. However, it can call hybrid functions that take advantage of parallel computing. To find out how to write options for the hybrid function, see “Parallel Hybrid Functions” on page 9-17.
How to Use Parallel Processing

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Multicore Processors” on page 9-12</td>
</tr>
<tr>
<td>“Processor Network” on page 9-13</td>
</tr>
<tr>
<td>“Parallel Search Functions or Hybrid Functions” on page 9-15</td>
</tr>
</tbody>
</table>

Multicore Processors

If you have a multicore processor, you might see speedup using parallel processing. You can establish a parallel pool of several workers with a Parallel Computing Toolbox license. For a description of Parallel Computing Toolbox software, see “Getting Started with Parallel Computing Toolbox”.

Suppose you have a dual-core processor, and want to use parallel computing:

- Enter
  ```matlab
  parpool
  ```
 at the command line. MATLAB starts a pool of workers using the multicore processor. If you had previously set a nondefault cluster profile, you can enforce multicore (local) computing:
  ```matlab
  parpool('local')
  ```

Note: Depending on your preferences, MATLAB can start a parallel pool automatically. To enable this feature, check **Automatically create a parallel pool** in Home > Parallel > Parallel Preferences.

- Set your solver to use parallel processing.

<table>
<thead>
<tr>
<th>MultiStart</th>
<th>patternsearch</th>
<th>ga</th>
<th>particleswarm</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ms = MultiStart('UseParallel', true);</code> or</td>
<td><code>options = psoptimset('UseParallel', true, 'CompletePoll', 'on',)</code></td>
<td><code>options = gaoptimset('UseParallel', true, 'Vectorized', 'off');</code></td>
<td><code>options = optimoptions('particleswarm', 'UseParallel', true, 'Vectorized', 'off');</code></td>
</tr>
</tbody>
</table>
When you run an applicable solver with options, applicable solvers automatically use parallel computing.

To stop computing optimizations in parallel, set UseParallel to false, or set the Optimization app not to compute in parallel. To halt all parallel computation, enter

delete(gcp)

Processor Network

If you have multiple processors on a network, use Parallel Computing Toolbox functions and MATLAB Distributed Computing Server™ software to establish parallel computation. Here are the steps to take:

1. Make sure your system is configured properly for parallel computing. Check with your systems administrator, or refer to the Parallel Computing Toolbox documentation.

To perform a basic check:

a. At the command line, enter

parpool(prof)
where prof is your cluster profile.

b Workers must be able to access your objective function file and, if applicable, your nonlinear constraint function file. There are two ways of ensuring access:

i Distribute the files to the workers using the parpool AttachedFiles argument. For example, if objfun.m is your objective function file, and constrfun.m is your nonlinear constraint function file, enter

```matlab
parpool('AttachedFiles',{'objfun.m','constrfun.m'});
```

Workers access their own copies of the files.

ii Give a network file path to your files. If network_file_path is the network path to your objective or constraint function files, enter

```matlab
pctRunOnAll('addpath network_file_path')
```

Workers access the function files over the network.

c Check whether a file is on the path of every worker by entering

```matlab
pctRunOnAll('which filename')
```

If any worker does not have a path to the file, it reports

filename not found.

2 Set your solver to use parallel processing.

<table>
<thead>
<tr>
<th>MultiStart</th>
<th>patternsearch</th>
<th>ga</th>
<th>particleswarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms = MultiStart('UseParallel', true); or ms.UseParallel = true</td>
<td>options = psoptimset('UseParallel', true, 'CompletePoll', on', 'Vectorized', 'off');</td>
<td>options = gaoptimset('UseParallel', true, 'Vectorized', 'off');</td>
<td>options = optimoptions('particleswarm', 'UseParallel', true, 'Vectorized', 'off');</td>
</tr>
<tr>
<td>For Optimization app:</td>
<td>For Optimization app:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Options > User function evaluation > Evaluate</td>
<td>• Options > User function evaluation > Evaluate fitness</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to Use Parallel Processing

<table>
<thead>
<tr>
<th>MultiStart</th>
<th>patternsearch</th>
<th>ga</th>
<th>particleswarm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>objective and constraint functions > in parallel</td>
<td>and constraint functions > in parallel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Options > Complete poll > on</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After you establish your parallel computing environment, applicable solvers automatically use parallel computing whenever you call them with options.

To stop computing optimizations in parallel, set UseParallel to false, or set the Optimization app not to compute in parallel. To halt all parallel computation, enter delete(gcp)

Parallel Search Functions or Hybrid Functions

To have a patternsearch search function run in parallel, or a hybrid function for ga or simulannealbnd run in parallel, do the following.

1. Set up parallel processing as described in “Multicore Processors” on page 9-12 or “Processor Network” on page 9-13.

2. Ensure that your search function or hybrid function has the conditions outlined in these sections:

 • “patternsearch Search Function” on page 9-15
 • “Parallel Hybrid Functions” on page 9-17

patternsearch Search Function

patternsearch uses a parallel search function under the following conditions:

• CompleteSearch is 'on'.
• The search method is not @searchneldermead or custom.
• If the search method is a patternsearch poll method or Latin hypercube search, UseParallel is true. Set at the command line with psoptimset:
options = psoptimset('UseParallel',true,...
 'CompleteSearch','on','SearchMethod',@GPSPositiveBasis2N);

Or you can use the Optimization app.

• If the search method is **ga**, the search method option structure has **UseParallel** set to **true**. Set at the command line with **psoptimset** and **gaoptimset**:

```matlab
iterlim = 1; % iteration limit, specifies # ga runs
gaopt = gaoptimset('UseParallel',true);
options = psoptimset('SearchMethod',... 
 {@searchga,iterlim,gaopt});
```

In the Optimization app, first create the **gaopt** structure as above, and then use these settings:

For more information about search functions, see “Using a Search Method” on page 4-32.
Parallel Hybrid Functions

ga, particleswarm, and simulannealbnd can have other solvers run after or interspersed with their iterations. These other solvers are called hybrid functions. For information on using a hybrid function with gamultiobj, see “Parallel Computing with gamultiobj” on page 9-9. Both patternsearch and fmincon can be hybrid functions. You can set options so that patternsearch runs in parallel, or fmincon estimates gradients in parallel.

Set the options for the hybrid function as described in “Hybrid Function Options” on page 10-49 for ga, “Hybrid Function” on page 10-57 for particleswarm, or “Hybrid Function Options” on page 10-66 for simulannealbnd. To summarize:

• If your hybrid function is patternsearch

1 Create a patternsearch options structure:

```matlab
hybridopts = psoptimset('UseParallel',true,...
    'CompletePoll','on');
```

2 Set the ga or simulannealbnd options to use patternsearch as a hybrid function:

```matlab
options = gaoptimset('UseParallel',true); % for ga
options = gaoptimset(options,...
    'HybridFcn',{@patternsearch,hybridopts});
% or, for simulannealbnd:
options = saoptimset('HybridFcn',{@patternsearch,hybridopts});
```

Or use the Optimization app.

![Hybrid function app](image)

For more information on parallel patternsearch, see “Pattern Search” on page 9-6.

• If your hybrid function is fmincon:

1 Create a fmincon options structure:
hybridopts = optimoptions(@fmincon,'UseParallel',true,...
 'Algorithm','interior-point');
% You can use any Algorithm except trust-region-reflective

Set the ga or simulannealbnd options to use fmincon as a hybrid function:

options = gaoptimset('UseParallel',true);
options = gaoptimset(options,'HybridFcn',{@fmincon,hybridopts});
% or, for simulannealbnd:
options = saoptimset('HybridFcn',{@fmincon,hybridopts});

Or use the Optimization app.

For more information on parallel fmincon, see “Parallel Computing”.
Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox™

This example shows how to speed up the minimization of an expensive optimization problem using functions in Optimization Toolbox™ and Global Optimization Toolbox. In the first part of the example we solve the optimization problem by evaluating functions in a serial fashion and in the second part of the example we solve the same problem using the parallel for loop (parfor) feature by evaluating functions in parallel. We compare the time taken by the optimization function in both cases.

Expensive Optimization Problem

For the purpose of this example, we solve a problem in four variables, where the objective and constraint functions are made artificially expensive by pausing.

```
type expensive_objfun.m

type expensive_confun.m
```

```
function f = expensive_objfun(x)
%EXPENSIVE_OBJFUN An expensive objective function used in optimparfor example.

% Copyright 2007-2014 The MathWorks, Inc.
% $Revision: 1.1.8.2 $  $Date: 2013/05/04 00:47:14 $

% Simulate an expensive function by pausing
pause(0.1)
% Evaluate objective function
f = exp(x(1)) * (4*x(3)^2 + 2*x(4)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

function [c,ceq] = expensive_confun(x)
%EXPENSIVE_CONFUN An expensive constraint function used in optimparfor example.

% Copyright 2007-2014 The MathWorks, Inc.
% $Revision: 1.1.8.2 $  $Date: 2013/05/04 00:47:13 $

% Simulate an expensive function by pausing
pause(0.1);
% Evaluate constraints
  c = [1.5 + x(1)*x(2)*x(3) - x(1) - x(2) - x(4);
      -x(1)*x(2) + x(4) - 10];
% No nonlinear equality constraints:
ceq = [];
```
Minimizing Using \texttt{fmincon}

We are interested in measuring the time taken by \texttt{fmincon} in serial so that we can compare it to the parallel \texttt{fmincon} evaluation.

\begin{verbatim}
startPoint = [-1 1 1 -1];
options = optimoptions('fmincon','Display','iter','Algorithm','sqp');
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_sequential = toc(startTime);
fprintf('Serial FMINCON optimization takes %g seconds.
',time_fmincon_sequential);
\end{verbatim}

\begin{verbatim}
Iter F-count f(x) Feasibility Steplength
0 5 1.839397e+00 1.5000e+00
1 12 -8.841073e-01 4.0190e+00 4.9000e-01
2 17 -1.382832e+00 0.0000e+00 1.0000e+00
3 22 -2.241952e+00 0.0000e+00 1.0000e+00
4 27 -3.145762e+00 0.0000e+00 1.0000e+00
5 32 -5.277523e+00 6.4130e+00 1.0000e+00
6 37 -6.310709e+00 0.0000e+00 1.0000e+00
7 43 -6.447956e+00 0.0000e+00 7.0000e+00
8 48 -7.135133e+00 0.0000e+00 1.0000e+00
9 53 -7.162732e+00 0.0000e+00 1.0000e+00
10 58 -7.178390e+00 0.0000e+00 1.0000e+00
11 63 -7.180399e+00 1.1910e-05 1.0000e+00
12 68 -7.180408e+00 0.0000e+00 1.0000e+00
13 73 -7.180411e+00 0.0000e+00 1.0000e+00
14 78 -7.180412e+00 0.0000e+00 1.0000e+00
15 83 -7.180412e+00 0.0000e+00 1.0000e+00
\end{verbatim}

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the function tolerance, and constraints are satisfied to within the default value of the constraint tolerance.

Serial FMINCON optimization takes 18.1397 seconds.

Minimizing Using Genetic Algorithm

Since \texttt{ga} usually takes many more function evaluations than \texttt{fmincon}, we remove the expensive constraint from this problem and perform unconstrained optimization
instead; we pass empty ([]) for constraints. In addition, we limit the maximum number of
generations to 15 for ga so that ga can terminate in a reasonable amount of time. We are
interested in measuring the time taken by ga so that we can compare it to the parallel ga
evaluation. Note that running ga requires Global Optimization Toolbox.

rng default % for reproducibility
try
gaAvailable = false;
nvar = 4;
gaoptions = gaoptimset('Generations',15,'Display','iter');
startTime = tic;
gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
time_ga_sequential = toc(startTime);
fprintf('Serial GA optimization takes %g seconds.
',time_ga_sequential);
gaAvailable = true;
catch ME
 warning(message('optimdemos:optimparfor:gaNotFound'));
end

<table>
<thead>
<tr>
<th>Generation</th>
<th>f-count</th>
<th>Best f(x)</th>
<th>Mean f(x)</th>
<th>Stall Generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>-6.433e+16</td>
<td>-1.287e+15</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>-1.501e+17</td>
<td>-7.138e+15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>-7.878e+26</td>
<td>-1.576e+25</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>-8.664e+27</td>
<td>-1.466e+26</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>-1.096e+28</td>
<td>-2.062e+26</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>350</td>
<td>-5.422e+33</td>
<td>-1.145e+32</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>400</td>
<td>-1.636e+36</td>
<td>-3.316e+34</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>-2.933e+36</td>
<td>-1.513e+35</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>-1.351e+40</td>
<td>-2.705e+38</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>550</td>
<td>-1.351e+40</td>
<td>-7.9e+38</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>600</td>
<td>-2.07e+40</td>
<td>-2.266e+39</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>650</td>
<td>-1.845e+44</td>
<td>-3.696e+42</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>700</td>
<td>-2.893e+44</td>
<td>-1.687e+43</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>750</td>
<td>-5.076e+44</td>
<td>-6.516e+43</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>800</td>
<td>-8.321e+44</td>
<td>-2.225e+44</td>
<td>0</td>
</tr>
</tbody>
</table>

Optimization terminated: maximum number of generations exceeded.
Serial GA optimization takes 87.3686 seconds.

Setting Parallel Computing Toolbox

The finite differencing used by the functions in Optimization Toolbox to approximate
derivatives is done in parallel using the parfor feature if Parallel Computing Toolbox
is available and there is a parallel pool of workers. Similarly, ga, gamultiobj, and patternsearch solvers in Global Optimization Toolbox evaluate functions in parallel. To use the parfor feature, we use the parpool function to set up the parallel environment. The computer on which this example is published has four cores, so parpool starts four MATLAB® workers. If there is already a parallel pool when you run this example, we use that pool; see the documentation for parpool for more information.

```matlab
if max(size(gcp)) == 0 % parallel pool needed
    parpool % create the parallel pool
end
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

Minimizing Using Parallel fmincon

To minimize our expensive optimization problem using the parallel fmincon function, we need to explicitly indicate that our objective and constraint functions can be evaluated in parallel and that we want fmincon to use its parallel functionality wherever possible. Currently, finite differencing can be done in parallel. We are interested in measuring the time taken by fmincon so that we can compare it to the serial fmincon run.

```matlab
options = optimoptions(options,'UseParallel',true);
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_parallel = toc(startTime);
fprintf('Parallel FMINCON optimization takes %g seconds.
',time_fmincon_parallel);
```

<table>
<thead>
<tr>
<th>Iter</th>
<th>F-count</th>
<th>f(x)</th>
<th>Feasibility</th>
<th>Steplength</th>
<th>Norm of First-order step</th>
<th>optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>1.839397e+00</td>
<td>1.500e+00</td>
<td>3.311e+00</td>
<td>7.015e-01</td>
<td>3.11e+00</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>-8.841073e-01</td>
<td>4.019e+00</td>
<td>1.42e+00</td>
<td>9.272e-01</td>
<td>1.27e+00</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>-1.382832e+00</td>
<td>0.000e+00</td>
<td>1.142e+00</td>
<td>3.63e+00</td>
<td>7.015e-01</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>-2.241952e+00</td>
<td>0.000e+00</td>
<td>2.447e+00</td>
<td>1.481e+00</td>
<td>9.272e-01</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>-3.145762e+00</td>
<td>0.000e+00</td>
<td>1.756e+00</td>
<td>5.464e+00</td>
<td>7.015e-01</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>-5.277523e+00</td>
<td>6.413e+00</td>
<td>2.224e+00</td>
<td>1.357e+00</td>
<td>9.272e-01</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
<td>-6.310709e+00</td>
<td>0.000e+00</td>
<td>1.099e+00</td>
<td>1.309e+00</td>
<td>7.015e-01</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>-6.447956e+00</td>
<td>0.000e+00</td>
<td>2.191e+00</td>
<td>3.631e+00</td>
<td>9.272e-01</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>-7.135133e+00</td>
<td>0.000e+00</td>
<td>3.719e+00</td>
<td>1.205e+00</td>
<td>7.015e-01</td>
</tr>
<tr>
<td>9</td>
<td>53</td>
<td>-7.162732e+00</td>
<td>0.000e+00</td>
<td>4.083e+00</td>
<td>2.935e+00</td>
<td>9.272e-01</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>-7.170739e+00</td>
<td>0.000e+00</td>
<td>1.591e-01</td>
<td>3.110e+02</td>
<td>7.015e-01</td>
</tr>
<tr>
<td>11</td>
<td>63</td>
<td>-7.180399e+00</td>
<td>1.191e-05</td>
<td>2.644e+02</td>
<td>1.553e+02</td>
<td>9.272e-01</td>
</tr>
<tr>
<td>12</td>
<td>68</td>
<td>-7.180408e+00</td>
<td>0.000e+00</td>
<td>1.140e+02</td>
<td>5.584e+03</td>
<td>7.015e-01</td>
</tr>
<tr>
<td>13</td>
<td>73</td>
<td>-7.180411e+00</td>
<td>0.000e+00</td>
<td>1.764e+03</td>
<td>4.677e+04</td>
<td>9.272e-01</td>
</tr>
<tr>
<td>14</td>
<td>78</td>
<td>-7.180412e+00</td>
<td>0.000e+00</td>
<td>8.827e-05</td>
<td>1.304e-05</td>
<td>7.015e-01</td>
</tr>
<tr>
<td>15</td>
<td>83</td>
<td>-7.180412e+00</td>
<td>0.000e+00</td>
<td>1.528e-06</td>
<td>1.023e-07</td>
<td>7.015e-01</td>
</tr>
</tbody>
</table>
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the function tolerance, and constraints are satisfied to within the default value of the constraint tolerance.

Parallel FMINCON optimization takes 8.78988 seconds.

Minimizing Using Parallel Genetic Algorithm

To minimize our expensive optimization problem using the `ga` function, we need to explicitly indicate that our objective function can be evaluated in parallel and that we want `ga` to use its parallel functionality wherever possible. To use the parallel `ga` we also require that the 'Vectorized' option be set to the default (i.e., 'off'). We are again interested in measuring the time taken by `ga` so that we can compare it to the serial `ga` run. Though this run may be different from the serial one because `ga` uses a random number generator, the number of expensive function evaluations is the same in both runs. Note that running `ga` requires Global Optimization Toolbox.

```matlab
rng default  % to get the same evaluations as the previous run
if gaAvailable
    gaoptions = gaoptimset(gaoptions,'UseParallel',true);  
    startTime = tic;  
    gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],gaoptions);  
    time_ga_parallel = toc(startTime);  
    fprintf('Parallel GA optimization takes %g seconds.
',time_ga_parallel);
end
```

<table>
<thead>
<tr>
<th>Generation</th>
<th>f-count</th>
<th>f(x)</th>
<th>f(x)</th>
<th>Stall Generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>-6.433e+16</td>
<td>-1.287e+15</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>-1.501e+17</td>
<td>-7.138e+15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>-7.878e+26</td>
<td>-1.576e+25</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>-8.664e+27</td>
<td>-1.466e+26</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>-1.096e+28</td>
<td>-2.062e+26</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>350</td>
<td>-5.422e+33</td>
<td>-1.145e+32</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>400</td>
<td>-1.636e+36</td>
<td>-3.316e+34</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>-2.933e+36</td>
<td>-1.513e+35</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>-1.351e+40</td>
<td>-2.705e+38</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>550</td>
<td>-1.351e+40</td>
<td>-7.9e+38</td>
<td>1</td>
</tr>
</tbody>
</table>
Compare Serial and Parallel Time

```
X = [time_fmincon_sequential time_fmincon_parallel];
Y = [time_ga_sequential time_ga_parallel];
t = [0 1];
plot(t,X,'r--',t,Y,'k-')
ylabel('Time in seconds')
legend('fmincon','ga')
ax = gca;
ax.XTick = [0 1];
ax.XTickLabel = {'Serial' 'Parallel'};
axis([0 1 0 ceil(max([X Y]))])
title('Serial Vs. Parallel Times')
```
Utilizing parallel function evaluation via `parfor` improved the efficiency of both `fmincon` and `ga`. The improvement is typically better for expensive objective and constraint functions.

At last we delete the parallel pool.

```matlab
if max(size(gcp)) > 0 % parallel pool exists
    delete(gcp) % delete the pool
end
```

Parallel pool using the 'local' profile is shutting down.
Options Reference

- “GlobalSearch and MultiStart Properties (Options)” on page 10-2
- “Pattern Search Options” on page 10-9
- “Genetic Algorithm Options” on page 10-28
- “Particle Swarm Options” on page 10-54
- “Simulated Annealing Options” on page 10-62
GlobalSearch and MultiStart Properties (Options)

In this section...

“How to Set Properties” on page 10-2
“Properties of Both Objects” on page 10-2
“GlobalSearch Properties” on page 10-6
“MultiStart Properties” on page 10-7

How to Set Properties

To create a GlobalSearch or MultiStart object with nondefault properties, use name-value pairs. For example, to create a GlobalSearch object that has iterative display and runs only from feasible points with respect to bounds and inequalities, enter

```matlab
gs = GlobalSearch('Display','iter', ... 'StartPointsToRun','bounds-ineqs');
```

To set a property of an existing GlobalSearch or MultiStart object, use dot notation. For example, if ms is a MultiStart object, and you want to set the Display property to 'iter', enter

```matlab
ms.Display = 'iter';
```

To set multiple properties of an existing object simultaneously, use the constructor (GlobalSearch or MultiStart) with name-value pairs. For example, to set the Display property to 'iter' and the MaxTime property to 100, enter

```matlab
ms = MultiStart(ms,'Display','iter','MaxTime',100);
```

For more information on setting properties, see “Changing Global Options” on page 3-67.

Properties of Both Objects

You can create a MultiStart object from a GlobalSearch object and vice-versa.

The syntax for creating a new object from an existing object is:

```matlab
ms = MultiStart(gs);
```
or
gs = GlobalSearch(ms);

The new object contains the properties that apply of the old object. This section describes those shared properties:

- “Display” on page 10-3
- “MaxTime” on page 10-3
- “OutputFcns” on page 10-3
- “PlotFcns” on page 10-5
- “StartPointsToRun” on page 10-5
- “TolX” on page 10-5
- “TolFun” on page 10-6

Display

Values for the **Display** property are:

- `'final'` (default) — Summary results to command line after last solver run.
- `'off'` — No output to command line.
- `'iter'` — Summary results to command line after each local solver run.

MaxTime

The **MaxTime** property describes a tolerance on the number of seconds since the solver began its run. Solvers halt when they see **MaxTime** seconds have passed since the beginning of the run. Time means *wall clock* as opposed to processor cycles. The default is **Inf**.

OutputFcns

The **OutputFcns** property directs the global solver to run one or more output functions after each local solver run completes. The output functions also run when the global solver starts and ends. Include a handle to an output function written in the appropriate syntax, or include a cell array of such handles. The default is empty ([]).

The syntax of an output function is:

```
stop = outFcn(optimValues,state)
```
• **stop** is a Boolean. When **true**, the algorithm stops. When **false**, the algorithm continues.

Note: A local solver can have an output function. The global solver does not necessarily stop when a local solver output function causes a local solver run to stop. If you want the global solver to stop in this case, have the global solver output function stop when `optimValues.localsolution.exitflag=-1`.

• `optimValues` is a structure, described in “optimvalues Structure” on page 10-4.

• **state** is a string that indicates the current state of the global algorithm:

 • `'init'` — The global solver has not called the local solver. The fields in the `optimValues` structure are empty, except for `localrunindex`, which is 0, and `funccount`, which contains the number of objective and constraint function evaluations.

 • `'iter'` — The global solver calls output functions after each local solver run.

 • `'done'` — The global solver finished calling local solvers. The fields in `optimValues` generally have the same values as the ones from the final output function call with `state='iter'`. However, the value of `optimValues.funccount` for `GlobalSearch` can be larger than the value in the last function call with `'iter'`, because the `GlobalSearch` algorithm might have performed some function evaluations that were not part of a local solver. For more information, see “GlobalSearch Algorithm” on page 3-46.

For an example using an output function, see “GlobalSearch Output Function” on page 3-37.

Note: Output and plot functions do not run when `MultiStart` has the **UseParallel** option set to **true** and there is an open `parpool`.

optimvalues Structure

The `optimValues` structure contains the following fields:

• **bestx** — The current best point

• **bestfval** — Objective function value at **bestx**

• **funccount** — Total number of function evaluations
• **localrunindex** — Index of the local solver run
• **localsolution** — A structure containing part of the output of the local solver call: X, $Fval$ and $Exitflag$

PlotFcns

The **PlotFcns** property directs the global solver to run one or more plot functions after each local solver run completes. Include a handle to a plot function written in the appropriate syntax, or include a cell array of such handles. The default is empty ({}).

The syntax of a plot function is the same as that of an output function. For details, see “OutputFcns” on page 10-3.

There are two predefined plot functions for the global solvers:
• **@gsplotbestf** plots the best objective function value.
• **@gsplotfunccount** plots the number of function evaluations.

For an example using a plot function, see “MultiStart Plot Function” on page 3-41.

If you specify more than one plot function, all plots appear as subplots in the same window. Right-click any subplot to obtain a larger version in a separate figure window.

Note: Output and plot functions do not run when **MultiStart** has the **UseParallel** option set to true and there is an open **parpool**.

StartPointsToRun

The **StartPointsToRun** property directs the solver to exclude certain start points from being run:
• **all** — Accept all start points.
• **bounds** — Reject start points that do not satisfy bounds.
• **bounds-ineqs** — Reject start points that do not satisfy bounds or inequality constraints.

TolX

The **TolX** property describes how close two points must be for solvers to consider them identical for creating the vector of local solutions. Set **TolX** to 0 to obtain the results of
every local solver run. Set `TolX` to a larger value to have fewer results. Solvers compute the distance between a pair of points with `norm`, the Euclidean distance.

Solvers consider two solutions identical if they are within `TolX` distance of each other and have objective function values within `TolFun` of each other. If both conditions are not met, solvers report the solutions as distinct.

TolFun

The `TolFun` property describes how close two objective function values must be for solvers to consider them identical for creating the vector of local solutions. Set `TolFun` to 0 to obtain the results of every local solver run. Set `TolFun` to a larger value to have fewer results.

Solvers consider two solutions identical if they are within `TolX` distance of each other and have objective function values within `TolFun` of each other. If both conditions are not met, solvers report the solutions as distinct.

GlobalSearch Properties

- “NumTrialPoints” on page 10-6
- “NumStageOnePoints” on page 10-6
- “MaxWaitCycle” on page 10-7
- “BasinRadiusFactor” on page 10-7
- “DistanceThresholdFactor” on page 10-7
- “PenaltyThresholdFactor” on page 10-7

NumTrialPoints

Number of potential start points to examine in addition to x_0 from the problem structure. `GlobalSearch` runs only those potential start points that pass several tests. For more information, see “GlobalSearch Algorithm” on page 3-46.

Default: 1000

NumStageOnePoints

Number of start points in Stage 1. For details, see “Obtain Stage 1 Start Point, Run” on page 3-47.
Default: 200

MaxWaitCycle

A positive integer tolerance appearing in several points in the algorithm.

- If the observed penalty function of `MaxWaitCycle` consecutive trial points is at least the penalty threshold, then raise the penalty threshold (see “PenaltyThresholdFactor” on page 10-7).
- If `MaxWaitCycle` consecutive trial points are in a basin, then update that basin’s radius (see “BasinRadiusFactor” on page 10-7).

Default: 20

BasinRadiusFactor

A basin radius decreases after `MaxWaitCycle` consecutive start points are within the basin. The basin radius decreases by a factor of $1 - \text{BasinRadiusFactor}$.

Default: 0.2

DistanceThresholdFactor

A multiplier for determining whether a trial point is in an existing basin of attraction. For details, see “Examine Stage 2 Trial Point to See if fmincon Runs” on page 3-48.

Default: 0.75

PenaltyThresholdFactor

Determines increase in penalty threshold. For details, see React to Large Counter Values.

Default: 0.2

MultiStart Properties

UseParallel

The `UseParallel` property determines whether the solver distributes start points to multiple processors:

- **false** (default) — Do not run in parallel.
• `true` — Run in parallel.

For the solver to run in parallel you must set up a parallel environment with `parpool`. For details, see “How to Use Parallel Processing” on page 9-12.
Pattern Search Options

In this section...

“Optimization App vs. Command Line” on page 10-9
“Plot Options” on page 10-10
“Poll Options” on page 10-12
“Search Options” on page 10-13
“Mesh Options” on page 10-17
“Constraint Parameters” on page 10-19
“Cache Options” on page 10-19
“Stopping Criteria” on page 10-20
“Output Function Options” on page 10-21
“Display to Command Window Options” on page 10-23
“Vectorize and Parallel Options (User Function Evaluation)” on page 10-24
“Options Table for Pattern Search Algorithms” on page 10-25

Optimization App vs. Command Line

There are two ways to specify options for pattern search, depending on whether you are using the Optimization app or calling the function `patternsearch` at the command line:

- If you are using the Optimization app, you specify the options by selecting an option from a drop-down list or by entering the value of the option in the text field.
- If you are calling `patternsearch` from the command line, you specify the options by creating an `options` structure using the function `psoptimset`, as follows:

 \[
 \text{options} = \text{psoptimset}('\text{Param1}',\text{value1},'\text{Param2}',\text{value2},...);
 \]

 See “Set Options” on page 4-44 for examples.

In this section, each option is listed in two ways:

- By its label, as it appears in the Optimization app
- By its field name in the `options` structure
For example:

- **Poll method** refers to the label of the option in the Optimization app.
- **PollMethod** refers to the corresponding field of the options structure.

Plot Options

Plot options enable you to plot data from the pattern search while it is running. When you select plot functions and run the pattern search, a plot window displays the plots on separate axes. You can stop the algorithm at any time by clicking the **Stop** button on the plot window.

Plot interval (**PlotInterval**) specifies the number of iterations between consecutive calls to the plot function.

You can select any of the following plots in the **Plot functions** pane.

- **Best function value** (**@psplotbestf**) plots the best objective function value.
- **Function count** (**@psplotfuncount**) plots the number of function evaluations.
- **Mesh size** (**@psplotmeshsize**) plots the mesh size.
- **Best point** (**@psplotbestx**) plots the current best point.
- **Max constraint** (**@psplotmaxconstr**) plots the maximum nonlinear constraint violation.
- **Custom** enables you to use your own plot function. To specify the plot function using the Optimization app,
 - Select **Custom function**.
 - Enter @myfun in the text box, where myfun is the name of your function.

“Structure of the Plot Functions” on page 10-11 describes the structure of a plot function.

To display a plot when calling `patternsearch` from the command line, set the **PlotFcns** field of options to be a function handle to the plot function. For example, to display the best function value, set `options` as follows

```matlab
options = psoptimset('PlotFcns', @psplotbestf);
```

To display multiple plots, use the syntax
options = psoptimset('PlotFcns', @plotfun1, @plotfun2, ...);

where @plotfun1, @plotfun2, and so on are function handles to the plot functions (listed in parentheses in the preceding list).

If you specify more than one plot function, all plots appear as subplots in the same window. Right-click any subplot to obtain a larger version in a separate figure window.

Structure of the Plot Functions

The first line of a plot function has the form

```matlab
function stop = plotfun(optimvalues, flag)
```

The input arguments to the function are

- **optimvalues** — Structure containing information about the current state of the solver. The structure contains the following fields:
 - `x` — Current point
 - `iteration` — Iteration number
 - `fval` — Objective function value
 - `meshsize` — Current mesh size
 - `funccount` — Number of function evaluations
 - `method` — Method used in last iteration
 - `TolFun` — Tolerance on function value in last iteration
 - `TolX` — Tolerance on `x` value in last iteration
 - `nonlinineq` — Nonlinear inequality constraints, displayed only when a nonlinear constraint function is specified
 - `nonlineq` — Nonlinear equality constraints, displayed only when a nonlinear constraint function is specified
 - `flag` — Current state in which the plot function is called. The possible values for `flag` are
 - `init` — Initialization state
 - `iter` — Iteration state
 - `interrupt` — Intermediate stage
 - `done` — Final state
“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to the function.

The output argument `stop` provides a way to stop the algorithm at the current iteration. `stop` can have the following values:

- **false** — The algorithm continues to the next iteration.
- **true** — The algorithm terminates at the current iteration.

Poll Options

Poll options control how the pattern search polls the mesh points at each iteration.

Poll method (`PollMethod`) specifies the pattern the algorithm uses to create the mesh. There are two patterns for each of the classes of direct search algorithms: the generalized pattern search (GPS) algorithm, the generating set search (GSS) algorithm, and the mesh adaptive direct search (MADS) algorithm. These patterns are the Positive basis $2N$ and the Positive basis $N+1$:

- The default pattern, **GPS Positive basis 2N** (`GPSPositiveBasis2N`), consists of the following $2N$ vectors, where N is the number of independent variables for the objective function.

 $[1 0 0...0][0 1 0...0]...[0 0 0...1][–1 0 0...0][0 –1 0...0][0 0 0...–1]$.

 For example, if the optimization problem has three independent variables, the pattern consists of the following six vectors.
 $[1 0 0][0 1 0][0 0 1][–1 0 0][0 –1 0][0 0 –1]$.

- The **GSS Positive basis 2N** pattern (`GSSPositiveBasis2N`) is similar to GPS Positive basis 2N, but adjusts the basis vectors to account for linear constraints. GSS Positive basis 2N is more efficient than GPS Positive basis 2N when the current point is near a linear constraint boundary.

- The **MADS Positive basis 2N** pattern (`MADSPositiveBasis2N`) consists of $2N$ randomly generated vectors, where N is the number of independent variables for the objective function. This is done by randomly generating N vectors which form a linearly independent set, then using this first set and the negative of this set gives $2N$ vectors. As shown above, the GPS Positive basis 2N pattern is formed using the positive and negative of the linearly independent identity, however, with the MADS Positive basis 2N, the pattern is generated using a random permutation of an N-by-N linearly independent lower triangular matrix that is regenerated at each iteration.
The GPS Positive basis NP1 pattern consists of the following $N + 1$ vectors.

\[
\begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
-1 & -1 & -1 & \ldots & -1
\end{bmatrix}.
\]

For example, if the objective function has three independent variables, the pattern consists of the following four vectors.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{bmatrix}.
\]

The GSS Positive basis Np1 pattern (GSSPositiveBasisNp1) is similar to GPS Positive basis Np1, but adjusts the basis vectors to account for linear constraints. GSS Positive basis Np1 is more efficient than GPS Positive basis Np1 when the current point is near a linear constraint boundary.

The MADS Positive basis Np1 pattern (MADSPositiveBasisNp1) consists of N randomly generated vectors to form the positive basis, where N is the number of independent variables for the objective function. Then, one more random vector is generated, giving $N+1$ randomly generated vectors. Each iteration generates a new pattern when the MADS Positive basis N+1 is selected.

Complete poll (CompletePoll) specifies whether all the points in the current mesh must be polled at each iteration. **Complete Poll** can have the values **On** or **Off**.

- If you set **Complete poll** to **On**, the algorithm polls all the points in the mesh at each iteration and chooses the point with the smallest objective function value as the current point at the next iteration.
- If you set **Complete poll** to **Off**, the default value, the algorithm stops the poll as soon as it finds a point whose objective function value is less than that of the current point. The algorithm then sets that point as the current point at the next iteration.

Polling order (PollingOrder) specifies the order in which the algorithm searches the points in the current mesh. The options are

- **Random** — The polling order is random.
- **Success** — The first search direction at each iteration is the direction in which the algorithm found the best point at the previous iteration. After the first point, the algorithm polls the mesh points in the same order as **Consecutive**.
- **Consecutive** — The algorithm polls the mesh points in consecutive order, that is, the order of the pattern vectors as described in “Poll Method” on page 4-21.

Search Options

Search options specify an optional search that the algorithm can perform at each iteration prior to the polling. If the search returns a point that improves the objective
function, the algorithm uses that point at the next iteration and omits the polling. Please note, if you have selected the same Search method and Poll method, only the option selected in the Poll method will be used, although both will be used when the options selected are different.

Complete search (CompleteSearch) applies when you set Search method to GPS Positive basis Np1, GPS Positive basis 2N, GSS Positive basis Np1, GSS Positive basis 2N, MADS Positive basis Np1, MADS Positive basis 2N, or Latin hypercube. Complete search can have the values On or Off.

For GPS Positive basis Np1, MADS Positive basis Np1, GPS Positive basis 2N, or MADS Positive basis 2N, Complete search has the same meaning as the poll option Complete poll.

Search method (SearchMethod) specifies the optional search step. The options are

- None ([]) (the default) specifies no search step.
- GPS Positive basis 2N (@GPSPositiveBasis2N)
- GPS Positive basis Np1 (@GPSPositiveBasisNp1)
- GSS Positive basis 2N (@GSSPositiveBasis2N)
- GSS Positive basis Np1 (@GSSPositiveBasisNp1)
- MADS Positive basis 2N (@MADSPositiveBasis2N)
- MADS Positive basis Np1 (@MADSPositiveBasisNp1)
- Genetic Algorithm (@searchga) specifies a search using the genetic algorithm. If you select Genetic Algorithm, two other options appear:
 - **Iteration limit** — Positive integer specifying the number of iterations of the pattern search for which the genetic algorithm search is performed. The default for Iteration limit is 1.
 - **Options** — Options structure for the genetic algorithm, which you can set using gaoptimset.

To change the default values of Iteration limit and Options at the command line, use the syntax

```matlab
options = psoptimset('SearchMethod',...,@searchga,iterlim,optionsGA)
```

where iterlim is the value of Iteration limit and optionsGA is the genetic algorithm options structure.
Note If you set Search method to Genetic algorithm or Nelder-Mead, we recommend that you leave Iteration limit set to the default value 1, because performing these searches more than once is not likely to improve results.

- Latin hypercube (@searchlhs) specifies a Latin hypercube search.
 patternsearch generates each point for the search as follows. For each component, take a random permutation of the vector $[1,2,...,k]$ minus $\text{rand}(1,k)$, divided by k. (k is the number of points.) This yields k points, with each component close to evenly spaced. The resulting points are then scaled to fit any bounds. Latin hypercube uses default bounds of -1 and 1.

The way the search is performed depends on the setting for Complete search:

- If you set Complete search to On, the algorithm polls all the points that are randomly generated at each iteration by the Latin hypercube search and chooses the one with the smallest objective function value.
- If you set Complete search to Off (the default), the algorithm stops the poll as soon as it finds one of the randomly generated points whose objective function value is less than that of the current point, and chooses that point for the next iteration.

If you select Latin hypercube, two other options appear:

- Iteration limit — Positive integer specifying the number of iterations of the pattern search for which the Latin hypercube search is performed. The default for Iteration limit is 1.
- Design level — The Design level is the number of points patternsearch searches, a positive integer. The default for Design level is 15 times the number of dimensions.

To change the default values of Iteration limit and Design level at the command line, use the syntax

```
options=psoptimset('SearchMethod', {@searchlhs,iterlim,level})
```

where iterlim is the value of Iteration limit and level is the value of Design level.
- **Nelder-Mead** (@searchneldermead) specifies a search using `fminsearch`, which uses the Nelder-Mead algorithm. If you select Nelder-Mead, two other options appear:
 - **Iteration limit** — Positive integer specifying the number of iterations of the pattern search for which the Nelder-Mead search is performed. The default for Iteration limit is 1.
 - **Options** — Options structure for the function `fminsearch`, which you can create using the function `optimset`.

To change the default values of Iteration limit and Options at the command line, use the syntax

```
options = psoptimset('SearchMethod', ...
    '{@searchneldermead, iterlim, optionsNM}')
```

where `iterlim` is the value of Iteration limit and `optionsNM` is the options structure.

- **Custom** enables you to write your own search function. To specify the search function using the Optimization app,
 - Set **Search function** to Custom.
 - Set **Function name** to `@myfun`, where `myfun` is the name of your function.

If you are using `patternsearch`, set

```
options = psoptimset('SearchMethod', @myfun);
```

To see a template that you can use to write your own search function, enter

```
edit searchfcntemplate
```

The following section describes the structure of the search function.

Structure of the Search Function

Your search function must have the following calling syntax.

```
function [successSearch, xBest, fBest, funcount] =
    searchfcntemplate(fun, x, A, b, Aeq, beq, lb, ub, ...
                        optimValues, options)
```

The search function has the following input arguments:
• **fun** — Objective function
• **x** — Current point
• **A, b** — Linear inequality constraints
• **Aeq, beq** — Linear equality constraints
• **lb, ub** — Lower and upper bound constraints
• **optimValues** — Structure that enables you to set search options. The structure contains the following fields:
 • **x** — Current point
 • **fval** — Objective function value at *x*
 • **iteration** — Current iteration number
 • **funcCount** — Counter for user function evaluation
 • **scale** — Scale factor used to scale the design points
 • **problemtype** — Flag passed to the search routines, indicating whether the problem is 'unconstrained', 'boundconstraints', or 'linearconstraints'. This field is a subproblem type for nonlinear constrained problems.
 • **meshsize** — Current mesh size used in search step
 • **method** — Method used in last iteration
 • **options** — Pattern search options structure

The function has the following output arguments:

• **successSearch** — A Boolean identifier indicating whether the search is successful or not
• **xBest, fBest** — Best point and best function value found by search method
• **funcCount** — Number of user function evaluation in search method

See “Using a Search Method” on page 4-32 for an example.

Mesh Options

Mesh options control the mesh that the pattern search uses. The following options are available.
Initial size (*InitialMeshSize*) specifies the size of the initial mesh, which is the length of the shortest vector from the initial point to a mesh point. **Initial size** should be a positive scalar. The default is 1.0.

Max size (*MaxMeshSize*) specifies a maximum size for the mesh. When the maximum size is reached, the mesh size does not increase after a successful iteration. **Max size** must be a positive scalar, and is only used when a GPS or GSS algorithm is selected as the Poll or Search method. The default value is Inf. MADS uses a maximum size of 1.

Accelerator (*MeshAccelerator*) specifies whether, when the mesh size is small, the **Contraction factor** is multiplied by 0.5 after each unsuccessful iteration. **Accelerator** can have the values On or Off, the default. **Accelerator** applies to the GPS and GSS algorithms.

Rotate (*MeshRotate*) is only applied when **Poll method** is set to GPS Positive basis Np1 or GSS Positive basis Np1. It specifies whether the mesh vectors are multiplied by −1 when the mesh size is less than 1/100 of the mesh tolerance (minimum mesh size *TolMesh*) after an unsuccessful poll. In other words, after the first unsuccessful poll with small mesh size, instead of polling in directions e_i (unit positive directions) and $-\sum e_i$, the algorithm polls in directions $-e_i$ and $\sum e_i$. **Rotate** can have the values Off or On (the default). When the problem has equality constraints, **Rotate** is disabled.

Rotate is especially useful for discontinuous functions.

Note Changing the setting of **Rotate** has no effect on the poll when **Poll method** is set to GPS Positive basis 2N, GSS Positive basis 2N, MADS Positive basis 2N, or MADS Positive basis Np1.

Scale (*ScaleMesh*) specifies whether the algorithm scales the mesh points by carefully multiplying the pattern vectors by constants proportional to the logarithms of the absolute values of components of the current point (or, for unconstrained problems, of the initial point). **Scale** can have the values Off or On (the default). When the problem has equality constraints, **Scale** is disabled.

Expansion factor (*MeshExpansion*) specifies the factor by which the mesh size is increased after a successful poll. The default value is 2.0, which means that the size of the mesh is multiplied by 2.0 after a successful poll. **Expansion factor** must be a
positive scalar and is only used when a GPS or GSS method is selected as the Poll or Search method. MADS uses a factor of 4.0.

Contraction factor (*MeshContraction*) specifies the factor by which the mesh size is decreased after an unsuccessful poll. The default value is 0.5, which means that the size of the mesh is multiplied by 0.5 after an unsuccessful poll. **Contraction factor** must be a positive scalar and is only used when a GPS or GSS method is selected as the Poll or Search method. MADS uses a factor of 0.25.

See “Mesh Expansion and Contraction” on page 4-58 for more information.

Constraint Parameters

For information on the meaning of penalty parameters, see “Nonlinear Constraint Solver Algorithm” on page 4-37.

- **Initial penalty** (*InitialPenalty*) — Specifies an initial value of the penalty parameter that is used by the nonlinear constraint algorithm. **Initial penalty** must be greater than or equal to 1, and has a default of 10.

- **Penalty factor** (*PenaltyFactor*) — Increases the penalty parameter when the problem is not solved to required accuracy and constraints are not satisfied. **Penalty factor** must be greater than 1, and has a default of 100.

Bind tolerance (*TolBind*) specifies the tolerance for the distance from the current point to the boundary of the feasible region with respect to linear constraints. This means **Bind tolerance** specifies when a linear constraint is active. **Bind tolerance** is not a stopping criterion. Active linear constraints change the pattern of points **patternsearch** uses for polling or searching. **patternsearch** always uses points that satisfy linear constraints to within **Bind tolerance**. The default value of **Bind tolerance** is 1e-3.

Cache Options

The pattern search algorithm can keep a record of the points it has already polled, so that it does not have to poll the same point more than once. If the objective function requires a relatively long time to compute, the cache option can speed up the algorithm. The memory allocated for recording the points is called the cache. This option should only be used for deterministic objective functions, but not for stochastic ones.
Cache (Cache) specifies whether a cache is used. The options are **On** and **Off**, the default. When you set **Cache** to **On**, the algorithm does not evaluate the objective function at any mesh points that are within **Tolerance** of a point in the cache.

Tolerance (CacheTol) specifies how close a mesh point must be to a point in the cache for the algorithm to omit polling it. **Tolerance** must be a positive scalar. The default value is eps.

Size (CacheSize) specifies the size of the cache. **Size** must be a positive scalar. The default value is $1e4$.

See “Use Cache” on page 4-75 for more information.

Stopping Criteria

Stopping criteria determine what causes the pattern search algorithm to stop. Pattern search uses the following criteria:

Mesh tolerance (TolMesh) specifies the minimum tolerance for mesh size. The GPS and GSS algorithms stop if the mesh size becomes smaller than **Mesh tolerance**. MADS 2N stops when the mesh size becomes smaller than TolMesh^2. MADS Np1 stops when the mesh size becomes smaller than $(\text{TolMesh}/n\text{Var})^2$, where $n\text{Var}$ is the number of elements of $x0$. The default value of TolMesh is $1e-6$.

Max iteration (MaxIter) specifies the maximum number of iterations the algorithm performs. The algorithm stops if the number of iterations reaches **Max iteration**. You can select either

- $100^{*}\text{numberOfVariables}$ — Maximum number of iterations is 100 times the number of independent variables (the default).
- **Specify** — A positive integer for the maximum number of iterations

Max function evaluations (MaxFunEval) specifies the maximum number of evaluations of the objective function. The algorithm stops if the number of function evaluations reaches **Max function evaluations**. You can select either

- $2000^{*}\text{numberOfVariables}$ — Maximum number of function evaluations is 2000 times the number of independent variables.
- **Specify** — A positive integer for the maximum number of function evaluations
Time limit (TimeLimit) specifies the maximum time in seconds the pattern search algorithm runs before stopping. This also includes any specified pause time for pattern search algorithms.

X tolerance (TolX) specifies the minimum distance between the current points at two consecutive iterations. Does not apply to MADS polling. After an unsuccessful poll, the algorithm stops if the distance between two consecutive points is less than X tolerance and the mesh size is smaller than X tolerance. The default value is $1e-6$.

Function tolerance (TolFun) specifies the minimum tolerance for the objective function. Does not apply to MADS polling. After an unsuccessful poll, the algorithm stops if the difference between the function value at the previous best point and function value at the current best point is less than Function tolerance, and if the mesh size is also smaller than X tolerance. The default value is $1e-6$.

See “Setting Solver Tolerances” on page 4-31 for an example.

Constraint tolerance (TolCon) — The Constraint tolerance is not used as stopping criterion. It is used to determine the feasibility with respect to nonlinear constraints.

Output Function Options

Output functions are functions that the pattern search algorithm calls at each generation. To specify the output function using the Optimization app,

- Select Custom function.
- Enter @myfun in the text box, where myfun is the name of your function.
- To pass extra parameters in the output function, use “Anonymous Functions”.
- For multiple output functions, enter a cell array of output function handles: `{@myfun1,@myfun2,...}`.

At the command line, set

```matlab
options = psoptimset('OutputFcns',@myfun);
```

For multiple output functions, enter a cell array:

```matlab
options = psoptimset('OutputFcns',{@myfun1,@myfun2,...});
```

To see a template that you can use to write your own output function, enter

```matlab
edit psoutputfcntemplate
```
at the MATLAB command prompt.

The following section describes the structure of the output function.

Structure of the Output Function

Your output function must have the following calling syntax:

```
[stop,options,optchanged] = myfun(optimvalues,options,flag)
```

The function has the following input arguments:

- **optimvalues** — Structure containing information about the current state of the solver. The structure contains the following fields:
 - *x* — Current point
 - *iteration* — Iteration number
 - *fval* — Objective function value
 - *meshsize* — Current mesh size
 - *funccount* — Number of function evaluations
 - *method* — Method used in last iteration
 - *TolFun* — Tolerance on function value in last iteration
 - *TolX* — Tolerance on *x* value in last iteration
 - *nonlinineq* — Nonlinear inequality constraints, displayed only when a nonlinear constraint function is specified
 - *nonlineq* — Nonlinear equality constraints, displayed only when a nonlinear constraint function is specified
 - **options** — Options structure
 - **flag** — Current state in which the output function is called. The possible values for *flag* are
 - *init* — Initialization state
 - *iter* — Iteration state
 - *interrupt* — Intermediate stage
 - *done* — Final state

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to the output function.
The output function returns the following arguments to `ga`:

- **stop** — Provides a way to stop the algorithm at the current iteration. `stop` can have the following values.
 - **false** — The algorithm continues to the next iteration.
 - **true** — The algorithm terminates at the current iteration.
- **options** — Options structure.
- **optchanged** — Flag indicating changes to `options`.

Display to Command Window Options

Level of display (`'Display'`) specifies how much information is displayed at the command line while the pattern search is running. The available options are

- **Off** (`'off'`) — No output is displayed.
- **Iterative** (`'iter'`) — Information is displayed for each iteration.
- **Diagnose** (`'diagnose'`) — Information is displayed for each iteration. In addition, the diagnostic lists some problem information and the options that are changed from the defaults.
- **Final** (`'final'`) — The reason for stopping is displayed.

Both **Iterative** and **Diagnose** display the following information:

- **Iter** — Iteration number
- **FunEval** — Cumulative number of function evaluations
- **MeshSize** — Current mesh size
- **FunVal** — Objective function value of the current point
- **Method** — Outcome of the current poll (with no nonlinear constraint function specified). With a nonlinear constraint function, **Method** displays the update method used after a subproblem is solved.
- **Max Constraint** — Maximum nonlinear constraint violation (displayed only when a nonlinear constraint function has been specified)

The default value of **Level of display** is

- **Off** in the Optimization app

• 'final' in an options structure created using `psoptimset`

Vectorize and Parallel Options (User Function Evaluation)

You can choose to have your objective and constraint functions evaluated in serial, parallel, or in a vectorized fashion. These options are available in the **User function evaluation** section of the **Options** pane of the Optimization app, or by setting the 'Vectorized' and 'UseParallel' options with `psoptimset`.

Note: You must set `CompletePoll` to 'on' for `patternsearch` to use vectorized or parallel polling. Similarly, set `CompleteSearch` to 'on' for vectorized or parallel searching.

• When **Evaluate objective and constraint functions** ('Vectorized') is **in serial** ('Off'), `patternsearch` calls the objective function on one point at a time as it loops through the mesh points. (At the command line, this assumes 'UseParallel' is at its default value of false.)

• When **Evaluate objective and constraint functions** ('Vectorized') is **vectorized** ('On'), `patternsearch` calls the objective function on all the points in the mesh at once, i.e., in a single call to the objective function.

If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be vectorized in order for the algorithm to compute in a vectorized manner.

For details and an example, see “Vectorize the Objective and Constraint Functions” on page 4-80.

• When **Evaluate objective and constraint functions** (UseParallel) is **in parallel** (true), `patternsearch` calls the objective function in parallel, using the parallel environment you established (see “How to Use Parallel Processing” on page 9-12). At the command line, set `UseParallel` to `false` to compute serially.

Note: You cannot simultaneously use vectorized and parallel computations. If you set 'UseParallel' to true and 'Vectorized' to 'On', `patternsearch` evaluates your objective and constraint functions in a vectorized manner, not in parallel.

How Objective and Constraint Functions Are Evaluated
Assume CompletePoll = 'on' | Vectorized = 'off' | Vectorized = 'on'

UseParallel = false | Serial | Vectorized

UseParallel = true | Parallel | Vectorized

Options Table for Pattern Search Algorithms

Option Availability Table for All Algorithms

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Algorithm Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>With Cache set to 'on', patternsearch keeps a history of the mesh points it polls and does not poll points close to them again at subsequent iterations. Use this option if patternsearch runs slowly because it is taking a long time to compute the objective function. If the objective function is stochastic, it is advised not to use this option.</td>
<td>All</td>
</tr>
<tr>
<td>CacheSize</td>
<td>Size of the cache, in number of points.</td>
<td>All</td>
</tr>
<tr>
<td>CacheTol</td>
<td>Positive scalar specifying how close the current mesh point must be to a point in the cache in order for patternsearch to avoid polling it. Available if 'Cache' option is set to 'on'.</td>
<td>All</td>
</tr>
<tr>
<td>CompletePoll</td>
<td>Complete poll around current iterate. Evaluate all the points in a poll step.</td>
<td>All</td>
</tr>
<tr>
<td>CompleteSearch</td>
<td>Complete search around current iterate when the search method is a poll method. Evaluate all the points in a search step.</td>
<td>All</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Algorithm Availability</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display to Command Window.</td>
<td>All</td>
</tr>
<tr>
<td>InitialMeshSize</td>
<td>Initial mesh size used in pattern search algorithms.</td>
<td>All</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>Initial value of the penalty parameter.</td>
<td>All</td>
</tr>
<tr>
<td>MaxFunEvals</td>
<td>Maximum number of objective function evaluations.</td>
<td>All</td>
</tr>
<tr>
<td>MaxIter</td>
<td>Maximum number of iterations.</td>
<td>All</td>
</tr>
<tr>
<td>MaxMeshSize</td>
<td>Maximum mesh size used in a poll/search step.</td>
<td>GPS and GSS</td>
</tr>
<tr>
<td>MeshAccelerator</td>
<td>Accelerate mesh size contraction.</td>
<td>GPS and GSS</td>
</tr>
<tr>
<td>MeshContraction</td>
<td>Mesh contraction factor, used when iteration is unsuccessful.</td>
<td>GPS and GSS</td>
</tr>
<tr>
<td>MeshExpansion</td>
<td>Mesh expansion factor, expands mesh when iteration is successful.</td>
<td>GPS and GSS</td>
</tr>
<tr>
<td>MeshRotate</td>
<td>Rotate the pattern before declaring a point to be optimum.</td>
<td>GPS Np1 and GSS Np1</td>
</tr>
<tr>
<td>OutputFcns</td>
<td>User-specified function that a pattern search calls at each iteration.</td>
<td>All</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>Penalty update parameter.</td>
<td>All</td>
</tr>
<tr>
<td>PlotFcns</td>
<td>Specifies function to plot at runtime.</td>
<td>All</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Specifies that plot functions will be called at every interval.</td>
<td>All</td>
</tr>
<tr>
<td>PollingOrder</td>
<td>Order in which search directions are polled.</td>
<td>GPS and GSS</td>
</tr>
<tr>
<td>PollMethod</td>
<td>Polling strategy used in pattern search.</td>
<td>All</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Algorithm Availability</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>ScaleMesh</td>
<td>Automatic scaling of variables.</td>
<td>All</td>
</tr>
<tr>
<td>SearchMethod</td>
<td>Specifies search method used in pattern search.</td>
<td>All</td>
</tr>
<tr>
<td>TimeLimit</td>
<td>Total time (in seconds) allowed for optimization. Also includes any specified pause time for pattern search algorithms.</td>
<td>All</td>
</tr>
<tr>
<td>TolBind</td>
<td>Binding tolerance used to determine if linear constraint is active.</td>
<td>All</td>
</tr>
<tr>
<td>TolCon</td>
<td>Tolerance on nonlinear constraints.</td>
<td>All</td>
</tr>
<tr>
<td>TolFun</td>
<td>Tolerance on function value.</td>
<td>All</td>
</tr>
<tr>
<td>TolMesh</td>
<td>Tolerance on mesh size.</td>
<td>All</td>
</tr>
<tr>
<td>TolX</td>
<td>Tolerance on independent variable.</td>
<td>All</td>
</tr>
<tr>
<td>UseParallel</td>
<td>When true, compute objective functions of a poll or search in parallel. Disable by setting to false.</td>
<td>All</td>
</tr>
<tr>
<td>Vectorized</td>
<td>Specifies whether objective and constraint functions are vectorized.</td>
<td>All</td>
</tr>
</tbody>
</table>
Genetic Algorithm Options

In this section...

“Optimization App vs. Command Line” on page 10-28
“Plot Options” on page 10-29
“Population Options” on page 10-32
“Fitness Scaling Options” on page 10-35
“Selection Options” on page 10-37
“Reproduction Options” on page 10-39
“Mutation Options” on page 10-40
“Crossover Options” on page 10-42
“Migration Options” on page 10-46
“Constraint Parameters” on page 10-47
“Multiobjective Options” on page 10-48
“Hybrid Function Options” on page 10-49
“Stopping Criteria Options” on page 10-49
“Output Function Options” on page 10-50
“Display to Command Window Options” on page 10-52
“Vectorize and Parallel Options (User Function Evaluation)” on page 10-53

Optimization App vs. Command Line

There are two ways to specify options for the genetic algorithm, depending on whether you are using the Optimization app or calling the functions `ga` or `gamultiobj` at the command line:

- If you are using the Optimization app (`optimtool`), select an option from a drop-down list or enter the value of the option in a text field.
- If you are calling `ga` or `gamultiobj` at the command line, create an options structure using the function `gaoptimset`, as follows:

 options = gaoptimset('Param1', value1, 'Param2', value2, ...);

See “Setting Options at the Command Line” on page 5-64 for examples.
In this section, each option is listed in two ways:

- By its label, as it appears in the Optimization app
- By its field name in the `options` structure

For example:

- **Population type** is the label of the option in the Optimization app.
- **PopulationType** is the corresponding field of the `options` structure.

Plot Options

Plot options let you plot data from the genetic algorithm while it is running. You can stop the algorithm at any time by clicking the **Stop** button on the plot window.

Plot interval (PlotInterval) specifies the number of generations between consecutive calls to the plot function.

You can select any of the following plot functions in the **Plot functions** pane:

- **Best fitness** (@gaplotbestf) plots the best function value versus generation.
- **Expectation** (@gaplotexpectation) plots the expected number of children versus the raw scores at each generation.
- **Score diversity** (@gaplotscorediversity) plots a histogram of the scores at each generation.
- **Stopping** (@gaplotstopping) plots stopping criteria levels.
- **Best individual** (@gaplotbestindiv) plots the vector entries of the individual with the best fitness function value in each generation.
- **Genealogy** (@gaplotgenealogy) plots the genealogy of individuals. Lines from one generation to the next are color-coded as follows:
 - Red lines indicate mutation children.
 - Blue lines indicate crossover children.
 - Black lines indicate elite individuals.
- **Scores** (@gaplotscores) plots the scores of the individuals at each generation.
- **Max constraint** (@gaplotmaxconstr) plots the maximum nonlinear constraint violation at each generation.
- **Distance** (@gaplotdistance) plots the average distance between individuals at each generation.
- **Range** (@gaplotrange) plots the minimum, maximum, and mean fitness function values in each generation.
- **Selection** (@gaplotselection) plots a histogram of the parents.
- **Custom function** lets you use plot functions of your own. To specify the plot function if you are using the Optimization app,
 - Select **Custom function**.
 - Enter @myfun in the text box, where myfun is the name of your function.

See “Structure of the Plot Functions” on page 10-31.

gamultiobj allows **Distance**, **Genealogy**, **Score diversity**, **Selection**, **Stopping**, and **Custom function**, as well as the following additional choices:

- **Pareto front** (@gaplotpareto) plots the Pareto front for the first two objective functions.
- **Average Pareto distance** (@gaplotparetodistance) plots a bar chart of the distance of each individual from its neighbors.
- **Rank histogram** (@gaplotrankhist) plots a histogram of the ranks of the individuals. Individuals of rank 1 are on the Pareto frontier. Individuals of rank 2 are lower than at least one rank 1 individual, but are not lower than any individuals from other ranks, etc.
- **Average Pareto spread** (@gaplotspread) plots the average spread as a function of iteration number.

To display a plot when calling ga from the command line, set the **PlotFcns** field of **options** to be a function handle to the plot function. For example, to display the best fitness plot, set **options** as follows:

```matlab
options = gaoptimset('PlotFcns', @gaplotbestf);
```

To display multiple plots, use the syntax

```matlab
options = gaoptimset('PlotFcns', {@plotfun1, @plotfun2, ...});
```

where @plotfun1, @plotfun2, and so on are function handles to the plot functions.

If you specify multiple plot functions, all plots appear as subplots in the same window. Right-click any subplot to obtain a larger version in a separate figure window.
Structure of the Plot Functions

The first line of a plot function has this form:

```
function state = plotfun(options,state,flag)
```

The input arguments to the function are

- **options** — Structure containing all the current options settings.
- **flag** — String that tells what stage the algorithm is currently in.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to the function.

The output argument `state` is a state structure as well. Pass the input argument, modified if you like. To stop the iterations, set `state.StopFlag` to a nonempty string.

The State Structure

ga

The state structure for `ga`, which is an input argument to plot, mutation, and output functions, contains the following fields:

- **Population** — Population in the current generation
- **Score** — Scores of the current population
- **Generation** — Current generation number
- **StartTime** — Time when genetic algorithm started
- **StopFlag** — String containing the reason for stopping
- **Selection** — Indices of individuals selected for elite, crossover, and mutation
- **Expectation** — Expectation for selection of individuals
- **Best** — Vector containing the best score in each generation
- **LastImprovement** — Generation at which the last improvement in fitness value occurred
- **LastImprovementTime** — Time at which last improvement occurred
- **NonlinIneq** — Nonlinear inequality constraints, displayed only when a nonlinear constraint function is specified
• **NonlinEq** — Nonlinear equality constraints, displayed only when a nonlinear constraint function is specified

gamultiobj

The state structure for `gamultiobj`, which is an input argument to plot, mutation, and output functions, contains the following fields:

• **Population** — Population in the current generation
• **Score** — Scores of the current population, a Population-by-nObjectives matrix, where nObjectives is the number of objectives
• **Generation** — Current generation number
• **StartTime** — Time when genetic algorithm started
• **StopFlag** — String containing the reason for stopping
• **Selection** — Indices of individuals selected for elite, crossover, and mutation
• **Rank** — Vector of the ranks of members in the population
• **Distance** — Vector of distances of each member of the population to the nearest neighboring member
• **AverageDistance** — The average of Distance
• **Spread** — Vector where the entries are the spread in each generation

Population Options

Population options let you specify the parameters of the population that the genetic algorithm uses.

Population type (`PopulationType`) specifies the type of input to the fitness function. Types and their restrictions are:

• **Double vector** (`'doubleVector'`) — Use this option if the individuals in the population have type `double`. Use this option for mixed integer programming. This is the default.
• **Bit string** (`'bitstring'`) — Use this option if the individuals in the population have components that are 0 or 1.

Caution The individuals in a **Bit string** population are vectors of type `double`, not strings.
For **Creation function** (CreationFcn) and **Mutation function** (MutationFcn), use Uniform (@gacreationuniform and @mutationuniform) or Custom. For **Crossover function** (CrossoverFcn), use Scattered (@crossoverscattered), Single point (@crossoversinglepoint), Two point (@crossovertwopoint), or Custom. You cannot use a **Hybrid function**, and ga ignores all constraints, including bounds, linear constraints, and nonlinear constraints.

- Custom — For **Crossover function** and **Mutation function**, use Custom. For **Creation function**, either use Custom, or provide an Initial population. You cannot use a **Hybrid function**, and ga ignores all constraints, including bounds, linear constraints, and nonlinear constraints.

Population size (PopulationSize) specifies how many individuals there are in each generation. With a large population size, the genetic algorithm searches the solution space more thoroughly, thereby reducing the chance that the algorithm returns a local minimum that is not a global minimum. However, a large population size also causes the algorithm to run more slowly.

If you set **Population size** to a vector, the genetic algorithm creates multiple subpopulations, the number of which is the length of the vector. The size of each subpopulation is the corresponding entry of the vector. See “Migration Options” on page 10-46.

Creation function (CreationFcn) specifies the function that creates the initial population for ga. Do not specify a creation function with integer problems because ga overrides any choice you make. Choose from:

- [] uses the default creation function for your problem.
- Uniform (@gacreationuniform) creates a random initial population with a uniform distribution. This is the default when there are no linear constraints, or when there are integer constraints. The uniform distribution is in the initial population range (PopInitRange). The default values for PopInitRange are [-10;10] for every component, or [-9999;10001] when there are integer constraints. These bounds are shifted and scaled to match any existing bounds lb and ub.

Caution Do not use @gacreationuniform when you have linear constraints. Otherwise, your population might not satisfy the linear constraints.

- Feasible population (@gacreationlinearfeasible), the default when there are linear constraints and no integer constraints, creates a random initial population
that satisfies all bounds and linear constraints. If there are linear constraints, Feasible population creates many individuals on the boundaries of the constraint region, and creates a well-dispersed population. Feasible population ignores Initial range (PopInitRange).

gacreationlinearfeasible calls linprog to create a feasible population with respect to bounds and linear constraints.

For an example showing its behavior, see “Linearly Constrained Population and Custom Plot Function” on page 5-77.

• Nonlinear Feasible population (@gacreationnonlinearfeasible) is the default creation function for the 'penalty' nonlinear constraint algorithm. For details, see “Constraint Parameters” on page 10-47.

• Custom lets you write your own creation function, which must generate data of the type that you specify in Population type. To specify the creation function if you are using the Optimization app,

 • Set Creation function to Custom.
 • Set Function name to @myfun, where myfun is the name of your function.

If you are using ga, set

```
options = gaoptimset('CreationFcn', @myfun);
```

Your creation function must have the following calling syntax.

```
function Population = myfun(GenomeLength, FitnessFcn, options)
```

The input arguments to the function are:

• GenomeLength — Number of independent variables for the fitness function
• FitnessFcn — Fitness function
• options — Options structure

The function returns Population, the initial population for the genetic algorithm.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to the function.
Caution When you have bounds or linear constraints, ensure that your creation function creates individuals that satisfy these constraints. Otherwise, your population might not satisfy the constraints.

Initial population (InitialPopulation) specifies an initial population for the genetic algorithm. The default value is [], in which case ga uses the default Creation function to create an initial population. If you enter a nonempty array in the Initial population field, the array must have no more than Population size rows, and exactly Number of variables columns. In this case, the genetic algorithm calls a Creation function to generate the remaining individuals, if required.

Initial scores (InitialScores) specifies initial scores for the initial population. The initial scores can also be partial. Do not specify initial scores with integer problems because ga overrides any choice you make.

Initial range (PopInitRange) specifies the range of the vectors in the initial population that is generated by the gacreationuniform creation function. You can set Initial range to be a matrix with two rows and Number of variables columns, each column of which has the form [lb;ub], where lb is the lower bound and ub is the upper bound for the entries in that coordinate. If you specify Initial range to be a 2-by-1 vector, each entry is expanded to a constant row of length Number of variables. If you do not specify an Initial range, the default is [-10;10] ([-1e4+1;1e4+1] for integer-constrained problems), modified to match any existing bounds.

See “Setting the Initial Range” on page 5-73 for an example.

Fitness Scaling Options

Fitness scaling converts the raw fitness scores that are returned by the fitness function to values in a range that is suitable for the selection function. You can specify options for fitness scaling in the Fitness scaling pane.

Scaling function (FitnessScalingFcn) specifies the function that performs the scaling. The options are

- Rank (@fitscalingrank) — The default fitness scaling function, Rank, scales the raw scores based on the rank of each individual instead of its score. The rank of an individual is its position in the sorted scores. An individual with rank r has scaled score proportional to $1 / \sqrt{r}$. So the scaled score of the most fit individual is
proportional to 1, the scaled score of the next most fit is proportional to \(1/\sqrt{2}\), and so on. Rank fitness scaling removes the effect of the spread of the raw scores. The square root makes poorly ranked individuals more nearly equal in score, compared to rank scoring. For more information, see “Fitness Scaling” on page 5-84.

- **Proportional (@fitscalingprop)** — Proportional scaling makes the scaled value of an individual proportional to its raw fitness score.

- **Top (@fitscalingtop)** — Top scaling scales the top individuals equally. Selecting Top displays an additional field, **Quantity**, which specifies the number of individuals that are assigned positive scaled values. **Quantity** can be an integer from 1 through the population size or a fraction from 0 through 1 specifying a fraction of the population size. The default value is 0.4. Each of the individuals that produce offspring is assigned an equal scaled value, while the rest are assigned the value 0. The scaled values have the form \([0 1/n 1/n 0 0 1/n 0 0 1/n ...]\).

To change the default value for **Quantity** at the command line, use the following syntax:

```matlab
options = gaoptimset('FitnessScalingFcn', {@fitscalingtop, quantity})
```

where `quantity` is the value of **Quantity**.

- **Shift linear (@fitscalingshiftlinear)** — Shift linear scaling scales the raw scores so that the expectation of the fittest individual is equal to a constant multiplied by the average score. You specify the constant in the **Max survival rate** field, which is displayed when you select **Shift linear**. The default value is 2.

To change the default value of **Max survival rate** at the command line, use the following syntax:

```matlab
options = gaoptimset('FitnessScalingFcn',
{@fitscalingshiftlinear, rate})
```

where `rate` is the value of **Max survival rate**.

- **Custom** lets you write your own scaling function. To specify the scaling function using the Optimization app,

 - Set **Scaling function** to **Custom**.
 - Set **Function name** to `@myfun`, where `myfun` is the name of your function.

If you are using `ga` at the command line, set
options = gaoptimset('FitnessScalingFcn', @myfun);

Your scaling function must have the following calling syntax:

function expectation = myfun(scores, nParents)

The input arguments to the function are:

• `scores` — A vector of scalars, one for each member of the population
• `nParents` — The number of parents needed from this population

The function returns `expectation`, a column vector of scalars of the same length as `scores`, giving the scaled values of each member of the population. The sum of the entries of `expectation` must equal `nParents`.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to the function.

See “Fitness Scaling” on page 5-84 for more information.

Selection Options

Selection options specify how the genetic algorithm chooses parents for the next generation. You can specify the function the algorithm uses in the **Selection function** (SelectionFcn) field in the Selection options pane. Do not use with integer problems. The options are

• **Stochastic uniform** (@selectionstochunif) — The `ga` default selection function, **Stochastic uniform**, lays out a line in which each parent corresponds to a section of the line of length proportional to its scaled value. The algorithm moves along the line in steps of equal size. At each step, the algorithm allocates a parent from the section it lands on. The first step is a uniform random number less than the step size.

• **Remainder** (@selectionremainder) — Remainder selection assigns parents deterministically from the integer part of each individual's scaled value and then uses roulette selection on the remaining fractional part. For example, if the scaled value of an individual is 2.3, that individual is listed twice as a parent because the integer part is 2. After parents have been assigned according to the integer parts of the scaled values, the rest of the parents are chosen stochastically. The probability that a parent is chosen in this step is proportional to the fractional part of its scaled value.
• **Uniform** (@selectionuniform) — Uniform selection chooses parents using the expectations and number of parents. Uniform selection is useful for debugging and testing, but is not a very effective search strategy.

• **Roulette** (@selectionroulette) — Roulette selection chooses parents by simulating a roulette wheel, in which the area of the section of the wheel corresponding to an individual is proportional to the individual's expectation. The algorithm uses a random number to select one of the sections with a probability equal to its area.

• **Tournament** (@selectiontournament) — The `gamultiobj` selection function, tournament selection chooses each parent by choosing **Tournament size** players at random and then choosing the best individual out of that set to be a parent. **Tournament size** must be at least 2. The default value of **Tournament size** is 4.

To change the default value of **Tournament size** at the command line, use the syntax

```matlab
options = gaoptimset('SelectionFcn',...
    {@selectiontournament,size})
```

where `size` is the value of **Tournament size**.

When **Constraint parameters** > **Nonlinear constraint algorithm** is **Penalty**, `ga` uses **Tournament** with size 2.

• **Custom** enables you to write your own selection function. To specify the selection function using the Optimization app,

 • Set **Selection function** to **Custom**.
 • Set **Function name** to @myfun, where myfun is the name of your function.

If you are using `ga` at the command line, set

```matlab
options = gaoptimset('SelectionFcn', @myfun);
```

Your selection function must have the following calling syntax:

```matlab
function parents = myfun(expectation, nParents, options)
```

`ga` provides the input arguments **expectation**, **nParents**, and **options**. Your function returns the indices of the parents.

The input arguments to the function are:
• expectation

 • For ga, expectation is a column vector of the scaled fitness of each member of the population. The scaling comes from the “Fitness Scaling Options” on page 10-35.

 Tip You can ensure that you have a column vector by using expectation(:,1). For example, edit selectionstochunif or any of the other built-in selection functions.

 • For gamultiobj, expectation is a matrix whose first column is the rank of the individuals, and whose second column is the distance measure of the individuals. See “Multiobjective Options” on page 10-48.

• nParents— Number of parents to select.
• options — Genetic algorithm options structure.

The function returns parents, a row vector of length nParents containing the indices of the parents that you select.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to the function.

See “Selection” on page 5-25 for more information.

Reproduction Options

Reproduction options specify how the genetic algorithm creates children for the next generation.

Elite count (EliteCount) specifies the number of individuals that are guaranteed to survive to the next generation. Set Elite count to be a positive integer less than or equal to the population size. The default value is \(\text{ceil}(0.05 \times \text{PopulationSize}) \) for continuous problems, and \(0.05 \times (\text{default PopulationSize}) \) for mixed-integer problems.

Crossover fraction (CrossoverFraction) specifies the fraction of the next generation, other than elite children, that are produced by crossover. Set Crossover fraction to be a fraction between 0 and 1, either by entering the fraction in the text box or moving the slider. The default value is 0.8.
Mutation Options

Mutation options specify how the genetic algorithm makes small random changes in the individuals in the population to create mutation children. Mutation provides genetic diversity and enables the genetic algorithm to search a broader space. You can specify the mutation function in the **Mutation function** (MutationFcn) field in the **Mutation** options pane. Do not use with integer problems. You can choose from the following functions:

- **Gaussian** (mutationgaussian) — The default mutation function for unconstrained problems, Gaussian, adds a random number taken from a Gaussian distribution with mean 0 to each entry of the parent vector. The standard deviation of this distribution is determined by the parameters **Scale** and **Shrink**, which are displayed when you select Gaussian, and by the **Initial range** setting in the **Population** options.

 - The **Scale** parameter determines the standard deviation at the first generation. If you set **Initial range** to be a 2-by-1 vector \(v \), the initial standard deviation is the same at all coordinates of the parent vector, and is given by \(\text{Scale} \times (v(2) - v(1)) \).

 If you set **Initial range** to be a vector \(v \) with two rows and **Number of variables** columns, the initial standard deviation at coordinate \(i \) of the parent vector is given by \(\text{Scale} \times (v(i,2) - v(i,1)) \).

 - The **Shrink** parameter controls how the standard deviation shrinks as generations go by. If you set **Initial range** to be a 2-by-1 vector, the standard deviation at the \(k \)th generation, \(\sigma_k \), is the same at all coordinates of the parent vector, and is given by the recursive formula

\[
\sigma_k = \sigma_{k-1} \left(1 - \text{Shrink} \times \frac{k}{\text{Generations}} \right).
\]

 If you set **Initial range** to be a vector with two rows and **Number of variables** columns, the standard deviation at coordinate \(i \) of the parent vector at the \(k \)th generation, \(\sigma_{i,k} \), is given by the recursive formula

\[
\sigma_{i,k} = \sigma_{i,k-1} \left(1 - \text{Shrink} \times \frac{k}{\text{Generations}} \right).
\]
If you set **Shrink** to 1, the algorithm shrinks the standard deviation in each coordinate linearly until it reaches 0 at the last generation is reached. A negative value of **Shrink** causes the standard deviation to grow.

The default value of both **Scale** and **Shrink** is 1. To change the default values at the command line, use the syntax

```matlab
options = gaoptimset('MutationFcn', ...
{mutationgaussian, scale, shrink})
```

where **scale** and **shrink** are the values of **Scale** and **Shrink**, respectively.

Caution Do not use **mutationgaussian** when you have bounds or linear constraints. Otherwise, your population will not necessarily satisfy the constraints.

- **Uniform** (**mutationuniform**) — Uniform mutation is a two-step process. First, the algorithm selects a fraction of the vector entries of an individual for mutation, where each entry has a probability **Rate** of being mutated. The default value of **Rate** is 0.01. In the second step, the algorithm replaces each selected entry by a random number selected uniformly from the range for that entry.

 To change the default value of **Rate** at the command line, use the syntax

```matlab
options = gaoptimset('MutationFcn', {mutationuniform, rate})
```

where **rate** is the value of **Rate**.

Caution Do not use **mutationuniform** when you have bounds or linear constraints. Otherwise, your population will not necessarily satisfy the constraints.

- **Adaptive Feasible** (**mutationadaptfeasible**), the default mutation function when there are constraints, randomly generates directions that are adaptive with respect to the last successful or unsuccessful generation. The mutation chooses a direction and step length that satisfies bounds and linear constraints.

- **Custom** enables you to write your own mutation function. To specify the mutation function using the Optimization app,

 - Set **Mutation function** to **Custom**.
 - Set **Function name** to @myfun, where **myfun** is the name of your function.
If you are using \texttt{ga}, set
\begin{verbatim}
options = gaoptimset('MutationFcn', @myfun);
\end{verbatim}

Your mutation function must have this calling syntax:
\begin{verbatim}
function mutationChildren = myfun(parents, options, nvars,
FitnessFcn, state, thisScore, thisPopulation)
\end{verbatim}

The arguments to the function are
\begin{itemize}
 \item \texttt{parents} — Row vector of parents chosen by the selection function
 \item \texttt{options} — Options structure
 \item \texttt{nvars} — Number of variables
 \item \texttt{FitnessFcn} — Fitness function
 \item \texttt{state} — Structure containing information about the current generation. “The State Structure” on page 10-31 describes the fields of \texttt{state}.
 \item \texttt{thisScore} — Vector of scores of the current population
 \item \texttt{thisPopulation} — Matrix of individuals in the current population
\end{itemize}

The function returns \texttt{mutationChildren}—the mutated offspring—as a matrix where rows correspond to the children. The number of columns of the matrix is \texttt{Number of variables}.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to the function.

\underline{Caution} When you have bounds or linear constraints, ensure that your mutation function creates individuals that satisfy these constraints. Otherwise, your population will not necessarily satisfy the constraints.

Crossover Options

Crossover options specify how the genetic algorithm combines two individuals, or parents, to form a crossover child for the next generation.

Crossover function (\texttt{CrossoverFcn}) specifies the function that performs the crossover. Do not use with integer problems. You can choose from the following functions:
• **Scattered** (@crossoverscattered), the default crossover function for problems without linear constraints, creates a random binary vector and selects the genes where the vector is a 1 from the first parent, and the genes where the vector is a 0 from the second parent, and combines the genes to form the child. For example, if \(p_1 \) and \(p_2 \) are the parents

\[
p_1 = [a \ b \ c \ d \ e \ f \ g \ h]
p_2 = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8]
\]

and the binary vector is [1 1 0 0 1 0 0 0], the function returns the following child:

\[
\text{child1} = [a \ b \ 3 \ 4 \ e \ 6 \ 7 \ 8]
\]

Caution Do not use @crossoverscattered when you have linear constraints. Otherwise, your population will not necessarily satisfy the constraints.

• **Single point** (@crossoversinglepoint) chooses a random integer \(n \) between 1 and Number of variables and then

- Selects vector entries numbered less than or equal to \(n \) from the first parent.
- Selects vector entries numbered greater than \(n \) from the second parent.
- Concatenates these entries to form a child vector.

For example, if \(p_1 \) and \(p_2 \) are the parents

\[
p_1 = [a \ b \ c \ d \ e \ f \ g \ h]
p_2 = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8]
\]

and the crossover point is 3, the function returns the following child.

\[
\text{child} = [a \ b \ c \ 4 \ 5 \ 6 \ 7 \ 8]
\]

Caution Do not use @crossoversinglepoint when you have linear constraints. Otherwise, your population will not necessarily satisfy the constraints.

• **Two point** (@crossoverthopoint) selects two random integers \(m \) and \(n \) between 1 and **Number of variables**. The function selects

- Vector entries numbered less than or equal to \(m \) from the first parent
- Vector entries numbered from \(m+1 \) to \(n \), inclusive, from the second parent
- Vector entries numbered greater than \(n \) from the first parent.
The algorithm then concatenates these genes to form a single gene. For example, if \(p_1 \) and \(p_2 \) are the parents

\[
p_1 = [a \ b \ c \ d \ e \ f \ g \ h]
p_2 = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8]
\]

and the crossover points are 3 and 6, the function returns the following child.

\[
\text{child} = [a \ b \ c \ 4 \ 5 \ 6 \ g \ h]
\]

Caution Do not use `@crossovertwopoint` when you have linear constraints. Otherwise, your population will not necessarily satisfy the constraints.

- **Intermediate** (`@crossoverintermediate`), the default crossover function when there are linear constraints, creates children by taking a weighted average of the parents. You can specify the weights by a single parameter, \(\text{Ratio} \), which can be a scalar or a row vector of length \textbf{Number of variables}. The default is a vector of all 1's. The function creates the child from \(\text{parent1} \) and \(\text{parent2} \) using the following formula.

\[
\text{child} = \text{parent1} + \text{rand} \times \text{Ratio} \times (\text{parent2} - \text{parent1})
\]

If all the entries of \(\text{Ratio} \) lie in the range \([0, 1]\), the children produced are within the hypercube defined by placing the parents at opposite vertices. If \(\text{Ratio} \) is not in that range, the children might lie outside the hypercube. If \(\text{Ratio} \) is a scalar, then all the children lie on the line between the parents.

To change the default value of \(\text{Ratio} \) at the command line, use the syntax

\[
\text{options} = \text{gaoptimset}(\text{'CrossoverFcnc'}, \ldots
\{\text{@crossoverintermediate, ratio}\});
\]

where \(\text{ratio} \) is the value of \(\text{Ratio} \).

- **Heuristic** (`@crossoverheuristic`) returns a child that lies on the line containing the two parents, a small distance away from the parent with the better fitness value in the direction away from the parent with the worse fitness value. You can specify how far the child is from the better parent by the parameter \(\text{Ratio} \), which appears when you select Heuristic. The default value of \(\text{Ratio} \) is 1.2. If \(\text{parent1} \) and \(\text{parent2} \) are the parents, and \(\text{parent1} \) has the better fitness value, the function returns the child
child = parent2 + R * (parent1 - parent2);

To change the default value of \textbf{Ratio} at the command line, use the syntax

\begin{verbatim}
options=gaoptimset('CrossoverFcn',...
 {@crossoverheuristic,ratio});
\end{verbatim}

where \textit{ratio} is the value of \textbf{Ratio}.

\begin{itemize}
 \item \textbf{Arithmetic} (@crossoverarithmetic) creates children that are the weighted arithmetic mean of two parents. Children are always feasible with respect to linear constraints and bounds.
 \item \textbf{Custom} enables you to write your own crossover function. To specify the crossover function using the Optimization app,
 \begin{itemize}
 \item Set \textbf{Crossover function} to \textbf{Custom}.
 \item Set \textbf{Function name} to @myfun, where \textit{myfun} is the name of your function.
 \end{itemize}
 If you are using \textit{ga}, set
 \begin{verbatim}
 options = gaoptimset('CrossoverFcn',@myfun);
 \end{verbatim}
 Your crossover function must have the following calling syntax.
 \begin{verbatim}
 xoverKids = myfun(parents, options, nvars, FitnessFcn, ...
 unused,thisPopulation)
 \end{verbatim}
 The arguments to the function are
 \begin{itemize}
 \item \textit{parents} — Row vector of parents chosen by the selection function
 \item \textit{options} — options structure
 \item \textit{nvars} — Number of variables
 \item \textit{FitnessFcn} — Fitness function
 \item \textit{unused} — Placeholder not used
 \item \textit{thisPopulation} — Matrix representing the current population. The number of rows of the matrix is \textbf{Population size} and the number of columns is \textbf{Number of variables}.
 \end{itemize}
\end{itemize}
The function returns `xoverKids`—the crossover offspring—as a matrix where rows correspond to the children. The number of columns of the matrix is **Number of variables**.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to the function.

Caution When you have bounds or linear constraints, ensure that your crossover function creates individuals that satisfy these constraints. Otherwise, your population will not necessarily satisfy the constraints.

Migration Options

Note: Subpopulations refer to a form of parallel processing for the genetic algorithm. `ga` currently does not support this form. In subpopulations, each worker hosts a number of individuals. These individuals are a subpopulation. The worker evolves the subpopulation independently of other workers, except when migration causes some individuals to travel between workers.

Because `ga` does not currently support this form of parallel processing, there is no benefit to setting `PopulationSize` to a vector, or to setting the `MigrationDirection`, `MigrationInterval`, or `MigrationFraction` options.

Migration options specify how individuals move between subpopulations. Migration occurs if you set `Population size` to be a vector of length greater than 1. When migration occurs, the best individuals from one subpopulation replace the worst individuals in another subpopulation. Individuals that migrate from one subpopulation to another are copied. They are not removed from the source subpopulation.

You can control how migration occurs by the following three fields in the **Migration** options pane:

- **Direction** (`MigrationDirection`) — Migration can take place in one or both directions.
• If you set **Direction** to **Forward** (‘forward’), migration takes place toward the last subpopulation. That is, the \(n \)th subpopulation migrates into the \((n+1)\)th subpopulation.

• If you set **Direction** to **Both** (‘both’), the \(n \)th subpopulation migrates into both the \((n-1)\)th and the \((n+1)\)th subpopulation.

Migration wraps at the ends of the subpopulations. That is, the last subpopulation migrates into the first, and the first may migrate into the last.

• **Interval** (MigrationInterval) — Specifies how many generation pass between migrations. For example, if you set **Interval** to 20, migration takes place every 20 generations.

• **Fraction** (MigrationFraction) — Specifies how many individuals move between subpopulations. **Fraction** specifies the fraction of the smaller of the two subpopulations that moves. For example, if individuals migrate from a subpopulation of 50 individuals into a subpopulation of 100 individuals and you set **Fraction** to 0.1, the number of individuals that migrate is 0.1*50=5.

Constraint Parameters

Constraint parameters refer to the nonlinear constraint solver. For details on the algorithm, see “Nonlinear Constraint Solver Algorithms” on page 5-49.

Choose between the nonlinear constraint algorithms by setting the **NonlinConAlgorithm** option to ‘auglag’ (Augmented Lagrangian) or ‘penalty’ (Penalty algorithm).

• “Augmented Lagrangian Genetic Algorithm” on page 10-47
• “Penalty Algorithm” on page 10-48

Augmented Lagrangian Genetic Algorithm

• **Initial penalty** (InitialPenalty) — Specifies an initial value of the penalty parameter that is used by the nonlinear constraint algorithm. **Initial penalty** must be greater than or equal to 1, and has a default of 10.

• **Penalty factor** (PenaltyFactor) — Increases the penalty parameter when the problem is not solved to required accuracy and constraints are not satisfied. **Penalty factor** must be greater than 1, and has a default of 100.
Penalty Algorithm

The penalty algorithm uses the `gacreationnonlinearfeasible` creation function by default. This creation function uses `fmincon` to find feasible individuals. `gacreationnonlinearfeasible` starts `fmincon` from a variety of initial points within the bounds from the `PopInitRange` option. Optionally, `gacreationnonlinearfeasible` can run `fmincon` in parallel on the initial points.

You can specify tuning parameters for `gacreationnonlinearfeasible` using the following name-value pairs.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolverOpts</td>
<td><code>fmincon</code> options, created using <code>optimoptions</code> or <code>optimset</code>.</td>
</tr>
<tr>
<td>UseParallel</td>
<td>When <code>true</code>, run <code>fmincon</code> in parallel on initial points; default is <code>false</code>.</td>
</tr>
<tr>
<td>NumStartPts</td>
<td>Number of start points, a positive integer up to <code>sum(PopulationSize)</code> in value.</td>
</tr>
</tbody>
</table>

Include the name-value pairs in a cell array along with `@gacreationnonlinearfeasible`.

```matlab
options = gaoptimset('CreationFcn',{@gacreationnonlinearfeasible,...
                      'UseParallel',true,'NumStartPts',20});
```

Multiobjective Options

Multiobjective options define parameters characteristic of the multiobjective genetic algorithm. You can specify the following parameters:

- **DistanceMeasureFcn** — Defines a handle to the function that computes distance measure of individuals, computed in decision variable or design space (genotype) or in function space (phenotype). For example, the default distance measure function is `distancecrowding` in function space, or `@distancecrowding,'phenotype'`.
- **ParetoFraction** — Sets the fraction of individuals to keep on the first Pareto front while the solver selects individuals from higher fronts. This option is a scalar between 0 and 1.
Hybrid Function Options

A hybrid function is another minimization function that runs after the genetic algorithm terminates. You can specify a hybrid function in Hybrid function (HybridFcn) options. Do not use with integer problems. The choices are

- \[\] — No hybrid function.
- \texttt{fminsearch (@fminsearch)} — Uses the MATLAB function \texttt{fminsearch} to perform unconstrained minimization.
- \texttt{patternsearch (@patternsearch)} — Uses a pattern search to perform constrained or unconstrained minimization.
- \texttt{fminunc (@fminunc)} — Uses the Optimization Toolbox function \texttt{fminunc} to perform unconstrained minimization.
- \texttt{fmincon (@fmincon)} — Uses the Optimization Toolbox function \texttt{fmincon} to perform constrained minimization.

You can set separate options for the hybrid function. Use \texttt{optimset} for \texttt{fminsearch}, \texttt{psoptimset} for \texttt{patternsearch}, or \texttt{optimoptions} for \texttt{fmincon} or \texttt{fminunc}. For example:

\begin{verbatim}
hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');
\end{verbatim}

Include the hybrid options in the Genetic Algorithm options structure as follows:

\begin{verbatim}
options = gaoptimset(options,'HybridFcn',{@fminunc,hybridopts});
\end{verbatim}

\texttt{hybridopts} must exist before you set \texttt{options}.

See “Include a Hybrid Function” on page 5-104 for an example.

Stopping Criteria Options

Stopping criteria determine what causes the algorithm to terminate. You can specify the following options:

- \textbf{Generations} (Generations) — Specifies the maximum number of iterations for the genetic algorithm to perform. The default is \texttt{100*numberOfVariables}.
- \textbf{Time limit} (TimeLimit) — Specifies the maximum time in seconds the genetic algorithm runs before stopping, as measured by \texttt{tic} and \texttt{toc}. This limit is enforced after each iteration, so \texttt{ga} can exceed the limit when an iteration takes substantial time.
• **Fitness limit** (**FitnessLimit**) — The algorithm stops if the best fitness value is less than or equal to the value of **Fitness limit**.

• **Stall generations** (**StallGenLimit**) — The algorithm stops if the average relative change in the best fitness function value over **Stall generations** is less than or equal to **Function tolerance**. (If the **Stall Test** (**StallTest**) option is ‘**geometricWeighted**’, then the test is for a geometric weighted average relative change.) For a problem with nonlinear constraints, **Stall generations** applies to the subproblem (see “Nonlinear Constraint Solver Algorithms” on page 5-49).

For **gamultiobj**, if the weighted average relative change in the **spread** of the Pareto solutions over **Stall generations** is less than **Function tolerance**, and the spread is smaller than the average spread over the last **Stall generations**, then the algorithm stops. The **spread** is a measure of the movement of the Pareto front.

• **Stall time limit** (**StallTimeLimit**) — The algorithm stops if there is no improvement in the best fitness value for an interval of time in seconds specified by **Stall time limit**, as measured by tic and toc.

• **Function tolerance** (**TolFun**) — The algorithm stops if the average relative change in the best fitness function value over **Stall generations** is less than or equal to **Function tolerance**. (If the **StallTest** option is ‘**geometricWeighted**’, then the test is for a geometric weighted average relative change.)

For **gamultiobj**, if the weighted average relative change in the **spread** of the Pareto solutions over **Stall generations** is less than **Function tolerance**, and the spread is smaller than the average spread over the last **Stall generations**, then the algorithm stops. The **spread** is a measure of the movement of the Pareto front.

• **Constraint tolerance** (**TolCon**) — The **Constraint tolerance** is not used as stopping criterion. It is used to determine the feasibility with respect to nonlinear constraints. Also, \(\max(\sqrt{\text{eps}}, \text{TolCon})\) determines feasibility with respect to linear constraints.

See “Set Maximum Number of Generations” on page 5-108 for an example.

Output Function Options

Output functions are functions that the genetic algorithm calls at each generation. To specify the output function using the Optimization app,

• Select **Custom function**.
Genetic Algorithm Options

- Enter @myfun in the text box, where myfun is the name of your function. Write myfun with appropriate syntax.
- To pass extra parameters in the output function, use “Anonymous Functions”.
- For multiple output functions, enter a cell array of output function handles: @{@myfun1,@myfun2,...}.

At the command line, set

```matlab
options = gaoptimset('OutputFcns',@myfun);
```

For multiple output functions, enter a cell array:

```matlab
options = gaoptimset('OutputFcns',{@myfun1,@myfun2,...});
```

To see a template that you can use to write your own output functions, enter

```matlab
edit gaoutputfcntemplate
```

at the MATLAB command line.

Structure of the Output Function

The output function has the following calling syntax.

```matlab
[state,options,optchanged] = myfun(options,state,flag)
```

The function has the following input arguments:

- **options** — Options structure
- **flag** — String indicating the current status of the algorithm as follows:
 - 'init' — Initial stage
 - 'iter' — Algorithm running
 - 'interrupt' — Intermediate stage
 - 'done' — Algorithm terminated

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to the function.

The output function returns the following arguments to ga:
• **state** — Structure containing information about the current generation. “The State Structure” on page 10-31 describes the fields of state. To stop the iterations, set state.StopFlag to a nonempty string.

• **options** — Options structure modified by the output function. This argument is optional.

• **optchanged** — Flag indicating changes to options

Display to Command Window Options

Level of display ('Display') specifies how much information is displayed at the command line while the genetic algorithm is running. The available options are:

- **Off ('off')** — No output is displayed.
- **Iterative ('iter')** — Information is displayed at each iteration.
- **Diagnose ('diagnose')** — Information is displayed at each iteration. In addition, the diagnostic lists some problem information and the options that have been changed from the defaults.
- **Final ('final')** — The reason for stopping is displayed.

Both Iterative and Diagnose display the following information:

- **Generation** — Generation number
- **f-count** — Cumulative number of fitness function evaluations
- **Best f(x)** — Best fitness function value
- **Mean f(x)** — Mean fitness function value
- **Stall generations** — Number of generations since the last improvement of the fitness function

When a nonlinear constraint function has been specified, Iterative and Diagnose do not display the Mean f(x), but will additionally display:

- **Max Constraint** — Maximum nonlinear constraint violation

The default value of **Level of display** is:

- Off in the Optimization app
- 'final' in an options structure created using gaoptimset
Vectorize and Parallel Options (User Function Evaluation)

You can choose to have your fitness and constraint functions evaluated in serial, parallel, or in a vectorized fashion. These options are available in the User function evaluation section of the Options pane of the Optimization app, or by setting the 'Vectorized' and 'UseParallel' options with gaoptimset.

- When Evaluate fitness and constraint functions ('Vectorized') is in serial ('off'), ga calls the fitness function on one individual at a time as it loops through the population. (At the command line, this assumes 'UseParallel' is at its default value of false.)
- When Evaluate fitness and constraint functions ('Vectorized') is vectorized ('on'), ga calls the fitness function on the entire population at once, i.e., in a single call to the fitness function.

If there are nonlinear constraints, the fitness function and the nonlinear constraints all need to be vectorized in order for the algorithm to compute in a vectorized manner.

See “Vectorize the Fitness Function” on page 5-110 for an example.

- When Evaluate fitness and constraint functions (UseParallel) is in parallel (true), ga calls the fitness function in parallel, using the parallel environment you established (see “How to Use Parallel Processing” on page 9-12). At the command line, set UseParallel to false to compute serially.

Note: You cannot simultaneously use vectorized and parallel computations. If you set 'UseParallel' to true and 'Vectorized' to 'on', ga evaluates your fitness and constraint functions in a vectorized manner, not in parallel.

How Fitness and Constraint Functions Are Evaluated

<table>
<thead>
<tr>
<th></th>
<th>Vectorized = 'Off'</th>
<th>Vectorized = 'On'</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseParallel = false</td>
<td>Serial</td>
<td>Vectorized</td>
</tr>
<tr>
<td>UseParallel = true</td>
<td>Parallel</td>
<td>Vectorized</td>
</tr>
</tbody>
</table>
Particle Swarm Options

In this section...

“Specifying Options for particleswarm” on page 10-54
“Swarm Creation” on page 10-54
“Display Settings” on page 10-55
“Algorithm Settings” on page 10-56
“Hybrid Function” on page 10-57
“Output Function and Plot Function” on page 10-57
“Parallel or Vectorized Function Evaluation” on page 10-59
“Stopping Criteria” on page 10-60

Specifying Options for particleswarm

Create options using the optimoptions function as follows.

options = optimoptions('particleswarm','Param1',value1,'Param2',value2,...);

For an example, see “Optimize Using Particle Swarm” on page 6-3.

Each option in this section is listed by its field name in options. For example, Display refers to the corresponding field of options.

Swarm Creation

By default, particleswarm calls the @pswcreationuniform swarm creation function. This function works as follows.

1 If an InitialSwarm option exists, @pswcreationuniform takes the first SwarmSize rows of the InitialSwarm matrix as the swarm. If the number of rows of the InitialSwarm matrix is smaller than SwarmSize, then @pswcreationuniform continues to the next step.

2 @pswcreationuniform creates enough particles so that there are SwarmSize in total. @pswcreationuniform creates particles that are randomly, uniformly distributed. The range for any swarm component is - InitialSwarmSpan/2, InitialSwarmSpan/2, shifted and scaled if necessary to match any bounds.
After creation, `particleswarm` checks that all particles satisfy any bounds, and truncates components if necessary. If the Display option is 'iter' and a particle needed truncation, then `particleswarm` notifies you.

Custom Creation Function

Set a custom creation function using `optimoptions` to set the `CreationFcn` option to `@customcreation`, where `customcreation` is the name of your creation function file. A custom creation function has this syntax.

```matlab
swarm = customcreation(problem)
```

The creation function should return a matrix of size `SwarmSize-by-nvars`, where each row represents the location of one particle. See problem for details of the problem structure. In particular, you can obtain `SwarmSize` from `problem.options.SwarmSize`, and `nvars` from `problem.nvars`.

For an example of a creation function, see the code for `pswcreationuniform`.

```matlab
edit pswcreationuniform
```

Display Settings

The Display option specifies how much information is displayed at the command line while the algorithm is running.

- 'off' or 'none' — No output is displayed.
- 'iter' — Information is displayed at each iteration.
- 'final' (default) — The reason for stopping is displayed.

`iter` displays:

- **Iteration** — Iteration number
- **f-count** — Cumulative number of objective function evaluations
- **Best f(x)** — Best objective function value
- **Mean f(x)** — Mean objective function value over all particles
- **Stall Iterations** — Number of iterations since the last change in **Best f(x)**

The DisplayInterval option sets the number of iterations that are performed before the iterative display updates. Give a positive integer.
Algorithm Settings

The details of the `particleswarm` algorithm appear in “Particle Swarm Optimization Algorithm” on page 6-10. This section describes the tuning parameters.

The main step in the particle swarm algorithm is the generation of new velocities for the swarm:

For u_1 and u_2 uniformly (0,1) distributed random vectors of length `nvars`, update the velocity

$$v = W*v + y_1*u_1.*(p-x) + y_2*u_2.*(g-x).$$

The variables $W = \text{inertia}$, $y_1 = \text{SelfAdjustment}$, and $y_2 = \text{SocialAdjustment}$.

This update uses a weighted sum of:

- The previous velocity v
- $x-p$, the difference between the current position x and the best position p the particle has seen
- $x-g$, the difference between the current position x and the best position g in the current neighborhood

Based on this formula, the options have the following effect:

- Larger absolute value of inertia W leads to the new velocity being more in the same line as the old, and with a larger absolute magnitude. A large absolute value of W can destabilize the swarm. The value of W stays within the range of the two-element vector `InertiaRange`.
- Larger values of $y_1 = \text{SelfAdjustment}$ make the particle head more toward the best place it has visited.
- Larger values of $y_2 = \text{SocialAdjustment}$ make the particle head more toward the best place in the current neighborhood.

Large values of inertia, `SelfAdjustment`, or `SocialAdjustment` can destabilize the swarm.

The `MinFractionNeighbors` option sets both the initial neighborhood size for each particle, and the minimum neighborhood size; see “Particle Swarm Optimization Algorithm” on page 6-10. Setting `MinFractionNeighbors` to 1 has all members of the swarm use the global minimum point as their societal adjustment target.
See “Optimize Using Particle Swarm” on page 6-3 for an example that sets a few of these tuning options.

Hybrid Function

A hybrid function is another minimization function that runs after the particle swarm algorithm terminates. You can specify a hybrid function in the `HybridFcn` option. The choices are

* `[]` — No hybrid function.
* `fminsearch (@fminsearch)` — Use the MATLAB function `fminsearch` to perform unconstrained minimization.
* `patternsearch (@patternsearch)` — Use a pattern search to perform constrained or unconstrained minimization.
* `fminunc (@fminunc)` — Use the Optimization Toolbox function `fminunc` to perform unconstrained minimization.
* `fmincon (@fmincon)` — Use the Optimization Toolbox function `fmincon` to perform constrained minimization.

You can set separate options for the hybrid function. Use `optimset` for `fminsearch`, `psoptimset` for `patternsearch`, or `optimoptions` for `fmincon` or `fminunc`. For example:

```matlab
hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');
```

Include the hybrid options in the `particleswarm` options as follows:

```matlab
options = optimoptions(options,'HybridFcn',{@fminunc,hybridopts});
```

`hybridopts` must exist before you set `options`.

For an example that uses a hybrid function, see “Optimize Using Particle Swarm” on page 6-3.

Output Function and Plot Function

Output functions are functions that `particleswarm` calls at each iteration. Output functions can halt `particleswarm`, or can perform other tasks. To specify an output function,

```matlab
options = optimoptions(@particleswarm,'OutputFcns',@outfun)
```
where `outfun` is a function with syntax specified in “Structure of the Output Function or Plot Function” on page 10-58. If you have several output functions, pass them in a cell array:

```matlab
options = optimoptions(@particleswarm,'OutputFcns',{@outfun1,@outfun2,@outfun3})
```

Similarly, plot functions are functions that `particleswarm` calls at each iteration. The difference between an output function and a plot function is that a plot function has built-in plotting enhancements, such as buttons that appear on the plot window to pause or stop `particleswarm`. To specify a plot function,

```matlab
options = optimoptions(@particleswarm,'PlotFcns',@plotfun)
```

where `plotfun` is a function with syntax specified in “Structure of the Output Function or Plot Function” on page 10-58. If you have several plot functions, pass them in a cell array:

```matlab
options = optimoptions(@particleswarm,'PlotFcns',{@plotfun1,@plotfun2,@plotfun3})
```

The lone built-in plot function `@pswplotbestf` plots the best objective function value against iterations.

For an example of a custom output function, see “Particle Swarm Output Function” on page 6-7.

Structure of the Output Function or Plot Function

An output function has the following calling syntax:

```matlab
stop = myfun(optimValues,state)
```

If your function sets `stop` to `true`, iterations end. Set `stop` to `false` to have `particleswarm` continue to calculate.

The function has the following input arguments:

- **optimValues** — Structure containing information about the swarm in the current iteration. Details are in “optimValues Structure” on page 10-59.
- **state** — String giving the state of the current iteration.
 - `'init'` — The solver has not begun to iterate. Your output function or plot function can use this state to open files, or set up data structures or plots for subsequent iterations.
• 'iter' — The solver is proceeding with its iterations. Typically, this is where your output function or plot function performs its work.

• 'done' — The solver reached a stopping criterion. Your output function or plot function can use this state to clean up, such as closing any files it opened.

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to output functions or plot functions.

optimValues Structure

`particleswarm` passes the `optimValues` structure to your output functions or plot functions. The `optimValues` structure has the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>funcCount</code></td>
<td>Total number of objective function evaluations.</td>
</tr>
<tr>
<td><code>bestX</code></td>
<td>Best solution point found, corresponding to the best objective function</td>
</tr>
<tr>
<td><code>bestFval</code></td>
<td>Best (lowest) objective function value</td>
</tr>
<tr>
<td><code>iteration</code></td>
<td>Iteration number.</td>
</tr>
<tr>
<td><code>meanFval</code></td>
<td>Mean objective function among all particles at the current iteration.</td>
</tr>
<tr>
<td><code>stallIterations</code></td>
<td>Number of iterations since the last change in <code>bestFval</code>.</td>
</tr>
<tr>
<td><code>swarm</code></td>
<td>Matrix containing the particle positions. Each row contains the position</td>
</tr>
<tr>
<td></td>
<td>of one particle, and the number of rows is equal to the swarm size.</td>
</tr>
<tr>
<td><code>swarmFvals</code></td>
<td>Vector containing the objective function values of particles in the swarm.</td>
</tr>
<tr>
<td></td>
<td>For particle <code>i</code>, <code>swarmFvals(i) = fun(swarm(i,:))</code>, where <code>fun</code> is the</td>
</tr>
<tr>
<td></td>
<td>objective function.</td>
</tr>
</tbody>
</table>

Parallel or Vectorized Function Evaluation

For increased speed, you can set your options so that `particleswarm` evaluates the objective function for the swarm in *parallel* or in a *vectorized* fashion. You can use only one of these options. If you set `UseParallel` to `true` and `Vectorized` to 'on', then the computations are done in a vectorized fashion, and not in parallel.

- “Parallel particleswarm” on page 10-60
- “Vectorized particleswarm” on page 10-60

Parallel particleswarm

If you have a Parallel Computing Toolbox license, you can distribute the evaluation of the objective functions to the swarm among your processors or cores. Set the `UseParallel` option to `true`.

Parallel computation is likely to be faster than serial when your objective function is computationally expensive, or when you have many particles and processors. Otherwise, communication overhead can cause parallel computation to be slower than serial computation.

For details, see “Parallel Computing”.

Vectorized particleswarm

If your objective function can evaluate all the particles at once, you can usually save time by setting the `Vectorized` option to `'on'`. Your objective function should accept an M-by-N matrix, where each row represents one particle, and return an M-by-1 vector of objective function values. This option works the same way as the `patternsearch` and `ga` `Vectorized` options. For `patternsearch` details, see “Vectorize the Objective and Constraint Functions” on page 4-80.

Stopping Criteria

`particleswarm` stops iterating when any of the following occur.

<table>
<thead>
<tr>
<th>Stopping Option</th>
<th>Stopping Test</th>
<th>Exit Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>StallIterLimit</code> and <code>TolFun</code></td>
<td>Relative change in the best objective function value g over the last <code>StallIterLimit</code> iterations is less than <code>TolFun</code>.</td>
<td>1</td>
</tr>
<tr>
<td><code>MaxIter</code></td>
<td>Number of iterations reaches <code>MaxIter</code>.</td>
<td>0</td>
</tr>
<tr>
<td><code>OutputFcns</code> or <code>PlotFcns</code></td>
<td><code>OutputFcns</code> or <code>PlotFcns</code> can halt the iterations.</td>
<td>-1</td>
</tr>
<tr>
<td>Stopping Option</td>
<td>Stopping Test</td>
<td>Exit Flag</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>ObjectiveLimit</td>
<td>Best objective function value (g) is less than or equal to ObjectiveLimit.</td>
<td>-3</td>
</tr>
<tr>
<td>StallTimeLimit</td>
<td>Best objective function value (g) did not change in the last StallTimeLimit seconds.</td>
<td>-4</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Function run time exceeds MaxTime seconds.</td>
<td>-5</td>
</tr>
</tbody>
</table>

Also, if you set the `FunValCheck` option to 'on', and the swarm has particles with NaN, Inf, or complex objective function values, `particleswarm` stops and issues an error.
Simulated Annealing Options

In this section...

“saoptimset At The Command Line” on page 10-62
“Plot Options” on page 10-62
“Temperature Options” on page 10-64
“Algorithm Settings” on page 10-65
“Hybrid Function Options” on page 10-66
“Stopping Criteria Options” on page 10-67
“Output Function Options” on page 10-68
“Display Options” on page 10-69

saoptimset At The Command Line

Specify options by creating an options structure using the saoptimset function as follows:

options = saoptimset('Param1',value1,'Param2',value2, ...);

See “Set Options for simulannealbnd at the Command Line” on page 7-16 for examples.

Each option in this section is listed by its field name in the options structure. For example, InitialTemperature refers to the corresponding field of the options structure.

Plot Options

Plot options enable you to plot data from the simulated annealing solver while it is running.

PlotInterval specifies the number of iterations between consecutive calls to the plot function.

To display a plot when calling simulannealbnd from the command line, set the PlotFcns field of options to be a function handle to the plot function. You can specify any of the following plots:
• @saplotbestf plots the best objective function value.
• @saplotbestx plots the current best point.
• @saplotf plots the current function value.
• @saplotx plots the current point.
• @saplotstopping plots stopping criteria levels.
• @saplottemperature plots the temperature at each iteration.
• @myfun plots a custom plot function, where myfun is the name of your function. See “Structure of the Plot Functions” on page 10-11 for a description of the syntax.

For example, to display the best objective plot, set options as follows

```matlab
options = saoptimset('PlotFcns',@saplotbestf);
```

To display multiple plots, use the cell array syntax

```matlab
options = saoptimset('PlotFcns',{@plotfun1,@plotfun2, ...});
```

where @plotfun1, @plotfun2, and so on are function handles to the plot functions.

If you specify more than one plot function, all plots appear as subplots in the same window. Right-click any subplot to obtain a larger version in a separate figure window.

Structure of the Plot Functions

The first line of a plot function has the form

```matlab
function stop = plotfun(options,optimvalues,flag)
```

The input arguments to the function are

• options — Options structure created using saoptimset.
• optimvalues — Structure containing information about the current state of the solver. The structure contains the following fields:
 • x — Current point
 • fval — Objective function value at x
 • bestx — Best point found so far
 • bestfval — Objective function value at best point
 • temperature — Current temperature
• **iteration** — Current iteration
• **funccount** — Number of function evaluations
• **t0** — Start time for algorithm
• **k** — Annealing parameter

- **flag** — Current state in which the plot function is called. The possible values for *flag* are
 - `'init'` — Initialization state
 - `'iter'` — Iteration state
 - `'done'` — Final state

The output argument *stop* provides a way to stop the algorithm at the current iteration. *stop* can have the following values:

- **false** — The algorithm continues to the next iteration.
- **true** — The algorithm terminates at the current iteration.

Temperature Options

Temperature options specify how the temperature will be lowered at each iteration over the course of the algorithm.

- **InitialTemperature** — Initial temperature at the start of the algorithm. The default is 100. The initial temperature can be a vector with the same length as *x*, the vector of unknowns. *simulannealbnd* expands a scalar initial temperature into a vector.
- **TemperatureFcn** — Function used to update the temperature schedule. Let *k* denote the annealing parameter. (The annealing parameter is the same as the iteration number until reannealing.) The options are:
 - **@temperatureexp** — The temperature is equal to *InitialTemperature* * 0.95^k*. This is the default.
 - **@temperaturefast** — The temperature is equal to *InitialTemperature* / *k*.
 - **@temperatureboltz** — The temperature is equal to *InitialTemperature* / ln(*k*).
 - **@myfun** — Uses a custom function, *myfun*, to update temperature. The syntax is:
    ```matlab
temperature = myfun(optimValues,options)
```

10-64
where `optimValues` is a structure described in “Structure of the Plot Functions” on page 10-63. `options` is either the structure created with `saoptimset`, or the structure of default options, if you did not create an options structure. Both the annealing parameter `optimValues.k` and the temperature `optimValues.temperature` are vectors with length equal to the number of elements of the current point `x`. For example, the function `temperaturefast` is:

```
temperature = options.InitialTemperature./optimValues.k;
```

Algorithm Settings

Algorithm settings define algorithmic specific parameters used in generating new points at each iteration.

Parameters that can be specified for `simulannealbnd` are:

- **DataType** — Type of data to use in the objective function. Choices:
 - `'double'` (default) — A vector of type double.
 - `'custom'` — Any other data type. You must provide a `'custom'` annealing function. You cannot use a hybrid function.
- **AnnealingFcn** — Function used to generate new points for the next iteration. The choices are:
 - `@annealingfast` — The step has length temperature, with direction uniformly at random. This is the default.
 - `@annealingboltz` — The step has length square root of temperature, with direction uniformly at random.
 - `@myfun` — Uses a custom annealing algorithm, `myfun`. The syntax is:

```
newx = myfun(optimValues,problem)
```

where `optimValues` is a structure described in “Structure of the Output Function” on page 10-68, and `problem` is a structure containing the following information:

- **objective**: function handle to the objective function
- **x0**: the start point
- **nvar**: number of decision variables
• \(\text{lb} \): lower bound on decision variables
• \(\text{ub} \): upper bound on decision variables

For example, the current position is \(\text{optimValues.x} \), and the current objective function value is \(\text{problem.objective(optimValues.x)} \).

• \text{ReannealInterval} — Number of points accepted before reannealing. The default value is 100.

• \text{AcceptanceFcn} — Function used to determine whether a new point is accepted or not. The choices are:

 • \@\text{acceptancesa} — Simulated annealing acceptance function, the default. If the new objective function value is less than the old, the new point is always accepted. Otherwise, the new point is accepted at random with a probability depending on the difference in objective function values and on the current temperature. The acceptance probability is

 \[
 \frac{1}{1 + \exp\left(\frac{\Delta}{\max(T)}\right)}
 \]

 where \(\Delta = \text{new objective} – \text{old objective} \), and \(T \) is the current temperature. Since both \(\Delta \) and \(T \) are positive, the probability of acceptance is between 0 and 1/2. Smaller temperature leads to smaller acceptance probability. Also, larger \(\Delta \) leads to smaller acceptance probability.

 • \@\text{myfun} — A custom acceptance function, \text{myfun}. The syntax is:

 \[
 \text{acceptpoint} = \text{myfun(optimValues,newx,newfval)};
 \]

 where \text{optimValues} is a structure described in “Structure of the Output Function” on page 10-68, \text{newx} is the point being evaluated for acceptance, and \text{newfval} is the objective function at \text{newx}. \text{acceptpoint} is a Boolean, with value \text{true} to accept \text{newx}, and \text{false} to reject \text{newx}.

Hybrid Function Options

A hybrid function is another minimization function that runs during or at the end of iterations of the solver. \text{HybridInterval} specifies the interval (if not \text{never} or \text{end}) at which the hybrid function is called. You can specify a hybrid function using the \text{HybridFcn} option. The choices are:
Simulated Annealing Options

- [] — No hybrid function.
- @fminsearch — Uses the MATLAB function fminsearch to perform unconstrained minimization.
- @patternsearch — Uses patternsearch to perform constrained or unconstrained minimization.
- @fminunc — Uses the Optimization Toolbox function fminunc to perform unconstrained minimization.
- @fmincon — Uses the Optimization Toolbox function fmincon to perform constrained minimization.

You can set separate options for the hybrid function. Use optimset for fminsearch, psoptimset for patternsearch, or optimoptions for fmincon or fminunc. For example:

```matlab
hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');
Include the hybrid options in the simulannealbnd options structure as follows:

options = saoptimset(options,'HybridFcn',{@fminunc,hybridopts});
hybridopts must exist before you set options.

See “Include a Hybrid Function” on page 5-104 for an example.

Stopping Criteria Options

Stopping criteria determine what causes the algorithm to terminate. You can specify the following options:

- TolFun — The algorithm runs until the average change in value of the objective function in StallIterLim iterations is less than TolFun. The default value is 1e-6.
- MaxIter — The algorithm stops if the number of iterations exceeds this maximum number of iterations. You can specify the maximum number of iterations as a positive integer or Inf. Inf is the default.
- MaxFunEval specifies the maximum number of evaluations of the objective function. The algorithm stops if the number of function evaluations exceeds the maximum number of function evaluations. The allowed maximum is 3000*numberofvariables.
- TimeLimit specifies the maximum time in seconds the algorithm runs before stopping.
- **ObjectiveLimit** — The algorithm stops if the best objective function value is less than or equal to the value of **ObjectiveLimit**.

### Output Function Options

Output functions are functions that the algorithm calls at each iteration. The default value is to have no output function, []. You must first create an output function using the syntax described in “Structure of the Output Function” on page 10-68.

Using the Optimization app:

- Specify **Output function** as @myfun, where myfun is the name of your function.
- To pass extra parameters in the output function, use “Anonymous Functions”.
- For multiple output functions, enter a cell array of output function handles: {@myfun1,@myfun2,...}.

At the command line:

- options = saoptimset('OutputFcns',@myfun);
- For multiple output functions, enter a cell array:
  
  options = saoptimset('OutputFcns',{@myfun1,@myfun2,...});

To see a template that you can use to write your own output functions, enter edit saoutputfcntemplate at the MATLAB command line.

### Structure of the Output Function

The output function has the following calling syntax.

\[
\text{[stop, options, optchanged] = myfun(options, optimvalues, flag)}
\]

The function has the following input arguments:

- **options** — Options structure created using saoptimset.
- **optimvalues** — Structure containing information about the current state of the solver. The structure contains the following fields:
  - **x** — Current point
• `fval` — Objective function value at `x`
• `bestx` — Best point found so far
• `bestfval` — Objective function value at best point
• `temperature` — Current temperature, a vector the same length as `x`
• `iteration` — Current iteration
• `funccount` — Number of function evaluations
• `t0` — Start time for algorithm
• `k` — Annealing parameter, a vector the same length as `x`
• `flag` — Current state in which the output function is called. The possible values for `flag` are
  • `'init'` — Initialization state
  • `'iter'` — Iteration state
  • `'done'` — Final state

“Passing Extra Parameters” in the Optimization Toolbox documentation explains how to provide additional parameters to the output function.

The output function returns the following arguments:

• `stop` — Provides a way to stop the algorithm at the current iteration. `stop` can have the following values:
  • `false` — The algorithm continues to the next iteration.
  • `true` — The algorithm terminates at the current iteration.
• `options` — Options structure modified by the output function.
• `optchanged` — A boolean flag indicating changes were made to `options`. This must be set to `true` if options are changed.

**Display Options**

Use the `Display` option to specify how much information is displayed at the command line while the algorithm is running. The available options are

• `off` — No output is displayed. This is the default value for an options structure created using `saoptimset`. 
• **iter** — Information is displayed at each iteration.
• **diagnose** — Information is displayed at each iteration. In addition, the diagnostic lists some problem information and the options that have been changed from the defaults.
• **final** — The reason for stopping is displayed. This is the default.

Both **iter** and **diagnose** display the following information:

• **Iteration** — Iteration number
• **f-count** — Cumulative number of objective function evaluations
• **Best f(x)** — Best objective function value
• **Current f(x)** — Current objective function value
• **Mean Temperature** — Mean temperature function value
**createOptimProblem**

Create optimization problem structure

**Syntax**

```matlab
problem = createOptimProblem('solverName')
problem = createOptimProblem('solverName','ParameterName',ParameterValue,...)
```

**Description**

`problem = createOptimProblem('solverName')` creates an empty optimization problem structure for the `solverName` solver.

`problem = createOptimProblem('solverName','ParameterName',ParameterValue,...)` accepts one or more comma-separated parameter name/value pairs. Specify `ParameterName` inside single quotes.

**Input Arguments**

`solverName`

Name of the solver. For a `GlobalSearch` problem, use 'fmincon'. For a `MultiStart` problem, use 'fmincon', 'fminunc', 'lsqcurvefit' or 'lsqnonlin'.

**Parameter Name/Value Pairs**

`'Aeq'`

Matrix for linear equality constraints. The constraints have the form:

\[ A_{eq} \times = b_{eq} \]
'Aineq'
Matrix for linear inequality constraints. The constraints have the form:
Aineq \ x \leq \ bineq

'beq'
Vector for linear equality constraints. The constraints have the form:
Aeq \ x = beq

'bineq'
Vector for linear inequality constraints. The constraints have the form:
Aineq \ x \leq \ bineq

'lb'
Vector of lower bounds.
lb can also be an array; see “Matrix Arguments”.

'nonlcon'
Function handle to the nonlinear constraint function. The constraint function must accept a vector x and return two vectors: c, the nonlinear inequality constraints, and ceq, the nonlinear equality constraints. If one of these constraint functions is empty, nonlcon must return [ ] for that function.

If the GradConstr option is 'on', then in addition nonlcon must return two additional outputs, gradc and gradceq. The gradc parameter is a matrix with one column for the gradient of each constraint, as is gradceq.

For more information, see “Write Constraints” on page 2-6.

'objective'
Function handle to the objective function. For all solvers except lsqnonlin and lsqcurvefit, the objective function must accept a vector x and return a scalar. If the GradObj option is 'on', then the objective function must return a second output, a vector, representing the gradient of the objective. For lsqnonlin, the objective function must accept a vector x and return a vector. lsqnonlin sums the squares of the objective
function values. For \texttt{lsqcurvefit}, the objective function must accept two inputs, \texttt{x} and \texttt{xdata}, and return a vector.

For more information, see “Compute Objective Functions” on page 2-2.

\texttt{'options'}

Optimization options. Create options with \texttt{optimoptions}, or by exporting from the Optimization app.

\texttt{'ub'}

Vector of upper bounds.

\texttt{ub} can also be an array; see “Matrix Arguments”.

\texttt{'x0'}

A vector, a potential starting point for the optimization. Gives the dimensionality of the problem.

\texttt{x0} can also be an array; see “Matrix Arguments”.

\texttt{'xdata'}

Vector of data points for \texttt{lsqcurvefit}.

\texttt{'ydata'}

Vector of data points for \texttt{lsqcurvefit}.

\section*{Output Arguments}

\texttt{problem}

Optimization problem structure.

\section*{Examples}

Create a problem structure using Rosenbrock's function as objective (see “Include a Hybrid Function” on page 5-104), the \texttt{interior-point} algorithm for \texttt{fmincon}, and bounds with absolute value 2:
anonrosen = @(x)(100*(x(2) - x(1)^2)^2 + (1-x(1))^2);
opts = optimoptions(@fmincon,'Algorithm','interior-point');
problem = createOptimProblem('fmincon', 'x0', randn(2,1), ...
    'objective', anonrosen, 'lb', [-2;-2], 'ub', [2;2], ...
    'options', opts);

Alternatives

You can create a problem structure by exporting from the Optimization app (optimtool), as described in “Exporting from the Optimization app” on page 3-9.

See Also
optimtool | MultiStart | GlobalSearch
CustomStartPointSet class

User-supplied start points

Description

An object wrapper of a matrix whose rows represent start points for MultiStart.

Construction

\( tpoints = \text{CustomStartPointSet}(ptmatrix) \) generates a CustomStartPointSet object from the \( ptmatrix \) matrix. Each row of \( ptmatrix \) represents one start point.

Properties

- **DimStartPoints**
  
  Dimension of each start point, a read-only property. \( \text{DimStartPoints} \) is the number of columns in \( ptmatrix \).
  
  \( \text{DimStartPoints} \) should be the same as the number of elements in \( \text{problem.x0} \), the problem structure you pass to run.

- **NumStartPoints**
  
  Number of start points, a read-only property. This is the number of rows in \( ptmatrix \).

Methods

- list
  
  List custom start points in set

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB Programming Fundamentals documentation.
Examples

Create a `CustomStartPointSet` object with 40 three-dimensional rows. Each row represents a normally distributed random variable with mean $[10, 10, 10]$ and variance $\text{diag}([4, 4, 4])$:

```matlab
fortypts = 10*ones(40,3) + 4*randn(40,3); % a matrix
startpts = CustomStartPointSet(fortypts);
```

`startpts` is the `fortypts` matrix in an object wrapper.

Get the `fortypts` matrix from the `startpts` object of the previous example:

```matlab
fortypts = list(startpts);
```

See Also
list | RandomStartPointSet | MultiStart

How To
• Class Attributes
• Property Attributes


**ga**

Find minimum of function using genetic algorithm

**Syntax**

\[
\begin{align*}
\text{x} &= \text{ga}(\text{fitnessfcn,nvars}) \\
\text{x} &= \text{ga}(\text{fitnessfcn,nvars,A,b}) \\
\text{x} &= \text{ga}(\text{fitnessfcn,nvars,A,b,Aeq,beq}) \\
\text{x} &= \text{ga}(\text{fitnessfcn,nvars,A,b,Aeq,beq,LB,UB}) \\
\text{x} &= \text{ga}(\text{fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon}) \\
\text{x} &= \text{ga}(\text{fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options}) \\
\text{x} &= \text{ga}(\text{fitnessfcn,nvars,A,b,[],[],LB,UB,nonlcon,IntCon}) \\
\text{x} &= \text{ga}(\text{fitnessfcn,nvars,A,b,[],[],LB,UB,nonlcon,IntCon,options}) \\
\text{x} &= \text{ga}(\text{problem}) \\
\text{x,fval} &= \text{ga}(\text{fitnessfcn,nvars,...}) \\
\text{x,fval,exitflag} &= \text{ga}(\text{fitnessfcn,nvars,...}) \\
\text{x,fval,exitflag,output} &= \text{ga}(\text{fitnessfcn,nvars,...}) \\
\text{x,fval,exitflag,output,population} &= \text{ga}(\text{fitnessfcn,nvars,...}) \\
\text{x,fval,exitflag,output,population,scores} &= \text{ga}(\text{fitnessfcn,nvars,...}) \\
\end{align*}
\]

**Description**

\[
\begin{align*}
\text{x} &= \text{ga}(\text{fitnessfcn,nvars}) \text{ finds a local unconstrained minimum, } x, \text{ to the objective function, fitnessfcn. nvars is the dimension (number of design variables) of fitnessfcn.} \\
\text{x} &= \text{ga}(\text{fitnessfcn,nvars,A,b}) \text{ finds a local minimum } x \text{ to fitnessfcn, subject to the linear inequalities } A\times x \leq b. \text{ ga evaluates the matrix product } A\times x \text{ as if } x \text{ is transposed } (A\times x') . \\
\text{x} &= \text{ga}(\text{fitnessfcn,nvars,A,b,Aeq,beq}) \text{ finds a local minimum } x \text{ to fitnessfcn, subject to the linear equalities } Aeq\times x = beq \text{ as well as } A\times x \leq b. \text{ (Set } A=[] \text{ and } b=[] \text{ if no linear inequalities exist.) ga evaluates the matrix product } Aeq\times x \text{ as if } x \text{ is transposed } (Aeq\times x') .
\end{align*}
\]
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the design variables, x, so that a solution is found in the range \( \text{lb} \leq x \leq \text{ub} \).
(Set \( \text{Aeq}=[] \) and \( \text{beq}=[] \) if no linear equalities exist.)

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,nonlcon) subjects the minimization to the constraints defined in nonlcon. The function nonlcon accepts x and returns vectors \( C \) and \( Ceq \), representing the nonlinear inequalities and equalities respectively. \( \text{ga} \) minimizes the \( \text{fitnessfcn} \) such that \( C(x) \leq 0 \) and \( Ceq(x) = 0 \).
(Set \( \text{lb}=[] \) and \( \text{ub}=[] \) if no bounds exist.)

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes with the default optimization parameters replaced by values in the structure options, which can be created using the \( \text{gaoptimset} \) function.
(Set \( \text{nonlcon}=[] \) if no nonlinear constraints exist.)

x = ga(fitnessfcn,nvars,A,b,[],[],lb,ub,nonlcon,IntCon) requires that the variables listed in IntCon take integer values.

**Note:** When there are integer constraints, \( \text{ga} \) does not accept linear or nonlinear equality constraints, only inequality constraints.

x = ga(fitnessfcn,nvars,A,b,[],[],lb,ub,nonlcon,IntCon,options) minimizes with integer constraints and with the default optimization parameters replaced by values in the options structure.

x = ga(problem) finds the minimum for problem, where problem is a structure.

\([x,fval] = \text{ga}(\text{fitnessfcn},\text{nvars},...)\) returns \( fval \), the value of the fitness function at \( x \).

\([x,fval,exitflag] = \text{ga}(\text{fitnessfcn},\text{nvars},...)\) returns \( \text{exitflag} \), an integer identifying the reason the algorithm terminated.

\([x,fval,exitflag,output] = \text{ga}(\text{fitnessfcn},\text{nvars},...)\) returns \( \text{output} \), a structure that contains output from each generation and other information about the performance of the algorithm.

\([x,fval,exitflag,output,\text{population}] = \text{ga}(\text{fitnessfcn},\text{nvars},...)\) returns the matrix, \( \text{population} \), whose rows are the final population.
[x,fval,exitflag,output,population,scores] = ga(fitnessfcn, nvars,...) returns scores the scores of the final population.

**Input Arguments**

**fitnessfcn**

Handle to the fitness function. The fitness function should accept a row vector of length nvars and return a scalar value.

When the 'Vectorized' option is 'on', fitnessfcn should accept a pop-by-nvars matrix, where pop is the current population size. In this case fitnessfcn should return a vector the same length as pop containing the fitness function values. fitnessfcn should not assume any particular size for pop, since ga can pass a single member of a population even in a vectorized calculation.

**nvars**

Positive integer representing the number of variables in the problem.

**A**

Matrix for linear inequality constraints of the form

A*x ≤ b.

If the problem has m linear inequality constraints and nvars variables, then

- A is a matrix of size m-by-nvars.
- b is a vector of length m.

ga evaluates the matrix product A*x as if x is transposed (A*x').

**Note:** ga does not enforce linear constraints to be satisfied when the `PopulationType` option is 'bitString' or 'custom'.

**b**

Vector for linear inequality constraints of the form
\[ A \times x \leq b. \]

If the problem has \( m \) linear inequality constraints and \( n \text{vars} \) variables, then

- \( A \) is a matrix of size \( m \)-by-\( n \text{vars} \).
- \( b \) is a vector of length \( m \).

**\( Aeq \)**

Matrix for linear equality constraints of the form \( Aeq \times x = beq \).

If the problem has \( m \) linear equality constraints and \( n \text{vars} \) variables, then

- \( Aeq \) is a matrix of size \( m \)-by-\( n \text{vars} \).
- \( beq \) is a vector of length \( m \).

\( ga \) evaluates the matrix product \( Aeq \times x \) as if \( x \) is transposed \((Aeq \times x')\).

**Note:** \( ga \) does not enforce linear constraints to be satisfied when the \texttt{PopulationType} option is 'bitString' or 'custom'.

**\( beq \)**

Vector for linear equality constraints of the form \( Aeq \times x = beq \).

If the problem has \( m \) linear equality constraints and \( n \text{vars} \) variables, then

- \( Aeq \) is a matrix of size \( m \)-by-\( n \text{vars} \).
- \( beq \) is a vector of length \( m \).

**\( LB \)**

Vector of lower bounds. \( ga \) enforces that iterations stay above \( LB \). Set \( LB(i) = \text{Inf} \) if \( x(i) \) is unbounded below.

**Note:** \( ga \) does not enforce bounds to be satisfied when the \texttt{PopulationType} option is 'bitString' or 'custom'.

11-11
**UB**

Vector of upper bounds. `ga` enforces that iterations stay below `UB`. Set \( UB(i) = \text{Inf} \) if \( x(i) \) is unbounded above.

**nonlcon**

Function handle that returns two outputs:

\[ [c,ceq] = \text{nonlcon}(x) \]

`ga` attempts to achieve \( c \leq 0 \text{ and } ceq = 0 \). \( c \) and \( ceq \) are row vectors when there are multiple constraints. Set unused outputs to \([],\).  

You can write `nonlcon` as a function handle to a file, such as

\[ \text{nonlcon} = @\text{constraintfile} \]

where `constraintfile.m` is a file on your MATLAB path.

To learn how to use vectorized constraints, see “Vectorized Constraints” on page 2-7.

**Note:** `ga` does not enforce nonlinear constraints to be satisfied when the `PopulationType` option is set to 'bitString' or 'custom'.

If `IntCon` is not empty, the second output of `nonlcon (ceq)` must be empty \([\text{[]}\).  

For information on how `ga` uses `nonlcon`, see “Nonlinear Constraint Solver Algorithms” on page 5-49.

**options**

Structure containing optimization options. Create `options` using `gaoptimset`, or by exporting options from the Optimization app as described in “Importing and Exporting Your Work” in the Optimization Toolbox documentation. Values in \{\} denote the default value. \{\}* means the default when there are linear constraints, and for `MutationFcn` also when there are bounds. You can also view the optimization parameters and defaults by typing `gaoptimset` at the command line. I* indicates that `ga` ignores or overwrites the option for mixed integer optimization problems.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CreationFcn</td>
<td>Handle to the function that creates the initial population. See “Population Options” on page 10-32.</td>
<td>{@gacreationuniform}</td>
</tr>
<tr>
<td>CrossoverFcn</td>
<td>Handle to the function that the algorithm uses to create crossover children. See “Crossover Options” on page 10-42.</td>
<td>{@crossoverscattered} for ga, {@crossoverintermediate}* for gamultiobj</td>
</tr>
<tr>
<td>CrossoverFraction</td>
<td>The fraction of the population at the next generation, not including elite children, that is created by the crossover function</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display</td>
<td>'off'</td>
</tr>
<tr>
<td>DistanceMeasureFcn</td>
<td>Handle to the function that computes distance measure of individuals, computed in decision variable or design space (genotype) or in function space (phenotype), for gamultiobj only</td>
<td>{@distancecrowding,'phenotype'}</td>
</tr>
<tr>
<td>EliteCount</td>
<td>Positive integer specifying how many individuals in the current generation are guaranteed to survive to the next generation. Not used in gamultiobj.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>FitnessLimit</td>
<td>Scalar. If the fitness function attains the value of FitnessLimit, the algorithm halts.</td>
<td>Scalar</td>
</tr>
<tr>
<td>FitnessScalingFcn</td>
<td>Handle to the function that scales the values of the fitness function</td>
<td>{@fitscalingrank}</td>
</tr>
</tbody>
</table>

11-13
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generations</td>
<td>Positive integer specifying the maximum number of iterations before the algorithm halts</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HybridFcn</td>
<td><strong>I</strong> Handle to a function that continues the optimization after <code>ga</code> terminates&lt;br&gt;or&lt;br&gt;Cell array specifying the hybrid function and its options structure&lt;br&gt;For <code>gamultiobj</code>, the only hybrid function is <code>@fgoalattain</code></td>
<td>Function handle</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td><strong>I</strong> Initial value of penalty parameter</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>InitialPopulation</td>
<td>Initial population used to seed the genetic algorithm; can be partial — see “Population Options” on page 10-32</td>
<td>Matrix</td>
</tr>
<tr>
<td>InitialScores</td>
<td><strong>I</strong> Initial scores used to determine fitness; can be partial</td>
<td>Column vector</td>
</tr>
<tr>
<td>MigrationDirection</td>
<td>Direction of migration — see “Migration Options” on page 10-46</td>
<td>'both'</td>
</tr>
<tr>
<td>MigrationFraction</td>
<td>Scalar between 0 and 1 specifying the fraction of individuals in each subpopulation that migrates to a different subpopulation — see “Migration Options” on page 10-46</td>
<td>Scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>MigrationInterval</td>
<td>Positive integer specifying the number of generations that take place between migrations of individuals between subpopulations — see “Migration Options” on page 10-46</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MutationFcn</td>
<td>I* Handle to the function that produces mutation children. See “Mutation Options” on page 10-40.</td>
<td>{@mutationgaussian} for ga, {@mutationadaptfeasible}* for gamultiobj</td>
</tr>
<tr>
<td>NonlinConAlgorithm</td>
<td>Nonlinear constraint algorithm. See “Nonlinear Constraint Solver Algorithms” on page 5-49. Option unchangeable for gamultiobj</td>
<td>{'auglag'} for ga, {'penalty'} for gamultiobj</td>
</tr>
<tr>
<td>OutputFcns</td>
<td>Functions that ga calls at each iteration. See “Output Function Options” on page 10-50.</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td>ParetoFraction</td>
<td>I* Scalar between 0 and 1 specifying the fraction of individuals to keep on the first Pareto front while the solver selects individuals from higher fronts, for gamultiobj only</td>
<td>Scalar</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>I* Penalty update parameter</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PlotFcns</td>
<td>Array of handles to functions that plot data computed by the algorithm. See “Plot Options” on page 10-29.</td>
<td></td>
</tr>
</tbody>
</table>
|                |                                                                            | {
<p>|                |                                                                            | [] |
|                |                                                                            | |&amp;aplotbestf |
|                |                                                                            | |&amp;aplotbestindiv |
|                |                                                                            | |&amp;aplotdistance |
|                |                                                                            | |&amp;aplotexpectation |
|                |                                                                            | |&amp;aplotgenealogy |
|                |                                                                            | |&amp;aplotmaxconstr |
|                |                                                                            | |&amp;aplotrange |
|                |                                                                            | |&amp;aplotselection |
|                |                                                                            | |&amp;aplotscorediversity |
|                |                                                                            | |&amp;aplotscores |
|                |                                                                            | |&amp;aplotstopping |
|                |                                                                            | Custom plot function |
|                |                                                                            | For <code>gamultiobj</code> there are additional choices: |
|                |                                                                            | |&amp;aplotpareto |
|                |                                                                            | |&amp;aplotparetodistance |
|                |                                                                            | |&amp;aplotrankhist |
|                |                                                                            | |&amp;aplotspread |
| PlotInterval   | Positive integer specifying the number of generations between consecutive calls to the plot functions | Positive integer | {1} |
| PopInitRange   | Matrix or vector specifying the range of the individuals in the initial population. Applies to <code>gacreationuniform</code> creation function. <code>ga</code> shifts and scales the default initial range to match any finite bounds. | Matrix or vector | {[-10;10]} for unbounded components, |
|                |                                                                            | |[-1e4+1;1e4+1]} for unbounded components of integer-constrained problems, |
|                |                                                                            | |{[lb;ub]} for bounded components, with the default range modified to match one-sided bounds. |
| PopulationSize | Size of the population                                                      | Positive integer | {50} when <code>numberOfVariables</code> &lt;= 5, {200} otherwise |
|                |                                                                            | |{min(max(10*nvars,40),100)} for mixed-integer problems |</p>
<table>
<thead>
<tr>
<th><strong>Option</strong></th>
<th><strong>Description</strong></th>
<th><strong>Values</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PopulationType</strong></td>
<td>String describing the data type of the population — must be 'doubleVector' for mixed integer problems</td>
<td>'bitstring'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{'doubleVector'}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ga ignores all constraints when PopulationType is set to 'bitString' or 'custom'. See “Population Options” on page 10-32.</td>
</tr>
<tr>
<td><strong>SelectionFcn</strong></td>
<td><strong>I</strong> Handle to the function that selects parents of crossover and mutation children</td>
<td>{@selectionstochunif} for ga, {@selectiontournament} for gamultiobj</td>
</tr>
<tr>
<td></td>
<td>Option unchangeable for gamultiobj</td>
<td>@selectionremainder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>@selectionuniform</td>
</tr>
<tr>
<td></td>
<td></td>
<td>@selectionroulette</td>
</tr>
<tr>
<td></td>
<td></td>
<td>@selectionuniform</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Custom selection function</td>
</tr>
<tr>
<td><strong>StallGenLimit</strong></td>
<td>Positive integer. The algorithm stops if the average relative change in the best fitness function value over StallGenLimit generations is less than or equal to TolFun. If StallTest is 'geometricWeighted', then the algorithm stops if the weighted average relative change is less than or equal to TolFun.</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{50} for ga, {100} for gamultiobj</td>
</tr>
<tr>
<td><strong>StallTest</strong></td>
<td>String describing the stopping test.</td>
<td>'geometricWeighted'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{'averageChange'}</td>
</tr>
<tr>
<td><strong>StallTimeLimit</strong></td>
<td>Positive scalar. The algorithm stops if there is no improvement in the objective function for StallTimeLimit seconds, as measured by tic and toc.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td></td>
<td>Option unavailable for gamultiobj</td>
<td>{Inf}</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>TimeLimit</td>
<td>Positive scalar. The algorithm stops after running after <code>TimeLimit</code> seconds, as measured by <code>tic</code> and <code>toc</code>. This limit is enforced after each iteration, so <code>ga</code> can exceed the limit when an iteration takes substantial time.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolCon</td>
<td>Positive scalar. <code>TolCon</code> is used to determine the feasibility with respect to nonlinear constraints. Also, ( \text{max}(\sqrt{\text{eps}}, \text{TolCon}) ) determines feasibility with respect to linear constraints.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolFun</td>
<td>Positive scalar. The algorithm stops if the average relative change in the best fitness function value over <code>StallGenLimit</code> generations is less than or equal to <code>TolFun</code>. If <code>StallTest</code> is <code>'geometricWeighted'</code>, then the algorithm stops if the weighted average relative change is less than or equal to <code>TolFun</code>.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute fitness and nonlinear constraint functions in parallel, see “Vectorize and Parallel Options (User Function Evaluation)” on page 10-53 and “How to Use Parallel Processing” on page 9-12.</td>
<td>true</td>
</tr>
<tr>
<td>Vectorized</td>
<td>Specifies whether functions are vectorized, see “Vectorize and Parallel Options (User Function Evaluation)” on page 10-53 and “Vectorize the Fitness Function” on page 5-110.</td>
<td>'on'</td>
</tr>
</tbody>
</table>

**IntCon**

Vector of positive integers taking values from 1 to `nvars`. Each value in `IntCon` represents an \( x \) component that is integer-valued.
**Note:** When `IntCon` is nonempty, `Aeq` and `beq` must be empty (`[]`), and `nonlcon` must return empty for `ceq`. For more information on integer programming, see “Mixed Integer Optimization” on page 5-27.

**Problem**

Structure containing the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fitnessfcn</code></td>
<td>Fitness function</td>
</tr>
<tr>
<td><code>nvars</code></td>
<td>Number of design variables</td>
</tr>
<tr>
<td><code>Aineq</code></td>
<td>A matrix for linear inequality constraints</td>
</tr>
<tr>
<td><code>Bineq</code></td>
<td>b vector for linear inequality constraints</td>
</tr>
<tr>
<td><code>Aeq</code></td>
<td>Aeq matrix for linear equality constraints</td>
</tr>
<tr>
<td><code>Beq</code></td>
<td>beq vector for linear equality constraints</td>
</tr>
<tr>
<td><code>lb</code></td>
<td>Lower bound on x</td>
</tr>
<tr>
<td><code>ub</code></td>
<td>Upper bound on x</td>
</tr>
<tr>
<td><code>nonlcon</code></td>
<td>Nonlinear constraint function</td>
</tr>
<tr>
<td><code>rngstate</code></td>
<td>Optional field to reset the state of the random number generator</td>
</tr>
<tr>
<td><code>intcon</code></td>
<td>Index vector of integer variables</td>
</tr>
<tr>
<td><code>solver</code></td>
<td>'ga'</td>
</tr>
<tr>
<td><code>options</code></td>
<td>Options structure created using <code>gaoptimset</code> or the Optimization app</td>
</tr>
</tbody>
</table>

Create `problem` by exporting a problem from the Optimization app, as described in “Importing and Exporting Your Work” in the Optimization Toolbox documentation.

**Output Arguments**

`x`  
Best point that `ga` located during its iterations.
**fval**

Fitness function evaluated at x.

**exitflag**

Integer giving the reason `ga` stopped iterating:

<table>
<thead>
<tr>
<th>Exit Flag</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| 1         | **Without nonlinear constraints** — Average cumulative change in value of the fitness function over `StallGenLimit` generations is less than `TolFun`, and the constraint violation is less than `TolCon`.
|           | **With nonlinear constraints** — Magnitude of the complementarity measure (see “Complementarity Measure” on page 11-22) is less than `sqrt(TolCon)`, the subproblem is solved using a tolerance less than `TolFun`, and the constraint violation is less than `TolCon`.
| 2         | Fitness limit reached and the constraint violation is less than `TolCon`.
| 3         | Value of the fitness function did not change in `StallGenLimit` generations and the constraint violation is less than `TolCon`.
| 4         | Magnitude of step smaller than machine precision and the constraint violation is less than `TolCon`.
| 5         | Minimum fitness limit `FitnessLimit` reached and the constraint violation is less than `TolCon`.
| 0         | Maximum number of generations `Generations` exceeded.
| -1        | Optimization terminated by an output function or plot function.
| -2        | No feasible point found.
| -4        | Stall time limit `StallTimeLimit` exceeded.
| -5        | Time limit `TimeLimit` exceeded.

When there are integer constraints, `ga` uses the penalty fitness value instead of the fitness value for stopping criteria.

**output**

Structure containing output from each generation and other information about algorithm performance. The `output` structure contains the following fields:

- `problemtype` — String describing the type of problem, one of:
- 'unconstrained'
- 'boundconstraints'
- 'linearconstraints'
- 'nonlinearconstr'
- 'integerconstraints'
- \texttt{rngstate} — State of the MATLAB random number generator, just before the algorithm started. You can use the values in \texttt{rngstate} to reproduce the output of \texttt{ga}. See “Reproduce Results” on page 5-68.
- \texttt{generations} — Number of generations computed.
- \texttt{funcount} — Number of evaluations of the fitness function.
- \texttt{message} — Reason the algorithm terminated.
- \texttt{maxconstraint} — Maximum constraint violation, if any.

**population**

Matrix whose rows contain the members of the final population.

**scores**

Column vector of the fitness values (scores for \texttt{integerconstraints} problems) of the final population.

**Examples**

Given the following inequality constraints and lower bounds

$$
\begin{bmatrix}
1 & 1 \\
-1 & 2 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\leq
\begin{bmatrix}
2 \\
2 \\
3
\end{bmatrix},
$$

\(x_1 \geq 0, \ x_2 \geq 0,\)

use this code to find the minimum of the \texttt{lincontest6} function, which is provided in your software:

```matlab
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb = zeros(2,1);
```
[x,fval,exitflag] = ga(@lincontest6,...
   2,A,b,[],[],[],lb)

Optimization terminated: average change in
the fitness value less than options.TolFun.

x =
   0.6700    1.3310
fval =
   -8.2218
exitflag =
   1

Optimize a function where some variables must be integers:

fun = @(x) (x(1) - 0.2)^2 + ... 
   (x(2) - 1.7)^2 + (x(3) - 5.1)^2;
x = ga(fun,3,[],[],[],[],[],[],[],[2 3]) % variables 2 and 3 are integers

Optimization terminated: average change
in the penalty fitness value less
than options.TolFun and constraint violation
is less than options.TolCon.

x =
   0.2000    2.0000    5.0000

Alternatives

For problems without integer constraints, consider using patternsearch instead of ga.

More About

Complementarity Measure

In the nonlinear constraint solver, the complementarity measure is the norm of the
vector whose elements are \(c_i \lambda_i\), where \(c_i\) is the nonlinear inequality constraint violation,
and \(\lambda_i\) is the corresponding Lagrange multiplier.
**Tips**

- To write a function with additional parameters to the independent variables that can be called by ga, see “Passing Extra Parameters” in the Optimization Toolbox documentation.
- For problems that use the population type **Double Vector** (the default), ga does not accept functions whose inputs are of type **complex**. To solve problems involving complex data, write your functions so that they accept real vectors, by separating the real and imaginary parts.

**Algorithms**

For a description of the genetic algorithm, see “How the Genetic Algorithm Works” on page 5-18.

For a description of the mixed integer programming algorithm, see “Integer ga Algorithm” on page 5-35.

For a description of the nonlinear constraint algorithm, see “Nonlinear Constraint Solver Algorithms” on page 5-49.

- “Genetic Algorithm”
- “Getting Started with Global Optimization Toolbox”
- “Optimization Problem Setup”

**References**


See Also

gamultiobj | gaoptimset | particleswarm | patternsearch
gamultiobj

Find minima of multiple functions using genetic algorithm

Syntax

```
X = gamultiobj(FITNESSFCN,NVARS)
X = gamultiobj(FITNESSFCN,NVARS,A,b)
X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq)
X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB)
X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,nonlcon)
X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,options)
X = gamultiobj(problem)
[X,FVAL] = gamultiobj(FITNESSFCN,NVARS, ...)
[X,FVAL,EXITFLAG] = gamultiobj(FITNESSFCN,NVARS, ...)
[X,FVAL,EXITFLAG,OUTPUT] = gamultiobj(FITNESSFCN,NVARS, ...)
[X,FVAL,EXITFLAG,OUTPUT,POPULATION] = gamultiobj(FITNESSFCN, ...)
[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORE] = gamultiobj(FITNESSFCN, ...)
```

Description

gamultiobj implements the genetic algorithm at the command line to minimize a multicomponent objective function.

```
X = gamultiobj(FITNESSFCN,NVARS) finds a local Pareto set X of the objective functions defined in FITNESSFCN. For details on writing FITNESSFCN, see “Compute Objective Functions” on page 2-2. NVARS is the dimension of the optimization problem (number of decision variables). X is a matrix with NVARS columns. The number of rows in X is the same as the number of Pareto solutions. All solutions in a Pareto set are equally optimal; it is up to the designer to select a solution in the Pareto set depending on the application.
```

```
X = gamultiobj(FITNESSFCN,NVARS,A,b) finds a local Pareto set X of the objective functions defined in FITNESSFCN, subject to the linear inequalities \(A \times x \leq b \), see “Linear Inequality Constraints”. Linear constraints are supported only for the
default PopulationType option ('doubleVector'). Other population types, e.g., 'bitString' and 'custom', are not supported.

\[X = \text{gamultiobj}(\text{FITNESSFCN}, \text{NVARS}, A, b, Aeq, beq) \]

finds a local Pareto set \(X \) of the objective functions defined in \(\text{FITNESSFCN} \), subject to the linear equalities \(Aeq \ast x = beq \) as well as the linear inequalities \(A \ast x \leq b \), see “Linear Equality Constraints”. (Set \(A=[] \) and \(b=[] \) if no inequalities exist.) Linear constraints are supported only for the default PopulationType option ('doubleVector'). Other population types, e.g., 'bitString' and 'custom', are not supported.

\[X = \text{gamultiobj}(\text{FITNESSFCN}, \text{NVARS}, A, b, Aeq, beq, LB, UB) \]

defines a set of lower and upper bounds on the design variables \(X \) so that a local Pareto set is found in the range \(LB \leq x \leq UB \), see “Bound Constraints”. Use empty matrices for \(LB \) and \(UB \) if no bounds exist. Bound constraints are supported only for the default PopulationType option ('doubleVector'). Other population types, e.g., 'bitString' and 'custom', are not supported.

\[X = \text{gamultiobj}(\text{FITNESSFCN}, \text{NVARS}, A, b, Aeq, beq, LB, UB, nonlcon) \]

subjects the minimization to the constraints defined in \(\text{nonlcon} \). The function \(\text{nonlcon} \) accepts \(x \) and returns vectors \(C \) and \(Ceq \), representing the nonlinear inequalities and equalities respectively. \(\text{gamultiobj} \) minimizes the \(\text{fitnessfcn} \) such that \(C(x) \leq 0 \) and \(Ceq(x) = 0 \). (Set \(LB=[] \) and \(UB=[] \) if no bounds exist.)

\[X = \text{gamultiobj}(\text{FITNESSFCN}, \text{NVARS}, A, b, Aeq, beq, LB, UB, options) \]

or \(X = \text{gamultiobj}(\text{FITNESSFCN}, \text{NVARS}, A, b, Aeq, beq, LB, UB, nonlcon, options) \) finds a Pareto set \(X \) with the default optimization parameters replaced by values in the structure \(\text{options} \). \(\text{options} \) can be created with the \(\text{gaoptimset} \) function.

\[X = \text{gamultiobj}(\text{problem}) \]

finds the Pareto set for \(\text{problem} \), where \(\text{problem} \) is a structure containing the following fields:

<table>
<thead>
<tr>
<th>fitnessfcn</th>
<th>Fitness functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>nvars</td>
<td>Number of design variables</td>
</tr>
<tr>
<td>Aineq</td>
<td>(A) matrix for linear inequality constraints</td>
</tr>
<tr>
<td>bineq</td>
<td>(b) vector for linear inequality constraints</td>
</tr>
<tr>
<td>Aeq</td>
<td>(Aeq) matrix for linear equality constraints</td>
</tr>
<tr>
<td>beq</td>
<td>(beq) vector for linear equality constraints</td>
</tr>
</tbody>
</table>
lb Lower bound on x
ub Upper bound on x
nonlcon Nonlinear constraint function (optional)
solver 'gamultiobj'
 rngstate Optional field to reset the state of the random number generator
options Options structure created using gaoptimset

Create the structure problem by exporting a problem from Optimization app, as described in “Importing and Exporting Your Work” in the Optimization Toolbox documentation.

[X,FVAL] = gamultiobj(FITNESSFCN,NVARS, ...) returns a matrix FVAL, the value of all the objective functions defined in FITNESSFCN at all the solutions in X. FVAL has numberOfObjectives columns and same number of rows as does X.

[X,FVAL,EXITFLAG] = gamultiobj(FITNESSFCN,NVARS, ...) returns EXITFLAG, which describes the exit condition of gamultiobj. Possible values of EXITFLAG and the corresponding exit conditions are listed in this table.

<table>
<thead>
<tr>
<th>EXITFLAG Value</th>
<th>Exit Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Average change in value of the spread over options.StallGenLimit generations less than options.TolFun, and the final spread is less than the average spread over the past options.StallGenLimit generations</td>
</tr>
<tr>
<td>0</td>
<td>Maximum number of generations exceeded</td>
</tr>
<tr>
<td>-1</td>
<td>Optimization terminated by an output function or plot function</td>
</tr>
<tr>
<td>-2</td>
<td>No feasible point found</td>
</tr>
<tr>
<td>-5</td>
<td>Time limit exceeded</td>
</tr>
</tbody>
</table>

[X,FVAL,EXITFLAG,OUTPUT] = gamultiobj(FITNESSFCN,NVARS, ...) returns a structure OUTPUT with the following fields:

<table>
<thead>
<tr>
<th>OUTPUT Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>problemtype</td>
<td>Type of problem:</td>
</tr>
<tr>
<td>OUTPUT Field</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>• 'unconstrained' — No constraints</td>
</tr>
<tr>
<td></td>
<td>• 'boundconstraints' — Only bound constraints</td>
</tr>
<tr>
<td></td>
<td>• 'linearconstraints' — Linear constraints, with or without bound constraints</td>
</tr>
<tr>
<td>rngstate</td>
<td>State of the MATLAB random number generator, just before the algorithm started. You can use the values in rngstate to reproduce the output of ga. See “Reproduce Results” on page 5-68.</td>
</tr>
<tr>
<td>generations</td>
<td>Total number of generations, excluding HybridFcn iterations</td>
</tr>
<tr>
<td>funccount</td>
<td>Total number of function evaluations</td>
</tr>
<tr>
<td>message</td>
<td>gamultiobj termination message</td>
</tr>
<tr>
<td>averagedistance</td>
<td>Average “distance,” which by default is the standard deviation of the norm of the difference between Pareto front members and their mean</td>
</tr>
<tr>
<td>spread</td>
<td>Combination of the “distance,” and a measure of the movement of the points on the Pareto front between the final two iterations</td>
</tr>
<tr>
<td>maxconstraint</td>
<td>Maximum constraint violation at the final Pareto set</td>
</tr>
</tbody>
</table>

[X,FVAL,EXITFLAG,OUTPUT,POPULATION] = gamultiobj(FITNESSFCN, ...) returns the final POPULATION at termination.

[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORE] = gamultiobj(FITNESSFCN, ...) returns the SCORE of the final POPULATION.

Examples

This example optimizes two objectives defined by Schaffer's second function, which has two objectives and a scalar input argument. The Pareto front is disconnected. Define this function in a file:

function y = schaffer2(x) % y has two columns

% Initialize y for two objectives and for all x
y = zeros(length(x),2); % ready for vectorization
% Evaluate first objective.
% This objective is piecewise continuous.
for i = 1:length(x)
 if x(i) <= 1
 y(i,1) = -x(i);
 elseif x(i) <=3
 y(i,1) = x(i) -2;
 elseif x(i) <=4
 y(i,1) = 4 - x(i);
 else
 y(i,1) = x(i) - 4;
 end
end

% Evaluate second objective
y(:,2) = (x -5).^2;

First, plot the two objectives:

x = -1:0.1:8;
y = schaffer2(x);

plot(x,y(:,1),'r'); hold on
plot(x,y(:,2),'b');

The two component functions compete in the range [1, 3] and [4, 5]. But the Pareto-optimal front consists of only two disconnected regions: [1, 2] and [4, 5]. This is because the region [2, 3] is inferior to [1, 2].

Next, impose a bound constraint on x, $-5 \leq x \leq 10$ setting

lb = -5;
ub = 10;

The best way to view the results of the genetic algorithm is to visualize the Pareto front directly using the @gaplotpareto option. To optimize Schaffer's function, a larger population size than the default (15) is needed, because of the disconnected front. This example uses 60. Set the optimization options as:

options = gaoptimset('PopulationSize',60,'PlotFcns',@gaplotpareto);

Now call gamultiobj, specifying one independent variable and only the bound constraints:

[x,f,exitflag] = gamultiobj(@schaffer2,1,[],[],[],[],[],[],[],...
lb,ub,options);

Optimization terminated: average change in the spread of Pareto solutions less than options.TolFun.

exitflag
exitflag = 1

The vectors \(x, f(:,1), \) and \(f(:,2) \) respectively contain the Pareto set and both objectives evaluated on the Pareto set.

Examples Included in the Toolbox

The gamultiobjfitness example solves a simple problem with one decision variable and two objectives.

The gamultiobjoptionsdemo example shows how to set options for multiobjective optimization.

More About

Algorithms

gamultiobj uses a controlled elitist genetic algorithm (a variant of NSGA-II [1]). An elitist GA always favors individuals with better fitness value (rank). A controlled elitist GA also favors individuals that can help increase the diversity of the population even if they have a lower fitness value. It is important to maintain the diversity of population for convergence to an optimal Pareto front. Diversity is maintained by controlling the elite members of the population as the algorithm progresses. Two options, ParetoFraction and DistanceFcn, control the elitism. ParetoFraction limits the number of individuals on the Pareto front (elite members). The distance function, selected by DistanceFcn, helps to maintain diversity on a front by favoring individuals that are relatively far away on the front. The algorithm stops if the spread, a measure of the movement of the Pareto front, is small.

References

gaoptimget

Obtain values of genetic algorithm options structure

Syntax

val = gaoptimget(options, 'name')
val = gaoptimget(options, 'name', default)

Description

val = gaoptimget(options, 'name') returns the value of the parameter name from the genetic algorithm options structure options. gaoptimget(options, 'name') returns an empty matrix [] if the value of name is not specified in options. It is only necessary to type enough leading characters of name to uniquely identify it. gaoptimget ignores case in parameter names.

val = gaoptimget(options, 'name', default) returns the 'name' parameter, but will return the default value if the name parameter is not specified (or is []) in options.

More About

- “Genetic Algorithm Options” on page 10-28

See Also

ga | gamultiobj | gaoptimset
gaoptimset

Create genetic algorithm options structure

Syntax

gaoptimset
options = gaoptimset
options = gaoptimset(@ga)
options = gaoptimset(@gamultiobj)
options = gaoptimset('param1',value1,'param2',value2,...)
options = gaoptimset(oldopts,'param1',value1,...)
options = gaoptimset(oldopts,newopts)

Description

gaoptimset with no input or output arguments displays a complete list of parameters with their valid values.

options = gaoptimset (with no input arguments) creates a structure called options that contains the options, or parameters, for the genetic algorithm and sets parameters to [], indicating default values will be used.

options = gaoptimset(@ga) creates a structure called options that contains the default options for the genetic algorithm.

options = gaoptimset(@gamultiobj) creates a structure called options that contains the default options for gamultiobj.

options = gaoptimset('param1',value1,'param2',value2,...) creates a structure called options and sets the value of 'param1' to value1, 'param2' to value2, and so on. Any unspecified parameters are set to their default values. It is sufficient to type only enough leading characters to define the parameter name uniquely. Case is ignored for parameter names.

options = gaoptimset(oldopts,'param1',value1,...) creates a copy of oldopts, modifying the specified parameters with the specified values.
options = gaoptimset(oldopts,newopts) combines an existing options structure, oldopts, with a new options structure, newopts. Any parameters in newopts with nonempty values overwrite the corresponding old parameters in oldopts.

Options

The following table lists the options you can set with gaoptimset. See “Genetic Algorithm Options” on page 10-28 for a complete description of these options and their values. Values in {} denote the default value. {}* means the default when there are linear constraints, and for MutationFcn also when there are bounds. You can also view the optimization parameters and defaults by typing gaoptimset at the command line. I* indicates that ga ignores or overwrites the option for mixed integer optimization problems.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CreationFcn</td>
<td>I* Handle to the function that creates the initial population. See “Population Options” on page 10-32.</td>
<td>@gacreationuniform</td>
</tr>
<tr>
<td>CrossoverFcn</td>
<td>I* Handle to the function that the algorithm uses to create crossover children. See “Crossover Options” on page 10-42.</td>
<td>@crossoverscattered</td>
</tr>
<tr>
<td>CrossoverFraction</td>
<td>The fraction of the population at the next generation, not including elite children, that is created by the crossover function</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display</td>
<td>'off'</td>
</tr>
<tr>
<td>DistanceMeasureFcn</td>
<td>I* Handle to the function that computes distance measure of individuals, computed in decision variable or design space (genotype) or in function space (phenotype), for gamultiobj only</td>
<td>@distancecrowding,'phenotype'</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>EliteCount</td>
<td>Positive integer specifying how many individuals in the current generation are guaranteed to survive to the next generation. Not used in <code>gamultiobj</code>.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>FitnessLimit</td>
<td>Scalar. If the fitness function attains the value of <code>FitnessLimit</code>, the algorithm halts.</td>
<td>Scalar</td>
</tr>
<tr>
<td>FitnessScalingFcn</td>
<td>Handle to the function that scales the values of the fitness function</td>
<td>{@fitscalingrank}</td>
</tr>
<tr>
<td>Generations</td>
<td>Positive integer specifying the maximum number of iterations before the algorithm halts.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HybridFcn</td>
<td>I* Handle to a function that continues the optimization after <code>ga</code> terminates or Cell array specifying the hybrid function and its options structure</td>
<td>Function handle</td>
</tr>
<tr>
<td></td>
<td>For <code>gamultiobj</code>, the only hybrid function is <code>@fgoalattain</code></td>
<td>or 1-by-2 cell array</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>I* Initial value of penalty parameter</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>InitialPopulation</td>
<td>Initial population used to seed the genetic algorithm; can be partial — see “Population Options” on page 10-32</td>
<td>Matrix</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>InitialScores</td>
<td>I* Initial scores used to determine fitness; can be partial</td>
<td>Column vector</td>
</tr>
<tr>
<td>MigrationDirection</td>
<td>Direction of migration — see “Migration Options” on page 10-46</td>
<td>'both'</td>
</tr>
<tr>
<td>MigrationFraction</td>
<td>Scalar between 0 and 1 specifying the fraction of individuals in each subpopulation that migrates to a different subpopulation — see “Migration Options” on page 10-46</td>
<td>Scalar</td>
</tr>
<tr>
<td>MigrationInterval</td>
<td>Positive integer specifying the number of generations that take place between migrations of individuals between subpopulations — see “Migration Options” on page 10-46</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MutationFcn</td>
<td>I* Handle to the function that produces mutation children. See “Mutation Options” on page 10-40.</td>
<td>{@mutationgaussian} for ga, @{mutationadaptfeasible} for gamultiobj</td>
</tr>
<tr>
<td>NonlinConAlgorithm</td>
<td>Nonlinear constraint algorithm. See “Nonlinear Constraint Solver Algorithms” on page 5-49. Option unchangeable for gamultiobj</td>
<td>{'auglag'} for ga, {'penalty'} for gamultiobj</td>
</tr>
<tr>
<td>OutputFcns</td>
<td>Functions that ga calls at each iteration. See “Output Function Options” on page 10-50.</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td>ParetoFraction</td>
<td>I* Scalar between 0 and 1 specifying the fraction of individuals to keep on the first Pareto front while the solver selects individuals from higher fronts, for gamultiobj only</td>
<td>Scalar</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>I* Penalty update parameter</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PlotFcns</td>
<td>Array of handles to functions that plot data computed by the algorithm. See “Plot Options” on page 10-29.</td>
<td>{[]}</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Positive integer specifying the number of generations between consecutive calls to the plot functions</td>
<td>Positive integer</td>
</tr>
<tr>
<td>PopInitRange</td>
<td>Matrix or vector specifying the range of the individuals in the initial population. Applies to gacreationuniform creation function. ga shifts and scales the default initial range to match any finite bounds.</td>
<td>Matrix or vector</td>
</tr>
<tr>
<td>PopulationSize</td>
<td>Size of the population</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>PopulationType</td>
<td>String describing the data type of the population — must be 'doubleVector' for mixed integer problems</td>
<td>'bitstring'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ga ignores all constraints when PopulationType is set to 'bitString' or 'custom'. See “Population Options” on page 10-32.</td>
</tr>
<tr>
<td>SelectionFcn</td>
<td>I* Handle to the function that selects parents of crossover and mutation children</td>
<td>{@selectionstochunif} for ga, {@selectiontournament} for gamultiobj</td>
</tr>
<tr>
<td></td>
<td>Option unchangeable for gamultiobj</td>
<td></td>
</tr>
<tr>
<td>StallGenLimit</td>
<td>Positive integer. The algorithm stops if the average relative change in the best fitness function value over StallGenLimit generations is less than or equal to TolFun. If StallTest is 'geometricWeighted', then the algorithm stops if the weighted average relative change is less than or equal to TolFun.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>StallTest</td>
<td>String describing the stopping test.</td>
<td>'geometricWeighted'</td>
</tr>
<tr>
<td>StallTimeLimit</td>
<td>Positive scalar. The algorithm stops if there is no improvement in the objective function for StallTimeLimit seconds, as measured by tic and toc.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td></td>
<td>Option unavailable for gamultiobj</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TimeLimit</td>
<td>Positive scalar. The algorithm stops after running after <code>TimeLimit</code> seconds, as measured by <code>tic</code> and <code>toc</code>. This limit is enforced after each iteration, so <code>ga</code> can exceed the limit when an iteration takes substantial time.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolCon</td>
<td>Positive scalar. <code>TolCon</code> is used to determine the feasibility with respect to nonlinear constraints. Also, (\max(\sqrt{\text{eps}}, \text{TolCon})) determines feasibility with respect to linear constraints.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolFun</td>
<td>Positive scalar. The algorithm stops if the average relative change in the best fitness function value over <code>StallGenLimit</code> generations is less than or equal to <code>TolFun</code>. If <code>StallTest</code> is <code>geometricWeighted</code>, then the algorithm stops if the weighted average relative change is less than or equal to <code>TolFun</code>.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute fitness and nonlinear constraint functions in parallel, see “Vectorize and Parallel Options (User Function Evaluation)” on page 10-53 and “How to Use Parallel Processing” on page 9-12.</td>
<td>true</td>
</tr>
<tr>
<td>Vectorized</td>
<td>Specifies whether functions are vectorized, see “Vectorize and Parallel Options (User Function Evaluation)” on page 10-53 and “Vectorize the Fitness Function” on page 5-110.</td>
<td>'on'</td>
</tr>
</tbody>
</table>

More About

- “Genetic Algorithm Options” on page 10-28
See Also

ga | gamultiobj | gaoptimget
GlobalOptimSolution class

Optimization solution

Description

Information on a local minimum, including location, objective function value, and start point or points that lead to the minimum.

GlobalSearch and MultiStart generate a vector of GlobalOptimSolution objects. The vector is ordered by objective function value, from lowest (best) to highest (worst).

Construction

When you run them, GlobalSearch and MultiStart create GlobalOptimSolution objects as output.

Properties

Exitflag

An integer describing the result of the local solver run.

For the meaning of the exit flag, see the description in the appropriate local solver function reference page:

- fmincon exitflag
- fminunc exitflag
- lsqcurvefit exitflag
- lsqnonlin exitflag

Fval

Objective function value at the solution.
Output

Output structure returned by the local solver.

X

Solution point, with the same dimensions as the initial point.

X0

Cell array of start points that led to the solution.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB Programming Fundamentals documentation.

Examples

Use MultiStart to create a vector of GlobalOptimSolution objects:

```matlab
ms = MultiStart;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon', 'x0', [-1,2],... 'objective', sixmin, 'lb', [-3,-3], 'ub', [3,3]);
[xmin,fmin,flag,outpt,allmins] = run(ms,problem,30);
```

`allmins` is the vector of GlobalOptimSolution objects:

```matlab
allmins
```

```matlab
allmins =

1x30 GlobalOptimSolution
```

Properties:

- `X`
- `Fval`
- `Exitflag`
- `Output`
x0

See Also
MultiStart.run | GlobalSearch | MultiStart | GlobalSearch.run

How To
• Class Attributes
• Property Attributes
GlobalSearch class

Find global minimum

Description

A GlobalSearch object contains properties (options) that affect how the run method searches for a global minimum, or generates a GlobalOptimSolution object.

Construction

gs = GlobalSearch constructs a new global search optimization solver with its properties set to the defaults.

gs = GlobalSearch('PropertyName', PropertyValue, ...) constructs the object using options, specified as property name and value pairs.

gs = GlobalSearch(oldgs, 'PropertyName', PropertyValue, ...) constructs a copy of the GlobalSearch solver oldgs. The gs object has the named properties altered with the specified values.

gs = GlobalSearch(ms) constructs gs, a GlobalSearch solver, with common parameter values from the ms MultiStart solver.

Properties

BasinRadiusFactor

A basin radius decreases after MaxWaitCycle consecutive start points are within the basin. The basin radius decreases by a factor of 1 – BasinRadiusFactor.

Set BasinRadiusFactor to 0 to disable updates of the basin radius.

Default: 0.2
Display

Detail level of iterative display. Possible values:

- 'final' — Report summary results after run finishes.
- 'iter' — Report results after the initial \texttt{fmincon} run, after Stage 1, after every 200 start points, and after every run of \texttt{fmincon}, in addition to the final summary.
- 'off' — No display.

Default: 'final'

DistanceThresholdFactor

A multiplier for determining whether a trial point is in an existing basin of attraction. For details, see “Examine Stage 2 Trial Point to See if \texttt{fmincon} Runs” on page 3-48.

Default: 0.75

MaxTime

Time in seconds for a run. \texttt{GlobalSearch} halts when it sees MaxTime seconds have passed since the beginning of the run.

Default: Inf

MaxWaitCycle

A positive integer tolerance appearing in several points in the algorithm:

- If the observed penalty function of MaxWaitCycle consecutive trial points is at least the penalty threshold, then raise the penalty threshold (see PenaltyThresholdFactor).
- If MaxWaitCycle consecutive trial points are in a basin, then update that basin's radius (see BasinRadiusFactor).

Default: 20

NumStageOnePoints

Number of start points in Stage 1. For details, see “Obtain Stage 1 Start Point, Run” on page 3-47.

Default: 200
NumTrialPoints

Number of potential start points to examine in addition to x_0 from the problem structure. `GlobalSearch` runs only those potential start points that pass several tests. For more information, see “GlobalSearch Algorithm” on page 3-46.

Default: 1000

OutputFcns

A function handle or cell array of function handles to output functions. Output functions run after each local solver call. They also run when the global solver starts and ends. Write your output functions using the syntax described in “OutputFcns” on page 10-3. See “GlobalSearch Output Function” on page 3-37.

Default: []

PenaltyThresholdFactor

Determines increase in the penalty threshold. For details, see React to Large Counter Values.

Default: 0.2

PlotFcns

A function handle or cell array of function handles to plot functions. Plot functions run after each local solver call. They also run when the global solver starts and ends. Write your plot functions using the syntax described in “OutputFcns” on page 10-3. There are two built-in plot functions:

- @gsplotbestf plots the best objective function value.
- @gsplotfuncount plots the number of function evaluations.

See “MultiStart Plot Function” on page 3-41.

Default: []

StartPointsToRun

Directs the solver to exclude certain start points from being run:

- all — Accept all start points.
- bounds — Reject start points that do not satisfy bounds.
• **bounds-ineqs** — Reject start points that do not satisfy bounds or inequality constraints.

GlobalSearch checks the **StartPointsToRun** property only during Stage 2 of the **GlobalSearch** algorithm (the main loop). For more information, see “GlobalSearch Algorithm” on page 3-46.

Default: 'all'

TolFun

Describes how close two objective function values must be for solvers to consider them identical for creating the vector of local solutions. Solvers consider two solutions identical if they are within **TolX** distance of each other and have objective function values within **TolFun** of each other. If both conditions are not met, solvers report the solutions as distinct. Set **TolFun** to 0 to obtain the results of every local solver run. Set **TolFun** to a larger value to have fewer results.

Default: 1e-6

TolX

Describes how close two points must be for solvers to consider them identical for creating the vector of local solutions. Solvers compute the distance between a pair of points with norm, the Euclidean distance. Solvers consider two solutions identical if they are within **TolX** distance of each other and have objective function values within **TolFun** of each other. If both conditions are not met, solvers report the solutions as distinct. Set **TolX** to 0 to obtain the results of every local solver run. Set **TolX** to a larger value to have fewer results.

Default: 1e-6

Methods

run

Find global minimum

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB Programming Fundamentals documentation.
Examples

Solve a problem using a default GlobalSearch object:

```matlab
opts = optimoptions(@fmincon,'Algorithm','interior-point');
problem = createOptimProblem('fmincon','objective', @(x) x.^2 + 4*sin(5*x), 'x0', 3, 'lb', -5, 'ub', 5, 'options', opts);
gs = GlobalSearch;
[x,f] = run(gs,problem)
```

Algorithms

A detailed description of the algorithm appears in “GlobalSearch Algorithm” on page 3-46. Ugray et al. [1] describes both the algorithm and the scatter-search method of generating trial points.

References

See Also

GlobalOptimSolution | MultiStart | createOptimProblem
list

Class: CustomStartPointSet

List custom start points in set

Syntax

\[
\text{tpts} = \text{list}(\text{CS})
\]

Description

\[
\text{tpts} = \text{list}(\text{CS}) \text{ returns the matrix of start points in the } \text{CS CustomStartPoints}\text{ object.}
\]

Input Arguments

\(\text{cs} \)

A CustomStartPointSet object.

Output Arguments

\(\text{tpts} \)

Matrix of start points. The rows of \(\text{tpts} \) represent the start points.

Examples

Create a CustomStartPointSet containing 40 seven-dimensional normally distributed points, then use list to get the matrix of points from the object:

\[
\text{startpts} = \text{randn}(40,7) \% 40 \text{ seven-dimensional start points}
\]

\[
\text{cs} = \text{CustomStartPointSet}(\text{startpts}); \% \text{ cs is an object}
\]
startpts2 = list(cs) \% startpts2 = startpts

See Also
CustomStartPointSet | createOptimProblem
list

Class: RandomStartPointSet

Generate start points

Syntax

points = list(RandSet,problem)

Description

points = list(RandSet,problem) generates pseudorandom start points using the parameters in the RandSet RandomStartPointSet object, and information from the problem problem structure.

Input Arguments

RandSet

A RandomStartPointSet object. This contains parameters for generating the points: number of points, and artificial bounds.

problem

An optimization problem structure. list generates points uniformly within the bounds of the problem structure. If a component is unbounded, list uses the artificial bounds from RandSet. list takes the dimension of the points from the x0 field in problem.

Output Arguments

points

A k-by-n matrix. The number of rows k is the number of start points that RandSet specifies. The number of columns n is the dimension of the start points. n is equal to the
number of elements in the x0 field in problem. The MultiStart algorithm uses each row of points as an initial point in an optimization.

Examples

Create a matrix representing 40 seven-dimensional start points:

rs = RandomStartPointSet('NumStartPoints',40); % 40 points
problem = createOptimProblem('fminunc','x0',ones(7,1),...
 'objective',@rosenbrock);
ptmatrix = list(rs,problem); % matrix values between
 % -1000 and 1000 since those are the default bounds
 % for unconstrained dimensions

Algorithms

The list method generates a pseudorandom random matrix using the default random number stream. Each row of the matrix represents a start point to run. list generates points that satisfy the bounds in problem. If lb is the vector of lower bounds, ub is the vector of upper bounds, there are n dimensions in a point, and there are k rows in the matrix, the random matrix is

\[lb + (ub - lb) \cdot \text{rand}(k,n) \]

- If a component has no bounds, RandomStartPointSet uses a lower bound of -ArtificialBound, and an upper bound of ArtificialBound.
- If a component has a lower bound lb, but no upper bound, RandomStartPointSet uses an upper bound of lb + 2*ArtificialBound.
- Similarly, if a component has an upper bound ub, but no lower bound, RandomStartPointSet uses a lower bound of ub - 2*ArtificialBound.

The default value of ArtificialBound is 1000.

To obtain identical pseudorandom results, reset the default random number stream. See “Reproduce Results” on page 3-69.

See Also
RandomStartPointSet | createOptimProblem | MultiStart
MultiStart class

Find multiple local minima

Description

A MultiStart object contains properties (options) that affect how the run method repeatedly runs a local solver, or generates a GlobalOptimSolution object.

Construction

\(MS = \text{MultiStart} \) constructs \(MS \), a MultiStart solver with its properties set to the defaults.

\(MS = \text{MultiStart}('\text{PropertyName}',\text{PropertyValue},...) \) constructs \(MS \) using options, specified as property name and value pairs.

\(MS = \text{MultiStart}(\text{oldMS},'\text{PropertyName}',\text{PropertyValue},...) \) creates a copy of the \(\text{oldMS} \) MultiStart solver, with the named properties changed to the specified values.

\(MS = \text{MultiStart}(\text{GS}) \) constructs \(MS \), a MultiStart solver, with common parameter values from the \(\text{GS} \) GlobalSearch solver.

Properties

Display

Detail level of the output to the Command Window:

- 'final' — Report summary results after run finishes.
- 'iter' — Report results after each local solver run, in addition to the final summary.
- 'off' — No display.

Default: final
MaxTime

Tolerance on the time MultiStart runs. MultiStart and its local solvers halt when they see MaxTime seconds have passed since the beginning of the run. Time means wall clock as opposed to processor cycles.

Default: Inf

OutputFcns

A function handle or cell array of function handles to output functions. Output functions run after each local solver call. They also run when the global solver starts and ends. Write your output functions using the syntax described in “OutputFcns” on page 10-3. See “GlobalSearch Output Function” on page 3-37.

Default: []

PlotFcns

A function handle or cell array of function handles to plot functions. Plot functions run after each local solver call. They also run when the global solver starts and ends. Write your plot functions using the syntax described in “OutputFcns” on page 10-3. There are two built-in plot functions:

- @gsplotbestf plots the best objective function value.
- @gsplotfunccount plots the number of function evaluations.

See “MultiStart Plot Function” on page 3-41.

Default: []

StartPointsToRun

Directs the solver to exclude certain start points from being run:

- all — Accept all start points.
- bounds — Reject start points that do not satisfy bounds.
- bounds-ineqs — Reject start points that do not satisfy bounds or inequality constraints.

Default: all
To1Fun

Describes how close two objective function values must be for solvers to consider them identical for creating the vector of local solutions. Solvers consider two solutions identical if they are within To1X distance of each other and have objective function values within To1Fun of each other. If both conditions are not met, solvers report the solutions as distinct. Set To1Fun to 0 to obtain the results of every local solver run. Set To1Fun to a larger value to have fewer results.

Default: 1e-6

To1X

Describes how close two points must be for solvers to consider them identical for creating the vector of local solutions. Solvers compute the distance between a pair of points with norm, the Euclidean distance. Solvers consider two solutions identical if they are within To1X distance of each other and have objective function values within To1Fun of each other. If both conditions are not met, solvers report the solutions as distinct. Set To1X to 0 to obtain the results of every local solver run. Set To1X to a larger value to have fewer results.

Default: 1e-6

UseParallel

Distribute local solver calls to multiple processors:

- **true** — Distribute the local solver calls to multiple processors.
- **false** — Cannot not run in parallel.

Default: false

Methods

`run`
Run local solver from multiple points

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB Programming Fundamentals documentation.
Examples

Run MultiStart on 20 instances of a problem using the fmincon sqp algorithm:

```matlab
opts = optimoptions(@fmincon,'Algorithm','sqp');
problem = createOptimProblem('fmincon','objective', ...
    @(x) x.^2 + 4*sin(5*x),'x0',3,'lb',-5,'ub',5,'options',opts);
ms = MultiStart;
[x,f] = run(ms,problem,20)
```

Algorithms

A detailed description of the algorithm appears in “MultiStart Algorithm” on page 3-50.

See Also

RandomStartPointSet | GlobalOptimSolution | GlobalSearch | createOptimProblem |
| CustomStartPointSet
particleswarm

Particle swarm optimization

Syntax

\[
\begin{align*}
x &= \text{particleswarm}(\text{fun}, nvars) \\
x &= \text{particleswarm}(\text{fun}, nvars, lb, ub) \\
x &= \text{particleswarm}(\text{fun}, nvars, lb, ub, \text{options}) \\
x &= \text{particleswarm}(\text{problem}) \\
[x, fval, exitflag, output] &= \text{particleswarm}(___)
\end{align*}
\]

Description

\[
\begin{align*}
x &= \text{particleswarm}(\text{fun}, nvars) \text{ attempts to find a vector } x \text{ that achieves a local minimum of } \text{fun}. \text{ nvars is the dimension (number of design variables) of fun.}
\end{align*}
\]

\[
\begin{align*}
x &= \text{particleswarm}(\text{fun}, nvars, lb, ub) \text{ defines a set of lower and upper bounds on the design variables, } x, \text{ so that a solution is found in the range } lb \leq x \leq ub.
\end{align*}
\]

\[
\begin{align*}
x &= \text{particleswarm}(\text{fun}, nvars, lb, ub, \text{options}) \text{ minimizes with the default optimization parameters replaced by values in options. Set } lb = [] \text{ and } ub = [] \text{ if no bounds exist.}
\end{align*}
\]

\[
\begin{align*}
x &= \text{particleswarm}(\text{problem}) \text{ finds the minimum for problem, where problem is a structure.}
\end{align*}
\]

\[
\begin{align*}
[x, fval, exitflag, output] &= \text{particleswarm}(___), \text{ for any input arguments described above, returns:}
\end{align*}
\]

- A scalar fval, which is the objective function value fun(x)
- A value exitflag describing the exit condition
- A structure output containing information about the optimization process
Examples

Minimize a Simple Function

Minimize a simple function of two variables.

Define the objective function.

```matlab
fun = @(x)x(1)*exp(-norm(x)^2);
```

Call `particleswarm` to minimize the function.

```matlab
rng default  % For reproducibility
x = particleswarm(fun,2)
```

Optimization ended: relative change in the objective value over the last OPTIONS.StallIterLimit iterations is less than OPTIONS.TolFun.

```matlab
x =
   629.4474   311.4814
```

This solution is far from the true minimum, as you see in a function plot.

```matlab
ezsurf(@(x,y)x.*exp(-(x.^2+y.^2))
```
Usually, it is best to set bounds. See “Minimize a Simple Function with Bounds” on page 11-59.

Minimize a Simple Function with Bounds

Minimize a simple function of two variables with bound constraints.

Define the objective function.

```matlab
fun = @(x)x(1)*exp(-norm(x)^2);
```

Set bounds on the variables.

```matlab
lb = [-10,-15];
```
ub = [15,20];

Call particleswarm to minimize the function.

rng default % For reproducibility
x = particleswarm(fun,2,lb,ub)

Optimization ended: change in the objective value less than options.TolFun.

x =
 -0.7071 -0.0000

Minimize Using Nondefault Options

Use a larger population and a hybrid function to try to get a better solution.

Specify the objective function and bounds.

fun = @(x)x(1)*exp(-norm(x).^2);
lb = [-10,-15];
ub = [15,20];

Specify the options.

options = optimoptions('particleswarm','SwarmSize',100,'HybridFcn',@fmincon);

Call particleswarm to minimize the function.

rng default % For reproducibility
x = particleswarm(fun,2,lb,ub,options)

Optimization ended: change in the objective value less than options.TolFun.

x =
 -0.7071 -0.0000

Examine the Solution Process

Return the optional output arguments to examine the solution process in more detail.

Define the problem.

fun = @(x)x(1)*exp(-norm(x).^2);
lb = [-10,-15];
ub = [15,20];
options = optimoptions('particleswarm','SwarmSize',50,'HybridFcn',@fmincon);

Call `particleswarm` with all outputs to minimize the function and get information about the solution process.

```matlab
rng default  % For reproducibility
[x,fval,exitflag,output] = particleswarm(fun,2,lb,ub,options)
```

Optimization ended: change in the objective value less than options.TolFun.

```matlab
x =
   -0.7071   -0.0000

fval =
     -0.4289

exitflag =
     1

output =
    rngstate: [1x1 struct]
    iterations: 43
    funccount: 2200
    message: 'Optimization ended: change in the objective value less than options.TolFun.'
```

- “Optimize Using Particle Swarm” on page 6-3
- “Particle Swarm Output Function” on page 6-7

Input Arguments

fun — Objective function
function handle

Objective function, specified as a function handle. The objective function should accept a row vector of length `nvars` and return a scalar value.
When the 'Vectorized' option is 'on', fun should accept a swarm-by-nvars matrix, where swarm is the current population size. In this case, fun should return a vector the same length as swarm containing the fitness function values. fun should not assume any particular size for swarm, since particleswarm can pass a single member of a population even in a vectorized calculation.

Example: \(\text{fun} = @(x)(x-[4,2]).^2 \)

Data Types: function_handle

nvars — Number of variables
positive integer

Number of variables, specified as a positive integer.

Example: 4
Data Types: double

lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds element-wise in \(\text{lb} \leq x \leq \text{ub} \).

Internally, particleswarm converts an array lb to the vector lb(:).

Example: lb = [0;-Inf;4] means \(x(1) \geq 0, x(3) \geq 4 \).
Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds element-wise in \(\text{lb} \leq x \leq \text{ub} \).

Internally, particleswarm converts an array ub to the vector ub(:).

Example: ub = [Inf;4;10] means \(x(2) \leq 4, x(3) \leq 10 \).
Data Types: double

options — Options for particleswarm
options created using optimoptions
Options for `particleswarm`, specified as the output of the `optimoptions` function.

CreationFcn
Handle to the function that creates the initial swarm. Default is `@pswcreationuniform`. See “Swarm Creation” on page 10-54.

Display
Level of display returned to the command line.
- 'off' or 'none' displays no output.
- 'final' displays just the final output (default).
- 'iter' gives iterative display.

DisplayInterval
Interval for iterative display. The iterative display prints one line for every `DisplayInterval` iterations. Default is 1.

FunValCheck
Check whether objective function and constraints values are valid.
- 'on' displays an error when the objective function or constraints return a value that is complex, Inf, or NaN. The default, 'off', displays no error.

HybridFcn
Handle to a function that continues the optimization after `particleswarm` terminates. Possible values:
- @fmincon
- @fminsearch
- @fminunc
- @patternsearch

Can also be a cell array specifying the hybrid function and its options structure, such as `{@fmincon,fminconopts}`. Default is `[]`. See “Hybrid Function” on page 10-57.

InertiaRange
Two-element real vector with same sign values in increasing order. Gives the lower and upper bound of the adaptive inertia. To obtain a constant (nonadaptive) inertia, set both elements of `InertiaRange` to the same value. Default is `[0.1,1.1]`. See “Particle Swarm Optimization Algorithm” on page 6-10.

InitialSwarm
Initial population or partial population of particles. M-by-nvars matrix, where each row represents one particle. If M < SwarmSize, then `particleswarm` creates more particles so that the total number is SwarmSize. If M > SwarmSize, then `particleswarm` uses the first SwarmSize rows.
InitialSwarmSpan is the initial range of particle positions that @pswcreationuniform creates. Can be a positive scalar or a vector with nvars elements, where nvars is the number of variables. The range for any particle component is -InitialSwarmSpan/2, InitialSwarmSpan/2, shifted and scaled if necessary to match any bounds. Default is 2000.

MaxIter is the maximum number of iterations particleswarm takes. Default is 200*nvars, where nvars is the number of variables.

MaxTime is the maximum time in seconds that particleswarm runs. Default is Inf.

MinFractionNeighbors is the minimum adaptive neighborhood size, a scalar from 0 to 1. Default is 0.25. See “Particle Swarm Optimization Algorithm” on page 6-10.

ObjectiveLimit is the minimum objective value, a stopping criterion. Scalar, with default -Inf.

OutputFcns is a function handle or cell array of function handles. Output functions can read iterative data, and stop the solver. Default is []. See “Output Function and Plot Function” on page 10-57.

PlotFcns is a function handle or cell array of function handles. Plot functions can read iterative data, plot each iteration, and stop the solver. Default is []. Available built-in plot function: @pswplotbestf. See “Output Function and Plot Function” on page 10-57.

SelfAdjustment is the weighting of each particle’s best position when adjusting velocity. Finite scalar with default 1.49. See “Particle Swarm Optimization Algorithm” on page 6-10.

SocialAdjustment is the weighting of the neighborhood’s best position when adjusting velocity. Finite scalar with default 1.49. See “Particle Swarm Optimization Algorithm” on page 6-10.

StallIterLimit is a positive integer with default 20. Iterations end when the relative change in best objective function value over the last StallIterLimit iterations is less than options.TolFun.

StallTimeLimit is the maximum number of seconds without an improvement in the best known objective function value. Positive scalar with default Inf.

SwarmSize is the number of particles in the swarm, an integer greater than 1. Default is min(100,10*nvars), where nvars is the number of variables.
TolFun Nonnegative scalar with default 1e-6. Iterations end when the relative change in best objective function value over the last StallIterLimit iterations is less than options.TolFun.

UseParallel Compute objective function in parallel when true. Default is false. See “Parallel or Vectorized Function Evaluation” on page 10-59.

Vectorized Compute objective function in vectorized fashion when 'on'. Default is 'off'. See “Parallel or Vectorized Function Evaluation” on page 10-59.

problem — Optimization problem

structure

Optimization problem, specified as a structure with the following fields.

- **solver** 'particleswarm'
- **objective** Function handle to the objective function, or string with the name of the objective function.
- **nvars** Number of variables in problem.
- **lb** Vector or array of lower bounds.
- **ub** Vector or array of upper bounds.
- **options** Options created by optimoptions.
- **rngstate** Optional state of the random number generator at the beginning of the solution process.

Data Types: struct

Output Arguments

- **x — Solution**
 real vector
 Solution, returned as a real vector that minimizes the objective function subject to any bound constraints.

- **fval — Objective value**
 real scalar
 Objective value, returned as the real scalar fun(x).
exitflag — Algorithm stopping condition
integer

Algorithm stopping condition, returned as an integer identifying the reason the algorithm stopped. The following lists the values of `exitflag` and the corresponding reasons `particleswarm` stopped.

- **1** Relative change in the objective value over the last `options.StallIterLimit` iterations is less than `options.TolFun`.
- **0** Number of iterations exceeded `options.MaxIter`.
- **-1** Iterations stopped by output function or plot function.
- **-2** Bounds are inconsistent: for some `i`, `lb(i) > ub(i)`.
- **-3** Best objective function value is at or below `options.ObjectiveLimit`.
- **-4** Best objective function value did not change within `options.StallTimeLimit` seconds.
- **-5** Run time exceeded `options.MaxTime` seconds.

output — Solution process summary
structure

Solution process summary, returned as a structure containing information about the optimization process.

- `iterations` Number of solver iterations
- `funcCount` Number of objective function evaluations.
- `message` String giving the reason the algorithm stopped.
- `rngState` State of the default random number generator just before the algorithm started.

More About

Algorithms

For a description of the particle swarm optimization algorithm, see “Particle Swarm Optimization Algorithm” on page 6-10.
• “What Is Particle Swarm Optimization?” on page 6-2
• “Optimization Problem Setup”

See Also
ga | patternsearch
patternsearch

Find minimum of function using pattern search

Syntax

\[
x = \text{patternsearch}(\text{fun}, x0)
\]

\[
x = \text{patternsearch}(\text{fun}, x0, A, b)
\]

\[
x = \text{patternsearch}(\text{fun}, x0, A, b, Aeq, beq)
\]

\[
x = \text{patternsearch}(\text{fun}, x0, A, b, Aeq, beq, lb, ub)
\]

\[
x = \text{patternsearch}(\text{fun}, x0, A, b, Aeq, beq, lb, ub, nonlcon)
\]

\[
x = \text{patternsearch}(\text{fun}, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)
\]

\[
x = \text{patternsearch}(\text{problem})
\]

\[
[x, fval] = \text{patternsearch}(__)
\]

\[
[x, fval, exitflag, output] = \text{patternsearch}(__)
\]

Description

\[
x = \text{patternsearch}(\text{fun}, x0)
\]

finds a local minimum, \(x\), to the function handle \(\text{fun}\) that computes the values of the objective function. \(x0\) is a real vector specifying an initial point for the pattern search algorithm.

Note: “Passing Extra Parameters” explains how to pass extra parameters to the objective function and nonlinear constraint functions, if necessary.

\[
x = \text{patternsearch}(\text{fun}, x0, A, b)
\]

minimizes \(\text{fun}\) subject to the linear inequalities \(A*x \leq b\). See “Linear Inequality Constraints”.

\[
x = \text{patternsearch}(\text{fun}, x0, A, b, Aeq, beq)
\]

minimizes \(\text{fun}\) subject to the linear equalities \(Aeq*x = beq\) and \(A*x \leq b\). If no linear inequalities exist, set \(A = [\]\) and \(b = [\]\).

\[
x = \text{patternsearch}(\text{fun}, x0, A, b, Aeq, beq, lb, ub)
\]

defines a set of lower and upper bounds on the design variables in \(x\), so that the solution is always in the range \(lb \leq x \leq ub\). If no linear equalities exist, set \(Aeq = [\]\) and \(beq = [\]\). If \(x(i)\) has no lower bound, set \(lb(i) = -\text{Inf}\). If \(x(i)\) has no upper bound, set \(ub(i) = \text{Inf}\).
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the minimization to the nonlinear inequalities c(x) or equalities ceq(x) defined in nonlcon. patternsearch optimizes fun such that c(x) ≤ 0 and ceq(x) = 0. If no bounds exist, set lb = [], ub = [], or both.

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes fun with the optimization options specified in options. Use psoptimset to set these options. If there are no nonlinear inequality or equality constraints, set nonlcon = [].

x = patternsearch(problem) finds the minimum for problem, where problem is a structure described in “Input Arguments” on page 11-76. Create the problem structure by exporting a problem from Optimization app, as described in “Exporting Your Work”.

[x,fval] = patternsearch(___), for any syntax, returns the value of the objective function fun at the solution x.

[x,fval,exitflag,output] = patternsearch(___) additionally returns exitflag, a value that describes the exit condition of patternsearch, and a structure output with information about the optimization process.

Examples

Unconstrained Pattern Search Minimization

Minimize an unconstrained problem using the patternsearch solver.

Create the following two-variable objective function. On your MATLAB path, save the following code to a file named psobj.m.

```matlab
function y = psobj(x)
    y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));
end
```

Set the objective function to @psobj.

fun = @psobj;

Find the minimum, starting at the point [0,0].

x0 = [0,0];
x = patternsearch(fun,x0)
Optimization terminated: mesh size less than options.TolMesh.

x =

-0.7037 -0.1860

Pattern Search with a Linear Inequality Constraint

Minimize a function subject to some linear inequality constraints.

Create the following two-variable objective function. On your MATLAB path, save the following code to a file named psobj.m.

```matlab
function y = psobj(x)
    y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));
end
```

Set the objective function to @psobj.

```matlab
fun = @psobj;
```

Set the two linear inequality constraints.

```matlab
A = [-3,-2;
     -4,-7];
b = [-1;-8];
```

Find the minimum, starting at the point [0.5,-0.5].

```matlab
x0 = [0.5,-0.5];
x = patternsearch(fun,x0,A,b)
```

Optimization terminated: mesh size less than options.TolMesh.

x =

5.2824 -1.8758

Pattern Search with Bounds

Find the minimum of a function that has only bound constraints.

Create the following two-variable objective function. On your MATLAB path, save the following code to a file named psobj.m.

```matlab
function y = psobj(x)
end
```
y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Find the minimum when 0 ≤ x(1) ≤ ∞ and −∞ ≤ x(2) ≤ −3.

lb = [0,-Inf];
ub = [Inf,-3];
A = [];
b = [];
Aeq = [];
beq = [];

Find the minimum, starting at the point [1,-5].

x0 = [1,-5];
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub)

Optimization terminated: mesh size less than options.TolMesh.

x =

0.1880 -3.0000

Pattern Search with Nonlinear Constraints

Find the minimum of a function subject to a nonlinear inequality constraint.

Create the following two-variable objective function. On your MATLAB path, save the following code to a file named \texttt{psobj.m}.

\begin{verbatim}
function y = psobj(x)
y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));
end
\end{verbatim}

Set the objective function to @psobj.

fun = @psobj;

Create the nonlinear constraint

\[
\frac{xy}{2} + (x + 2)^2 + \frac{(y - 2)^2}{2} \leq 2.
\]
To do so, on your MATLAB path, save the following code to a file named `ellipsetilt.m`.

```matlab
function [c,ceq] = ellipsetilt(x)
ceq = [];
c = x(1)*x(2)/2 + (x(1)+2)^2 + (x(2)-2)^2/2 - 2;
```

Start `patternsearch` from the initial point \([-2,-2]\).

```matlab
x0 = [-2,-2];
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = @ellipsetilt;
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
```

Optimization terminated: mesh size less than options.TolMesh and constraint violation is less than options.TolCon.

```matlab
x =
  -1.5144    0.0874
```

Pattern Search with Nondefault Options

Set options to observe the progress of the `patternsearch` solution process.

Create the following two-variable objective function. On your MATLAB path, save the following code to a file named `psobj.m`.

```matlab
function y = psobj(x)
y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));
```

Set the objective function to `@psobj`.

```matlab
fun = @psobj;
```

Set options to give iterative display and to plot the objective function at each iteration.

```matlab
options = psoptimset('Display','iter','PlotFcns',@psplotbestf);
```

Find the unconstrained minimum of the objective starting from the point \([0,0]\).
x0 = [0,0];
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
Obtain Function Value And Minimizing Point

Find a minimum value of a function and report both the location and value of the minimum.

Create the following two-variable objective function. On your MATLAB path, save the following code to a file named psobj.m.

```matlab
function y = psobj(x)
    y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));
end
```

Set the objective function to @psobj.

```matlab
fun = @psobj;
```

Find the unconstrained minimum of the objective, starting from the point [0,0]. Return both the location of the minimum, x, and the value of \(f(x) \).

```matlab
x0 = [0,0];
[x,fval] = patternsearch(fun,x0)
```

Optimization terminated: mesh size less than options.TolMesh.

\[
\begin{align*}
\text{x} & = \begin{bmatrix}
-0.7037 \\
-0.1860 \\
\end{bmatrix} \\
\text{fval} & = \begin{bmatrix}
\end{bmatrix}
\end{align*}
\]
-7.0254

Obtain All Outputs

To examine the `patternsearch` solution process, obtain all outputs.

Create the following two-variable objective function. On your MATLAB path, save the following code to a file named `psobj.m`.

```matlab
function y = psobj(x)
y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));
end
```

Set the objective function to `@psobj`.

```matlab
fun = @psobj;
```

Find the unconstrained minimum of the objective, starting from the point `[0,0]`. Return the solution, `x`, the objective function value at the solution, `fval`, the exit flag, and the output structure.

```matlab
x0 = [0,0];
[x,fval,exitflag,output] = patternsearch(fun,x0)
```

Optimization terminated: mesh size less than options.TolMesh.

```
x =
    -0.7037   -0.1860

fval =
    -7.0254

exitflag =
    1

output =

    function: @psobj
    problemtype: 'unconstrained'
    pollmethod: 'gpspositivebasis2n'
```
The `maxconstraint` is `[]`, `searchmethod` is `[]`, `iterations` is 66, `funccount` is 229, `meshsize` is `9.5367e-07`, `rngstate` is `[1x1 struct]`, and `message` is 'Optimization terminated: mesh size less than options.TolMesh.'

The `exitflag` is 1, indicating convergence to a local minimum.

The `output` structure includes information such as how many iterations `patternsearch` took, and how many function evaluations. Compare this output structure with the results from “Pattern Search with Nondefault Options” on page 11-72. In that example, you obtain some of this information, but did not obtain, for example, the number of function evaluations.

- “Optimize Using the GPS Algorithm” on page 4-8
- “Coding and Minimizing an Objective Function Using Pattern Search”
- “Constrained Minimization Using Pattern Search”
- “Pattern Search Options”
- “Optimize an ODE in Parallel” on page 4-85
- “Pattern Search Climbs Mount Washington”

Input Arguments

fun — Function to be minimized

`function handle | function name`

Function to be minimized, specified as a function handle or function name. The `fun` function accepts a vector `x` and returns a real scalar `f`, which is the objective function evaluated at `x`.

You can specify `fun` as a function handle for a file

```matlab
x = patternsearch(@myfun,x0)
```

Here, `myfun` is a MATLAB function such as

```matlab
function f = myfun(x)
f = ...            % Compute function value at x
```

`fun` can also be a function handle for an anonymous function
x = patternsearch(@(x)norm(x)^2,x0,A,b);

Example: fun = @(x)sin(x(1))*cos(x(2))

Data Types: char | function_handle

x0 — Initial point
real vector

Initial point, specified as a real vector. `patternsearch` uses the number of elements in `x0` to determine the number of variables that `fun` accepts.

Example: x0 = [1,2,3,4]

Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. `A` is an M-by-N matrix, where M is the number of inequalities, and N is the number of variables (number of elements in `x0`).

`A` encodes the M linear inequalities

\[A \cdot x \leq b, \]

where \(x \) is the column vector of N variables \(x(:) \), and \(b \) is a column vector with M elements.

For example, to specify
\[x_1 + 2x_2 \leq 10 \]
\[3x_1 + 4x_2 \leq 20 \]
\[5x_1 + 6x_2 \leq 30, \]

give these constraints:

\[A = [1,2;3,4;5,6]; \]
\[b = [10;20;30]; \]

Example: To specify that the control variables sum to 1 or less, give the constraints \(A = \text{ones}(1,N) \) and \(b = 1 \)

Data Types: double

b — Linear inequality constraints
real vector
Linear inequality constraints, specified as a real vector. \(b \) is an \(M \)-element vector related to the \(A \) matrix. If you pass \(b \) as a row vector, solvers internally convert \(b \) to the column vector \(b(:) \).

\(b \) encodes the \(M \) linear inequalities

\[
A \times x \leq b,
\]

where \(x \) is the column vector of \(N \) variables \(x(:,) \), and \(A \) is a matrix of size \(M \)-by-\(N \).

For example, to specify

\[
\begin{align*}
x_1 + 2x_2 & \leq 10 \\
3x_1 + 4x_2 & \leq 20 \\
5x_1 + 6x_2 & \leq 30,
\end{align*}
\]

give these constraints:

\[
A = \begin{bmatrix}1, 2; 3, 4; 5, 6\end{bmatrix}; \\
b = \begin{bmatrix}10; 20; 30\end{bmatrix};
\]

Example: To specify that the control variables sum to 1 or less, give the constraints \(A = \text{ones}(1, N) \) and \(b = 1 \)

Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. \(Aeq \) is an \(Me \)-by-\(N \) matrix, where \(Me \) is the number of equalities, and \(N \) is the number of variables (number of elements in \(x0 \)).

\(Aeq \) encodes the \(Me \) linear equalities

\[
Aeq \times x = beq,
\]

where \(x \) is the column vector of \(N \) variables \(x(:,()) \), and \(beq \) is a column vector with \(Me \) elements.

For example, to specify

\[
\begin{align*}
x_1 + 2x_2 + 3x_3 & \leq 10 \\
2x_1 + 4x_2 + x_3 & \leq 20,
\end{align*}
\]

give these constraints:

\[
A = \begin{bmatrix}1, 2, 3; 2, 4, 1\end{bmatrix}; \\
b = \begin{bmatrix}10; 20\end{bmatrix};
\]
Example: To specify that the control variables sum to 1, give the constraints \(A_{eq} = \text{ones}(1,N)\) and \(beq = 1\)

Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. \(beq\) is an \(Me\)-element vector related to the \(A_{eq}\) matrix. If you pass \(beq\) as a row vector, solvers internally convert \(beq\) to the column vector \(beq(:)\).

\(beq\) encodes the \(Me\) linear equalities

\[A_{eq} x = beq, \]

where \(x\) is the column vector of \(N\) variables \(x(:)\), and \(A_{eq}\) is a matrix of size \(Meq\)-by-\(N\).

For example, to specify

\[x_1 + 2x_2 + 3x_3 \leq 10 \]
\[2x_1 + 4x_2 + x_3 \leq 20, \]

give these constraints:

\[
A = [1,2,3;2,4,1];
\]
\[
b = [10;20];
\]

Example: To specify that the control variables sum to 1, give the constraints \(A_{eq} = \text{ones}(1,N)\) and \(beq = 1\)

Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in \(x0\) is equal to that of \(lb\), then \(lb\) specifies that \(x(i) \geq lb(i)\)

for all \(i\).

If \(\text{numel}(lb) < \text{numel}(x0)\), then \(lb\) specifies that

\(x(i) \geq lb(i)\)

for

\(1 \leq i \leq \text{numel}(lb)\)
In this case, solvers issue a warning.

Example: To specify that all control variables are positive, \(\text{lb} = \text{zeros(size(x0))} \)

Data Types: \text{double}

\textbf{ub — Upper bounds}

real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in \(x0 \) is equal to that of \(ub \), then \(ub \) specifies that

\[x(i) \leq ub(i) \]

for all \(i \).

If \(\text{numel}(ub) < \text{numel}(x0) \), then \(ub \) specifies that

\[x(i) \leq ub(i) \]

for

\[1 \leq i \leq \text{numel}(ub) \]

In this case, solvers issue a warning.

Example: To specify that all control variables are less than one, \(\text{ub} = \text{ones(size(x0))} \)

Data Types: \text{double}

\textbf{non1con — Nonlinear constraints}

function handle | function name

Nonlinear constraints, specified as a function handle or function name. \text{non1con} is a function that accepts a vector or array \(x \) and returns two arrays, \(c(x) \) and \(ceq(x) \).

- \(c(x) \) is the array of nonlinear inequality constraints at \(x \). \text{patternsearch} attempts to satisfy

\[c(x) \leq 0 \]

for all entries of \(c \).

- \(ceq(x) \) is the array of nonlinear equality constraints at \(x \). \text{patternsearch} attempts to satisfy

\[ceq(x) = 0 \]

for all entries of \(ceq \).
For example,

\[x = \text{patternsearch}(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon) \]

where \text{mycon} is a MATLAB function such as

\begin{verbatim}
function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.
end
\end{verbatim}

For more information, see “Nonlinear Constraints”.

Data Types: char | function_handle

\textbf{options} — Optimization options
structure such as the one returned by \text{psoptimset}

Optimization options, specified as a structure such as the one returned by \text{psoptimset}. For details, see “Pattern Search Options” on page 10-9.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>With \text{Cache} set to 'on', \text{patternsearch} keeps a history of the mesh points it polls. At subsequent iterations, \text{patternsearch} does not poll points close to those it already polled. Use this option if \text{patternsearch} runs slowly while computing the objective function. If the objective function is stochastic, do not to use this option.</td>
<td>'on'</td>
</tr>
<tr>
<td>CacheSize</td>
<td>Size of the history.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>CacheTol</td>
<td>Largest distance from the current mesh point to any point in the history in order for \text{patternsearch} to avoid polling the current point. Use if 'Cache' option is set to 'on'.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>CompletePoll</td>
<td>Complete poll around current point. See “How Pattern Search Polling Works” on page 4-15.</td>
<td>'on'</td>
</tr>
<tr>
<td>CompleteSearch</td>
<td>Complete search around current point when the search method is a poll method. See “Searching and Polling” on page 4-26.</td>
<td>'on'</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display.</td>
<td>'off'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>InitialMeshSize</td>
<td>Initial mesh size for pattern algorithm. See “How Pattern Search Polling Works” on page 4-15.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>Initial value of the penalty parameter. See “Nonlinear Constraint Solver Algorithm” on page 4-37.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MaxFunEvals</td>
<td>Maximum number of objective function evaluations.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxIter</td>
<td>Maximum number of iterations.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxMeshSize</td>
<td>Maximum mesh size used in a poll or search step. See “How Pattern Search Polling Works” on page 4-15.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshAccelerator</td>
<td>Accelerate convergence near a minimum. patternsearch contracts by an extra factor of 1/2.</td>
<td>'on'</td>
</tr>
<tr>
<td>MeshContraction</td>
<td>Mesh contraction factor for unsuccessful iteration.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshExpansion</td>
<td>Mesh expansion factor for successful iteration.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshRotate</td>
<td>Rotate the pattern before declaring a point to be optimum. See “Mesh Options” on page 10-17.</td>
<td>'off'</td>
</tr>
<tr>
<td>OutputFcns</td>
<td>Specifies a user-defined function that an optimization function calls at each iteration.</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>Penalty update parameter. See “Nonlinear Constraint Solver Algorithm” on page 4-37.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>PlotFcns</td>
<td>Specifies plots of output from the pattern search.</td>
<td>{[}]</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Specifies that plot functions will be called at every interval.</td>
<td>{1}</td>
</tr>
<tr>
<td>PollingOrder</td>
<td>Order of poll directions in pattern search.</td>
<td>'Random'</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PollMethod</td>
<td>Polling strategy used in pattern search.</td>
<td>{'GPSPositiveBasis2N'}, 'GPSPositiveBasisNp1', 'GSSPositiveBasis2N',</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'GSSPositiveBasisNp1', 'MADSPositiveBasis2N', 'MADSPositiveBasisNp1'</td>
</tr>
<tr>
<td>ScaleMesh</td>
<td>Automatic scaling of variables.</td>
<td>{'on'}, 'off'</td>
</tr>
<tr>
<td>SearchMethod</td>
<td>Type of search used in pattern search.</td>
<td>{[}, @GPSPositiveBasis2N, @GPSPositiveBasisNp1, @GSSPositiveBasis2N,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>@GSSPositiveBasisNp1, @MADSPositiveBasis2N, @MADSPositiveBasisNp1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>@searchga, @searchlhs, @searchneldermead, custom search function</td>
</tr>
<tr>
<td>TimeLimit</td>
<td>Total time (in seconds) allowed for optimization.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolBind</td>
<td>Binding tolerance. See “Constraint Parameters” on</td>
<td>Positive scalar</td>
</tr>
<tr>
<td></td>
<td>page 10-19.</td>
<td></td>
</tr>
<tr>
<td>TolCon</td>
<td>Tolerance on constraints.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TolFun</td>
<td>Tolerance on function. Iterations stop if the change in function value is less than TolFun and the mesh size is less than TolX. Does not apply to MADS polling.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolMesh</td>
<td>Tolerance on mesh size.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolX</td>
<td>Tolerance on variable. Iterations stop if both the change in position and the mesh size are less than TolX. Does not apply to MADS polling.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute objective and nonlinear constraint functions in parallel. See “Vectorize and Parallel Options (User Function Evaluation)” on page 10-24 and “How to Use Parallel Processing” on page 9-12.</td>
<td>true</td>
</tr>
<tr>
<td>Vectorized</td>
<td>Specifies whether functions are vectorized. See “Vectorize and Parallel Options (User Function Evaluation)” on page 10-24 and “Vectorize the Objective and Constraint Functions” on page 4-80.</td>
<td>'on'</td>
</tr>
</tbody>
</table>

Example: `options = psoptimset('MaxIter',150,'TolMesh',1e-4)`

Data Types: `struct`

problem — Problem structure

Structure

Problem structure, specified as a structure with the following fields:

- `objective` — Objective function
- `x0` — Starting point
- `Aineq` — Matrix for linear inequality constraints
- `bineq` — Vector for linear inequality constraints
- `Aeq` — Matrix for linear equality constraints
- `beq` — Vector for linear equality constraints
- `lb` — Lower bound for `x`
- `ub` — Upper bound for `x`
- `nonlcon` — Nonlinear constraint function
• solver — 'patternsearch'
• options — Options structure created with psoptimset
• rngstate — Optional field to reset the state of the random number generator

Create the structure `problem` by exporting a problem from the Optimization app, as described in “Importing and Exporting Your Work”.

Note All fields in `problem` are required.

Data Types: struct

Output Arguments

x — Solution
real vector

Solution, returned as a real vector. The size of `x` is the same as the size of `x0`. When `exitflag` is positive, `x` is typically a local solution to the problem.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally, `fval = fun(x)`.

exitflag — Reason patternsearch stopped
integer

Reason patternsearch stopped, returned as an integer.

<table>
<thead>
<tr>
<th>Exit Flag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Without nonlinear constraints — The magnitude of the mesh size is less than the specified tolerance, and the constraint violation is less than <code>TolCon</code>.</td>
</tr>
<tr>
<td></td>
<td>With nonlinear constraints — The magnitude of the complementarity measure (defined after this table) is less than <code>sqrt(TolCon)</code>, the subproblem is solved using a mesh finer than <code>TolMesh</code>, and the constraint violation is less than <code>TolCon</code>.</td>
</tr>
<tr>
<td>Exit Flag</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>2</td>
<td>The change in x and the mesh size are both less than the specified tolerance, and the constraint violation is less than TolCon.</td>
</tr>
<tr>
<td>3</td>
<td>The change in fval and the mesh size are both less than the specified tolerance, and the constraint violation is less than TolCon.</td>
</tr>
<tr>
<td>4</td>
<td>The magnitude of the step is smaller than machine precision, and the constraint violation is less than TolCon.</td>
</tr>
<tr>
<td>0</td>
<td>The maximum number of function evaluations or iterations is reached.</td>
</tr>
<tr>
<td>-1</td>
<td>Optimization terminated by an output function or plot function.</td>
</tr>
<tr>
<td>-2</td>
<td>No feasible point found.</td>
</tr>
</tbody>
</table>

In the nonlinear constraint solver, the complementarity measure is the norm of the vector whose elements are $c_i \lambda_i$, where c_i is the nonlinear inequality constraint violation, and λ_i is the corresponding Lagrange multiplier.

output — Information about the optimization process

Information about the optimization process, returned as a structure with these fields:

- function — Objective function.
- problemtype — String describing the type of problem:
 - 'unconstrained'
 - 'boundconstraints'
 - 'linearconstraints'
 - 'nonlinearconstr'
- pollmethod — Polling technique.
- searchmethod — Search technique used, if any.
- iterations — Total number of iterations.
- funccount — Total number of function evaluations.
- meshsize — Mesh size at x.
- maxconstraint — Maximum constraint violation, if any.
- rngstate — State of the MATLAB random number generator, just before the algorithm started. You can use the values in rngstate to reproduce the output when
you use a random search method or random poll method. See “Reproduce Results” on page 5-68, which discusses the identical technique for ga.

• message — Reason why the algorithm terminated.

More About

Algorithms

By default, patternsearch looks for a minimum based on an adaptive mesh that, in the absence of linear constraints, is aligned with the coordinate directions. See “What Is Direct Search?” on page 4-2 and “How Pattern Search Polling Works” on page 4-15.

• “Optimization Workflow” on page 1-16
• “What Is Direct Search?” on page 4-2
• “Pattern Search Terminology” on page 4-12
• “How Pattern Search Polling Works” on page 4-15
• “Polling Types” on page 4-47
• “Search and Poll” on page 4-32

References

See Also
gapsoptimset

Introduced before R2006a
psoptimget

Obtain values of pattern search options structure

Syntax

val = psoptimget(options,'name')
val = psoptimget(options,'name',default)

Description

val = psoptimget(options,'name') returns the value of the parameter name from the pattern search options structure options. psoptimget(options,'name') returns an empty matrix [] if the value of name is not specified in options. It is only necessary to type enough leading characters of name to uniquely identify it. psoptimget ignores case in parameter names.

val = psoptimget(options,'name',default) returns the value of the parameter name from the pattern search options structure options, but returns default if the parameter is not specified (as in []) in options.

Examples

val = psoptimget(opts,'TolX',1e-4);

returns val = 1e-4 if the TolX property is not specified in opts.

More About

• “Pattern Search Options” on page 10-9

See Also

psoptimset | patternsearch
psoptimset

Create pattern search options structure

Syntax

```matlab
psoptimset
options = psoptimset
options = psoptimset(@patternsearch)
options = psoptimset('param1',value1,'param2',value2,...)
options = psoptimset(oldopts,'param1',value1,...)
options = psoptimset(oldopts,newopts)
```

Description

`psoptimset` with no input or output arguments displays a complete list of parameters with their valid values.

`options = psoptimset` (with no input arguments) creates a structure called `options` that contains the options, or parameters, for `patternsearch`, and sets parameters to [], indicating `patternsearch` uses the default values.

`options = psoptimset(@patternsearch)` creates a structure called `options` that contains the default values for `patternsearch`.

`options = psoptimset('param1',value1,'param2',value2,...)` creates a structure `options` and sets the value of `'param1'` to `value1`, `'param2'` to `value2`, and so on. Any unspecified parameters are set to their default values. It is sufficient to type only enough leading characters to define the parameter name uniquely. Case is ignored for parameter names.

`options = psoptimset(oldopts,'param1',value1,...)` creates a copy of `oldopts`, modifying the specified parameters with the specified values.

`options = psoptimset(oldopts,newopts)` combines an existing options structure, `oldopts`, with a new options structure, `newopts`. Any parameters in `newopts` with nonempty values overwrite the corresponding old parameters in `oldopts`.
Options

The following table lists the options you can set with `psoptimset`. See “Pattern Search Options” on page 10-9 for a complete description of the options and their values. Values in {} denote the default value. You can also view the optimization parameters and defaults by typing `psoptimset` at the command line.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>With Cache set to 'on', <code>patternsearch</code> keeps a history of the mesh points it polls. At subsequent iterations, <code>patternsearch</code> does not poll points close to those it already polled. Use this option if <code>patternsearch</code> runs slowly while computing the objective function. If the objective function is stochastic, do not to use this option.</td>
<td>'on'</td>
</tr>
<tr>
<td>CacheSize</td>
<td>Size of the history.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>CacheTol</td>
<td>Largest distance from the current mesh point to any point in the history in order for <code>patternsearch</code> to avoid polling the current point. Use if 'Cache' option is set to 'on'.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>CompletePoll</td>
<td>Complete poll around current point. See “How Pattern Search Polling Works” on page 4-15.</td>
<td>'on'</td>
</tr>
<tr>
<td>CompleteSearch</td>
<td>Complete search around current point when the search method is a poll method. See “Searching and Polling” on page 4-26.</td>
<td>'on'</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display.</td>
<td>'off'</td>
</tr>
<tr>
<td>InitialMeshSize</td>
<td>Initial mesh size for pattern algorithm. See “How Pattern Search Polling Works” on page 4-15.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>Initial value of the penalty parameter. See “Nonlinear Constraint Solver Algorithm” on page 4-37.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MaxFunEvals</td>
<td>Maximum number of objective function evaluations.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MaxIter</td>
<td>Maximum number of iterations.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxMeshSize</td>
<td>Maximum mesh size used in a poll or search step.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshAccelerator</td>
<td>Accelerate convergence near a minimum. patternsearch contracts by an extra factor of 1/2.</td>
<td>'on'</td>
</tr>
<tr>
<td>MeshContraction</td>
<td>Mesh contraction factor for unsuccessful iteration.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshExpansion</td>
<td>Mesh expansion factor for successful iteration.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshRotate</td>
<td>Rotate the pattern before declaring a point to be optimum. See “Mesh Options” on page 10-17.</td>
<td>'off'</td>
</tr>
<tr>
<td>OutputFcns</td>
<td>Specifies a user-defined function that an optimization function calls at each iteration.</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>Penalty update parameter. See “Nonlinear Constraint Solver Algorithm” on page 4-37.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>PlotFcns</td>
<td>Specifies plots of output from the pattern search.</td>
<td>{[]}</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Specifies that plot functions will be called at every interval.</td>
<td>{1}</td>
</tr>
<tr>
<td>PollingOrder</td>
<td>Order of poll directions in pattern search.</td>
<td>'Random'</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PollMethod</td>
<td>Polling strategy used in pattern search.</td>
<td>{'GPSPositiveBasis2N'}
</td>
</tr>
<tr>
<td>ScaleMesh</td>
<td>Automatic scaling of variables.</td>
<td>{'on'}</td>
</tr>
<tr>
<td>SearchMethod</td>
<td>Type of search used in pattern search.</td>
<td>{}</td>
</tr>
<tr>
<td>TimeLimit</td>
<td>Total time (in seconds) allowed for optimization.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolBind</td>
<td>Binding tolerance. See “Constraint Parameters” on page 10-19.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolCon</td>
<td>Tolerance on constraints.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>TolFun</td>
<td>Tolerance on function. Iterations stop if the change in function value is less than TolFun and the mesh size is less than TolX. Does not apply to MADS polling.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolMesh</td>
<td>Tolerance on mesh size.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolX</td>
<td>Tolerance on variable. Iterations stop if both the change in position and the mesh size are less than TolX. Does not apply to MADS polling.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute objective and nonlinear constraint functions in parallel. See “Vectorize and Parallel Options (User Function Evaluation)” on page 10-24 and “How to Use Parallel Processing” on page 9-12.</td>
<td>true</td>
</tr>
<tr>
<td>Vectorized</td>
<td>Specifies whether functions are vectorized. See “Vectorize and Parallel Options (User Function Evaluation)” on page 10-24 and “Vectorize the Objective and Constraint Functions” on page 4-80.</td>
<td>'on'</td>
</tr>
</tbody>
</table>

See Also

patternsearch | psoptimget
run

Class: GlobalSearch

Find global minimum

Syntax

\[x = \text{run}(\text{gs}, \text{problem}) \]
\[[x, \text{fval}] = \text{run}(\text{gs}, \text{problem}) \]
\[[x, \text{fval}, \text{exitflag}] = \text{run}(\text{gs}, \text{problem}) \]
\[[x, \text{fval}, \text{exitflag}, \text{output}] = \text{run}(\text{gs}, \text{problem}) \]
\[[x, \text{fval}, \text{exitflag}, \text{output}, \text{solutions}] = \text{run}(\text{gs}, \text{problem}) \]

Description

\(x = \text{run}(\text{gs}, \text{problem}) \) finds a point \(x \) that solves the optimization problem described in the \text{problem} structure.

\[[x, \text{fval}] = \text{run}(\text{gs}, \text{problem}) \] returns the value of the objective function in \text{problem} at the point \(x \).

\[[x, \text{fval}, \text{exitflag}] = \text{run}(\text{gs}, \text{problem}) \] returns an exit flag describing the results of the multiple local searches.

\[[x, \text{fval}, \text{exitflag}, \text{output}] = \text{run}(\text{gs}, \text{problem}) \] returns an output structure describing the iterations of the run.

\[[x, \text{fval}, \text{exitflag}, \text{output}, \text{solutions}] = \text{run}(\text{gs}, \text{problem}) \] returns a vector of solutions containing the distinct local minima found during the run.

Input Arguments

\text{gs}

A GlobalSearch object.
problem

Problem structure. Create problem with createOptimProblem or by exporting a problem structure from the Optimization app. problem must contain at least the following fields:

- solver
- objective
- x0
- options — Both createOptimProblem and the Optimization app always include an options field in the problem structure.

Output Arguments

x

Minimizing point of the objective function.

fval

Objective function value at the minimizer x.

exitflag

Describes the results of the multiple local searches. Values are:

2 At least one local minimum found. Some runs of the local solver converged.
1 At least one local minimum found. All runs of the local solver converged.
0 No local minimum found. Local solver called at least once, and at least one local solver exceeded the MaxIter or MaxFunEvals tolerances.
-1 One or more local solver runs stopped by the local solver output or plot function.
-2 No feasible local minimum found.
-5 MaxTime limit exceeded.
No solution found. All runs had local solver exit flag -2 or smaller, not all equal -2.

Failures encountered in user-provided functions.

output

A structure describing the iterations of the run. Fields in the structure:

- `funcCount` Number of function evaluations.
- `localSolverIncomplete` Number of local solver runs with 0 exit flag.
- `localSolverNoSolution` Number of local solver runs with negative exit flag.
- `localSolverSuccess` Number of local solver runs with positive exit flag.
- `localSolverTotal` Total number of local solver runs.
- `message` Exit message.

solutions

A vector of GlobalOptimSolution objects containing the distinct local solutions found during the run. The vector is sorted by objective function value; the first element is best (smallest value). The object contains:

- `X` Solution point returned by the local solver.
- `Fval` Objective function value at the solution.
- `Exitflag` Integer describing the result of the local solver run.
- `Output` Output structure returned by the local solver.
- `X0` Cell array of start points that led to the solution.

Examples

Use a default `GlobalSearch` object to solve the six-hump camel back problem (see “Run the Solver” on page 3-20):

```matlab
gs = GlobalSearch;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
```

11-97
'objective', sixmin, 'lb', [-3, -3], 'ub', [3, 3]);
[xmin, fmin, flag, outpt, allmins] = run(gs, problem);

Algorithms

A detailed description of the algorithm appears in “GlobalSearch Algorithm” on page 3-46. Ugray et al. [1] describes both the algorithm and the scatter-search method of generating trial points.

References

See Also

GlobalOptimSolution, *GlobalSearch*, *createOptimProblem*
run

Class: MultiStart

Run local solver from multiple points

Syntax

\[x = \text{run}(ms, \text{problem}, k) \]
\[x = \text{run}(ms, \text{problem}, \text{startpts}) \]
\[[x, fval] = \text{run}(...) \]
\[[x, fval, \text{exitflag}] = \text{run}(...) \]
\[[x, fval, \text{exitflag}, \text{output}] = \text{run}(...) \]
\[[x, fval, \text{exitflag}, \text{output}, \text{solutions}] = \text{run}(...) \]

Description

\(x = \text{run}(ms, \text{problem}, k) \) runs the \(ms \) MultiStart object on the optimization problem specified in \(\text{problem} \) for a total of \(k \) runs. \(x \) is the point where the lowest function value was found. For the \text{lsqcurvefit} and \text{lsqnonlin} solvers, \text{MultiStart} minimizes the sum of squares at \(x \), also known as the residual.

\(x = \text{run}(ms, \text{problem}, \text{startpts}) \) runs the \(ms \) MultiStart object on the optimization problem specified in \(\text{problem} \) using the start points described in \(\text{startpts} \).

\([x, fval] = \text{run}(...) \) returns the lowest objective function value \(fval \) at \(x \). For the \text{lsqcurvefit} and \text{lsqnonlin} solvers, \(fval \) contains the residual.

\([x, fval, \text{exitflag}] = \text{run}(...) \) returns an exit flag describing the return condition.

\([x, fval, \text{exitflag}, \text{output}] = \text{run}(...) \) returns an output structure containing statistics of the run.

\([x, fval, \text{exitflag}, \text{output}, \text{solutions}] = \text{run}(...) \) returns a vector of solutions containing the distinct local minima found during the run.
Input Arguments

ms

MultiStart object.

problem

Problem structure. Create *problem* with *createOptimProblem* or by exporting a problem structure from the Optimization app. *problem* must contain the following fields:

- *solver*
- *objective*
- *x0*
- *options* — Both *createOptimProblem* and the Optimization app always include an *options* field in the *problem* structure.

k

Number of start points to run. *MultiStart* generates *k - 1* start points using the same algorithm as list for a RandomStartPointSet object. *MultiStart* also uses the *x0* point from the *problem* structure.

startpts

A CustomStartPointSet or RandomStartPointSet object. *startpts* can also be a cell array of these objects.

Output Arguments

x

Point at which the objective function attained the lowest value during the run. For *lsqcurvefit* and *lsqnonlin*, the objective function is the sum of squares, also known as the residual.

fval

Smallest objective function value attained during the run. For *lsqcurvefit* and *lsqnonlin*, the objective function is the sum of squares, also known as the residual.
exitflag

Integer describing the return condition:

2 At least one local minimum found. Some runs of the local solver converged.
1 At least one local minimum found. All runs of the local solver converged.
0 No local minimum found. Local solver called at least once, and at least one local solver exceeded the MaxIter or MaxFunEvals tolerances.
-1 One or more local solver runs stopped by the local solver output or plot function.
-2 No feasible local minimum found.
-5 MaxTime limit exceeded.
-8 No solution found. All runs had local solver exit flag -2 or smaller, not all equal -2.
-10 Failures encountered in user-provided functions.

output

Structure containing statistics of the optimization. Fields in the structure:

- **funcCount**: Number of function evaluations.
- **localSolverIncomplete**: Number of local solver runs with 0 exit flag.
- **localSolverNoSolution**: Number of local solver runs with negative exit flag.
- **localSolverSuccess**: Number of local solver runs with positive exit flag.
- **localSolverTotal**: Total number of local solver runs.
- **message**: Exit message.

solutions

A vector of GlobalOptimSolution objects containing the distinct local solutions found during the run. The vector is sorted by objective function value; the first element is best (smallest value). The object contains:

- **X**: Solution point returned by the local solver.

Fval
Objective function value at the solution.

Exitflag
Integer describing the result of the local solver run.

Output
Output structure returned by the local solver.

X0
Cell array of start points that led to the solution.

Examples

Use a default MultiStart object to solve the six-hump camel back problem (see “Run the Solver” on page 3-20):

```matlab
ms = MultiStart;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... 
  + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],
  'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
[xmin,fmin,flag,outpt,allmins] = run(ms,problem,30);
```

Algorithms

A detailed description of the algorithm appears in “MultiStart Algorithm” on page 3-50.

See Also

CustomStartPointSet | GlobalOptimSolution | MultiStart | createOptimProblem | RandomStartPointSet
RandomStartPointSet class

Random start points

Description

Describes how to generate a set of pseudorandom points for use with MultiStart. A RandomStartPointSet object does not contain points. It contains parameters used in generating the points when MultiStart runs, or by the list method.

Construction

\[RS = \text{RandomStartPointSet} \]

constructs a default RandomStartPointSet object.

\[RS = \text{RandomStartPointSet}(\text{PropertyName},\text{PropertyValue},...) \]

constructs the object using options, specified as property name and value pairs.

\[RS = \text{RandomStartPointSet}(\text{OLDRS},\text{PropertyName},\text{PropertyValue},...) \]

creates a copy of the OLDRS RandomStartPointSet object, with the named properties altered with the specified values.

Properties

ArtificialBound

Absolute value of default bounds to use for unbounded problems (positive scalar).

If a component has no bounds, list uses a lower bound of -ArtificialBound, and an upper bound of ArtificialBound.

If a component has a lower bound \(lb \), but no upper bound, list uses an upper bound of \(lb + 2 \times \text{ArtificialBound} \). Similarly, if a component has an upper bound \(ub \), but no lower bound, list uses a lower bound of \(ub - 2 \times \text{ArtificialBound} \).

Default: 1000
NumStartPoints

Number of start points to generate (positive integer)

Default: 10

Methods

list
Generate start points

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB Programming Fundamentals documentation.

Examples

Create a RandomStartPointSet object for 40 points, and use list to generate a point matrix for a seven-dimensional problem:

```matlab
rS = RandomStartPointSet('NumStartPoints',40); % 40 points
problem = createOptimProblem('fminunc','x0',ones(7,1),...
    'objective',@rosenbrock);
ptmatrix = list(rs,problem); % 'list' generates the matrix
```

See Also

MultiStart | list | CustomStartPointSet

How To

- Class Attributes
- Property Attributes
saoptimget

Values of simulated annealing options structure

Syntax

```matlab
val = saoptimget(options, 'name')
val = saoptimget(options, 'name', default)
```

Description

`val = saoptimget(options, 'name')` returns the value of the parameter `name` from the simulated annealing options structure `options`. `saoptimget(options, 'name')` returns an empty matrix `[]` if the value of `name` is not specified in `options`. It is only necessary to type enough leading characters of `name` to uniquely identify the parameter. `saoptimget` ignores case in parameter names.

`val = saoptimget(options, 'name', default)` returns the `name` parameter, but returns the default value if the `name` parameter is not specified (or is `[]`) in `options`.

Examples

```matlab
opts = saoptimset('TolFun',1e-4);
val = saoptimget(opts,'TolFun');
returns val = 1e-4 for TolFun.
```

More About

- “Simulated Annealing Options” on page 10-62

See Also

`saoptimset` | `simulannealbnd`
saoptimset

Create simulated annealing options structure

Syntax

```matlab
saoptimset
options = saoptimset
options = saoptimset('param1',value1,'param2',value2,...)
options = saoptimset(oldopts,'param1',value1,...)
options = saoptimset(oldopts,newopts)
options = saoptimset('simulannealbnd')
```

Description

`saoptimset` with no input or output arguments displays a complete list of parameters with their valid values.

```matlab
options = saoptimset` (with no input arguments) creates a structure called options that contains the options, or parameters, for the simulated annealing algorithm, with all parameters set to [].
```

```matlab
options = saoptimset('param1',value1,'param2',value2,...) creates a structure options and sets the value of 'param1' to value1, 'param2' to value2, and so on. Any unspecified parameters are set to []. It is sufficient to type only enough leading characters to define the parameter name uniquely. Case is ignored for parameter names. Note that for string values, correct case and the complete string are required.
```

```matlab
options = saoptimset(oldopts,'param1',value1,...) creates a copy of oldopts, modifying the specified parameters with the specified values.
```

```matlab
options = saoptimset(oldopts,newopts) combines an existing options structure, oldopts, with a new options structure, newopts. Any parameters in newopts with nonempty values overwrite the corresponding old parameters in oldopts.
```

```matlab
options = saoptimset('simulannealbnd') creates an options structure with all the parameter names and default values relevant to 'simulannealbnd'. For example,
```

```matlab
saoptimset('simulannealbnd')
```
ans =
 AnnealingFcn: @annealingfast
 TemperatureFcn: @temperatureexp
 AcceptanceFcn: @acceptancesa
 TolFun: 1.0000e-006
 StallIterLimit: '500*numberofvariables'
 MaxFunEvals: '3000*numberofvariables'
 TimeLimit: Inf
 MaxIter: Inf
 ObjectiveLimit: -Inf
 Display: 'final'
 DisplayInterval: 10
 HybridFcn: []
 HybridInterval: 'end'
 PlotFcns: []
 PlotInterval: 1
 OutputFcns: []
 InitialTemperature: 100
 ReannealInterval: 100
 DataType: 'double'

Options

The following table lists the options you can set with saoptimset. See “Simulated Annealing Options” on page 10-62 for a complete description of these options and their values. Values in {} denote the default value. You can also view the options parameters by typing saoptimset at the command line.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcceptanceFcn</td>
<td>Handle to the function the algorithm uses to determine if a new point is accepted</td>
<td>Function handle</td>
</tr>
<tr>
<td>AnnealingFcn</td>
<td>Handle to the function the algorithm uses to generate new points</td>
<td>Function handle</td>
</tr>
<tr>
<td>DataType</td>
<td>Type of decision variable</td>
<td>'custom'</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display</td>
<td>'off'</td>
</tr>
<tr>
<td>DisplayInterval</td>
<td>Interval for iterative display</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HybridFcnc</td>
<td>Automatically run HybridFcnc (another optimization function) during or at the end of iterations of the solver</td>
<td>`@fminsearch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-by-2 cell array</td>
</tr>
<tr>
<td>HybridInterval</td>
<td>Interval (if not 'end' or 'never') at which HybridFcnc is called</td>
<td>Positive integer</td>
</tr>
<tr>
<td>InitialTemperature</td>
<td>Initial value of temperature</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MaxFunEvals</td>
<td>Maximum number of objective function evaluations allowed</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxIter</td>
<td>Maximum number of iterations allowed</td>
<td>Positive integer</td>
</tr>
<tr>
<td>ObjectiveLimit</td>
<td>Minimum objective function value desired</td>
<td>Scalar</td>
</tr>
<tr>
<td>OutputFcns</td>
<td>Function(s) get(s) iterative data and can change options at run time</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td>PlotFcns</td>
<td>Plot function(s) called during iterations</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Plot functions are called at every interval</td>
<td>Positive integer</td>
</tr>
<tr>
<td>ReannealInterval</td>
<td>Reannealing interval</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>StallIterLimit</td>
<td>Number of iterations over which average change in fitness function value at current point is less than options.TolFun</td>
<td>Positive integer</td>
</tr>
<tr>
<td>TemperatureFcn</td>
<td>Function used to update temperature schedule</td>
<td>Function handle</td>
</tr>
<tr>
<td>TimeLimit</td>
<td>The algorithm stops after running for TimeLimit seconds</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolFun</td>
<td>Termination tolerance on function value</td>
<td>Positive scalar</td>
</tr>
</tbody>
</table>

More About
- “Simulated Annealing Options” on page 10-62

See Also
- saoptimget | simulannealbnd
simulannealbnd

Find minimum of function using simulated annealing algorithm

Syntax

\[
x = \text{simulannealbnd}(\text{fun},x0) \\
x = \text{simulannealbnd}(\text{fun},x0,lb,ub) \\
x = \text{simulannealbnd}(\text{fun},x0,lb,ub,\text{options}) \\
x = \text{simulannealbnd}(\text{problem}) \\
[x,fval] = \text{simulannealbnd}(...) \\
[x,fval,exitflag,output] = \text{simulannealbnd}(...) \]

Description

\(x = \text{simulannealbnd}(\text{fun},x0) \) finds a local minimum, \(x \), to the function handle \(\text{fun} \) that computes the values of the objective function. \(x0 \) is an initial point for the simulated annealing algorithm, a real vector.

Note: “Passing Extra Parameters” explains how to pass extra parameters to the objective function and nonlinear constraint functions, if necessary.

\(x = \text{simulannealbnd}(\text{fun},x0,lb,ub) \) defines a set of lower and upper bounds on the design variables in \(x \), so that the solution is always in the range \(lb \leq x \leq ub \). If \(x(i) \) is unbounded below, set \(lb(i) = -\infty \), and if \(x(i) \) is unbounded above, set \(ub(i) = \infty \).

\(x = \text{simulannealbnd}(\text{fun},x0,lb,ub,\text{options}) \) minimizes with the optimization options specified in \(\text{options} \). Use \(\text{saoptimset} \) to set these options. If no bounds exist, set \(lb = [] \) and/or \(ub = [] \).

\(x = \text{simulannealbnd}(\text{problem}) \) finds the minimum for \(\text{problem} \), where \(\text{problem} \) is a structure described in . Create the \(\text{problem} \) structure by exporting a problem from Optimization app, as described in “Exporting Your Work”.

\([x,fval] = \text{simulannealbnd}(...) \), for any syntax, returns the value of the objective function \(\text{fun} \) at the solution \(x \).
[x,fval,exitflag,output] = simulannealbnd(___) additionally returns a value exitflag that describes the exit condition of simulannealbnd, and a structure output with information about the optimization process.

Examples

Minimize a Function with Many Local Minima

Minimize De Jong's fifth function, a two-dimensional function with many local minima.

Plot De Jong's fifth function.

dejong5fcn
Minimize De Jong's fifth function using `simulannealbnd` starting from the point \([0,0]\).

```matlab
fun = @dejong5fcn;
x0 = [0 0];
x = simulannealbnd(fun,x0)
```

Optimization terminated: change in best function value less than options.TolFun.

```matlab
x =
   -32.0285   -0.1280
```

The `simulannealbnd` algorithm uses the MATLAB® random number stream, so you might obtain a different result.

Minimize Subject to Bounds

Minimize De Jong's fifth function within a bounded region.

Plot De Jong's fifth function.

`dejong5fcn`
Start `simulannealbnd` starting at the point $[0,0]$, and set lower bounds of -64 and upper bounds of 64 on each component.

```matlab
fun = @dejong5fcn;
x0 = [0 0];
lb = [-64 -64];
ub = [64 64];
x = simulannealbnd(fun,x0,lb,ub)
```

Optimization terminated: change in best function value less than options.TolFun.

```matlab
x =

-15.9790  -31.9593
```
The `simulannealbnd` algorithm uses the MATLAB® random number stream, so you might obtain a different result.

Minimize Using Nondefault Options

Observe the progress of `simulannealbnd` by setting options to use some plot functions.

Set simulated annealing options to use several plot functions.

```matlab
options = saoptimset('PlotFcns',{@saplotbestx,...
    @saplotbestf,@saplotx,@saplotf});
```

Start `simulannealbnd` starting at the point `[0,0]`, and set lower bounds of -64 and upper bounds of 64 on each component.

```matlab
rng default % For reproducibility
fun = @dejong5fcn;
x0 = [0,0];
lb = [-64,-64];
ub = [64,64];
x = simulannealbnd(fun,x0,lb,ub,options)
```

Optimization terminated: change in best function value less than options.TolFun.

```matlab
x =
    -15.9790  -31.9593
```
Obtain All Outputs

Obtain all the outputs of a simulated annealing minimization.

Plot De Jong's fifth function.

dejong5fcn
Start `simulannealbnd` starting at the point \([0,0]\), and set lower bounds of -64 and upper bounds of 64 on each component.

```matlab
fun = @dejong5fcn;
x0 = [0,0];
lb = [-64,-64];
ub = [64,64];
[x,fval,exitflag,output] = simulannealbnd(fun,x0,lb,ub)
```

Optimization terminated: change in best function value less than options.TolFun.

```
x =
   -15.9790   -31.9593
```
fval =
 1.9920

exitflag =
 1

output =
 iterations: 1762
 funccount: 1779
 message: 'Optimization terminated: change in best function value 1...'
 rngstate: [1x1 struct]
 problemtype: 'boundconstraints'
 temperature: [2x1 double]
 totaltime: 3.3384

The `simulannealbnd` algorithm uses the MATLAB® random number stream, so you might obtain a different result.

- “Minimization Using Simulated Annealing Algorithm”
- “Simulated Annealing Options”
- “Custom Data Type Optimization Using Simulated Annealing”

Input Arguments

`fun` — Function to be minimized
function handle | function name

Function to be minimized, specified as a function handle or function name. `fun` is a function that accepts a vector `x` and returns a real scalar `f`, the objective function evaluated at `x`.

`fun` can be specified as a function handle for a file:

```matlab
x = simulannealbnd(@myfun,x0)
```
where `myfun` is a MATLAB function such as

```matlab
function f = myfun(x)
f = ... % Compute function value at x
```

`fun` can also be a function handle for an anonymous function:

```matlab
x = simulannealbnd(@(x)norm(x)^2,x0,lb,ub);
```

Example: `fun = @(x)sin(x(1))*cos(x(2))`

Data Types: `char` | `function_handle`

x0 — Initial point
real vector

Initial point, specified as a real vector. `simulannealbnd` uses the number of elements in `x0` to determine the number of variables that `fun` accepts.

Example: `x0 = [1,2,3,4]`

Data Types: `double`

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in `x0` is equal to that of `lb`, then `lb` specifies that $x(i) \geq lb(i)$ for all i.

If `numel(lb) < numel(x0)`, then `lb` specifies that $x(i) \geq lb(i)$ for $1 \leq i \leq numel(lb)$.

In this case, solvers issue a warning.

Example: To specify that all control variables are positive, `lb = zeros(size(x0))`

Data Types: `double`

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in `x0` is equal to that of `ub`, then `ub` specifies that $x(i) \leq ub(i)$ for all i.
If \(\text{numel}(\text{ub}) < \text{numel}(x0) \), then \(\text{ub} \) specifies that \(x(i) \leq \text{ub}(i) \) for \(1 \leq i \leq \text{numel}(\text{ub}) \).

In this case, solvers issue a warning.

Example: To specify that all control variables are less than one, \(\text{ub} = \text{ones(size}(x0)) \)

Data Types: double

options — Optimization options

structure such as **saoptimset** returns

Optimization options, specified as a structure such as **saoptimset** returns. For details, see “Simulated Annealing Options” on page 10-62.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcceptanceFcn</td>
<td>Handle to the function the algorithm uses to determine if a new point is accepted</td>
<td>Function handle</td>
</tr>
<tr>
<td>AnnealingFcn</td>
<td>Handle to the function the algorithm uses to generate new points</td>
<td>Function handle</td>
</tr>
<tr>
<td>DataType</td>
<td>Type of decision variable</td>
<td>'custom'</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display</td>
<td>'off'</td>
</tr>
<tr>
<td>DisplayInterval</td>
<td>Interval for iterative display</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HybridFcn</td>
<td>Automatically run HybridFcn (another optimization function) during or at the end of iterations of the solver</td>
<td>@fminsearch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or 1-by-2 cell array</td>
</tr>
<tr>
<td>HybridInterval</td>
<td>Interval (if not 'end' or 'never') at which HybridFcn is called</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>InitialTemperature</td>
<td>Initial value of temperature</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MaxFunEvals</td>
<td>Maximum number of objective function evaluations allowed</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxIter</td>
<td>Maximum number of iterations allowed</td>
<td>Positive integer</td>
</tr>
<tr>
<td>ObjectiveLimit</td>
<td>Minimum objective function value desired</td>
<td>Scalar</td>
</tr>
<tr>
<td>OutputFcns</td>
<td>Function(s) get(s) iterative data and can change options at runtime</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td>PlotFcns</td>
<td>Plot function(s) called during iterations</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Plot functions are called at every interval</td>
<td>Positive integer</td>
</tr>
<tr>
<td>ReannealInterval</td>
<td>Reannealing interval</td>
<td>Positive integer</td>
</tr>
<tr>
<td>StallIterLimit</td>
<td>Number of iterations over which average change in fitness function value at</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>current point is less than options.TolFun</td>
<td></td>
</tr>
<tr>
<td>TemperatureFcn</td>
<td>Function used to update temperature schedule</td>
<td>Function handle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimeLimit</td>
<td>The algorithm stops after running for TimeLimit seconds</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>TolFun</td>
<td>Termination tolerance on function value</td>
<td>Positive scalar</td>
</tr>
</tbody>
</table>

Example: `options = saoptimset('MaxIter',150)`

Data Types: `struct`
problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

• objective — Objective function
• x0 — Starting point
• lb — Lower bound for x
• ub — Upper bound for x
• solver — ’simulannealbnd’
• options — Options structure created with saoptimset
• rngstate — Optional field to reset the state of the random number generator

Create the structure problem by exporting a problem from the Optimization app, as described in “Importing and Exporting Your Work” in the Optimization Toolbox documentation.

Note problem must have all the fields as specified above.

Data Types: struct

Output Arguments

x — Solution
real vector

Solution, returned as a real vector. The size of x is the same as the size of x0. Typically, x is a local solution to the problem when exitflag is positive.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason simulannealbnd stopped
integer
Reason `simulannealbnd` stopped, returned as an integer.

<table>
<thead>
<tr>
<th>Exit Flag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Average change in the value of the objective function over <code>options.StallIterLimit</code> iterations is less than <code>options.TolFun</code>.</td>
</tr>
<tr>
<td>5</td>
<td><code>options.ObjectiveLimit</code> limit reached.</td>
</tr>
<tr>
<td>0</td>
<td>Maximum number of function evaluations or iterations reached.</td>
</tr>
<tr>
<td>-1</td>
<td>Optimization terminated by an output function or plot function.</td>
</tr>
<tr>
<td>-2</td>
<td>No feasible point found.</td>
</tr>
<tr>
<td>-5</td>
<td>Time limit exceeded.</td>
</tr>
</tbody>
</table>

output — Information about the optimization process

structure

Information about the optimization process, returned as a structure with fields:

- `problemtype` — Type of problem: unconstrained or bound constrained.
- `iterations` — The number of iterations computed.
- `funccount` — The number of evaluations of the objective function.
- `message` — The reason the algorithm terminated.
- `temperature` — Temperature when the solver terminated.
- `totaltime` — Total time for the solver to run.
- `rngstate` — State of the MATLAB random number generator, just before the algorithm started. You can use the values in `rngstate` to reproduce the output of `simulannealbnd`. See “Reproduce Your Results” on page 7-18.

More About

- “Optimization Workflow” on page 1-16
- “What Is Simulated Annealing?” on page 7-2
- “Optimize Using Simulated Annealing” on page 7-3
- “Simulated Annealing Terminology” on page 7-10
- “How Simulated Annealing Works” on page 7-12
- “Command Line Simulated Annealing Optimization” on page 7-15
See Also

ga | patternsearch | saoptimset

Introduced in R2007a