<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 1993</td>
<td>First printing</td>
<td></td>
</tr>
<tr>
<td>October 1994</td>
<td>Second printing</td>
<td></td>
</tr>
<tr>
<td>May 1997</td>
<td>Third printing</td>
<td>Revised for Version 2</td>
</tr>
<tr>
<td>May 2000</td>
<td>Fourth printing</td>
<td>Minor changes</td>
</tr>
<tr>
<td>June 2001</td>
<td>Fifth printing</td>
<td>Minor changes</td>
</tr>
<tr>
<td>July 2002</td>
<td>Online only</td>
<td>Revised for Version 2.1.3 (Release 13)</td>
</tr>
<tr>
<td>October 2002</td>
<td>Online only</td>
<td>Revised for Version 3.0.1</td>
</tr>
<tr>
<td>December 2002</td>
<td>Sixth printing</td>
<td></td>
</tr>
<tr>
<td>June 2004</td>
<td>Seventh printing</td>
<td>Revised for Version 3.1 (Release 14)</td>
</tr>
<tr>
<td>October 2004</td>
<td>Online only</td>
<td>Revised for Version 3.1.1 (Release 14SP1)</td>
</tr>
<tr>
<td>March 2005</td>
<td>Online only</td>
<td>Revised for Version 3.1.2 (Release 14SP2)</td>
</tr>
<tr>
<td>September 2005</td>
<td>Online only</td>
<td>Revised for Version 3.1.3 (Release 14SP3)</td>
</tr>
<tr>
<td>March 2006</td>
<td>Online only</td>
<td>Revised for Version 3.1.4 (Release 2006a)</td>
</tr>
<tr>
<td>September 2006</td>
<td>Online only</td>
<td>Revised for Version 3.1.5 (Release 2006b)</td>
</tr>
<tr>
<td>March 2007</td>
<td>Online only</td>
<td>Revised for Version 3.2 (Release 2007a)</td>
</tr>
<tr>
<td>September 2007</td>
<td>Online only</td>
<td>Revised for Version 3.2.2 (Release 2007b)</td>
</tr>
<tr>
<td>March 2008</td>
<td>Online only</td>
<td>Revised for Version 3.2.3 (Release 2008a)</td>
</tr>
<tr>
<td>October 2008</td>
<td>Online only</td>
<td>Revised for Version 3.2.3 (Release 2008a+)</td>
</tr>
<tr>
<td>October 2008</td>
<td>Online only</td>
<td>Revised for Version 3.1.1 (Release 2008b)</td>
</tr>
<tr>
<td>November 2008</td>
<td>Online only</td>
<td>Revised for Version 4.9 (Release 2007b+)</td>
</tr>
<tr>
<td>March 2009</td>
<td>Online only</td>
<td>Revised for Version 5.2 (Release 2009a)</td>
</tr>
<tr>
<td>September 2009</td>
<td>Online only</td>
<td>Revised for Version 5.3 (Release 2009b)</td>
</tr>
<tr>
<td>March 2010</td>
<td>Online only</td>
<td>Revised for Version 5.4 (Release 2010a)</td>
</tr>
<tr>
<td>September 2010</td>
<td>Online only</td>
<td>Revised for Version 5.5 (Release 2010b)</td>
</tr>
<tr>
<td>April 2011</td>
<td>Online only</td>
<td>Revised for Version 5.6 (Release 2011a)</td>
</tr>
<tr>
<td>September 2011</td>
<td>Online only</td>
<td>Revised for Version 5.7 (Release 2011b)</td>
</tr>
<tr>
<td>March 2012</td>
<td>Online only</td>
<td>Revised for Version 5.8 (Release 2012a)</td>
</tr>
<tr>
<td>September 2012</td>
<td>Online only</td>
<td>Revised for Version 5.9 (Release 2012b)</td>
</tr>
<tr>
<td>March 2013</td>
<td>Online only</td>
<td>Revised for Version 5.10 (Release 2013a)</td>
</tr>
<tr>
<td>September 2013</td>
<td>Online only</td>
<td>Revised for Version 5.11 (Release 2013b)</td>
</tr>
<tr>
<td>March 2014</td>
<td>Online only</td>
<td>Revised for Version 6.0 (Release 2014a)</td>
</tr>
<tr>
<td>October 2014</td>
<td>Online only</td>
<td>Revised for Version 6.1 (Release 2014b)</td>
</tr>
<tr>
<td>March 2015</td>
<td>Online only</td>
<td>Revised for Version 6.2 (Release 2015a)</td>
</tr>
<tr>
<td>September 2015</td>
<td>Online only</td>
<td>Revised for Version 6.3 (Release 2015b)</td>
</tr>
</tbody>
</table>
Acknowledgments

Getting Started

Symbolic Math Toolbox Product Description 1-2
Key Features ... 1-2

Access Symbolic Math Toolbox Functionality 1-3
Work from MATLAB 1-3
Work from MuPAD 1-3

Create Symbolic Numbers, Variables, and Expressions 1-4
Create Symbolic Numbers 1-4
Create Symbolic Variables 1-5
Create Symbolic Expressions 1-5
Reuse Names of Symbolic Objects 1-6

Create Symbolic Functions 1-8

Create Symbolic Matrices 1-9
Use Existing Symbolic Variables 1-9
Generate Elements While Creating a Matrix 1-10
Create Matrix of Symbolic Numbers 1-10

Perform Symbolic Computations 1-12
Differentiate Symbolic Expressions 1-12
Integrate Symbolic Expressions 1-13
Solve Equations .. 1-15
Simplify Symbolic Expressions 1-17
Substitutions in Symbolic Expressions 1-18
Using Symbolic Math Toolbox Software

Find Symbolic Variables in Expressions, Functions, Matrices .. 2-4
Find a Default Symbolic Variable ... 2-5

Differentiation ... 2-6
Derivatives of Expressions with Several Variables 2-7
More Examples .. 2-8

Solve Wave Equation Using Functional Derivatives 2-12

Limits ... 2-20
One-Sided Limits .. 2-20

Integration ... 2-23
Integration with Real Parameters .. 2-26
Integration with Complex Parameters 2-28

Symbolic Summation ... 2-30
Comparing symsum and sum ... 2-30
Computational Speed of symsum versus sum 2-31
Output Format Differences Between symsum and sum 2-31

Taylor Series .. 2-33

Padé Approximant ... 2-36

Find Asymptotes, Critical and Inflection Points 2-45
Define a Function ... 2-45
Find Asymptotes ... 2-46
Find Maximum and Minimum ... 2-48
Find Inflection Point .. 2-50

Simplify Symbolic Expressions .. 2-53
- Simplify Using Options ... 2-55
- Simplify Using Assumptions 2-57
- Simplify Fractions .. 2-57

Abbreviate Common Terms in Long Expressions 2-59

Choose Function to Rearrange Expression 2-61
- Combine Terms of Same Algebraic Structures 2-61
- Expand Expressions .. 2-63
- Factor Expressions ... 2-64
- Extract Subexpressions from Expression 2-66
- Collect Terms with Same Powers 2-67
- Rewrite Expressions in Terms of Other Functions 2-68
- Compute Partial Fraction Decompositions of Expressions .. 2-69
- Compute Normal Forms of Rational Expressions 2-70
- Represent Polynomials Using Horner Nested Forms 2-70

Extract Polynomial Coefficients 2-72

Extract Numerators and Denominators of Rational Expressions .. 2-74

Substitute Variables in Symbolic Expressions 2-76

Substitute Elements in Symbolic Matrices 2-78

Substitute Scalars with Matrices 2-80

Use subs to Evaluate Expressions and Functions 2-82
- Evaluate Expressions ... 2-82
- Evaluate Functions .. 2-83

Choose Symbolic or Numeric Arithmetic 2-85
- Symbolic Arithmetic .. 2-85
- Variable-Precision Arithmetic 2-85
- Double-Precision Arithmetic 2-86

Control Precision of Numerical Computations 2-87
Recognize and Avoid Round-Off Errors .. 2-89
 Use Symbolic Computations When Possible 2-89
 Perform Calculations with Increased Precision 2-90
 Compare Symbolic and Numeric Results 2-92
 Plot the Function or Expression 2-92

Improve Performance of Numeric Computations 2-94

Numeric to Symbolic Conversion ... 2-95
 Conversion to Rational Symbolic Form 2-97
 Conversion by Using Floating-Point Expansion 2-97
 Conversion to Rational Symbolic Form with Error Term 2-97
 Conversion to Decimal Form ... 2-97

Basic Algebraic Operations .. 2-99

Linear Algebraic Operations ... 2-101

Eigenvalues ... 2-107

Jordan Canonical Form .. 2-112

Singular Value Decomposition ... 2-114

Solve Algebraic Equation .. 2-116
 Solve an Equation .. 2-116
 Return the Full Solution to an Equation 2-117
 Work with the Full Solution, Parameters, and Conditions
 Returned by solve .. 2-117
 Visualize and Plot Solutions Returned by solve 2-118
 Simplify Complicated Results and Improve Performance 2-120

Select Numeric or Symbolic Solver ... 2-121

Solve System of Algebraic Equations 2-123
 Handle the Output of solve ... 2-123
 Solve a Linear System of Equations 2-125
 Return the Full Solution of a System of Equations 2-126
 Solve a System of Equations Under Conditions 2-128
 Work with Solutions, Parameters, and Conditions Returned by
 solve .. 2-129
 Convert Symbolic Results to Numeric Values 2-132
 Simplify Complicated Results and Improve Performance 2-133
Resolve Complicated Solutions or Stuck Solver 2-134
 Return Only Real Solutions 2-134
 Apply Simplification Rules 2-134
 Use Assumptions to Narrow Results 2-135
 Simplify Solutions .. 2-137
 Tips .. 2-137

Solve System of Linear Equations 2-139
 Solve System of Linear Equations Using linsolve 2-139
 Solve System of Linear Equations Using solve 2-140

Solve Equations Numerically 2-142
 Find All Roots of a Polynomial Function 2-142
 Find Zeros of a Nonpolynomial Function Using Search Ranges
 and Starting Points ... 2-143
 Obtain Solutions to Arbitrary Precision 2-147
 Solve Multivariate Equations Using Search Ranges 2-148

Solve a Single Differential Equation 2-153
 First-Order Linear ODE ... 2-153
 Nonlinear ODE .. 2-154
 Second-Order ODE with Initial Conditions 2-154
 Third-Order ODE .. 2-155
 More ODE Examples .. 2-155

Solve a System of Differential Equations 2-157
 Solve System of Differential Equations 2-157
 Solve Differential Equations in Matrix Form 2-159

Differential Algebraic Equations 2-163

Set Up Your DAE Problem ... 2-164
 Step 1: Equations and Variables 2-165
 Step 2: Differential Order 2-166
 Step 3: Differential Index 2-166
 Step 4: MATLAB Function Handles 2-166
 Step 5: Consistent Initial Conditions 2-167
 Step 6: ODE Solvers .. 2-167
 Solving DAE Systems Flow Chart 2-167

Reduce Differential Order of DAE Systems 2-169
Check and Reduce Differential Index .. 2-171
 Reduce Differential Index to 1 ... 2-171
 Reduce Differential Index to 0 ... 2-173

Convert DAE Systems to MATLAB Function Handles 2-175
 DAEs to Function Handles for ode15i 2-175
 ODEs to Function Handles for ode15i 2-177
 DAEs to Function Handles for ode15s and ode23t 2-178
 ODEs to Function Handles for ode15s and ode23t 2-179

Find Consistent Initial Conditions .. 2-182
 DAEs: Initial Conditions for ode15i 2-182
 ODEs: Initial Conditions for ode15i 2-184
 DAEs: Initial Conditions for ode15s and ode23t 2-185
 ODEs: Initial Conditions for ode15s and ode23t 2-186

Solve DAE Systems Using MATLAB ODE Solvers 2-188
 Solve a DAE System with ode15i 2-188
 Solve an ODE System with ode15i 2-189
 Solve a DAE System with ode15s 2-190
 Solve an ODE System with ode15s 2-191

Compute Fourier and Inverse Fourier Transforms 2-193

Compute Laplace and Inverse Laplace Transforms 2-199

Compute Z-Transforms and Inverse Z-Transforms 2-206
 References ... 2-208

Diffraction of Light ... 2-210

Create Plots ... 2-214
 Plot with Symbolic Plotting Functions 2-214
 Plot with MATLAB Plotting Functions 2-217
 Plot Multiple Symbolic Functions in One Graph 2-219
 Plot Multiple Symbolic Functions in One Figure 2-221
 Combine Symbolic Function Plots and Numeric Data Plots 2-223

Explore Function Plots .. 2-228

Edit Graphs ... 2-230

Save Graphs ... 2-231
Generate C or Fortran Code .. 2-232

Generate MATLAB Functions .. 2-234
 Generating a Function Handle 2-234
 Control the Order of Variables 2-235
 Generate a File .. 2-235
 Name Output Variables ... 2-236
 Convert MuPAD Expressions 2-237

Generate MATLAB Function Blocks 2-239
 Generate and Edit a Block 2-239
 Control the Order of Input Ports 2-239
 Name the Output Ports ... 2-240
 Convert MuPAD Expressions 2-240

Generate Simscape Equations 2-241
 Convert Algebraic and Differential Equations 2-241
 Convert MuPAD Equations 2-243
 Limitations ... 2-243

MuPAD in Symbolic Math Toolbox

MuPAD Engines and MATLAB Workspace 3-2

Create MuPAD Notebooks ... 3-3
 If You Need Communication Between Interfaces 3-3
 If You Use MATLAB to Access MuPAD 3-4

Open MuPAD Notebooks ... 3-6
 If You Need Communication Between Interfaces 3-6
 If You Use MATLAB to Access MuPAD 3-7
 Open MuPAD Program Files and Graphics 3-9

Save MuPAD Notebooks ... 3-12

Evaluate MuPAD Notebooks from MATLAB 3-13

Close MuPAD Notebooks from MATLAB 3-16
Edit MuPAD Code in MATLAB Editor ... 3-18
 Comments in MuPAD Procedures ... 3-19

Notebook Files and Program Files ... 3-20

Source Code of the MuPAD Library Functions 3-21

Differences Between MATLAB and MuPAD Syntax 3-22

Copy Variables and Expressions Between MATLAB and
MuPAD .. 3-25
 Copy and Paste Using the System Clipboard 3-27

Reserved Variable and Function Names 3-29

Call Built-In MuPAD Functions from MATLAB 3-31
 evalin ... 3-31
 feval .. 3-31
 evalin vs. feval ... 3-32
 Floating-Point Arguments of evalin and feval 3-33

Computations in MATLAB Command Window vs. MuPAD
Notebook App .. 3-34
 Results Displayed in Typeset Math .. 3-35
 Graphics and Animations ... 3-35
 More Functionality in Specialized Mathematical Areas 3-36
 More Options for Common Symbolic Functions 3-36
 Possibility to Expand Existing Functionality 3-37

Use Your Own MuPAD Procedures .. 3-38
 Write MuPAD Procedures ... 3-38
 Steps to Take Before Calling a Procedure 3-39
 Call Your Own MuPAD Procedures 3-40

Clear Assumptions and Reset the Symbolic Engine 3-43
 Check Assumptions Set On Variables 3-44
 Effects of Assumptions on Computations 3-45

Create MATLAB Functions from MuPAD Expressions 3-47
 Copy MuPAD Variables to the MATLAB Workspace 3-48
 Generate MATLAB Code in a MuPAD Notebook 3-49
Create MATLAB Function Blocks from MuPAD Expressions .. 3-50

Create Simscape Equations from MuPAD Expressions ... 3-52
 Generate Simscape Equations in the MuPAD Notebook App 3-52
 Generate Simscape Equations in the MATLAB Command Window 3-53

Functions — Alphabetical List
Acknowledgments

The MuPAD® documentation is © COPYRIGHT 1997–2015 by SciFace Software GmbH & Co. KG.

MuPAD is a registered trademark of SciFace Software GmbH & Co. KG. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.
Getting Started

- “Symbolic Math Toolbox Product Description” on page 1-2
- “Access Symbolic Math Toolbox Functionality” on page 1-3
- “Create Symbolic Numbers, Variables, and Expressions” on page 1-4
- “Create Symbolic Functions” on page 1-8
- “Create Symbolic Matrices” on page 1-9
- “Perform Symbolic Computations” on page 1-12
- “Use Assumptions on Symbolic Variables” on page 1-27
Symbolic Math Toolbox Product Description

Perform symbolic math computations

Symbolic Math Toolbox provides functions for solving and manipulating symbolic math expressions and performing variable-precision arithmetic. You can analytically perform differentiation, integration, simplification, transforms, and equation solving. You can also generate code for MATLAB, Simulink®, and Simscape™ from symbolic math expressions.

Symbolic Math Toolbox includes the MuPAD language, which is optimized for handling and operating on symbolic math expressions. It provides libraries of MuPAD functions in common mathematical areas, such as calculus and linear algebra, and in specialized areas, such as number theory and combinatorics. You can also write custom symbolic functions and libraries in the MuPAD language. The MuPAD Notebook app lets you document symbolic math derivations with embedded text, graphics, and typeset math. You can share the annotated derivations as HTML or as a PDF.

Key Features

- Symbolic integration, differentiation, transforms, and linear algebra
- Algebraic and ordinary differential equation (ODE) solvers
- Simplification and manipulation of symbolic expressions
- Code generation from symbolic expressions for MATLAB, Simulink, Simscape, C, Fortran, MathML, and TeX
- Variable-precision arithmetic
- MuPAD Notebook for performing and documenting symbolic calculations
- MuPAD language and function libraries for combinatorics, number theory, and other mathematical areas
Access Symbolic Math Toolbox Functionality

In this section...

“Work from MATLAB” on page 1-3
“Work from MuPAD” on page 1-3

Work from MATLAB

You can access the Symbolic Math Toolbox functionality directly from the MATLAB Command Window. This environment lets you call functions using familiar MATLAB syntax.

Work from MuPAD

You can access the Symbolic Math Toolbox functionality from the MuPAD Notebook app using the MuPAD language. The MuPAD Notebook app includes a symbol palette for accessing common MuPAD functions. All results are displayed in typeset math. You also can convert the results into MathML and TeX. You can embed graphics, animations, and descriptive text within your notebook.

A debugger and other programming utilities provide tools for authoring custom symbolic functions and libraries in the MuPAD language. The MuPAD language supports multiple programming styles including imperative, functional, and object-oriented programming. The language treats variables as symbolic by default and is optimized for handling and operating on symbolic math expressions. You can call functions written in the MuPAD language from the MATLAB Command Window. For more information, see “Call Built-In MuPAD Functions from MATLAB” on page 3-31

If you are a new user of the MuPAD Notebook app, see Getting Started with MuPAD.
Create Symbolic Numbers, Variables, and Expressions

This page shows how to create symbolic numbers, variables, and expressions. To learn how to work with symbolic math, see “Perform Symbolic Computations” on page 1-12.

Create Symbolic Numbers

You can create symbolic numbers by using `sym`. Symbolic numbers are exact representations, unlike floating-point numbers.

Create a symbolic number by using `sym` and compare it to the same floating-point number.

```
sym(1/3)
1/3
ans =
1/3
ans =
    0.3333
```

The symbolic number is represented in exact rational form, while the floating-point number is a decimal approximation. The symbolic result is not indented, while the standard MATLAB result is indented.

Calculations on symbolic numbers are exact. Demonstrate this exactness by finding `sin(pi)` symbolically and numerically. The symbolic result is exact, while the numeric result is an approximation.

```
sin(sym(pi))
sin(pi)
```

```
ans =
0
ans =
    1.2246e-16
```

To learn more about symbolic representation of numbers, see “Numeric to Symbolic Conversion” on page 2-95.
Create Symbolic Variables

You can use two ways to create symbolic variables, `syms` and `sym`. The `syms` syntax is a shorthand for `sym`.

Create symbolic variables `x` and `y` using `syms` and `sym` respectively.

```
syms x
y = sym('y')
```

The first command creates a symbolic variable `x` in the MATLAB workspace with the value `x` assigned to the variable `x`. The second command creates a symbolic variable `y` with value `y`. Therefore, the commands are equivalent.

With `syms`, you can create multiple variables in one command. Create the variables `a`, `b`, and `c`.

```
syms a b c
```

If you want to create many variables, the `syms` syntax is inconvenient. Instead of using `syms`, use `sym` to create many numbered variables.

Create the variables `a1`, ..., `a20`.

```
A = sym('a', [1 20])
```

```
A = 
[ a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,...
a11, a12, a13, a14, a15, a16, a17, a18, a19, a20]
```

The `syms` command is a convenient shorthand for the `sym` syntax. Use the `sym` syntax when you create many variables, when the variable value differs from the variable name, or when you create a symbolic number, such as `sym(5)`.

Create Symbolic Expressions

Suppose you want to use a symbolic variable to represent the golden ratio

\[
\varphi = \frac{1 + \sqrt{5}}{2}
\]

The command
\[
\phi = \frac{1 + \sqrt{\text{sym}(5)}}{2};
\]
achieves this goal. Now you can perform various mathematical operations on \(\phi\). For example,
\[
f = \phi^2 - \phi - 1
\]
returns
\[
f = (5^{1/2}/2 + 1/2)^2 - 5^{1/2}/2 - 3/2
\]
Now suppose you want to study the quadratic function \(f = ax^2 + bx + c\). First, create the symbolic variables \(a\), \(b\), \(c\), and \(x\):
\[
\text{syms } a \ b \ c \ x
\]
Then, assign the expression to \(f\):
\[
f = a*x^2 + b*x + c;
\]
Tip To create a symbolic number, use the \texttt{sym} command. Do not use the \texttt{syms} function to create a symbolic expression that is a constant. For example, to create the expression whose value is 5, enter \(f = \text{sym}(5)\). The command \(f = 5\) does \textit{not} define \(f\) as a symbolic expression.

Reuse Names of Symbolic Objects

If you set a variable equal to a symbolic expression, and then apply the \texttt{syms} command to the variable, MATLAB software removes the previously defined expression from the variable. For example,
\[
\begin{align*}
\text{syms } a \ b \\
f &= a + b
\end{align*}
\]
returns
\[
\begin{align*}
f &= \\
a + b
\end{align*}
\]
If later you enter
syms f
f

then MATLAB removes the value a + b from the expression f:

f =
f

You can use the syms command to clear variables of definitions that you previously assigned to them in your MATLAB session. However, syms does not clear the following assumptions of the variables: complex, real, integer, and positive. These assumptions are stored separately from the symbolic object. For more information, see “Delete Symbolic Objects and Their Assumptions” on page 1-28.
Create Symbolic Functions

You also can use `sym` and `syms` to create symbolic functions. For example, you can create an arbitrary function $f(x, y)$ where x and y are function variables. The simplest way to create an arbitrary symbolic function is to use `syms`:

```matlab
syms f(x, y)
```

This syntax creates the symbolic function f and symbolic variables x and y. If instead of an arbitrary symbolic function you want to create a function defined by a particular mathematical expression, use this two-step approach. First, create symbolic variables representing the arguments of the function:

```matlab
syms x y
```

Then assign a mathematical expression to the function. In this case, the assignment operation also creates the new symbolic function:

```matlab
f(x, y) = x^3*y^3
```

Note that the body of the function must be a symbolic number, variable, or expression. Assigning a number, such as $f(x,y) = 1$, causes an error.

After creating a symbolic function, you can differentiate, integrate, or simplify it, substitute its arguments with values, and perform other mathematical operations. For example, find the second derivative on $f(x, y)$ with respect to variable y. The result $d2fy$ is also a symbolic function.

```matlab
d2fy = diff(f, y, 2)
```

```matlab
d2fy(x, y) = 6*x^3*y
```

Now evaluate $f(x, y)$ for $x = y + 1$:

```matlab
f(y + 1, y)
```

```matlab
ans = y^3*(y + 1)^3
```
Create Symbolic Matrices

In this section...

“Use Existing Symbolic Variables” on page 1-9
“Generate Elements While Creating a Matrix” on page 1-10
“Create Matrix of Symbolic Numbers” on page 1-10

Use Existing Symbolic Variables

A circulant matrix has the property that each row is obtained from the previous one by cyclically permuting the entries one step forward. For example, create the symbolic circulant matrix whose elements are \(a\), \(b\), and \(c\), using the commands:

\[
\text{syms } a \ b \ c \\
A = [a \ b \ c; c \ a \ b; b \ c \ a]
\]

\[
A = \\
[a, b, c] \\
[c, a, b] \\
[b, c, a]
\]

Since matrix \(A\) is circulant, the sum of elements over each row and each column is the same. Find the sum of all the elements of the first row:

\[
\text{sum}(A(1,:))
\]

\[
an = \\
a + b + c
\]

To check if the sum of the elements of the first row equals the sum of the elements of the second column, use the \texttt{isAlways} function:

\[
\text{isAlways}(\text{sum}(A(1,:)) == \text{sum}(A(:,2)))
\]

The sums are equal:

\[
an = \\
1
\]

From this example, you can see that using symbolic objects is very similar to using regular MATLAB numeric objects.
Generate Elements While Creating a Matrix

The `sym` function also lets you define a symbolic matrix or vector without having to define its elements in advance. In this case, the `sym` function generates the elements of a symbolic matrix at the same time that it creates a matrix. The function presents all generated elements using the same form: the base (which must be a valid variable name), a row index, and a column index. Use the first argument of `sym` to specify the base for the names of generated elements. You can use any valid variable name as a base. To check whether the name is a valid variable name, use the `isvarname` function. By default, `sym` separates a row index and a column index by underscore. For example, create the 2-by-4 matrix `A` with the elements `A1_1, ... , A2_4`:

\[
A = \text{sym}(\text{	extquoteleft}A\text{	extquoteleft}, [2 4])
\]

\[
A = \begin{bmatrix}
A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\
A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4}
\end{bmatrix}
\]

To control the format of the generated names of matrix elements, use `%%d` in the first argument:

\[
A = \text{sym}(\text{	extquoteleft}A%%d%%d\text{	extquoteleft}, [2 4])
\]

\[
A = \begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24}
\end{bmatrix}
\]

Create Matrix of Symbolic Numbers

A particularly effective use of `sym` is to convert a matrix from numeric to symbolic form. The command

\[
A = \text{hilb}(3)
\]

generates the 3-by-3 Hilbert matrix:

\[
A = \begin{bmatrix}
1.0000 & 0.5000 & 0.3333 \\
0.5000 & 0.3333 & 0.2500 \\
0.3333 & 0.2500 & 0.2000
\end{bmatrix}
\]

By applying `sym` to `A`

\[
A = \text{sym}(A)
\]
you can obtain the precise symbolic form of the 3-by-3 Hilbert matrix:

\[
A = \\
[1, \frac{1}{2}, \frac{1}{3}] \\
[\frac{1}{2}, \frac{1}{3}, \frac{1}{4}] \\
[\frac{1}{3}, \frac{1}{4}, \frac{1}{5}]
\]

For more information on numeric to symbolic conversions, see “Numeric to Symbolic Conversion” on page 2-95.
Perform Symbolic Computations

In this section...

“Differentiate Symbolic Expressions” on page 1-12
“Integrate Symbolic Expressions” on page 1-13
“Solve Equations” on page 1-15
“Simplify Symbolic Expressions” on page 1-17
“Substitutions in Symbolic Expressions” on page 1-18
“Plot Symbolic Functions” on page 1-21

Differentiate Symbolic Expressions

With the Symbolic Math Toolbox software, you can find

• Derivatives of single-variable expressions
• Partial derivatives
• Second and higher order derivatives
• Mixed derivatives

For in-depth information on taking symbolic derivatives see “Differentiation” on page 2-6.

Expressions with One Variable

To differentiate a symbolic expression, use the diff command. The following example illustrates how to take a first derivative of a symbolic expression:

```matlab
syms x
f = sin(x)^2;
diff(f)
```

```matlab
ans =
2*cos(x)*sin(x)
```

Partial Derivatives

For multivariable expressions, you can specify the differentiation variable. If you do not specify any variable, MATLAB chooses a default variable by its proximity to the letter x:
syms x y
f = sin(x)^2 + cos(y)^2;
diff(f)

ans =
2*cos(x)*sin(x)

For the complete set of rules MATLAB applies for choosing a default variable, see “Find a Default Symbolic Variable” on page 2-5.

To differentiate the symbolic expression f with respect to a variable y, enter:

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y)

ans =
-2*cos(y)*sin(y)

Second Partial and Mixed Derivatives

To take a second derivative of the symbolic expression f with respect to a variable y, enter:

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y, 2)

ans =
2*sin(y)^2 - 2*cos(y)^2

You get the same result by taking derivative twice: **diff(diff(f, y))**. To take mixed derivatives, use two differentiation commands. For example:

syms x y
f = sin(x)^2 + cos(y)^2;
diff(diff(f, y), x)

ans =
0

Integrate Symbolic Expressions

You can perform symbolic integration including:

- Indefinite and definite integration
• Integration of multivariable expressions

For in-depth information on the `int` command including integration with real and complex parameters, see “Integration” on page 2-23.

Indefinite Integrals of One-Variable Expressions

Suppose you want to integrate a symbolic expression. The first step is to create the symbolic expression:

```matlab
syms x
f = sin(x)^2;
```

To find the indefinite integral, enter

```matlab
int(f)
```

```matlab
ans =
x/2 - sin(2*x)/4
```

Indefinite Integrals of Multivariable Expressions

If the expression depends on multiple symbolic variables, you can designate a variable of integration. If you do not specify any variable, MATLAB chooses a default variable by the proximity to the letter `x`:

```matlab
syms x y n
f = x^n + y^n;
int(f)
```

```matlab
ans =
x*y^n + (x*x^n)/(n + 1)
```

For the complete set of rules MATLAB applies for choosing a default variable, see “Find a Default Symbolic Variable” on page 2-5.

You also can integrate the expression `f = x^n + y^n` with respect to `y`:

```matlab
syms x y n
f = x^n + y^n;
int(f, y)
```

```matlab
ans =
x^n*y + (y*y^n)/(n + 1)
```

If the integration variable is `n`, enter
syms x y n
f = x^n + y^n;
int(f, n)

ans =
x^n/log(x) + y^n/log(y)

Definite Integrals

To find a definite integral, pass the limits of integration as the final two arguments of the `int` function:

syms x y n
f = x^n + y^n;
int(f, 1, 10)

ans =
piecewise([n == -1, log(10) + 9/y],...
 [n ~= -1, (10*10^n - 1)/(n + 1) + 9*y^n])

If MATLAB Cannot Find a Closed Form of an Integral

If the `int` function cannot compute an integral, it returns an unresolved integral:

syms x
int(sin(sinh(x)))

ans =
int(sin(sinh(x)), x)

Solve Equations

You can solve different types of symbolic equations including:

- Algebraic equations with one symbolic variable
- Algebraic equations with several symbolic variables
- Systems of algebraic equations

For in-depth information on solving symbolic equations including differential equations, see “Equation Solving”.

Solve Algebraic Equations with One Symbolic Variable

Use the double equal sign (==) to define an equation. Then you can `solve` the equation by calling the `solve` function. For example, solve this equation:
syms x
solve(x^3 - 6*x^2 == 6 - 11*x)
ans =
 1
 2
 3

If you do not specify the right side of the equation, solve assumes that it is zero:

syms x
solve(x^3 - 6*x^2 + 11*x - 6)
ans =
 1
 2
 3

Solve Algebraic Equations with Several Symbolic Variables

If an equation contains several symbolic variables, you can specify a variable for which this equation should be solved. For example, solve this multivariable equation with respect to y:

syms x y
solve(6*x^2 - 6*x^2*y + x*y^2 - x*y + y^3 - y^2 == 0, y)
ans =
 1
 2*x
 -3*x

If you do not specify any variable, you get the solution of an equation for the alphabetically closest to x variable. For the complete set of rules MATLAB applies for choosing a default variable see “Find a Default Symbolic Variable” on page 2-5.

Solve Systems of Algebraic Equations

You also can solve systems of equations. For example:

syms x y z
[x, y, z] = solve(z == 4*x, x == y, z == x^2 + y^2)
x =
 0
Perform Symbolic Computations

2
y = 0
2
z = 0
8

Simplify Symbolic Expressions

Symbolic Math Toolbox provides a set of simplification functions allowing you to manipulate the output of a symbolic expression. For example, the following polynomial of the golden ratio ϕ

\[
\phi = \text{sym}('\frac{1 + \sqrt{5}}{2}');
\]
\[
f = \phi^2 - \phi - 1
\]

returns

\[
f = \left(\frac{\sqrt{5}}{2} + \frac{1}{2}\right)^2 - \frac{\sqrt{5}}{2} - \frac{3}{2}
\]

You can simplify this answer by entering

\[
simplify(f)
\]

and get a very short answer:

\[
\text{ans} = 0
\]

Symbolic simplification is not always so straightforward. There is no universal simplification function, because the meaning of a simplest representation of a symbolic expression cannot be defined clearly. Different problems require different forms of the same mathematical expression. Knowing what form is more effective for solving your particular problem, you can choose the appropriate simplification function.

For example, to show the order of a polynomial or symbolically differentiate or integrate a polynomial, use the standard polynomial form with all the parentheses multiplied out and all the similar terms summed up. To rewrite a polynomial in the standard form, use the \texttt{expand} function:
syms x
f = (x^2 - 1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1);
expand(f)

ans =
x^10 - 1

The factor simplification function shows the polynomial roots. If a polynomial cannot be factored over the rational numbers, the output of the factor function is the standard polynomial form. For example, to factor the third-order polynomial, enter:

syms x
g = x^3 + 6*x^2 + 11*x + 6;
factor(g)

ans =
[x + 3, x + 2, x + 1]

The nested (Horner) representation of a polynomial is the most efficient for numerical evaluations:

syms x
h = x^5 + x^4 + x^3 + x^2 + x;
horner(h)

ans =
x*(x*(x*(x*(x + 1) + 1) + 1) + 1)

For a list of Symbolic Math Toolbox simplification functions, see “Choose Function to Rearrange Expression” on page 2-61.

Substitutions in Symbolic Expressions

Substitute Symbolic Variables with Numbers

You can substitute a symbolic variable with a numeric value by using the subs function. For example, evaluate the symbolic expression \(f \) at the point \(x = 1/3 \):

syms x
f = 2*x^2 - 3*x + 1;
subs(f, 1/3)

ans =
2/9
The `subs` function does not change the original expression `f`:

```matlab
f
```

```matlab
f = 2*x^2 - 3*x + 1
```

Substitute in Multivariate Expressions

When your expression contains more than one variable, you can specify the variable for which you want to make the substitution. For example, to substitute the value `x = 3` in the symbolic expression

```matlab
syms x y
f = x^2*y + 5*x*sqrt(y);
```

enter the command

```matlab
subs(f, x, 3)
```

```matlab
ans = 9*y + 15*y^(1/2)
```

Substitute One Symbolic Variable for Another

You also can substitute one symbolic variable for another symbolic variable. For example to replace the variable `y` with the variable `x`, enter

```matlab
subs(f, y, x)
```

```matlab
ans = x^3 + 5*x^(3/2)
```

Substitute a Matrix into a Polynomial

You can also substitute a matrix into a symbolic polynomial with numeric coefficients. There are two ways to substitute a matrix into a polynomial: element by element and according to matrix multiplication rules.

Element-by-Element Substitution

To substitute a matrix at each element, use the `subs` command:

```matlab
syms x
f = x^3 - 15*x^2 - 24*x + 350;
A = [1 2 3; 4 5 6];
```
subs(f,A)

ans =
[312, 250, 170]
[78, -20, -118]

You can do element-by-element substitution for rectangular or square matrices.

Substitution in a Matrix Sense

If you want to substitute a matrix into a polynomial using standard matrix multiplication rules, a matrix must be square. For example, you can substitute the magic square A into a polynomial f:

1. Create the polynomial:
   ```matlab
   syms x
   f = x^3 - 15*x^2 - 24*x + 350;
   ```

2. Create the magic square matrix:
   ```matlab
   A = magic(3)
   A =
   8 1 6
   3 5 7
   4 9 2
   ```

3. Get a row vector containing the numeric coefficients of the polynomial f:
   ```matlab
   b = sym2poly(f)
   b =
   1 -15 -24 350
   ```

4. Substitute the magic square matrix A into the polynomial f. Matrix A replaces all occurrences of x in the polynomial. The constant times the identity matrix $\text{eye}(3)$ replaces the constant term of f:
   ```matlab
   A^3 - 15*A^2 - 24*A + 350*eye(3)
   ans =
   -10 0 0
   0 -10 0
   0 0 -10
   ```

The `polyvalm` command provides an easy way to obtain the same result:
polyvalm(b,A)

ans =
 -10 0 0
 0 -10 0
 0 0 -10

Substitute the Elements of a Symbolic Matrix

To substitute a set of elements in a symbolic matrix, also use the \texttt{subs} command. Suppose you want to replace some of the elements of a symbolic circulant matrix \(A \)

\begin{verbatim}
syms a b c
A = [a b c; c a b; b c a]
\end{verbatim}

\(A = \)
\[
\begin{bmatrix}
 a & b & c \\
 c & a & b \\
 b & c & a \\
\end{bmatrix}
\]

To replace the (2, 1) element of \(A \) with \(\text{beta} \) and the variable \(b \) throughout the matrix with variable \(\text{alpha} \), enter

\begin{verbatim}
alpha = sym('alpha');
beta = sym('beta');
A(2,1) = beta;
A = subs(A,b,alpha)
\end{verbatim}

The result is the matrix:

\begin{verbatim}
A =
\end{verbatim}
\[
\begin{bmatrix}
 a & \text{alpha} & c \\
 \text{beta} & a & \text{alpha} \\
 \text{alpha} & c & a \\
\end{bmatrix}
\]

For more information, see “Substitution”.

Plot Symbolic Functions

You can create different types of graphs including:

- Plots of explicit functions
- Plots of implicit functions
• 3-D parametric plots
• Surface plots

Explicit Function Plot

The simplest way to create a plot is to use the `ezplot` command:

```matlab
syms x
ezplot(x^3 - 6*x^2 + 11*x - 6)
hold on
```

The `hold on` command retains the existing plot allowing you to add new elements and change the appearance of the plot. For example, now you can change the names of the
axes and add a new title and grid lines. When you finish working with the current plot, enter the `hold off` command:

```matlab
xlabel('x axis')
ylabel('no name axis')
title('Explicit function: x^3 - 6*x^2 + 11*x - 6')
grid on
hold off
```

Implicit Function Plot

Using `ezplot`, you can also plot equations. For example, plot the following equation over $-1 < x < 1$:
syms x y
ezplot((x^2 + y^2)^4 == (x^2 - y^2)^2, [-1 1])
hold on
xlabel('x axis')
ylabel('y axis')
grid on
hold off

3-D Plot

3-D graphics is also available in Symbolic Math Toolbox. To create a 3-D plot, use the \texttt{ezplot3} command. For example:
Perform Symbolic Computations

```matlab
syms t
ezplot3(t^2*sin(10*t), t^2*cos(10*t), t)
```

Surface Plot

If you want to create a surface plot, use the `ezsurf` command. For example, to plot a paraboloid $z = x^2 + y^2$, enter:

```matlab
syms x y
ezsurf(x^2 + y^2)
hold on
zlabel('z')
title('z = x^2 + y^2')
```
hold off

\[z = x^2 + y^2 \]
Use Assumptions on Symbolic Variables

In this section...
- “Default Assumption” on page 1-27
- “Set Assumptions” on page 1-27
- “Check Existing Assumptions” on page 1-28
- “Delete Symbolic Objects and Their Assumptions” on page 1-28

Default Assumption

In Symbolic Math Toolbox, symbolic variables are complex variables by default. For example, if you declare \(z \) as a symbolic variable using

\[
\text{syms } z
\]

then MATLAB assumes that \(z \) is a complex variable. You can always check if a symbolic variable is assumed to be complex or real by using `assumptions`. If \(z \) is complex, `assumptions(z)` returns an empty symbolic object:

\[
\text{assumptions}(z)
\]

\[
\text{ans} =
\text{Empty sym: 1-by-0}
\]

Set Assumptions

To set an assumption on a symbolic variable, use the `assume` function. For example, assume that the variable \(x \) is nonnegative:

\[
\text{syms } x
\]

\[
\text{assume}(x >= 0)
\]

`assume` replaces all previous assumptions on the variable with the new assumption. If you want to add a new assumption to the existing assumptions, use `assumeAlso`. For example, add the assumption that \(x \) is also an integer. Now the variable \(x \) is a nonnegative integer:

\[
\text{assumeAlso}(x, 'integer')
\]
assume and assumeAlso let you state that a variable or an expression belongs to one of these sets: integers, positive numbers, rational numbers, and real numbers.

Alternatively, you can set an assumption while declaring a symbolic variable using sym or syms. For example, create the real symbolic variables a and b, and the positive symbolic variable c:

```matlab
a = sym('a', 'real');
b = sym('b', 'real');
c = sym('c', 'positive');
```

or more efficiently:

```matlab
syms a b real
syms c positive
```

The assumptions that you can assign to a symbolic object with sym or syms are real, rational, integer and positive.

Check Existing Assumptions

To see all assumptions set on a symbolic variable, use the assumptions function with the name of the variable as an input argument. For example, this command returns the assumptions currently used for the variable x:

```matlab
assumptions(x)
```

To see all assumptions used for all symbolic variables in the MATLAB workspace, use assumptions without input arguments:

```matlab
assumptions
```

For details, see “Check Assumptions Set On Variables” on page 3-44.

Delete Symbolic Objects and Their Assumptions

Symbolic objects and their assumptions are stored separately. When you set an assumption that x is real using

```matlab
syms x
assume(x, 'real')
```
you actually create a symbolic object `x` and the assumption that the object is real. The object is stored in the MATLAB workspace, and the assumption is stored in the symbolic engine. When you delete a symbolic object from the MATLAB workspace using

```matlab
clear x
```

the assumption that `x` is real stays in the symbolic engine. If you declare a new symbolic variable `x` later, it inherits the assumption that `x` is real instead of getting a default assumption. If later you solve an equation and simplify an expression with the symbolic variable `x`, you could get incomplete results. For example, the assumption that `x` is real causes the polynomial `x^2 + 1` to have no roots:

```matlab
syms x real
clear x
syms x
solve(x^2 + 1 == 0, x)
```

```matlab
ans =
Empty sym: 0-by-1
```

The complex roots of this polynomial disappear because the symbolic variable `x` still has the assumption that `x` is real stored in the symbolic engine. To clear the assumption, enter

```matlab
assume(x,'clear')
```

After you clear the assumption, the symbolic object stays in the MATLAB workspace. If you want to remove both the symbolic object and its assumption, use two subsequent commands:

1. To clear the assumption, enter
   ```matlab
   assume(x,'clear')
   ```
2. To delete the symbolic object, enter
   ```matlab
clear x
   ```

For details on clearing symbolic variables, see “Clear Assumptions and Reset the Symbolic Engine” on page 3-43.
Using Symbolic Math Toolbox Software

- “Find Symbolic Variables in Expressions, Functions, Matrices” on page 2-4
- “Differentiation” on page 2-6
- “Solve Wave Equation Using Functional Derivatives” on page 2-12
- “Limits” on page 2-20
- “Integration” on page 2-23
- “Symbolic Summation” on page 2-30
- “Taylor Series” on page 2-33
- “Padé Approximant” on page 2-36
- “Find Asymptotes, Critical and Inflection Points” on page 2-45
- “Simplify Symbolic Expressions” on page 2-53
- “Abbreviate Common Terms in Long Expressions” on page 2-59
- “Choose Function to Rearrange Expression” on page 2-61
- “Extract Polynomial Coefficients” on page 2-72
- “Extract Numerators and Denominators of Rational Expressions” on page 2-74
- “Substitute Variables in Symbolic Expressions” on page 2-76
- “Substitute Elements in Symbolic Matrices” on page 2-78
- “Substitute Scalars with Matrices” on page 2-80
- “Use subs to Evaluate Expressions and Functions” on page 2-82
- “Choose Symbolic or Numeric Arithmetic” on page 2-85
- “Control Precision of Numerical Computations” on page 2-87
- “Recognize and Avoid Round-Off Errors” on page 2-89
- “Improve Performance of Numeric Computations” on page 2-94
- “Numeric to Symbolic Conversion” on page 2-95
• “Basic Algebraic Operations” on page 2-99
• “Linear Algebraic Operations” on page 2-101
• “Eigenvalues” on page 2-107
• “Jordan Canonical Form” on page 2-112
• “Singular Value Decomposition” on page 2-114
• “Solve Algebraic Equation” on page 2-116
• “Select Numeric or Symbolic Solver” on page 2-121
• “Solve System of Algebraic Equations” on page 2-123
• “Resolve Complicated Solutions or Stuck Solver” on page 2-134
• “Solve System of Linear Equations” on page 2-139
• “Solve Equations Numerically” on page 2-142
• “Solve a Single Differential Equation” on page 2-153
• “Solve a System of Differential Equations” on page 2-157
• “Differential Algebraic Equations” on page 2-163
• “Set Up Your DAE Problem” on page 2-164
• “Reduce Differential Order of DAE Systems” on page 2-169
• “Check and Reduce Differential Index” on page 2-171
• “Convert DAE Systems to MATLAB Function Handles” on page 2-175
• “Find Consistent Initial Conditions” on page 2-182
• “Solve DAE Systems Using MATLAB ODE Solvers” on page 2-188
• “Compute Fourier and Inverse Fourier Transforms” on page 2-193
• “Compute Laplace and Inverse Laplace Transforms” on page 2-199
• “Compute Z-Transforms and Inverse Z-Transforms” on page 2-206
• “Diffraction of Light” on page 2-210
• “Create Plots” on page 2-214
• “Explore Function Plots” on page 2-228
• “Edit Graphs” on page 2-230
• “Save Graphs” on page 2-231
• “Generate C or Fortran Code” on page 2-232
• “Generate MATLAB Functions” on page 2-234
• “Generate MATLAB Function Blocks” on page 2-239
• “Generate Simscape Equations” on page 2-241
Find Symbolic Variables in Expressions, Functions, Matrices

To find symbolic variables in an expression, function, or matrix, use `symvar`. For example, find all symbolic variables in symbolic expressions f and g:

```matlab
syms a b n t x
f = x^n;
g = sin(a*t + b);
symvar(f)

ans =
[ n, x]
```

Here, `symvar` sorts all returned variables alphabetically. Similarly, you can find the symbolic variables in g by entering:

```matlab
symvar(g)

ans =
[ a, b, t]
```

`symvar` also can return the first n symbolic variables found in a symbolic expression, matrix, or function. To specify the number of symbolic variables that you want `symvar` to return, use the second parameter of `symvar`. For example, return the first two variables found in symbolic expression g:

```matlab
symvar(g, 2)

ans =
[ t, b]
```

Notice that the first two variables in this case are not a and b. When you call `symvar` with two arguments, it sorts symbolic variables by their proximity to x.

You also can find symbolic variables in a function:

```matlab
syms x y w z
f(w, z) = x*w + y*z;
symvar(f)

ans =
[ w, x, y, z]
```

When you call `symvar` with two arguments, it returns the function inputs in front of other variables:
Find Symbolic Variables in Expressions, Functions, Matrices

```matlab
symvar(f, 2)
ans =
[ w, z]

Find a Default Symbolic Variable

If you do not specify an independent variable when performing substitution, differentiation, or integration, MATLAB uses a *default* variable. The default variable is typically the one closest alphabetically to `x` or, for symbolic functions, the first input argument of a function. To find which variable is chosen as a default variable, use the `symvar(f, 1)` command. For example:

```matlab
syms s t
f = s + t;
symvar(f, 1)
an

ans =
t

syms sx tx
f = sx + tx;
symvar(f, 1)
an

ans =
tx
```

For more information on choosing the default symbolic variable, see `symvar`. 
Differentiation

To illustrate how to take derivatives using Symbolic Math Toolbox software, first create a symbolic expression:

```matlab
syms x
f = sin(5*x);
```

The command

```matlab
diff(f)
```

differentiates f with respect to x:

```matlab
ans =
5*cos(5*x)
```

As another example, let

```matlab
g = exp(x)*cos(x);
```

where exp(x) denotes $e^x$, and differentiate g:

```matlab
y = diff(g)
```

```matlab
y =
exp(x)*cos(x) - exp(x)*sin(x)
```

To find the derivative of g for a given value of x, substitute x for the value using `subs` and return a numerical value using `vpa`. Find the derivative of g at x = 2.

```matlab
vpa(subs(y,x,2))
```

```matlab
ans =
-9.7937820180676088383807818261614
```

To take the second derivative of g, enter

```matlab
diff(g,2)
```

```matlab
ans =
-2*exp(x)*sin(x)
```

You can get the same result by taking the derivative twice:
diff(diff(g))
ans =
-2*exp(x)*sin(x)

In this example, MATLAB software automatically simplifies the answer. However, in some cases, MATLAB might not simplify an answer, in which case you can use the `simplify` command. For an example of such simplification, see “More Examples” on page 2-8.

Note that to take the derivative of a constant, you must first define the constant as a symbolic expression. For example, entering

```matlab
c = sym('5');
diff(c)
```

returns

```matlab
ans =
0
```

If you just enter

```matlab
diff(5)
```

MATLAB returns

```matlab
ans =
[]
```

because 5 is not a symbolic expression.

**Derivatives of Expressions with Several Variables**

To differentiate an expression that contains more than one symbolic variable, specify the variable that you want to differentiate with respect to. The `diff` command then calculates the partial derivative of the expression with respect to that variable. For example, given the symbolic expression

```matlab
syms s t
f = sin(s*t);
```

the command

```matlab
diff(diff(g))
```
Using Symbolic Math Toolbox Software

\( \frac{\partial}{\partial t} \)

\( \frac{\partial f}{\partial t} \). The result is

\[
\text{ans} =
\]

\[
s \cdot \cos(st)
\]

To differentiate \( f \) with respect to the variable \( s \), enter

\[
\text{diff}(f, s)
\]

which returns:

\[
\text{ans} =
\]

\[
t \cdot \cos(st)
\]

If you do not specify a variable to differentiate with respect to, MATLAB chooses a
default variable. Basically, the default variable is the letter closest to \( x \) in the alphabet.
See the complete set of rules in “Find a Default Symbolic Variable” on page 2-5. In the
preceding example, \( \text{diff}(f) \) takes the derivative of \( f \) with respect to \( t \) because the letter
\( t \) is closer to \( x \) in the alphabet than the letter \( s \) is. To determine the default variable that
MATLAB differentiates with respect to, use \text{symvar}:

\[
\text{symvar}(f, 1)
\]

\[
\text{ans} =
\]

\[
t
\]

Calculate the second derivative of \( f \) with respect to \( t \): 

\[
\text{diff}(f, t, 2)
\]

This command returns

\[
\text{ans} =
\]

\[
-s^2 \sin(st)
\]

Note that \( \text{diff}(f, 2) \) returns the same answer because \( t \) is the default variable.

More Examples

To further illustrate the \text{diff} command, define \( a, b, x, n, t, \) and \( \theta \) in the MATLAB
workspace by entering
This table illustrates the results of entering `diff(f)`.

<table>
<thead>
<tr>
<th>f</th>
<th>diff(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>syms x n</td>
<td>diff(f)</td>
</tr>
<tr>
<td>f = x^n;</td>
<td>ans = n*x^(n - 1)</td>
</tr>
<tr>
<td>syms a b t</td>
<td>diff(f)</td>
</tr>
<tr>
<td>f = sin(a*t + b);</td>
<td>ans = a<em>cos(b + a</em>t)</td>
</tr>
<tr>
<td>syms theta</td>
<td>diff(f)</td>
</tr>
<tr>
<td>f = exp(i*theta);</td>
<td>ans = exp(theta*1i)*1i</td>
</tr>
</tbody>
</table>

To differentiate the Bessel function of the first kind, `besselj(nu, z)`, with respect to `z`, type

```matlab
syms nu z
b = besselj(nu,z);
db = diff(b)
```

which returns

```matlab
db = (nu*besselj(nu, z))/z - besselj(nu + 1, z)
```

The `diff` function can also take a symbolic matrix as its input. In this case, the differentiation is done element-by-element. Consider the example

```matlab
syms a x
A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]
```

which returns

```matlab
A =
[cos(a*x), sin(a*x)]
[-sin(a*x), cos(a*x)]
```

The command
Using Symbolic Math Toolbox Software

diff(A)

returns

\[
\text{ans} = \\
\begin{bmatrix}
-a\sin(a\times), & a\cos(a\times) \\
-a\cos(a\times), & -a\sin(a\times)
\end{bmatrix}
\]

You can also perform differentiation of a vector function with respect to a vector argument. Consider the transformation from Euclidean \((x, y, z)\) to spherical \((r, \lambda, \varphi)\) coordinates as given by \(x = r\cos\lambda\cos\varphi\), \(y = r\cos\lambda\sin\varphi\), and \(z = r\sin\lambda\). Note that \(\lambda\) corresponds to elevation or latitude while \(\varphi\) denotes azimuth or longitude.

To calculate the Jacobian matrix, \(J\), of this transformation, use the \text{jacobian} function. The mathematical notation for \(J\) is

\[
J = \frac{\partial(x, y, z)}{\partial(r, \lambda, \varphi)}.
\]

For the purposes of toolbox syntax, use \text{l} for \(\lambda\) and \(\text{f}\) for \(\varphi\). The commands

\begin{verbatim}
syms r l f
x = r*\text{cos(l)}*\text{cos(f)};
y = r*\text{cos(l)}*\text{sin(f)};
z = r*\text{sin(l)};
J = \text{jacobian([x; y; z], [r l f])}
\end{verbatim}
return the Jacobian

\[ J = \begin{bmatrix} \cos(f)\cos(l), & -r\cos(f)\sin(l), & -r\cos(l)\sin(f) \\ \cos(l)\sin(f), & -r\sin(f)\sin(l), & r\cos(f)\cos(l) \\ \sin(l), & r\cos(l), & 0 \end{bmatrix} \]

and the command

\[ \text{det}\ J = \text{simplify}(\text{det}(J)) \]

returns

\[ \text{det}\ J = -r^2\cos(l) \]

The arguments of the \texttt{jacobian} function can be column or row vectors. Moreover, since the determinant of the Jacobian is a rather complicated trigonometric expression, you can use \texttt{simplify} to make trigonometric substitutions and reductions (simplifications).

A table summarizing \texttt{diff} and \texttt{jacobian} follows.

<table>
<thead>
<tr>
<th>Mathematical Operator</th>
<th>MATLAB Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>( df ) ( dx )</td>
<td>\text{diff}(f) or \text{diff}(f, x)</td>
</tr>
<tr>
<td>( df ) ( da )</td>
<td>\text{diff}(f, a)</td>
</tr>
<tr>
<td>( d^2f ) ( db^2 )</td>
<td>\text{diff}(f, b, 2)</td>
</tr>
<tr>
<td>( J = \frac{\partial(r,t)}{\partial(u,v)} )</td>
<td>( J = \text{jacobian}([r; \ t],[u; \ v]) )</td>
</tr>
</tbody>
</table>
Solve Wave Equation Using Functional Derivatives

This example shows how to solve the wave equation for a string fixed at its ends using functional derivatives. A functional derivative is the derivative of a functional with respect to the function that the functional depends on. The Symbolic Math Toolbox™ implements functional derivatives using the functionalDerivative function.

Solving the wave equation is one application of functional derivatives. It describes the motion of waves, from the motion of a string to the propagation of an electromagnetic wave, and is an important equation in physics. You can apply the techniques illustrate in this example to applications in the calculus of variations from solving the Brachistochrone problem to finding minimal surfaces of soap bubbles.

Consider a string of length \( L \) suspended between the two points \( x = 0 \) and \( x = L \). The string has a characteristic density per unit length and a characteristic tension. Define the length, density, and tension as constants for later use. For simplicity, set these constants to 1.

```
Length = 1;
Density = 1;
Tension = 1;
```

If the string is in motion, the string's kinetic and potential energies are a function of its displacement from rest \( S(x,t) \), which varies with position \( x \) and time \( t \). If \( d \) is the density per unit length, the kinetic energy is

\[
T = \int_{0}^{L} \frac{d}{2} \left( \frac{d}{dt} S(x,t) \right)^{2} \, dx.
\]

The potential energy is

\[
V = \int_{0}^{L} \frac{r}{2} \left( \frac{d}{dx} S(x,t) \right)^{2} \, dx,
\]

where \( r \) is the tension.

Enter these equations in MATLAB™. Since length must be positive, set this assumption. This assumption allows simplify to simplify the resulting equations into the expected form.
Solve Wave Equation Using Functional Derivatives

```matlab
syms S(x,t) d r v L
assume(L>0)
T(x,t) = int(d/2*diff(S,t)^2,x,0,L);
V(x,t) = int(r/2*diff(S,x)^2,x,0,L);

The action A is \(T-V\). The Principle of Least Action states that action is always minimized. Determine the condition for minimum action, by finding the functional derivative of A with respect to \(S\) using `functionalDerivative` and equate it to zero.

\[
A = T-V;
eqn = functionalDerivative(A,S) == 0
\]

\[
eqn(x, t) =
L*r*diff(S(x, t), x, x) - L*d*diff(S(x, t), t, t) == 0
\]

Simplify the equation using `simplify`. Convert the equation into its expected form by substituting for \(r/d\) with the square of the wave velocity \(v\).

\[
eqn = simplify(eqn)/r;
eqn = subs(eqn,r/d,v^2)
\]

\[
eqn(x, t) =
diff(S(x, t), t, t)/v^2 == diff(S(x, t), x, x)
\]

Solve the equation using the method of separation of variables. Set \(S(x,t) = U(x)V(t)\) to separate the dependence on position \(x\) and time \(t\). Separate both sides of the resulting equation using `children`.

```
Both sides of the equation depend on different variables, yet are equal. This is only possible if each side is a constant. Equate each side to an arbitrary constant $C$ to get two differential equations.

```matlab
syms C
eqn3 = tmp(1) == C
eqn4 = tmp(2) == C

eqn3 =
\frac{\text{diff}(V(t), t, t)}{\text{v}^2 \text{V}(t)} == C

eqn4 =
\frac{\text{diff}(U(x), x, x)}{U(x)} == C
```

Solve the differential equations using `dsolve` with the condition that displacement is 0 at $x = 0$ and $t = 0$. Simplify the equations to their expected form using `simplify` with the `Steps` option set to 50.

```matlab
V(t) = dsolve(eqn3,V(0)==0,t);
U(x) = dsolve(eqn4,U(0)==0,x);
V(t) = simplify(V(t),'Steps',50)
U(x) = simplify(U(x),'Steps',50)

V(t) =
-2*C3*\text{sinh}(C^{(1/2)}*t*v)

U(x) =
-2*C6*\text{sinh}(C^{(1/2)}*x)
```

Obtain the constants in the equations.

```matlab
p1 = setdiff(symvar(U(x)),sym([C,x]))
p2 = setdiff(symvar(V(t)),sym([C,v,t]))
```
The string is fixed at the positions $x = 0$ and $x = L$. The condition $U(0) = 0$ already exists. Apply the boundary condition that $U(L) = 0$ and solve for $C$.

```matlab
eqn_bc = U(L) == 0;
[solC,param,cond] = solve(eqn_bc,C,'ReturnConditions',true)
assume(cond)
```

```matlab
solC =
-(k^2*pi^2)/L^2
```

```matlab
param =
k
```

```matlab
cond =
C6 ~= 0 & 1 <= k & in(k, 'integer')
```

The solution $S(x,t)$ is the product of $U(x)$ and $V(t)$. Find the solution, and substitute the characteristic values of the string into the solution to obtain the final form of the solution.

```matlab
S(x,t) = U(x)*V(t);
S = subs(S,C,solC);
S = subs(S,[L v],[Length sqrt(Tension/Density)]);
```

The parameters $p1$ and $p2$ determine the amplitude of the vibrations. Set $p1$ and $p2$ to 1 for simplicity.

```matlab
S = subs(S,[p1 p2],[1 1]);
```
S = simplify(S,'Steps',50)

S(x, t) =

-4*sin(pi*k*t)*sin(pi*k*x)

The string has different modes of vibration for different values of \(k\). Plot the first four modes for an arbitrary value of time \(t\). Use the `param` argument returned by `solve` to address parameter \(k\).

Splot = subs(S,t,0.3);
figure(1)
hold on
grid on
tmp = children(S);
ymin = double(tmp(3));
for i = 1:4
    yplot = subs(Splot,param,i);
    ezplot(yplot,[0 Length])
end
ylim([ymin -ymin])
legend('k = 1','k = 2','k = 3','k = 4','Location','best')
xlabel('Position (x)')
ylabel('Displacement (S)')
title('Modes of a string')
The wave equation is linear. This means that any linear combination of the allowed modes is a valid solution to the wave equation. Hence, the full solution to the wave equation with the given boundary conditions and initial values is a sum over allowed modes

\[ F(x, t) = \sum_{k=n}^{m} A_k \sin(\pi kt) \sin(\pi kx), \]

where \( A_k \) denotes arbitrary constants.
Use \texttt{symsum} to sum the first five modes of the string. On a new figure, display the resulting waveform at the same instant of time as the previous waveforms for comparison.

\begin{verbatim}
figure(2)
ezplot(subs(1/5*symsum(S,param,1,5),t,0.3),[0 Length])
ylim([ymin -ymin])
grid on
xlabel('Position (x)')
ylabel('Displacement (S)')
title('Summation of first 5 modes')
\end{verbatim}

The figure shows that summing modes allows you to model a qualitatively different waveform. Here, we specified the initial condition is \( S(x, t = 0) = 0 \) for all \( x \).
You can calculate the values $A_k$ in the equation $F(x, t) = \sum_{k=n}^{m} A_k \sin(\pi kt) \sin(\pi kx)$ by specifying a condition for initial velocity
\[ u_t(x, t = 0) = F_t(x, 0). \]

The appropriate summation of modes can represent any waveform, which is the same as using the Fourier series to represent the string's motion.
Limits

The fundamental idea in calculus is to make calculations on functions as a variable “gets close to” or approaches a certain value. Recall that the definition of the derivative is given by a limit

\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, \]

provided this limit exists. Symbolic Math Toolbox software enables you to calculate the limits of functions directly. The commands

```matlab
syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)
```

which return

\[ \text{ans} = -\sin(x) \]

and

```matlab
limit((1 + x/n)^n, n, inf)
```

which returns

\[ \text{ans} = \exp(x) \]

illustrate two of the most important limits in mathematics: the derivative (in this case of \(\cos(x)\)) and the exponential function.

One-Sided Limits

You can also calculate one-sided limits with Symbolic Math Toolbox software. For example, you can calculate the limit of \(x/|x|\), whose graph is shown in the following figure, as \(x\) approaches 0 from the left or from the right.

```matlab
syms x
ezplot(x/abs(x), -1, 1)
```
To calculate the limit as $x$ approaches 0 from the left,

$$\lim_{x \to 0^-} \frac{x}{|x|},$$

enter

```matlab
syms x
limit(x/abs(x), x, 0, 'left')
```

```matlab
ans =
 -1
```

To calculate the limit as $x$ approaches 0 from the right,
\[
\lim_{x \to 0^+} \frac{x}{|x|} = 1,
\]

enter

```matlab
syms x
limit(x/abs(x), x, 0, 'right')
```

\[
\text{ans} = 1
\]

Since the limit from the left does not equal the limit from the right, the two-sided limit does not exist. In the case of undefined limits, MATLAB returns \text{NaN} (not a number). For example,

```matlab
syms x
limit(x/abs(x), x, 0)
```

returns

\[
\text{ans} = \text{NaN}
\]

Observe that the default case, \text{limit}(f) is the same as \text{limit}(f,x,0). Explore the options for the \text{limit} command in this table, where \( f \) is a function of the symbolic object \( x \).

<table>
<thead>
<tr>
<th>Mathematical Operation</th>
<th>MATLAB Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \lim_{x \to 0} f(x) )</td>
<td>\text{limit}(f)</td>
</tr>
<tr>
<td>( \lim_{x \to a} f(x) )</td>
<td>\text{limit}(f, x, a) or \text{limit}(f, a)</td>
</tr>
<tr>
<td>( \lim_{x \to a^-} f(x) )</td>
<td>\text{limit}(f, x, a, 'left')</td>
</tr>
<tr>
<td>( \lim_{x \to a^+} f(x) )</td>
<td>\text{limit}(f, x, a, 'right')</td>
</tr>
</tbody>
</table>
Integration

If $f$ is a symbolic expression, then

$$\text{int}(f)$$

attempts to find another symbolic expression, $F$, so that $\text{diff}(F) = f$. That is, $\text{int}(f)$ returns the indefinite integral or antiderivative of $f$ (provided one exists in closed form). Similar to differentiation,

$$\text{int}(f,v)$$

uses the symbolic object $v$ as the variable of integration, rather than the variable determined by `symvar`. See how `int` works by looking at this table.

<table>
<thead>
<tr>
<th>Mathematical Operation</th>
<th>MATLAB Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int x^n , dx = \begin{cases} \log(x) &amp; \text{if } n = -1 \ \frac{x^{n+1}}{n+1} &amp; \text{otherwise.} \end{cases}$</td>
<td>$\text{int}(x^n)$ or $\text{int}(x^n,x)$</td>
</tr>
<tr>
<td>$\int_{0}^{\pi/2} \sin(2x) , dx = 1$</td>
<td>$\text{int}((\sin(2<em>x), 0, \pi/2) \text{ or } \text{int}(\sin(2</em>x), x, 0, \pi/2)$</td>
</tr>
<tr>
<td>$g = \cos(at + b)$</td>
<td>$g = \cos(a*t + b)$ $\text{int}(g)$ or $\text{int}(g, t)$</td>
</tr>
<tr>
<td>$\int g(t) , dt = \frac{\sin(at + b)}{a}$</td>
<td>$\text{int}((\sin(1, z)))$ or $\text{int}(\text{besselj}(1, z), z)$</td>
</tr>
</tbody>
</table>

In contrast to differentiation, symbolic integration is a more complicated task. A number of difficulties can arise in computing the integral:

- The antiderivative, $F$, may not exist in closed form.
- The antiderivative may define an unfamiliar function.
- The antiderivative may exist, but the software can’t find it.
The software could find the antiderivative on a larger computer, but runs out of time or memory on the available machine.

Nevertheless, in many cases, MATLAB can perform symbolic integration successfully. For example, create the symbolic variables

```
syms a b theta x y n u z
```

The following table illustrates integration of expressions containing those variables.

<table>
<thead>
<tr>
<th>f</th>
<th>int(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>syms x n</td>
<td>int(f)</td>
</tr>
<tr>
<td>f = x^n;</td>
<td>ans = piecewise([n == -1, log(x)],... [n ~= -1, x^(n + 1)/(n + 1)])</td>
</tr>
<tr>
<td>syms y</td>
<td>int(f)</td>
</tr>
<tr>
<td>f = y^(-1);</td>
<td>ans = log(y)</td>
</tr>
<tr>
<td>syms x n</td>
<td>int(f)</td>
</tr>
<tr>
<td>f = n^x;</td>
<td>ans = n^x/log(n)</td>
</tr>
<tr>
<td>syms a b theta</td>
<td>int(f)</td>
</tr>
<tr>
<td>f = sin(a*theta+b);</td>
<td>ans = -cos(b + a*theta)/a</td>
</tr>
<tr>
<td>syms u</td>
<td>int(f)</td>
</tr>
<tr>
<td>f = 1/(1+u^2);</td>
<td>ans = atan(u)</td>
</tr>
<tr>
<td>syms x</td>
<td>int(f)</td>
</tr>
<tr>
<td>f = exp(-x^2);</td>
<td>ans = (pi^(1/2)*erf(x))/2</td>
</tr>
</tbody>
</table>

In the last example, \( \exp(-x^2) \), there is no formula for the integral involving standard calculus expressions, such as trigonometric and exponential functions. In this case, MATLAB returns an answer in terms of the error function \( \text{erf} \).

If MATLAB is unable to find an answer to the integral of a function \( f \), it just returns \( \text{int}(f) \).
Definite integration is also possible.

<table>
<thead>
<tr>
<th>Definite Integral</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \int_a^b f(x)dx )</td>
<td>( \text{int}(f, a, b) )</td>
</tr>
<tr>
<td>( \int_a^b f(v)dv )</td>
<td>( \text{int}(f, v, a, b) )</td>
</tr>
</tbody>
</table>

Here are some additional examples.

<table>
<thead>
<tr>
<th>( f )</th>
<th>( a, b )</th>
<th>( \text{int}(f, a, b) )</th>
</tr>
</thead>
</table>
| syms x  
  \( f = x^7; \) | a = 0;  
  b = 1; | \( \text{int}(f, a, b) \)  
  ans = 1/8 |
| syms x  
  \( f = 1/x; \) | a = 1;  
  b = 2; | \( \text{int}(f, a, b) \)  
  ans = \( \log(2) \) |
| syms x  
  \( f = \log(x)*\sqrt{x}; \) | a = 0;  
  b = 1; | \( \text{int}(f, a, b) \)  
  ans = -4/9 |
| syms x  
  \( f = \exp(-x^2); \) | a = 0;  
  b = \( \text{inf} \); | \( \text{int}(f, a, b) \)  
  ans = \( \pi^{(1/2)}/2 \) |
| syms z  
  \( f = \text{besselj}(1,z)^2; \) | a = 0;  
  b = 1; | \( \text{int}(f, a, b) \)  
  ans = \( \text{hypergeom}([3/2, 3/2],...[2, 5/2, 3], -1)/12 \) |

For the Bessel function (\text{besselj}) example, it is possible to compute a numerical approximation to the value of the integral, using the \text{double} function. The commands

\begin{verbatim}
syms z
a = \text{int}(\text{besselj}(1,z)^2,0,1)
\end{verbatim}
Using Symbolic Math Toolbox Software

return

a =
hypergeom([3/2, 3/2], [2, 5/2, 3], -1)/12

and the command

a = double(a)

returns

a =
0.0717

Integration with Real Parameters

One of the subtleties involved in symbolic integration is the “value” of various parameters. For example, if $a$ is any positive real number, the expression

$$e^{-ax^2}$$

is the positive, bell shaped curve that tends to 0 as $x$ tends to $\pm\infty$. You can create an example of this curve, for $a = 1/2$, using the following commands:

syms x
a = sym(1/2);
f = exp(-a*x^2);
ezplot(f)
However, if you try to calculate the integral

$$\int_{-\infty}^{\infty} e^{-ax^2} \, dx$$

without assigning a value to $a$, MATLAB assumes that $a$ represents a complex number, and therefore returns a piecewise answer that depends on the argument of $a$. If you are only interested in the case when $a$ is a positive real number, use `assume` to set an assumption on $a$:

```matlab
syms a
assume(a > 0)
```
Now you can calculate the preceding integral using the commands

```matlab
syms x
f = exp(-a*x^2);
int(f, x, -inf, inf)
```

This returns

```matlab
ans =
pi^(1/2)/a^(1/2)
```

### Integration with Complex Parameters

To calculate the integral

\[
\int_{-\infty}^{\infty} \frac{1}{a^2 + x^2} dx
\]

for complex values of \( a \), enter

```matlab
syms a x clear
f = 1/(a^2 + x^2);
F = int(f, x, -inf, inf)
```

`syms` is used with the `clear` option to clear the all assumptions on \( a \). For more information about symbolic variables and assumptions on them, see “Delete Symbolic Objects and Their Assumptions” on page 1-28.

The preceding commands produce the complex output

```matlab
F =
(pi*signIm(1i/a))/a
```

The function `signIm` is defined as:

\[
\text{signIm}(z) = \begin{cases} 
1 & \text{if } \text{Im}(z) > 0, \text{ or } \text{Im}(z) = 0 \text{ and } z < 0 \\
0 & \text{if } z = 0 \\
-1 & \text{otherwise.}
\end{cases}
\]
To evaluate $F$ at $a = 1 + i$, enter

g = subs(F, 1 + i)

g =
pi*(1/2 - 1i/2)

double(g)

ans =
1.5708 - 1.5708i
Symbolic Summation

Symbolic Math Toolbox provides two functions for calculating sums:

- \texttt{sum} finds the sum of elements of symbolic vectors and matrices. Unlike the MATLAB \texttt{sum}, the symbolic \texttt{sum} function does not work on multidimensional arrays. For details, follow the MATLAB \texttt{sum} page.
- \texttt{symsum} finds the sum of a symbolic series.

In this section...

- “Comparing \texttt{symsum} and \texttt{sum}” on page 2-30
- “Computational Speed of \texttt{symsum} versus \texttt{sum}” on page 2-31
- “Output Format Differences Between \texttt{symsum} and \texttt{sum}” on page 2-31

Comparing \texttt{symsum} and \texttt{sum}

You can find definite sums by using both \texttt{sum} and \texttt{symsum}. The \texttt{sum} function sums the input over a dimension, while the \texttt{symsum} function sums the input over an index.

\[ S = \sum_{k=1}^{10} \frac{1}{k^2} \]

Consider the definite sum \( S = \sum_{k=1}^{10} \frac{1}{k^2} \). First, find the terms of the definite sum by substituting the index values for \( k \) in the expression. Then, sum the resulting vector using \texttt{sum}.

```matlab
syms k
f = 1/k^2;
V = subs(f, k, 1:10)
S_sum = sum(V)
```

\[ V = [1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \frac{1}{36}, \frac{1}{49}, \frac{1}{64}, \frac{1}{81}, \frac{1}{100}] \]

\[ S_{\text{sum}} = 1968329/1270080 \]

Find the same sum by using \texttt{symsum} by specifying the index and the summation limits. \texttt{sum} and \texttt{symsum} return identical results.

```matlab
S_symsum = symsum(f, k, 1, 10)
```

\[ S_{\text{symsum}} = \]
Computational Speed of \texttt{symsum} versus \texttt{sum}

For summing definite series, \texttt{symsum} can be faster than \texttt{sum}. For summing an indefinite series, you can only use \texttt{symsum}.

You can demonstrate that \texttt{symsum} can be faster than \texttt{sum} by summing a large definite series such as

\[
S = \sum_{k=1}^{100000} k^2.
\]

To compare runtimes on your computer, use the following commands.

```matlab
syms k
tic
sum(sym(1:100000).^2);
toc
tic
symsum(k^2, k, 1, 100000);
toc
```

Output Format Differences Between \texttt{symsum} and \texttt{sum}

\texttt{symsum} can provide a more elegant representation of sums than \texttt{sum} provides. Demonstrate this difference by comparing the function outputs for the definite series

\[
S = \sum_{k=1}^{10} x^k.
\]

To simplify the solution, assume \(x > 1\).

```matlab
syms x
assume(x > 1)
S_sum = sum(x.^(1:10))
S_symsum = symsum(x^k, k, 1, 10)
```

\[
\begin{align*}
S_{\text{sum}} &= x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x \\
S_{\text{symsum}} &= x^{11}/(x - 1) - x/(x - 1)
\end{align*}
\]

Show that the outputs are equal by using \texttt{isAlways}. The \texttt{isAlways} function returns logical 1 (\texttt{true}), meaning that the outputs are equal.
isAlways(S_sum == S_symsum)

ans =
    1

For further computations, clear the assumptions.

assume(x, 'clear')
Taylor Series

The statements

```matlab
syms x
f = 1/(5 + 4*cos(x));
T = taylor(f, 'Order', 8)
```

return

T =

\[
\frac{49x^6}{131220} + \frac{5x^4}{1458} + \frac{2x^2}{81} + \frac{1}{9}
\]

which is all the terms up to, but not including, order eight in the Taylor series for \( f(x) \):

\[
\sum_{n=0}^{\infty} (x-a)^n \frac{f^{(n)}(a)}{n!}.
\]

Technically, \( T \) is a Maclaurin series, since its expansion point is \( a = 0 \).

The command

```matlab
pretty(T)
```

prints \( T \) in a format resembling typeset mathematics:

\[
\frac{49x^6}{131220} + \frac{5x^4}{1458} + \frac{2x^2}{81} + \frac{1}{9}
\]

These commands

```matlab
syms x
g = exp(x*sin(x));
t = taylor(g, 'ExpansionPoint', 2, 'Order', 12);
```

generate the first 12 nonzero terms of the Taylor series for \( g \) about \( x = 2 \).

t is a large expression; enter
size(char(t))

ans =
    1         99791

to find that \( t \) has about 100,000 characters in its printed form. In order to proceed with using \( t \), first simplify its presentation:

\[
\begin{align*}
\text{t} &= \text{simplify}(t) ; \\
\text{size(char(t))} \\
\text{ans} &= \\
    1         6988
\end{align*}
\]

Next, plot these functions together to see how well this Taylor approximation compares to the actual function \( g \):

\[
\begin{align*}
\text{xd} &= 1:0.05:3; \\
\text{yd} &= \text{subs}(g,x,\text{xd}); \\
\text{ezplot}(t, [1, 3]) \\
\text{hold on} \\
\text{plot(xd, yd, 'r-.')} \\
\text{title('Taylor approximation vs. actual function')} \\
\text{legend('Taylor', 'Function')}
\end{align*}
\]
Special thanks is given to Professor Gunnar Bäckstrøm of UMEA in Sweden for this example.
Padé Approximant

The Padé approximant of order \([m, n]\) approximates the function \(f(x)\) around \(x = x_0\) as

\[
\frac{a_0 + a_1 (x - x_0) + \ldots + a_m (x - x_0)^m}{1 + b_1 (x - x_0) + \ldots + b_n (x - x_0)^n}.
\]

The Padé approximant is a rational function formed by a ratio of two power series. Because it is a rational function, it is more accurate than the Taylor series in approximating functions with poles. The Padé approximant is represented by the Symbolic Math Toolbox function \texttt{pade}.

When a pole or zero exists at the expansion point \(x = x_0\), the accuracy of the Padé approximant decreases. To increase accuracy, an alternative form of the Padé approximant can be used which is

\[
\frac{(x - x_0)^p \left( a_0 + a_1 (x - x_0) + \ldots + a_m (x - x_0)^m \right)}{1 + b_1 (x - x_0) + \ldots + b_n (x - x_0)^n}.
\]

The \texttt{pade} function returns the alternative form of the Padé approximant when you set the \texttt{OrderMode} input argument to \texttt{Relative}.

The Padé approximant is used in control system theory to model time delays in the response of the system. Time delays arise in systems such as chemical and transport processes where there is a delay between the input and the system response. When these inputs are modeled, they are called dead-time inputs. This example shows how to use the Symbolic Math Toolbox to model the response of a first-order system to dead-time inputs using Padé approximants.

The behavior of a first-order system is described by this differential equation

\[
\tau \frac{dy(t)}{dt} + y(t) = ax(t).
\]

Enter the differential equation in MATLAB.

\[
\text{syms tau a x(t) y(t) xS(s) yS(s) H(s) tmp}
\]
\[ F = \tau \cdot \text{diff}(y) + y = a \cdot x; \]

Find the Laplace transform of \( F \) using \texttt{laplace}.

\[ F = \text{laplace}(F, t, s) \]

\[ F = \text{laplace}(y(t), t, s) - \tau \cdot (y(0) - s \cdot \text{laplace}(y(t), t, s)) = a \cdot \text{laplace}(x(t), t, s) \]

Assume the response of the system at \( t = 0 \) is 0. Use \texttt{subs} to substitute for \( y(0) = 0 \).

\[ F = \text{subs}(F, y(0), 0) \]

\[ F = \text{laplace}(y(t), t, s) + s \cdot \tau \cdot \text{laplace}(y(t), t, s) = a \cdot \text{laplace}(x(t), t, s) \]

To collect common terms, use \texttt{simplify}.

\[ F = \text{simplify}(F) \]

\[ F = (s \cdot \tau + 1) \cdot \text{laplace}(y(t), t, s) = a \cdot \text{laplace}(x(t), t, s) \]

For readability, replace the Laplace transforms of \( x(t) \) and \( y(t) \) with \( x_S(s) \) and \( y_S(s) \).

\[ F = \text{subs}(F, \{\text{laplace}(x(t), t, s), \text{laplace}(y(t), t, s)\}, \{x_S(s), y_S(s)\}) \]

\[ F = y_S(s) \cdot (s \cdot \tau + 1) = a \cdot x_S(s) \]

The Laplace transform of the transfer function is \( y_S(s) / x_S(s) \). Divide both sides of the equation by \( x_S(s) \) and use \texttt{subs} to replace \( y_S(s) / x_S(s) \) with \( H(s) \).
F = F/xS(s);
F = subs(F,yS(s)/xS(s),H(s))

F =
H(s)*(s*tau + 1) == a

Solve the equation for H(s). Substitute for H(s) with a dummy variable, solve for the dummy variable using solve, and assign the solution back to H(s).

F = subs(F,H(s),tmp);
H(s) = solve(F,tmp)

H(s) =
a/(s*tau + 1)

The input to the first-order system is a time-delayed step input. To represent a step input, use heaviside. Delay the input by three time units. Find the Laplace transform using laplace.

step = heaviside(t - 3);
step = laplace(step)

step =
exp(-3*s)/s

Find the response of the system, which is the product of the transfer function and the input.

y = H(s)*step

y =
(a*exp(-3*s))/(s*(s*tau + 1))
To allow plotting of the response, set parameters \( a \) and \( \tau \) to their values. For \( a \) and \( \tau \), choose values 1 and 3, respectively.

\[
y = \text{subs}(y, [a \ \tau], [1 \ 3]);
y = \text{ilaplace}(y, s);
\]

Find the Padé approximant of order \([2 \ 2]\) of the step input using the \texttt{Order} input argument to \texttt{pade}.

\[
\text{stepPade22} = \text{pade}(\text{step}, '\text{Order}', [2 \ 2])
\]

\[
\text{stepPade22} = \frac{(3s^2 - 4s + 2)}{(2s(s + 1))}
\]

Find the response to the input by multiplying the transfer function and the Padé approximant of the input.

\[
yPade22 = H(s)*\text{stepPade22}
\]

\[
yPade22 = \frac{(a*(3s^2 - 4s + 2))}{(2s*(s*\tau + 1)*(s + 1))}
\]

Find the inverse Laplace transform of \( yPade22 \) using \texttt{ilaplace}.

\[
yPade22 = \text{ilaplace}(yPade22, s)
\]

\[
yPade22 = a + \frac{(9a*\exp(-s))}{(2*\tau - 2)} - \frac{(a*\exp(-s/\tau)*(2*\tau^2 + 4*\tau + 3))}{(\tau*(2*\tau - 2))}
\]

To plot the response, set parameters \( a \) and \( \tau \) to their values of 1 and 3, respectively.

\[
yPade22 = \text{subs}(yPade22, [a \ \tau], [1 \ 3])
\]

\[
yPade22 =
\]
Using Symbolic Math Toolbox Software

![Padé Approximant for dead-time step input](image)

(9*exp(-s))/4 - (11*exp(-s/3))/4 + 1

Plot the response of the system \( y \) and the response calculated from the Padé approximant \( y_{\text{Pade22}} \).

```matlab
hold on
grid on
ezplot(y,[0 20])
ezplot(yPade22,[0 20])
title(['Padé Approximant for dead-time step input'])
legend('Response to dead-time step input',...
 ['Padé approximant [2 2]'],...
 'Location', 'Best');
```
The [2 2] Padé approximant does not represent the response well because a pole exists at the expansion point of 0. To increase the accuracy of pade when there is a pole or zero at the expansion point, set the OrderMode input argument to Relative and repeat the steps. For details, see pade.

\[
\text{stepPade22Rel} = \text{pade}(\text{step}, 'Order', [2 2], 'OrderMode', 'Relative')
\]
\[
\text{yPade22Rel} = \text{H}(s)*\text{stepPade22Rel}
\]
\[
\text{yPade22Rel} = \text{ilaplace}(\text{yPade22Rel})
\]
\[
\text{yPade22Rel} = \text{subs}(\text{yPade22Rel}, [a \ \text{tau}], [1 \ 3])
\]
\[
\text{ezplot}(\text{yPade22Rel}, [0 \ 20])
\]
\[
\text{title}([\text{'Pad' char(233) ' Approximant for dead-time step input']})
\]
\[
\text{legend}([\text{'Response to dead-time step input'},...
\text{\text{'Pad' char(233) ' approximant [2 2]'},...
\text{\text{'Relative Pad' char(233) ' approximant [2 2]'}, 'Location', 'Best']);}
\]

\[
\text{stepPade22Rel} =
(3*s^2 - 6*s + 4)/(s*(3*s^2 + 6*s + 4))
\]

\[
yPade22Rel =
(a*(3*s^2 - 6*s + 4))/(s*(s*tau + 1)*(3*s^2 + 6*s + 4))
\]

\[
yPade22Rel =
a - (a*\exp(-t/\tau)*(4*\tau^2 + 6*\tau + 3))/(4*\tau^2 - 6*\tau + 3) + (12*a*\tau*\exp(-t)*(\cos((3^(1/2)*t)/3) - 3^(1/2)*\sin((3^(1/2)*t)/3)))/(4*\tau^2 - 6*\tau + 3)
\]

\[
yPade22Rel =
(12*\exp(-t)*(\cos((3^(1/2)*t)/3) + (2*3^(1/2)*\sin((3^(1/2)*t)/3)))/7 - (19*\exp(-t/3))
\]
The accuracy of the Padé approximant can also be increased by increasing its order. Increase the order to \([4\ 5]\) and repeat the steps. The \([n-1\ n]\) Padé approximant is better at approximating the response at \(t = 0\) than the \([n\ n]\) Padé approximant.

```matlab
stepPade45 = pade(step,'Order',[4 5])
yPade45 = H(s)*stepPade45
yPade45 = subs(yPade45,[a tau],[1 3])
yPade45 = ilaplace(yPade45)
yPade45 = vpa(yPade45)
ezplot(yPade45,[0 20])
title(['Padé Approximant for dead-time step input'])
legend('Response to dead-time step input',... ['Padé approximant [2 2]',... ['Relative Padé approximant [2 2]',...})
```
Padé Approximant

\[
\text{['Pad' char(233) ' approximant [4 5]', 'Location', 'Best']);}
\]

\[
\text{stepPade45 =}
(27s^4 - 180s^3 + 540s^2 - 840s + 560)/(s*(27s^4 + 180s^3 + 540s^2 + 840s + 560))
\]

\[
yPade45 =
(a*(27s^4 - 180s^3 + 540s^2 - 840s + 560))/(s*(s*\tau + 1)*(27s^4 + 180s^3 + 540s^2 + 840s + 560))
\]

\[
yPade45 =
(27s^4 - 180s^3 + 540s^2 - 840s + 560)/(s*(3s + 1)*(27s^4 + 180s^3 + 540s^2 + 840s + 560))
\]

\[
yPade45 =
(294120*\text{symsum}((\text{exp}\text{(root}(s^4 + (20s^3)/3 + 20s^2 + (280s)/9 + 560/27, s, k)*t)*\text{root}(s^4 + (20s^3)/3 + 20s^2 + (280s)/9 + 560/27, s, k)^2 + 9*\text{root}(s^4 + (20s^3)/3 + 20s^2 + (280s)/9 + 560/27, s, k)^3 + 70)), k, 1, 4))/143 + 1
\]

\[
yPade45 =
3.2418384981662546679005910164486*\text{exp}(-1.9308070685469147789295950184*t)*\text{cos}(0.57815608595633583454598214328008*t) - ...
\]
The following points have been shown:

- Padé approximants can model dead-time step inputs.
- The accuracy of the Padé approximant increases with the increase in the order of the approximant.
- When a pole or zero exists at the expansion point, the Padé approximant is inaccurate about the expansion point. To increase the accuracy of the approximant, set the `OrderMode` option to `Relative`. You can also use increase the order of the denominator relative to the numerator.
Find Asymptotes, Critical and Inflection Points

This section describes how to analyze a simple function to find its asymptotes, maximum, minimum, and inflection point. The section covers the following topics:

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Define a Function” on page 2-45</td>
</tr>
<tr>
<td>“Find Asymptotes” on page 2-46</td>
</tr>
<tr>
<td>“Find Maximum and Minimum” on page 2-48</td>
</tr>
<tr>
<td>“Find Inflection Point” on page 2-50</td>
</tr>
</tbody>
</table>

Define a Function

The function in this example is

\[ f(x) = \frac{3x^2 + 6x - 1}{x^2 + x - 3}. \]

To create the function, enter the following commands:

```matlab
syms x
num = 3*x^2 + 6*x -1;
denom = x^2 + x - 3;
f = num/denom

f = (3*x^2 + 6*x -1)/(x^2 + x - 3)
```

Plot the function \( f \)

```matlab
ezplot(f)
```
Find Asymptotes

To find the horizontal asymptote of the graph of \( f \), take the limit of \( f \) as \( x \) approaches positive infinity:

\[
\text{limit}(f, \text{inf})
\]

\[
\text{ans} = 3
\]

The limit as \( x \) approaches negative infinity is also 3. This tells you that the line \( y = 3 \) is a horizontal asymptote to the graph.
To find the vertical asymptotes of \( f \), set the denominator equal to 0 and solve by entering the following command:

\[
\text{roots} = \text{solve}(\text{denom})
\]

This returns to solutions to \( x^2 + x - 3 = 0 \):

\[
\text{roots} = \begin{align*}
-\frac{13^{(1/2)}}{2} - \frac{1}{2} \\
\frac{13^{(1/2)}}{2} - \frac{1}{2}
\end{align*}
\]

This tells you that vertical asymptotes are the lines

\[
x = \frac{-1 + \sqrt{13}}{2},
\]

and

\[
x = \frac{-1 - \sqrt{13}}{2}.
\]

You can plot the horizontal and vertical asymptotes with the following commands. Note that \( \text{roots} \) must be converted to \text{double} to use the \text{plot} command.

\[
\begin{align*}
\text{ezplot}(&f) \\
\text{hold on} & \text{ % Keep the graph of } f \text{ in the figure} \\
& \% Plot horizontal asymptote \\
& \text{plot([-2*pi 2*pi], [3 3], 'g')} \\
& \% Plot vertical asymptotes \\
& \text{plot(double(roots(1))*[1 1], [-5 10], 'r')} \\
& \text{plot(double(roots(2))*[1 1], [-5 10], 'r')} \\
& \text{title('Horizontal and Vertical Asymptotes')} \\
& \text{hold off}
\end{align*}
\]
Find Maximum and Minimum

You can see from the graph that $f$ has a local maximum somewhere between the points $x = -2$ and $x = 0$, and might have a local minimum between $x = -6$ and $x = -2$. To find the $x$-coordinates of the maximum and minimum, first take the derivative of $f$:

$$f_1 = \text{diff}(f)$$

$$f_1 = \frac{(6x + 6)}{(x^2 + x - 3)} - \frac{((2x + 1)(3x^2 + 6x - 1))}{(x^2 + x - 3)^2}$$

To simplify this expression, enter

$$f_1 = \text{simplify}(f_1)$$
\[ f_1 = \frac{-(3x^2 + 16x + 17)}{(x^2 + x - 3)^2} \]

You can display \( f_1 \) in a more readable form by entering
\[
\text{pretty}(f1)
\]
which returns
\[
\frac{2}{\frac{3}{2} x + 16 \frac{1}{2} - \frac{1}{3} 17} - \frac{2}{\frac{2}{2} (x + x - 3)}
\]

Next, set the derivative equal to 0 and solve for the critical points:
\[
\text{crit}_\text{pts} = \text{solve}(f1)
\]
\[
\text{crit}_\text{pts} = \frac{-13^{1/2}/3 - 8/3}{13^{1/2}/3 - 8/3}
\]

It is clear from the graph of \( f \) that it has a local minimum at
\[
x_1 = \frac{-8 - \sqrt{13}}{3},
\]
and a local maximum at
\[
x_2 = \frac{-8 + \sqrt{13}}{3}.
\]

\textbf{Note} MATLAB does not always return the roots to an equation in the same order.

You can plot the maximum and minimum of \( f \) with the following commands:
Find Inflection Point

To find the inflection point of \( f \), set the second derivative equal to 0 and solve.

\[
f2 = \text{diff}(f1);
\]
Find Asymptotes, Critical and Inflection Points

\[
\text{inflec\_pt} = \text{solve}(f2,'\text{MaxDegree}',3);
\]
\[
\text{double}(\text{inflec\_pt})
\]

This returns

\[
\text{ans} =
\begin{align*}
-5.2635 + 0.0000i \\
-1.3682 - 0.8511i \\
-1.3682 + 0.8511i 
\end{align*}
\]

In this example, only the first entry is a real number, so this is the only inflection point. (Note that in other examples, the real solutions might not be the first entries of the answer.) Since you are only interested in the real solutions, you can discard the last two entries, which are complex numbers.

\[
\text{inflec\_pt} = \text{inflec\_pt}(1);
\]

To see the symbolic expression for the inflection point, enter

\[
\text{pretty(}\text{simplify(}\text{inflec\_pt)\text{})}
\]

\[
\frac{2}{3} - \frac{1}{3} \left(\frac{13 - 3 \sqrt{13}}{6}\right) \quad \frac{1}{3} \left(\frac{2}{13} \left(3 \sqrt{13} + 13\right) + \frac{1}{13}\right) - \frac{8}{3}
\]

Plot the inflection point. The extra argument, [-9 6], in \texttt{ezplot} extends the range of x values in the plot so that you see the inflection point more clearly, as shown in the following figure.

\[
\text{ezplot}(f, [-9 6])
\]
\[
\text{hold on}
\]
\[
\text{plot(double(}\text{inflec\_pt), double(subs(f,inflec\_pt)), 'ro'})
\]
\[
\text{title('Inflection Point of } f')
\]
\[
\text{text(-7,2,'Inflection point')}
\]
\[
\text{hold off}
\]
Inflection Point of $f$
Simplify Symbolic Expressions

Simplification of a mathematical expression is not a clearly defined subject. There is no universal idea as to which form of an expression is simplest. The form of a mathematical expression that is simplest for one problem turns out to be complicated or even unsuitable for another problem. For example, the following two mathematical expressions present the same polynomial in different forms:

\[(x + 1)(x - 2)(x + 3)(x - 4),\]
\[x^4 - 2x^3 - 13x^2 + 14x + 24.\]

The first form clearly shows the roots of this polynomial. This form is simpler for working with the roots. The second form serves best when you want to see the coefficients of the polynomial. For example, this form is convenient when you differentiate or integrate polynomials.

If the problem you want to solve requires a particular form of an expression, the best approach is to choose the appropriate simplification function. See “Choose Function to Rearrange Expression” on page 2-61.

Besides specific simplifiers, Symbolic Math Toolbox offers a general simplifier, `simplify`.

If you do not need a particular form of expressions (expanded, factored, or expressed in particular terms), use `simplify` to shorten mathematical expressions. For example, use this simplifier to find a shorter form for a final result of your computations.

`simplify` works on various types of symbolic expressions, such as polynomials, expressions with trigonometric, logarithmic, and special functions. For example, simplify these polynomials.

```matlab
syms x y
simplify((1 - x^2)/(1 - x))
simplify((x - 1)*(x + 1)*(x^2 + x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^4 - x^2 + 1))
```

\[\text{ans} = x + 1\]
\[\text{ans} = x^{12} - 1\]

Simplify expressions involving trigonometric functions.
simplify(cos(x)^(-2) - tan(x)^2)
simplify(cos(x)^2 - sin(x)^2)

ans =
1

ans =
cos(2*x)

Simplify expressions involving exponents and logarithms. In the third expression, use \( \log(sym(3)) \) instead of \( \log(3) \). If you use \( \log(3) \), then MATLAB calculates \( \log(3) \) with the double precision, and then converts the result to a symbolic number.

simplify(exp(x)*exp(y))
simplify(exp(x) - exp(x/2)^2)
simplify(log(x) + log(sym(3)) - log(3*x) + (exp(x) - 1)/(exp(x/2) + 1))

ans =
exp(x + y)

ans =
0

ans =
exp(x/2) - 1

Simplify expressions involving special functions.

simplify(gamma(x + 1) - x*gamma(x))
simplify(besselj(2, x) + besselj(0, x))

ans =
0

ans =
(2*besselj(1, x))/x

You also can simplify symbolic functions by using `simplify`.

syms f(x,y)
f(x,y) = exp(x)*exp(y)
f = simplify(f)

f(x, y) =
exp(x)*exp(y)
Simplify Symbolic Expressions

\[ f(x, y) = \exp(x + y) \]

**Simplify Using Options**

By default, `simplify` uses strict simplification rules and ensures that simplified expressions are always mathematically equivalent to initial expressions. For example, it does not combine logarithms.

```matlab
syms x
simplify(log(x^2) + log(x))
```

\[ \text{ans} = \log(x^2) + \log(x) \]

You can apply additional simplification rules which are not correct for all values of parameters and all cases, but using which `simplify` can return shorter results. For this approach, use `IgnoreAnalyticConstraints`. For example, simplifying the same expression with `IgnoreAnalyticConstraints`, you get the result with combined logarithms.

```matlab
simplify(log(x^2) + log(x),'IgnoreAnalyticConstraints',true)
```

\[ \text{ans} = 3 \log(x) \]

`IgnoreAnalyticConstraints` provides a shortcut allowing you to simplify expressions under commonly used assumptions about values of the variables. Alternatively, you can set appropriate assumptions on variables explicitly. For example, combining logarithms is not valid for complex values in general. If you assume that \( x \) is a real value, `simplify` combines logarithms without `IgnoreAnalyticConstraints`.

```matlab
assume(x,'real')
simplify(log(x^2) + log(x))
```

\[ \text{ans} = \log(x^3) \]

For further computations, clear the assumption on \( x \).

```matlab
syms x clear
```

Another approach that can improve simplification of an expression or function is the syntax `simplify(f,'Steps',n)`, where \( n \) is a positive integer that controls how many
steps `simplify` takes. Specifying more simplification steps can help you simplify the expression better, but it takes more time. By default, \( n = 1 \). For example, create and simplify this expression. The result is shorter than the original expression, but it can be simplified further.

```matlab
syms x
y = (cos(x)^2 - sin(x)^2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/...((cos(2*x)^2 - sin(2*x)^2)*(exp(2*x) - 1));
simplify(y)
```

```matlab
ans =
(sin(4*x)*(exp(x) - 1))/(2*cos(4*x)*(exp(x) + 1))
```

Specify the number of simplification steps for the same expression. First, use 25 steps.

```matlab
simplify(y,'Steps',25)
```

```matlab
ans =
(tan(4*x)*(exp(x) - 1))/(2*(exp(x) + 1))
```

Use 50 steps to simplify the expression even further.

```matlab
simplify(y,'Steps',50)
```

```matlab
ans =
(tan(4*x)*tanh(x/2))/2
```

Suppose, you already simplified an expression or function, but want to simplify it further. The more efficient approach is to simplify the result instead of simplifying the original expression.

```matlab
syms x
y = (cos(x)^2 - sin(x)^2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/...((cos(2*x)^2 - sin(2*x)^2)*(exp(2*x) - 1));
y = simplify(y)
y =
(sin(4*x)*(exp(x) - 1))/(2*cos(4*x)*(exp(x) + 1))
y = simplify(y,'Steps',25)
y =
(tan(4*x)*(exp(x) - 1))/(2*(exp(x) + 1))
y = simplify(y,'Steps',50)
```
\[ y = \frac{\tan(4x) \tanh(x/2)}{2} \]

### Simplify Using Assumptions

Some expressions cannot be simplified in general, but become much shorter under particular assumptions. For example, simplifying this trigonometric expression without additional assumptions returns the original expression.

```matlab
syms n
simplify(sin(2*n*pi))
as = sin(2*pi*n)
```

However, if you assume that variable \( n \) represents an integer, the same trigonometric expression simplifies to 0.

```matlab
assume(n,'integer')
simplify(sin(2*n*pi))
as = 0
```

For further computations, clear the assumption.

```matlab
syms n clear
```

### Simplify Fractions

You can use the general simplification function, `simplify`, to simplify fractions. However, Symbolic Math Toolbox offers a more efficient function specifically for this task: `simplifyFraction`. The statement `simplifyFraction(f)` represents the expression \( f \) as a fraction, where both the numerator and denominator are polynomials whose greatest common divisor is 1. For example, simplify these expressions.

```matlab
syms x y
simplifyFraction((x^3 - 1)/(x - 1))
as = x^2 + x + 1
simplifyFraction((x^3 - x^2*y - x*y^2 + y^3)/(x^3 + y^3))
```
ans =
(x^2 - 2*x*y + y^2)/(x^2 - x*y + y^2)

By default, `simplifyFraction` does not expand expressions in the numerator and denominator of the returned result. To expand the numerator and denominator in the resulting expression, use the `Expand` option. For comparison, first simplify this fraction without Expand.

`simplifyFraction((1 - exp(x)^4)/(1 + exp(x))^4)`

ans =
(exp(2*x) - exp(3*x) - exp(x) + 1)/(exp(x) + 1)^3

Now, simplify the same expressions with Expand.

`simplifyFraction((1 - exp(x)^4)/(1 + exp(x))^4,'Expand',true)`

ans =
(exp(2*x) - exp(3*x) - exp(x) + 1)/(3*exp(2*x) + exp(3*x) + 3*exp(x) + 1)
Abbreviate Common Terms in Long Expressions

Often, long expressions contain several instances of the same subexpression. Such expressions look shorter if you replace the subexpression with an abbreviation. For example, solve this equation.

```matlab
syms x
s = solve(sqrt(x) + 1/x == 1, x)
```

```matlab
s =
(1/(18*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...
(3^(1/2)*(1/(9*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...
(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3))1i)/2 +...
(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)/2 + 1/3)^2
...
((3^(1/2)*(1/(9*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...
(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3))1i)/2 + 1/(18*(25/54 -...
(23^(1/2)*108^(1/2))/108)^(1/3)) +...
(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)/2 + 1/3)^2
```

The returned result is a long expression that might be difficult to parse. To represent it in a more familiar typeset form, use `pretty`. When displaying results, the `pretty` function can use abbreviations to shorten long expressions.

```matlab
pretty(s)
```

```
/ / 1 #2 1 \2 \
| | ----- - #1 + -- + - | |
| \ 18 #2 2 3 / |
|
| / 1 #2 1 \2 |
| #1 + ----- + -- + - |
\ \ 18 #2 2 3 / /
where

sqrt(3) | ---- - #2 | 1i
\ 9 #2 /
#1 == ------------------------
2
/ 25 sqrt(23) sqrt(108) \1/3
```

2-59
pretty uses an internal algorithm to choose which subexpressions to abbreviate. It also can use nested abbreviations. For example, the term #1 contains the subexpression abbreviated as #2. This function does not provide any options to enable, disable, or control abbreviations.

subexpr is another function that you can use to shorten long expressions. This function abbreviates only one common subexpression and, unlike pretty, it does not support nested abbreviations. It also does not let you choose which subexpressions to replace.

Use the second input argument of subexpr to specify the variable name that replaces the common subexpression. For example, replace the common subexpression in s by variable t.

\[ [s1,t] = \text{subexpr}(s,'t') \]

\[ s1 = \]
\[ (1/(18*t^(1/3)) - (3^(1/2)*(1/(9*t^(1/3)) - t^(1/3))*1i)/2 + t^(1/3)/2 + 1/3)^2 \]
\[ ... \]
\[ ((3^(1/2)*(1/(9*t^(1/3)) - t^(1/3))*1i)/2 + 1/(18*t^(1/3)) + t^(1/3)/2 + 1/3)^2 \]

\[ t = \]
\[ 25/54 - (23^(1/2)*108^(1/2))/108 \]

For the syntax with one input argument, subexpr uses variable sigma to abbreviate the common subexpression. Output arguments do not affect the choice of abbreviation variable.

\[ [s2,sigma] = \text{subexpr}(s) \]

\[ s2 = \]
\[ (1/(18*sigma^(1/3)) - (3^(1/2)*(1/(9*sigma^(1/3)) - sigma^(1/3))*1i)/2 + sigma^(1/3)/2 + 1/3)^2 \]
\[ ... \]
\[ ((3^(1/2)*(1/(9*sigma^(1/3)) - sigma^(1/3))*1i)/2 + 1/(18*sigma^(1/3)) + sigma^(1/3)/2 + 1/3)^2 \]

\[ sigma = \]
\[ 25/54 - (23^(1/2)*108^(1/2))/108 \]
Choose Function to Rearrange Expression

<table>
<thead>
<tr>
<th>Type of Transformation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Combine Terms of Same Algebraic Structures” on page 2-61</td>
<td>combine</td>
</tr>
<tr>
<td>“Expand Expressions” on page 2-63</td>
<td>expand</td>
</tr>
<tr>
<td>“Factor Expressions” on page 2-64</td>
<td>factor</td>
</tr>
<tr>
<td>“Extract Subexpressions from Expression” on page 2-66</td>
<td>children</td>
</tr>
<tr>
<td>“Collect Terms with Same Powers” on page 2-67</td>
<td>collect</td>
</tr>
<tr>
<td>“Rewrite Expressions in Terms of Other Functions” on page 2-68</td>
<td>rewrite</td>
</tr>
<tr>
<td>“Compute Partial Fraction Decompositions of Expressions” on page 2-69</td>
<td>partfrac</td>
</tr>
<tr>
<td>“Compute Normal Forms of Rational Expressions” on page 2-70</td>
<td>simplifyFraction</td>
</tr>
<tr>
<td>“Represent Polynomials Using Horner Nested Forms” on page 2-70</td>
<td>horner</td>
</tr>
</tbody>
</table>

**Combine Terms of Same Algebraic Structures**

Symbolic Math Toolbox provides the `combine` function for combining subexpressions of an original expression. The `combine` function uses mathematical identities for the functions you specify. For example, combine the trigonometric expression.

```matlab
syms x y
combine(2*sin(x)*cos(x),'sincos')
```

```matlab
ans =
 sin(2*x)
```

If you do not specify a target function, `combine` uses the identities for powers wherever these identities are valid:

- $a^b a^c = a^{b+c}$
• $a^c b^c = (a b)^c$
• $(a^b)^c = a^{bc}$

For example, by default the function combines the following square roots.

```matlab
combine(sqrt(2)*sqrt(x))
```

```matlab
ans =
(2*x)^(1/2)
```

The function does not combine these square roots because the identity is not valid for negative values of variables.

```matlab
combine(sqrt(x)*sqrt(y))
```

```matlab
ans =
x^(1/2)*y^(1/2)
```

To combine these square roots, use the IgnoreAnalyticConstraints option.

```matlab
combine(sqrt(x)*sqrt(y),'IgnoreanalyticConstraints',true)
```

```matlab
ans =
(x*y)^(1/2)
```

`IgnoreAnalyticConstraints` provides a shortcut allowing you to combine expressions under commonly used assumptions about values of the variables. Alternatively, you can set appropriate assumptions on variables explicitly. For example, assume that $x$ and $y$ are positive values.

```matlab
assume([x,y],'positive')
combine(sqrt(x)*sqrt(y))
```

```matlab
ans =
(x*y)^(1/2)
```

For further computations, clear the assumptions on $x$ and $y$.

```matlab
syms x y clear
```

As target functions, `combine` accepts `atan`, `exp`, `gamma`, `int`, `log`, `sincos`, and `sinhcosh`. 
**Expand Expressions**

For elementary expressions, use the `expand` function to transform the original expression by multiplying sums of products. This function provides an easy way to expand polynomials.

```matlab
expand((x - 1)*(x - 2)*(x - 3))
ans =
 x^3 - 6*x^2 + 11*x - 6

expand(x*(x*(x - 6) + 11) - 6)
ans =
 x^3 - 6*x^2 + 11*x - 6
```

The function also expands exponential and logarithmic expressions. For example, expand this expression containing exponentials.

```matlab
expand(exp(x + y)*(x + exp(x - y)))
ans =
 exp(2*x) + x*exp(x)*exp(y)
```

Expand this logarithm. Expanding logarithms is not valid for generic complex values, but it is valid for positive values.

```matlab
syms a b c positive
expand(log(a*b*c))
ans =
 log(a) + log(b) + log(c)
```

For further computations, clear the assumptions.

```matlab
syms a b c clear
```

Alternatively, use the `IgnoreAnalyticConstraints` option when expanding logarithms.

```matlab
expand(log(a*b*c),'IgnoreAnalyticConstraints',true)
ans =
 log(a) + log(b) + log(c)
```

`expand` also works on trigonometric expressions. For example, expand this expression.
expand(cos(x + y))
ans =
cos(x)*cos(y) - sin(x)*sin(y)

expand uses mathematical identities between the functions.

expand(sin(5*x))
ans =
sin(x) - 12*cos(x)^2*sin(x) + 16*cos(x)^4*sin(x)

expand(cos(3*acos(x)))
ans =
4*x^3 - 3*x

expand works recursively for all subexpressions.

expand((sin(3*x) + 1)*(cos(2*x) - 1))
ans =
2*sin(x) + 2*cos(x)^2 - 10*cos(x)^2*sin(x) + 8*cos(x)^4*sin(x) - 2

To prevent the expansion of all trigonometric, logarithmic, and exponential subexpressions, use the option ArithmeticOnly.

expand(exp(x + y)*(x + exp(x - y)),'ArithmeticOnly',true)
ans =
exp(x - y)*exp(x + y) + x*exp(x + y)

expand(((sin(3*x) + 1)*(cos(2*x) - 1),'ArithmeticOnly',true)
ans =
cos(2*x) - sin(3*x) + cos(2*x)*sin(3*x) - 1

Factor Expressions

To return all irreducible factors of an expression, use the factor function. For example, find all irreducible polynomial factors of this polynomial expression. The result shows that this polynomial has three roots: x = 1, x = 2, and x = 3.

syms x
factor(x^3 - 6*x^2 + 11*x - 6)
ans =
\[ x - 3, x - 1, x - 2 \]

If a polynomial expression is irreducible, \texttt{factor} returns the original expression.

\texttt{factor(x^3 - 6\times x^2 + 11\times x - 5)}

ans =
x^3 - 6\times x^2 + 11\times x - 5

Find irreducible polynomial factors of this expression. By default, \texttt{factor} uses factorization over rational numbers keeping rational numbers in their exact symbolic form. The resulting factors for this expression do not show polynomial roots.

\texttt{factor(x^6 + 1)}

ans =
\[ x^2 + 1, x^4 - x^2 + 1 \]

Using other factorization modes lets you factor this expression further. For example, factor the same expression over complex numbers.

\texttt{factor(x^6 + 1,'FactorMode','complex')}  

ans =
\[ x - 0.86602540378443864676372317075294 + 0.5i,...
  x - 1.0i,...
  x + 0.86602540378443864676372317075294 + 0.5i,...
  x - 0.86602540378443864676372317075294 - 0.5i,...
  x + 1.0i,...
  x + 0.86602540378443864676372317075294 - 0.5i \]

\texttt{factor} also works on expressions other than polynomials and rational expressions. For example, you can factor the following expression that contains logarithm, sine, and cosine functions. Internally, \texttt{factor} converts such expressions into polynomials and rational expressions by substituting subexpressions with variables. After computing irreducible factors, the function restores original subexpressions.

\texttt{factor((log(x)^2 - 1)/(cos(x)^2 - sin(x)^2))}

ans =
\[ \log(x) - 1, \log(x) + 1, 1/(cos(x) - sin(x)), 1/(cos(x) + sin(x)) \]

Use \texttt{factor} to factor symbolic integers and symbolic rational numbers.

\texttt{factor(sym(902834092))}
factor(1/sym(210))

ans =
[ 2, 2, 47, 379, 12671]

ans =
[ 1/2, 1/3, 1/5, 1/7]

factor also can factor numbers larger than flintmax that the MATLAB factor
cannot. To represent a large number accurately, place the number in quotation marks.

factor(sym('41758540882408627201'))

ans =
[ 479001599, 87178291199]

**Extract Subexpressions from Expression**

The children function returns the subexpressions of an expression.

Define an expression \( f \) with several subexpressions.

```matlab
syms x y
f = exp(3*x)*y^3 + exp(2*x)*y^2 + exp(x)*y;
```

Extract the subexpressions of \( f \) by using children.

```matlab
expr = children(f)
```

expr =

```matlab
[y^2*exp(2*x), y^3*exp(3*x), y*exp(x)]
```

You can extract lower-level subexpressions by calling children repeatedly on the
results.

Extract the subexpressions of expr(1) by calling children repeatedly. When the input
to children is a vector, the output is a cell array.

```matlab
expr1 = children(expr(1))
expr2 = children(expr1)
```

expr1 =

```matlab
[y^2, exp(2*x)]
```

expr2 =

```matlab
[1x2 sym] [1x1 sym]```
Access the contents of the cell array `expr2` using braces.

```matlab
expr2{1}
expr2{2}
```

```matlab
ans =
   [ y, 2]
ans =
     2*x
```

Collect Terms with Same Powers

If a mathematical expression contains terms with the same powers of a specified variable or expression, the `collect` function reorganizes the expression byrouping such terms. When calling `collect`, specify the variables that the function must consider as unknowns. The `collect` function regards the original expression as a polynomial in the specified unknowns, and groups the coefficients with equal powers. Group the terms of an expression with the equal powers of `x`.

```matlab
syms x y z
collect(x*y^4 + x*z + 2*x^3 + x^2*y*z +...3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z, x)
```

```matlab
ans =
   (3*y^4*z^2 + 2)*x^3 + (y*z)*x^2 + (y^4 + 5*z*y + z)*x + y*z^2
```

Group the terms of the same expression with the equal powers of `y`.

```matlab
collect(x*y^4 + x*z + 2*x^3 + x^2*y*z +...3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z, y)
```

```matlab
ans =
   (3*x^3*y^4 + y)*z^2 + (x + 5*x*y + x^2*y)*z + 2*x^3 + z*x
```

Group the terms of the same expression with the equal powers of `z`.

```matlab
collect(x*y^4 + x*z + 2*x^3 + x^2*y*z +...3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z, z)
```

```matlab
ans =
   (3*x^3*y^4 + y)*z^2 + (x + 5*x*y + x^2*y)*z + 2*x^3 + x*y^4
```

If you do not specify variables that `collect` must consider as unknowns, the function uses `symvar` to determine the default variable.
collect(x*y^4 + x*z + 2*x^3 + x^2*y*z + ...
 3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z)
ans =
 (3*y^4*z^2 + 2)*x^3 + (y*z)*x^2 + (y^4 + 5*z*y + z)*x + y*z^2

Collect terms of an expression with respect to several unknowns by specifying those
unknowns as a vector.

collect(x*y^4 + x*z + 2*x^3 + x^2*y*z + ...
 3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z, [y,z])
ans =
 (3*x^3)*y^4*z^2 + x*y^4 + y*z^2 + (x^2 + 5*x)*y*z + x*z + 2*x^3

Rewrite Expressions in Terms of Other Functions

To present an expression in terms of a particular function, use `rewrite`. This function
uses mathematical identities between functions. For example, rewrite an expression
containing trigonometric functions in terms of a particular trigonometric function.

```matlab
syms x
rewrite(sin(x),'tan')
ans =
   (2*tan(x/2))/(tan(x/2)^2 + 1)
rewrite(cos(x),'tan')
ans =
   -(tan(x/2)^2 - 1)/(tan(x/2)^2 + 1)
rewrite(sin(2*x) + cos(3*x)^2,'tan')
ans =
   (tan((3*x)/2)^2 - 1)^2/(tan((3*x)/2)^2 + 1)^2 +...
   (2*tan(x))/(tan(x)^2 + 1)
```

Use `rewrite` to express these trigonometric functions in terms of the exponential
function.

```matlab
rewrite(sin(x),'exp')
ans =
   (exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2
```
rewrite(cos(x), 'exp')
ans =
exp(-x*1i)/2 + exp(x*1i)/2

Use rewrite to express these hyperbolic functions in terms of the exponential function.

rewrite(sinh(x), 'exp')
ans =
exp(x)/2 - exp(-x)/2

rewrite(cosh(x), 'exp')
ans =
exp(-x)/2 + exp(x)/2

rewrite also expresses inverse hyperbolic functions in terms of logarithms.

rewrite(asinh(x), 'log')
ans =
\log(x + (x^2 + 1)^{(1/2)})

rewrite(acosh(x), 'log')
ans =
\log(x + (x^2 - 1)^{(1/2)})

Compute Partial Fraction Decompositions of Expressions

The partfrac function returns a rational expression in the form of a sum of a polynomial and rational terms. In each rational term, the degree of the numerator is smaller than the degree of the denominator. For some expressions, partfrac returns visibly simpler forms.

syms x
n = x^6 + 15*x^5 + 94*x^4 + 316*x^3 + 599*x^2 + 602*x + 247;
d = x^6 + 14*x^5 + 80*x^4 + 238*x^3 + 387*x^2 + 324*x + 108;
partfrac(n/d, x)
ans =
1/(x + 1) + 1/(x + 2)^2 + 1/(x + 3)^3 + 1

The denominators in rational terms represent the factored common denominator of the original expression.
factor(d)

ans =
[x + 1, x + 2, x + 2, x + 3, x + 3, x + 3]

Compute Normal Forms of Rational Expressions

The `simplifyFraction` function represents the original rational expression as a single rational term with expanded numerator and denominator. The greatest common divisor of the numerator and denominator of the returned expression is 1. This function is more efficient for simplifying fractions than the `simplify` function.

```matlab
syms x y
simplifyFraction((x^3 + 3*y^2)/(x^2 - y^2) + 3)
```

ans =

```
(x^3 + 3*x^2)/(x^2 - y^2)
```

`simplifyFraction` cancels common factors that appear in numerator and denominator.

```matlab
simplifyFraction(x^2/(x + y) - y^2/(x + y))
```

ans =

```
x - y
```

`simplifyFraction` also handles expressions other than polynomials and rational functions. Internally, it converts such expressions into polynomials or rational functions by substituting subexpressions with identifiers. After normalizing the expression with temporary variables, `simplifyFraction` restores the original subexpressions.

```matlab
simplifyFraction((exp(2*x) - exp(2*y))/(exp(x) - exp(y)))
```

ans =

```
exp(x) + exp(y)
```

Represent Polynomials Using Horner Nested Forms

The Horner, or nested, form of a polynomial expression is efficient for numerical evaluation because it often involves fewer arithmetical operations than other mathematically equivalent forms of the same polynomial. Typically, this form of an expression is numerically stable. To represent a polynomial expression in a nested form, use the `horner` function.
syms x
horner(x^3 - 6*x^2 + 11*x - 6)
ans =
x*(x*(x - 6) + 11) - 6

If polynomial coefficients are floating-point numbers, the resulting Horner form represents them as rational numbers.

horner(1.1 + 2.2*x + 3.3*x^2)
ans =
x*((33*x)/10 + 11/5) + 11/10

To convert the coefficients in the result to floating-point numbers, use vpa.

vpa(ans)
ans =
x*(3.3*x + 2.2) + 1.1
Extract Polynomial Coefficients

Symbolic Math Toolbox provides two functions, `coeffs` and `sym2poly`, for extracting coefficients of polynomials.

- `coeffs` works on univariate and multivariate polynomials with numeric or symbolic parameters. It returns a symbolic vector containing nonzero coefficients. This function returns coefficients in order of ascending powers of the polynomial variable and omits all zero coefficients. For example, `coeffs(x^3 + 3/2)` returns `[3/2, 1]`.

- `sym2poly` works on univariate polynomials with numeric coefficients. It returns a vector of double-precision numbers. This function returns coefficients in order of descending powers of the polynomial variable and includes zero coefficients in the result. For example, `sym2poly(x^3 + 3/2)` returns `[1.0000, 0, 0, 1.5000]`.

To extract coefficients of this univariate polynomial, use `coeffs`. This function returns a symbolic vector of coefficients, even if all coefficients can be converted to numeric values. This approach lets you obtain exact values of coefficients.

```matlab
syms x
p = sin(sym(1))*x^2 + sqrt(sym(2))*x + sym(pi);
coeffs(p)
```

```
an = [pi, 2^(1/2), sin(1)]
```

Extract coefficients of the same polynomial using `sym2poly`. This function converts coefficients to double-precision values. The resulting vector is an acceptable input argument for MATLAB functions.

```matlab
sym2poly(p)
```

```
an = 0.8415 1.4142 3.1416
```

`coeffs` also lets you extract symbolic coefficients of a polynomial. For polynomials with symbolic coefficients, always specify which variables must be treated as polynomial variables.

```matlab
syms a b c
coeffs(a*x^2 + 2*b*x + 3*c, x)
```

```
an = [3*c, 2*b, a]
```
If you do not specify polynomial variables, `coeffs` treats all variables as polynomial variables.

```matlab
coeffs(a*x^2 + 2*b*x + 3*c)
```

```matlab
ans =
[ 1, 2, 3]
```

To find a vector of polynomial coefficients and a vector of the corresponding terms, use `coeffs` with two output arguments.

```matlab
[c, t] = coeffs(a*x^2 + 2*b*x + 3*c, x)
```

```matlab
coefficients =
[ a, 2*b, 3*c]
```

```matlab
terms =
[ x^2, x, 1]
```

```matlab
[c, t] = coeffs(a*x^2 + 2*b*x + 3*c)
```

```matlab
coefficients =
[ 1, 2, 3]
```

```matlab
terms =
[ a*x^2, b*x, c]
```
Extract Numerators and Denominators of Rational Expressions

To extract the numerator and denominator of a rational symbolic expression, use the \texttt{numden} function. The first output argument of \texttt{numden} is a numerator, the second output argument is a denominator. Use \texttt{numden} to find numerators and denominators of symbolic rational numbers.

\[
[n,d] = \texttt{numden}(1/\text{sym}(3))
\]

\[
n = 1
\]

\[
d = 3
\]

Use \texttt{numden} to find numerators and denominators of a symbolic expressions.

\[
s\text{yms} x y
\[
[n,d] = \texttt{numden}((x^2 - y^2)/(x^2 + y^2))
\]

\[
n = x^2 - y^2
\]

\[
d = x^2 + y^2
\]

Use \texttt{numden} to find numerators and denominators of symbolic functions. If the input is a symbolic function, \texttt{numden} returns the numerator and denominator as symbolic functions.

\[
s\text{yms} f(x) g(x)
f(x) = \texttt{sin}(x)/x^2;
g(x) = \texttt{cos}(x)/x;
[n,d] = \texttt{numden}(f)
\]

\[
n(x) = \texttt{sin}(x)
\]

\[
d(x) = x^2
\]

\[
[n,d] = \texttt{numden}(f/g)
\]

\[
n(x) =
\]
\[\sin(x) \]
\[d(x) = x \cos(x) \]

\texttt{numden} converts the input to its one-term rational form, such that the greatest common divisor of the numerator and denominator is 1. Then it returns the numerator and denominator of that form of the expression.

\[[n,d] = \text{numden}(x/y + y/x) \]
\[n = x^2 + y^2 \]
\[d = x*y \]

\texttt{numden} works on vectors and matrices. If an input is a vector or matrix, \texttt{numden} returns two vectors or two matrices of the same size as the input. The first vector or matrix contains numerators of each element. The second vector or matrix contains denominators of each element. For example, find numerators and denominators of each element of the 3-by-3 Hilbert matrix.

\[H = \text{sym(hilb(3))} \]
\[H = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix} \]
\[[n,d] = \text{numden}(H) \]
\[n = \begin{bmatrix} [1, 1, 1] \\ [1, 1, 1] \\ [1, 1, 1] \end{bmatrix} \]
\[d = \begin{bmatrix} [1, 2, 3] \\ [2, 3, 4] \\ [3, 4, 5] \end{bmatrix} \]
Substitute Variables in Symbolic Expressions

Solve the following trigonometric equation using the ReturnConditions option of the solver to obtain the complete solution. The solver returns the solution, parameters used in the solution, and conditions on those parameters.

```plaintext
syms x
eqn = sin(2*x) + cos(x) == 0;
[solx, params, conds] = solve(eqn, x, 'ReturnConditions', true)

solx =
    pi/2 + pi*k
    2*pi*k - pi/6
    (7*pi)/6 + 2*pi*k

params =
    k

conds =
    in(k, 'integer')
    in(k, 'integer')
    in(k, 'integer')
```

Replace the parameter \(k \) with a new symbolic variable \(\alpha \). First, create symbolic variables \(k \) and \(\alpha \). (The solver does not create variable \(k \) in the MATLAB workspace.)

```plaintext
syms k alpha
```

Now, use the subs function to replace \(k \) by \(\alpha \) in the solution vector \(\text{solx} \), parameters \(\text{params} \), and conditions \(\text{conds} \).

```plaintext
solx = subs(solx, k, alpha)
params = subs(params, k, alpha)
conds = subs(conds, k, alpha)

solx =
    pi/2 + pi*alpha
    2*pi*alpha - pi/6
    (7*pi)/6 + 2*pi*alpha

params =
    alpha
```
Substitute Variables in Symbolic Expressions

```plaintext
conds =

    in(alpha, 'integer')
    in(alpha, 'integer')
    in(alpha, 'integer')

Suppose, you know that the value of the parameter alpha is 2. Substitute alpha with 2 in the solution vector solx.

```
subs(solx, alpha, 2)
```

```plaintext
ans =

 (5*pi)/2
 (23*pi)/6
 (31*pi)/6

Alternatively, substitute params with 2. This approach returns the same result.

```
subs(solx, params, 2)
```

```plaintext
ans =

    (5*pi)/2
    (23*pi)/6
    (31*pi)/6

Substitute parameter alpha with a floating-point number. The toolbox converts numbers to floating-point values, but it keeps intact the symbolic expressions, such as sym(pi), exp(sym(1)), and so on.

```
subs(solx, params, vpa(2))
```

```plaintext
ans =

 2.5*pi
 3.8333333333333333333333333333333*pi
 5.1666666666666666666666666666667*pi

Approximate the result of substitution with floating-point values by using vpa on the result returned by subs.

```
vpa(subs(solx, params, 2))
```

```plaintext
ans =

    7.8539816339744830961566084581988
    12.042771838760874080773466302571
    16.231562043547265065390324146944
```
Substitute Elements in Symbolic Matrices

Create a 3-by-3 circulant matrix using the backward shift.

```matlab
syms a b c
M = [a b c; b c a; c a b]
M =
[ a, b, c]
[ b, c, a]
[ c, a, b]
```

Replace variable \(b\) in this matrix by the expression \(a + 1\). The `subs` function replaces all \(b\) elements in matrix \(M\) with the expression \(a + 1\).

```matlab
M = subs(M, b, a + 1)
M =
[ a, a + 1, c]
[ a + 1, c, a]
[ c, a, a + 1]
```

You also can specify the value to replace by indexing into matrix. That is, to replace all elements whose value is \(c\), you can specify the value to replace as \(c\), \(M(1,3)\) or \(M(3,1)\).

Replace all elements whose value is \(M(1,3) = c\) with the expression \(a + 2\).

```matlab
M = subs(M, M(1,3), a + 2)
M =
[ a, a + 1, a + 2]
[ a + 1, a + 2, a]
[ a + 2, a, a + 1]
```

Tip To replace a particular element of a matrix with a new value while keeping all other elements unchanged, use the assignment operation. For example, \(M(1,1) = 2\) replaces only the first element of the matrix \(M\) with the value \(2\).

Find eigenvalues and eigenvectors of the matrix.

```matlab
[V,E] = eig(M)
V =
```
Substitute Elements in Symbolic Matrices

\[
E =
\begin{bmatrix}
1, & 3^{1/2}/2 - 1/2, & -3^{1/2}/2 - 1/2 \\
1, & -3^{1/2}/2 - 1/2, & 3^{1/2}/2 - 1/2 \\
1, & 1, & 1 \\
\end{bmatrix}
\]

Replace the symbolic parameter \(a\) with the value 1.

\[
\text{subs}(E, a, 1)
\]

\[
\begin{bmatrix}
6, & 0, & 0 \\
0, & 3^{1/2}, & 0 \\
0, & 0, & -3^{1/2} \\
\end{bmatrix}
\]
Substitute Scalars with Matrices

Create the following expression representing the sine function.

```matlab
syms w t
f = sin(w*t);
```

Suppose, your task involves creating a matrix whose elements are sine functions with angular velocities represented by a Toeplitz matrix. First, create a 4-by-4 Toeplitz matrix.

```matlab
W = toeplitz(sym([3 2 1 0]))
```

Next, replace the variable `w` in the expression `f` with the Toeplitz matrix `W`. When you replace a scalar in a symbolic expression with a matrix, `subs` expands the expression into a matrix. In this example, `subs` expands `f = sin(w*t)` into a 4-by-4 matrix whose elements are `sin(w*t)`. Then it replaces `w` in that matrix with the corresponding elements of the Toeplitz matrix `W`.

```matlab
F = subs(f, w, W)
```

Find the sum of these sine waves at `t = π, t = π/2, t = π/3, t = π/4, t = π/5,` and `t = π/6`. First, find the sum of all elements of matrix `F`. Here, the first call to `sum` returns a row vector containing sums of elements in each column. The second call to `sum` returns the sum of elements of that row vector.

```matlab
S = sum(sum(F))
```

Now, use `subs` to evaluate `S` for particular values of the variable `t`.
subs(S, t, sym(pi)./[1:6])

[0,...
 0,...
 5*3^(1/2), 4*2^(1/2) + 6,...
 2^(1/2)*(5 - 5^(1/2))^(1/2) + (5*2^(1/2)*(5^(1/2) + 5)^(1/2))/2,...
 3*3^(1/2) + 6]

You also can use `subs` to replace a scalar element of a matrix with another matrix. In this case, `subs` expands the matrix to accommodate new elements. For example, replace zero elements of the matrix `F` with a column vector `[1;2]`. The original 4-by-4 matrix `F` expands to an 8-by-4 matrix. The `subs` function duplicates each row of the original matrix, not only the rows containing zero elements.

`F = subs(F, 0, [1;2])`

`F =`

```
[ sin(3*t), sin(2*t), sin(t), 1 ]
[ sin(3*t), sin(2*t), sin(t), 2 ]
[ sin(2*t), sin(3*t), sin(2*t), sin(t) ]
[ sin(2*t), sin(3*t), sin(2*t), sin(t) ]
[ sin(t), sin(2*t), sin(3*t), sin(2*t) ]
[ sin(t), sin(2*t), sin(3*t), sin(2*t) ]
[ 1, sin(t), sin(2*t), sin(3*t) ]
[ 2, sin(t), sin(2*t), sin(3*t) ]
```
Use subs to Evaluate Expressions and Functions

In this section...

“Evaluate Expressions” on page 2-82
“Evaluate Functions” on page 2-83

Evaluate Expressions

Evaluation is one of the most common mathematical operations. Therefore, it is important to understand how and when Symbolic Math Toolbox performs evaluations. For example, create a symbolic variable, \(x \), and then assign the expression \(x^2 \) to another variable, \(y \).

```matlab
syms x
y = x^2;
```

Now, assign a numeric value to \(x \).

```matlab
x = 2;
```

This second assignment does not change the value of \(y \), which is still \(x^2 \). If later you change the value of \(x \) to some other number, variable, expression, or matrix, the toolbox remembers that the value of \(y \) is defined as \(x^2 \). When displaying results, Symbolic Math Toolbox does not automatically evaluate the value of \(x^2 \) according to the new value of \(x \).

```matlab
y
```

```
 y =
 x^2
```

To enforce evaluation of \(y \) according to the new value of \(x \), use the `subs` function.

```matlab
subs(y)
```

```
ans =
4
```

The displayed value (assigned to `ans`) is now 4. However, the value of \(y \) does not change. To replace the value of \(y \), assign the result returned by `subs` to \(y \).

```matlab
y = subs(y)
```
Use subs to Evaluate Expressions and Functions

\[
y = 4
\]

After this assignment, \(y \) is independent of \(x \).

\[
x = 5;
subs(y)
\]

\[
ans = 4
\]

Evaluate Functions

Create a symbolic function and assign an expression to it.

\[
syms f(x)
f(x) = x^2;
\]

Now, assign a numeric value to \(x \).

\[
x = 2;
\]

The function itself does not change: the body of the function is still the symbolic expression \(x^2 \).

\[
f
\]

\[
f(x) =
x^2
\]

In case of symbolic expressions, the recommended approach is to use `subs` to evaluate the expression with the most recent values of its parameters. This approach is not recommended for symbolic functions. For example, if you evaluate \(f \) using the `subs` function, the result is the expected value \(4 \), but it is assigned to a symbolic function, \(f_{\text{new}} \). This new symbolic function formally depends on the variable \(x \).

\[
f_{\text{new}} = \text{subs}(f)
\]

\[
f_{\text{new}}(x) =
4
\]

The function call, \(f(x) \), returns the value of \(f \) for the current value of \(x \). For example, if you assigned the value \(2 \) to the variable \(x \), then calling \(f(x) \) is equivalent to calling \(f(2) \).
\[
\begin{align*}
\text{f2} &= \text{f}(x) \\
\text{f2} &= 4 \\
\text{f2} &= \text{f}(2) \\
\text{f2} &= 4 \\
\text{f} \text{ remains independent of the value assigned to x.} \\
\text{f} \\
\text{[f(1), f(2), f(3)]} \\
\text{f(x)} &= x^2 \\
\text{ans} &= [1, 4, 9]
\end{align*}
\]
Choose Symbolic or Numeric Arithmetic

Symbolic Math Toolbox operates on numbers by using either symbolic or numeric arithmetic. Numeric arithmetic is either variable precision or double precision. The following information compares symbolic, variable-precision, and double-precision arithmetic.

<table>
<thead>
<tr>
<th>Example</th>
<th>Symbolic</th>
<th>Variable Precision</th>
<th>Double Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = sym(pi)</td>
<td>sin(a)</td>
<td>b = vpa(pi) sin(b)</td>
<td>c = double(pi) sin(c)</td>
</tr>
<tr>
<td>a = pi</td>
<td>ans = 0</td>
<td>b = 3.14159265358979323</td>
<td>c = 3.1416</td>
</tr>
<tr>
<td>ans = 0</td>
<td></td>
<td>ans = -3.2101083013100396</td>
<td>ans = 1.2246e-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functions Used</th>
<th>sym</th>
<th>vpa digits</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-Off Errors</td>
<td>No, finds exact results</td>
<td>Yes, magnitude depends on precision used</td>
<td>Yes</td>
</tr>
<tr>
<td>Speed</td>
<td>Slowest</td>
<td>Faster, depends on precision used</td>
<td>Faster</td>
</tr>
<tr>
<td>Memory Usage</td>
<td>Greatest</td>
<td>Adjustable, depends on precision used</td>
<td>Least</td>
</tr>
</tbody>
</table>

Symbolic Arithmetic

By default, Symbolic Math Toolbox uses exact numbers, such as 1/3, sqrt(2), or pi, to perform exact “Perform Symbolic Computations” on page 1-12.

Variable-Precision Arithmetic

Variable-precision arithmetic using vpa is the recommended approach for numeric calculations in Symbolic Math Toolbox. For greater precision, “Control Precision of Numerical Computations” on page 2-87. For faster computations and decreased memory usage, “Improve Performance of Numeric Computations” on page 2-94.
Double-Precision Arithmetic

Double-precision, floating-point arithmetic uses the same precision as most numeric computations in MATLAB. This arithmetic is recommended when you intend to use your computations on a computer that does not have a license for Symbolic Math Toolbox. Otherwise, exact symbolic numbers and variable-precision arithmetic are recommended. To approximate a value with double precision, use the `double` function.
Control Precision of Numerical Computations

When you “Choose Symbolic or Numeric Arithmetic” on page 2-85, the accuracy of approximations depends on the value of the global variable `digits`. This variable determines the number of decimal digits for numerical computations. By default, the toolbox uses 32 significant decimal digits, which roughly corresponds to double-precision floating-point accuracy. For example, approximate a sum using the default number of digits:

```matlab
vpa(sym(1/3) + 1/2)
```

```matlab
ans =
0.83333333333333333333333333333333
```

Now, approximate the same sum with 5 and 50 decimal digits:

```matlab
old = digits;

digits(5)
s5 = vpa(sym(1/3) + 1/2)

digits(50)
s50 = vpa(sym(1/3) + 1/2)

digits(old)

s5 =
0.83333

s50 =
0.83333333333333333333333333333333
```

To get the current `digits` setting, call `digits` without input arguments:

```matlab
digits
```

```matlab
Digits = 32
```

To change the accuracy for one operation without changing the current `digits` setting, use the `vpa` function with two input arguments. The second input argument must be an integer between 1 to \(2^{29}\) specifying the accuracy of approximation. For example, approximate the value `pi` with 10 and 50 digits:

```matlab
vpa(sym(pi), 10)
```
vpa(sym(pi), 50)
digits

ans =
3.141592654

ans =
3.1415926535897932384626433832795028841971693993751

Digits = 32

Note that digits and vpa control the number of significant decimal digits. Thus, when you approximate the value 1/111 with 4-digit accuracy, the result has six digits after the decimal point. The first two of them are zeros:

vpa(sym(1/111), 4)

ans =
0.009009
Recognize and Avoid Round-Off Errors

When approximating a value numerically, remember that floating-point results can be sensitive to the precision used. Also, floating-point results are prone to round-off errors. The following approaches can help you recognize and avoid incorrect results.

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Use Symbolic Computations When Possible” on page 2-89</td>
</tr>
<tr>
<td>“Perform Calculations with Increased Precision” on page 2-90</td>
</tr>
<tr>
<td>“Compare Symbolic and Numeric Results” on page 2-92</td>
</tr>
<tr>
<td>“Plot the Function or Expression” on page 2-92</td>
</tr>
</tbody>
</table>

Use Symbolic Computations When Possible

Performing “Choose Symbolic or Numeric Arithmetic” on page 2-85 is recommended because exact symbolic computations are not prone to round-off errors. For example, standard mathematical constants have their own symbolic representations in Symbolic Math Toolbox:

```matlab
pi
sym(pi)
ans =
 3.1416

ans =
pi```

Avoid unnecessary use of numeric approximations. A floating-point number approximates a constant; it is not the constant itself. Using this approximation, you can get incorrect results. For example, the `heaviside` special function returns different results for the sine of `sym(pi)` and the sine of the numeric approximation of `pi`:

```matlab
heaviside(sin(sym(pi)))
heaviside(sin(pi))
ans =
1/2```
Perform Calculations with Increased Precision

The Riemann hypothesis states that all nontrivial zeros of the Riemann Zeta function $\zeta(z)$ have the same real part $\Re(z) = 1/2$. To locate possible zeros of the Zeta function, plot its absolute value $|\zeta(1/2 + iy)|$. The following plot shows the first three nontrivial roots of the Zeta function $|\zeta(1/2 + iy)|$.

```matlab
syms y
ezplot(abs(zeta(1/2 + i*y)), 0, 30)
```
Use the numeric solver \texttt{vpasolve} to approximate the first three zeros of this Zeta function:

\begin{verbatim}
vpasolve(zeta(1/2 + i*y), y, 15)
vpasolve(zeta(1/2 + i*y), y, 20)
vpasolve(zeta(1/2 + i*y), y, 25)
\end{verbatim}

\begin{verbatim}
ans =
14.134725141734693790457251983562
ans =
21.022039638771554992628479593897
ans =
25.010857580145688763213790992563
\end{verbatim}

Now, consider the same function, but slightly increase the real part,

\[\zeta\left(\frac{1000000001}{2000000000} + iy\right). \]

According to the Riemann hypothesis, this function does not have a zero for any real value \(y \). If you use \texttt{vpasolve} with the 10 significant decimal digits, the solver finds the following (nonexisting) zero of the Zeta function:

\begin{verbatim}
old = digits;
digits(10)
vpasolve(zeta(1000000001/2000000000 + i*y), y, 15)
\end{verbatim}

\begin{verbatim}
ans =
14.13472514
\end{verbatim}

Increasing the number of digits shows that the result is incorrect. The Zeta function

\[\zeta\left(\frac{1000000001}{2000000000} + iy\right) \]

does not have a zero for any real value \(14 < y < 15 \):

\begin{verbatim}
digits(15)
vpasolve(zeta(1000000001/2000000000 + i*y), y, 15)
digits(old)
\end{verbatim}

\begin{verbatim}
ans =
14.1347251417347 + 0.000000000499989207306345i
\end{verbatim}

For further computations, restore the default number of digits:

\begin{verbatim}
digits(old)
\end{verbatim}
Compare Symbolic and Numeric Results

Bessel functions with half-integer indices return exact symbolic expressions. Approximating these expressions by floating-point numbers can produce very unstable results. For example, the exact symbolic expression for the following Bessel function is:

\[
B = \text{besselj}(53/2, \text{sym}(\pi))
\]

\[
B = \frac{351 \cdot 2^{1/2} \cdot (119409675/\pi^4 - 20300/\pi^2 - 31521542000/\pi^6 + 445475704038750/\pi^8 - 366812794263762000/\pi^{10} + \ldots + 182947881139051297500/\pi^{12} - 5572069751263676610000/\pi^{14} + \ldots + 1017414863695239020903125/\pi^{16} - 1060253389142977540073062500/\pi^{18} + \ldots + 57306695683177936040949028125/\pi^{20} - 1331871030107060331702688875000/\pi^{22} + \ldots + 8490677816932509614604641578125/\pi^{24} + 1))/\pi^2
\]

Use `vpa` to approximate this expression with the 10-digit accuracy:

\[
vpa(B, 10)
\]

\[
\text{ans = -2854.225191}
\]

Now, call the Bessel function with the floating-point parameter. Significant difference between these two approximations indicates that one or both results are incorrect:

\[
\text{besselj}(53/2, \pi)
\]

\[
\text{ans = 6.9001e-23}
\]

Increase the numeric working precision to obtain a more accurate approximation for B:

\[
vpa(B, 50)
\]

\[
\text{ans = 0.0000000000000000000006900145606917284206862232841396473796597233761161}
\]

Plot the Function or Expression

Plotting the results can help you recognize incorrect approximations. For example, the numeric approximation of the following Bessel function returns:

\[
B = \text{besselj}(53/2, \text{sym}(\pi));
\]
vpa(B, 10)

ans =
-2854.225191

Plot this Bessel function for the values of \(x\) around \(53/2\). The function plot shows that the approximation is incorrect:

syms x
ezplot(besselj(x, sym(pi)), 26, 27)
Improve Performance of Numeric Computations

When you “Choose Symbolic or Numeric Arithmetic” on page 2-85, you are trading-off the accuracy of computations against code performance. If you have Symbolic Math Toolbox, then the best approach is to use variable-precision arithmetic. Variable-precision arithmetic provides flexibility in terms of accuracy and performance, letting you choose the appropriate number of digits for your particular task. You can always convert the final results of your variable-precision computations to the double format, if that is needed for further tasks.

While increasing the number of significant decimal digits lets you perform numeric computations with better accuracy, decreasing that number might help you get the results in a reasonable amount of time. For example, compute the Riemann Zeta function of the elements of the 101-by-301 matrix C:

```matlab
[X,Y] = meshgrid((0:0.0025:.75),(5:-0.05:0));
C = X + Y*i;
```

Computing the Zeta function of these elements directly takes a long time:

```matlab
tic
D = zeta(C);
toc
Elapsed time is 340.204407 seconds.
```

Computing the Zeta function of the same elements with 10-digit precision is much faster:

```matlab
digits(10)
tic
D = zeta(vpa(C));
toc
Elapsed time is 113.792543 seconds.
```

For larger matrices, the difference in computation time can be more significant. For example, for the 1001-by-301 matrix C:

```matlab
[X,Y] = meshgrid((0:0.00025:.75),(5:-0.005:0));
C = X + Y*i;
```

executing `D = zeta(vpa(C))` with 10-digit precision finishes in several minutes, while executing `D = zeta(C)` takes more than an hour.
Numeric to Symbolic Conversion

This topic shows how Symbolic Math Toolbox converts numbers into symbolic form. For an overview of symbolic and numeric arithmetic, see “Choose Symbolic or Numeric Arithmetic” on page 2-85.

To convert numeric input to symbolic form, use the `sym` command. By default, `sym` returns a rational approximation of a numeric expression.

\[
t = 0.1;
sym(t)
\]

\[
ans =
1/10
\]

`sym` determines that the double-precision value 0.1 approximates the exact symbolic value 1/10. In general, `sym` tries to correct the round-off error in floating-point inputs to return the exact symbolic form. Specifically, `sym` corrects round-off error in numeric inputs that match the forms \(\frac{p}{q}, \frac{p\pi}{q}, \left(\frac{p}{q}\right)^{1/2}, 2^q, \text{ and } 10^q \), where \(p \) and \(q \) are modest-sized integers.

For these forms, demonstrate that `sym` converts floating-point inputs to the exact symbolic form. First, numerically approximate \(\frac{1}{7}, \pi, \text{ and } \frac{1}{\sqrt{2}} \).

\[
\begin{align*}
N1 &= \frac{1}{7} \\
N2 &= \pi \\
N3 &= \frac{1}{\sqrt{2}}
\end{align*}
\]

\[
\begin{align*}
N1 &= 0.1429 \\
N2 &= 3.1416 \\
N3 &= 0.7071
\end{align*}
\]

Convert the numeric approximations to exact symbolic form. `sym` corrects the round-off error.

\[
\begin{align*}
S1 &= sym(N1) \\
S2 &= sym(N2) \\
S3 &= sym(N3)
\end{align*}
\]
1/7
S2 =
pi
S3 =
2^(1/2)/2

To return the error between the input and the estimated exact form, use the syntax `sym(num,'e')`. See “Conversion to Rational Symbolic Form with Error Term” on page 2-97.

You can force `sym` to accept the input as is by placing the input in quotes. Demonstrate this behavior on the previous input 0.142857142857143. The `sym` function does not convert the input to 1/7.

`sym('0.142857142857143')`

```
ans =
0.142857142857143
```

When you convert large numbers, use quotes to exactly represent them. Demonstrate this behavior by comparing `sym(133333333333333333333)` with `sym('133333333333333333333')`.

`sym(133333333333333333333)
sym('133333333333333333333')`

```
ans =
1333333333333333248
ans =
1333333333333333333
```

You can specify the technique used by `sym` to convert floating-point numbers using the optional second argument, which can be ‘f’, ‘r’, ‘e’, or ‘d’. The default flag is ‘r’, for rational form.

In this section...

| “Conversion to Rational Symbolic Form” on page 2-97 |
| “Conversion by Using Floating-Point Expansion” on page 2-97 |
| “Conversion to Rational Symbolic Form with Error Term” on page 2-97 |
| “Conversion to Decimal Form” on page 2-97 |
Conversion to Rational Symbolic Form

Convert input to exact rational form by calling `sym` with the 'r' flag. This is the default behavior when you call `sym` without flags.

```matlab
sym(t, 'r')
ans = 1/10
```

Conversion by Using Floating-Point Expansion

If you call `sym` with the flag 'f', `sym` converts double-precision, floating-point numbers to their numeric value by using \(N \times 2^e \), where \(N \) and \(e \) are the exponent and mantissa respectively.

Convert \(t \) by using a floating-point expansion.

```matlab
sym(t, 'f')
ans = 3602879701896397/36028797018963968
```

Conversion to Rational Symbolic Form with Error Term

If you call `sym` with the flag 'e', `sym` returns the rational form of \(t \) plus the error between the estimated, exact value for \(t \) and its floating-point representation. This error is expressed in terms of \(\text{eps} \) (the floating-point relative precision).

Convert \(t \) to symbolic form. Return the error between its estimated symbolic form and its floating-point value.

```matlab
sym(t, 'e')
ans = eps/40 + 1/10
```

The error term \(\text{eps}/40 \) is the difference between `sym('0.1')` and `sym(0.1)`.

Conversion to Decimal Form

If you call `sym` with the flag 'd', `sym` returns the decimal expansion of the input. The `digits` function specifies the number of significant digits used. The default value of `digits` is 32.
sym(t,'d')
ans =
0.1000000000000000555111512312578

Change the number of significant digits by using digits.
digitsOld = digits(7);
sym(t,'d')
ans =
0.1

For further calculations, restore the old value of digits.
digits(digitsOld)
Basic Algebraic Operations

Basic algebraic operations on symbolic objects are the same as operations on MATLAB objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t. The statements

```plaintext
syms t
G = [cos(t) sin(t); -sin(t) cos(t)]
```

create this transformation matrix.

```plaintext
G =
[ cos(t), sin(t)]
[ -sin(t), cos(t)]
```

Applying the Givens transformation twice should simply be a rotation through twice the angle. The corresponding matrix can be computed by multiplying G by itself or by raising G to the second power. Both

```plaintext
A = G*G
```

and

```plaintext
A = G^2
```

produce

```plaintext
A =
[ cos(t)^2 - sin(t)^2, 2*cos(t)*sin(t)]
[ -2*cos(t)*sin(t), cos(t)^2 - sin(t)^2]
```

The `simplify` function

```plaintext
A = simplify(A)
```

uses a trigonometric identity to return the expected form by trying several different identities and picking the one that produces the shortest representation.

```plaintext
A =
[ cos(2*t), sin(2*t)]
[ -sin(2*t), cos(2*t)]
```
The Givens rotation is an orthogonal matrix, so its transpose is its inverse. Confirming this by

\[I = G.' \times G \]

which produces

\[I = \begin{bmatrix} \cos(t)^2 + \sin(t)^2, & 0 \\ 0, & \cos(t)^2 + \sin(t)^2 \end{bmatrix} \]

and then

\[I = \text{simplify}(I) \]

\[I = \begin{bmatrix} 1, & 0 \\ 0, & 1 \end{bmatrix} \]
Linear Algebraic Operations

The following examples show how to do several basic linear algebraic operations using Symbolic Math Toolbox software.
The command

```matlab
H = hilb(3)
```

generates the 3-by-3 Hilbert matrix. With `format short`, MATLAB prints

```matlab
H =
    1.0000    0.5000    0.3333
    0.5000    0.3333    0.2500
    0.3333    0.2500    0.2000
```

The computed elements of `H` are floating-point numbers that are the ratios of small integers. Indeed, `H` is a MATLAB array of class `double`. Converting `H` to a symbolic matrix

```matlab
H = sym(H)
```
gives

```matlab
H =
    [ 1, 1/2, 1/3]
    [ 1/2, 1/3, 1/4]
    [ 1/3, 1/4, 1/5]
```

This allows subsequent symbolic operations on `H` to produce results that correspond to the infinitely precise Hilbert matrix, `sym(hilb(3))`, not its floating-point approximation, `hilb(3)`. Therefore,

```matlab
inv(H)
```
produces

```matlab
ans =
    [ 9,  -36,  30]
    [ -36,  192, -180]
    [  30, -180,  180]
```

and

```matlab
det(H)
```
yields

```matlab
ans =
    1/2160
```
You can use the backslash operator to solve a system of simultaneous linear equations. For example, the commands

```
% Solve Hx = b
b = [1; 1; 1];
x = H\b
```

produce the solution

```
x =
 3
-24
30
```

All three of these results, the inverse, the determinant, and the solution to the linear system, are the exact results corresponding to the infinitely precise, rational, Hilbert matrix. On the other hand, using `digits(16)`, the command

```
digits(16)
V = vpa(hilb(3))
```

returns

```
V =
[ 1.0, 0.5, 0.3333333333333333]
[ 0.5, 0.3333333333333333, 0.25]
[ 0.3333333333333333, 0.25, 0.2]
```

The decimal points in the representation of the individual elements are the signal to use variable-precision arithmetic. The result of each arithmetic operation is rounded to 16 significant decimal digits. When inverting the matrix, these errors are magnified by the matrix condition number, which for `hilb(3)` is about 500. Consequently,

```
inv(V)
```

which returns

```
ans =
[ 9.0, -36.0,  30.0]
[ -36.0, 192.0, -180.0]
[  30.0, -180.0, 180.0]
```

shows the loss of two digits. So does

```
1/det(V)
```
which gives

\[
\begin{align*}
\text{ans} &= 2160.000000000018
\end{align*}
\]

and

\[
V\backslash b
\]

which is

\[
\begin{align*}
\text{ans} &= \\
&= 3.0 \\
&= -24.0 \\
&= 30.0
\end{align*}
\]

Since \(H \) is nonsingular, calculating the null space of \(H \) with the command

\texttt{null(H)}

returns an empty matrix:

\[
\begin{align*}
\text{ans} &= \\
\text{Empty sym: 1-by-0}
\end{align*}
\]

Calculating the column space of \(H \) with

\texttt{colspace(H)}

returns a permutation of the identity matrix:

\[
\begin{align*}
\text{ans} &= \\
&= \begin{bmatrix} 1, 0, 0 \\ 0, 1, 0 \\ 0, 0, 1 \end{bmatrix}
\end{align*}
\]

A more interesting example, which the following code shows, is to find a value \(s \) for \(H(1,1) \) that makes \(H \) singular. The commands

\[
\begin{align*}
\texttt{syms s} \\
\texttt{H(1,1) = s} \\
\texttt{Z = det(H)} \\
\texttt{sol = solve(Z)}
\end{align*}
\]

produce
H =
[s, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Z =
s/240 - 1/270

sol =
8/9

Then
H = subs(H, s, sol)

substitutes the computed value of sol for s in H to give

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Now, the command

det(H)

returns

ans =
0

and

inv(H)

produces the message

ans =
FAIL

because H is singular. For this matrix, null space and column space are nontrivial:

Z = null(H)
C = colspace(H)
Z =
\[
\begin{bmatrix}
3/10 \\
-6/5 \\
1
\end{bmatrix}
\]

\[C = \begin{bmatrix}
1, & 0 \\
0, & 1 \\
-3/10, & 6/5
\end{bmatrix}\]

It should be pointed out that even though \(H \) is singular, \(\text{vpa}(H) \) is not. For any integer value \(d \), setting \(\text{digits}(d) \), and then computing \(\text{inv}(\text{vpa}(H)) \) results in an inverse with elements on the order of \(10^d \).
Eigenvalues

The symbolic eigenvalues of a square matrix \(A \) or the symbolic eigenvalues and eigenvectors of \(A \) are computed, respectively, using the commands \(E = \text{eig}(A) \) and \([V,E] = \text{eig}(A)\).

The variable-precision counterparts are \(E = \text{eig}(ext{vpa}(A)) \) and \([V,E] = \text{eig}(ext{vpa}(A))\).

The eigenvalues of \(A \) are the zeros of the characteristic polynomial of \(A \), \(\det(A-x*I) \), which is computed by \(\text{charpoly}(A) \).

The matrix \(H \) from the last section provides the first example:

\[
H = \text{sym}([8/9 \ 1/2 \ 1/3; 1/2 \ 1/3 \ 1/4; 1/3 \ 1/4 \ 1/5])
\]

\[
H = \\
[8/9, \ 1/2, \ 1/3] \\
[1/2, \ 1/3, \ 1/4] \\
[1/3, \ 1/4, \ 1/5]
\]

The matrix is singular, so one of its eigenvalues must be zero. The statement

\[
[T,E] = \text{eig}(H)
\]

produces the matrices \(T \) and \(E \). The columns of \(T \) are the eigenvectors of \(H \) and the diagonal elements of \(E \) are the eigenvalues of \(H \):

\[
T = \\
[3/10, \ 218/285 - (4*12589^(1/2))/285, \ (4*12589^(1/2))/285 + 218/285] \\
[-6/5, \ 292/285 - 12589^(1/2)/285, \ 12589^(1/2)/285 + 292/285] \\
[1, \ 1, \ 1]
\]

\[
E = \\
[0, \ 0, \ 0] \\
[0, \ 32/45 - 12589^(1/2)/180, \ 0] \\
[0, \ 0, \ 12589^(1/2)/180 + 32/45]
\]

It may be easier to understand the structure of the matrices of eigenvectors, \(T \), and eigenvalues, \(E \), if you convert \(T \) and \(E \) to decimal notation. To do so, proceed as follows. The commands

\[
Td = \text{double}(T) \\
Ed = \text{double}(E)
\]

return
The first eigenvalue is zero. The corresponding eigenvector (the first column of T_d) is the same as the basis for the null space found in the last section. The other two eigenvalues are the result of applying the quadratic formula to $x^2 - \frac{64}{45}x + \frac{253}{2160}$ which is the quadratic factor in $\text{factor(charpoly}(H, x))$:

```matlab
syms x
g = factor(charpoly(H, x))/x
solve(g(3))
```

g =

$\frac{1}{(2160*x)}$, 1, $(2160*x^2 - 3072*x + 253)/x$

ans =

$32/45 - \frac{12589^{(1/2)}}{180}$

$12589^{(1/2)}/180 + 32/45$

Closed form symbolic expressions for the eigenvalues are possible only when the characteristic polynomial can be expressed as a product of rational polynomials of degree four or less. The Rosser matrix is a classic numerical analysis test matrix that illustrates this requirement. The statement

```matlab
R = sym(rosser)
```

generates

$R =$

$[\begin{array}{cccccccc}
611, & 196, & -192, & 407, & -8, & -52, & -49, & 29 \\
196, & 899, & 113, & -192, & -71, & -43, & -8, & -44 \\
-192, & 113, & 899, & 196, & 61, & 49, & 8, & 52 \\
407, & -192, & 196, & 611, & 8, & 44, & 59, & -23 \\
-8, & -71, & 61, & 8, & 411, & -599, & 208, & 208 \\
-52, & -43, & 49, & 44, & -599, & 411, & 208, & 208 \\
-49, & -8, & 8, & 59, & 208, & 208, & 99, & -911 \\
29, & -44, & 52, & -23, & 208, & 208, & -911, & 99 \\
\end{array}]$
The commands

\[
p = \text{charpoly}(R, x);
\text{pretty}(\text{factor}(p))
\]

produce

\[
(x, x - 1020, x - 1040500, x - 1020 x + 100, x - 1000, x - 1000)
\]

The characteristic polynomial (of degree 8) factors nicely into the product of two linear terms and three quadratic terms. You can see immediately that four of the eigenvalues are 0, 1020, and a double root at 1000. The other four roots are obtained from the remaining quadratics. Use

\[
\text{eig}(R)
\]

to find all these values

\[
\text{ans} =
\begin{array}{c}
0 \\
1000 \\
1000 \\
1020 \\
510 - 100*26^{(1/2)} \\
100*26^{(1/2)} + 510 \\
-10*10405^{(1/2)} \\
10*10405^{(1/2)}
\end{array}
\]

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix to have a characteristic polynomial that factors into such simple form. If you change the two “corner” elements of \(R \) from 29 to 30 with the commands

\[
S = R;
S(1,8) = 30;
S(8,1) = 30;
\]

and then try

\[
p = \text{charpoly}(S, x)
\]

you find

\[
p =
\begin{array}{c}
x^8 - 4040*x^7 + 5079941*x^6 + 82706090*x^5...
- 5327831918568*x^4 + 4287832912719760*x^3...
\end{array}
\]
You also find that \texttt{factor(p)} is \texttt{p} itself. That is, the characteristic polynomial cannot be factored over the rationals.

For this modified Rosser matrix

\[F = \text{eig}(S) \]

returns

\[
\begin{array}{c}
-1020.053214255892 \\
-0.17053529728769 \\
0.2180398054830161 \\
999.9469178604428 \\
1000.120698293384 \\
1019.524355263202 \\
1019.993550129163 \\
1020.420188201505 \\
\end{array}
\]

Notice that these values are close to the eigenvalues of the original Rosser matrix. Further, the numerical values of \(F \) are a result of MuPAD software's floating-point arithmetic. Consequently, different settings of \texttt{digits} do not alter the number of digits to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but closed form solutions are rare. The Givens transformation is generated as the matrix exponential of the elementary matrix

\[
A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.
\]

Symbolic Math Toolbox commands

\begin{verbatim}
syms t
A = sym([0 1; -1 0]);
G = expm(t*A)
return
G =
\end{verbatim}
\[
\begin{bmatrix}
\frac{\exp(-t\,i)}{2} + \frac{\exp(t\,i)}{2}, \\
\frac{\exp(-t\,i)*i}{2} - \frac{\exp(t\,i)*i}{2}
\end{bmatrix}
\begin{bmatrix}
-\frac{\exp(-t\,i)*i}{2} + \frac{\exp(t\,i)*i}{2}, \\
\frac{\exp(-t\,i)}{2} + \frac{\exp(t\,i)}{2}
\end{bmatrix}
\]

You can simplify this expression using `simplify`:

\[
G = \text{simplify}(G)
\]

\[
G = \\
\begin{bmatrix}
\cos(t), \sin(t) \\
-\sin(t), \cos(t)
\end{bmatrix}
\]

Next, the command

\[
g = \text{eig}(G)
\]

produces

\[
g = \\
\cos(t) - \sin(t)*i \\
\cos(t) + \sin(t)*i
\]

You can rewrite \(g\) in terms of exponents:

\[
g = \text{rewrite}(g, \text{'exp'})
\]

\[
g = \\
\exp(-t\,i) \\
\exp(t\,i)
\]
Jordan Canonical Form

The Jordan canonical form results from attempts to convert a matrix to its diagonal form by a similarity transformation. For a given matrix \(A \), find a nonsingular matrix \(V \), so that \(\text{inv}(V)A^*V \), or, more succinctly, \(J = V^*A^*V \), is “as close to diagonal as possible.” For almost all matrices, the Jordan canonical form is the diagonal matrix of eigenvalues and the columns of the transformation matrix are the eigenvectors. This always happens if the matrix is symmetric or if it has distinct eigenvalues. Some nonsymmetric matrices with multiple eigenvalues cannot be converted to diagonal forms. The Jordan form has the eigenvalues on its diagonal, but some of the superdiagonal elements are one, instead of zero. The statement

\[J = \text{jordan}(A) \]

computes the Jordan canonical form of \(A \). The statement

\[[V,J] = \text{jordan}(A) \]

also computes the similarity transformation. The columns of \(V \) are the generalized eigenvectors of \(A \).

The Jordan form is extremely sensitive to perturbations. Almost any change in \(A \) causes its Jordan form to be diagonal. This makes it very difficult to compute the Jordan form reliably with floating-point arithmetic. It also implies that \(A \) must be known exactly (i.e., without round-off error, etc.). Its elements must be integers, or ratios of small integers. In particular, the variable-precision calculation, \(\text{jordan}(\text{vpa}(A)) \), is not allowed.

For example, let

\[A = \text{sym}([12,32,66,116; -25, -76, -164, -294; 21, 66, 143, 256; -6, -19, -41, -73]) \]

\[A = \begin{bmatrix} 12 & 32 & 66 & 116 \\ -25 & -76 & -164 & -294 \\ 21 & 66 & 143 & 256 \\ -6 & -19 & -41 & -73 \end{bmatrix} \]

Then

\[[V,J] = \text{jordan}(A) \]

produces
\begin{align*}
V &=
\begin{bmatrix}
4 & -2 & 4 & 3 \\
-6 & 8 & -11 & -8 \\
4 & -7 & 10 & 7 \\
-1 & 2 & -3 & -2
\end{bmatrix} \\
J &=
\begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{bmatrix}
\end{align*}

Therefore \(A \) has a double eigenvalue at 1, with a single Jordan block, and a double eigenvalue at 2, also with a single Jordan block. The matrix has only two eigenvectors, \(V(:,1) \) and \(V(:,3) \). They satisfy

\begin{align*}
A\cdot V(:,1) &= 1\cdot V(:,1) \\
A\cdot V(:,3) &= 2\cdot V(:,3)
\end{align*}

The other two columns of \(V \) are generalized eigenvectors of grade 2. They satisfy

\begin{align*}
A\cdot V(:,2) &= 1\cdot V(:,2) + V(:,1) \\
A\cdot V(:,4) &= 2\cdot V(:,4) + V(:,3)
\end{align*}

In mathematical notation, with \(v_j = v(:,j) \), the columns of \(V \) and eigenvalues satisfy the relationships

\begin{align*}
(A - \lambda_1 I)v_2 &= v_1 \\
(A - \lambda_2 I)v_4 &= v_3.
\end{align*}
Singular Value Decomposition

Singular value decomposition expresses an m-by-n matrix A as \(A = U*S*V' \). Here, S is an m-by-n diagonal matrix with singular values of A on its diagonal. The columns of the m-by-m matrix U are the left singular vectors for corresponding singular values. The columns of the n-by-n matrix V are the right singular vectors for corresponding singular values. \(V' \) is the Hermitian transpose (the complex conjugate of the transpose) of V.

To compute the singular value decomposition of a matrix, use \texttt{svd}. This function lets you compute singular values of a matrix separately or both singular values and singular vectors in one function call. To compute singular values only, use \texttt{svd} without output arguments

\(\texttt{svd}(A) \)

or with one output argument

\[S = \texttt{svd}(A) \]

To compute singular values and singular vectors of a matrix, use three output arguments:

\[[U,S,V] = \texttt{svd}(A) \]

\texttt{svd} returns two unitary matrices, U and V, the columns of which are singular vectors. It also returns a diagonal matrix, S, containing singular values on its diagonal. The elements of all three matrices are floating-point numbers. The accuracy of computations is determined by the current setting of \texttt{digits}.

Create the n-by-n matrix A with elements defined by \(A(i,j) = 1/(i - j + 1/2) \). The most obvious way of generating this matrix is

\[
\begin{align*}
n &= 3; \\
&\text{for } i = 1:n \\
&\quad \text{for } j = 1:n \\
&\quad \quad A(i,j) = \text{sym}(1/(i-j+1/2)); \\
&\quad \text{end} \\
&\text{end}
\end{align*}
\]

For \(n = 3 \), the matrix is

\[
A =
\]
Singular Value Decomposition

\[
\begin{bmatrix}
 2, & -2, & -2/3 \\
 2/3, & 2, & -2 \\
 2/5, & 2/3, & 2 \\
\end{bmatrix}
\]

Compute the singular values of this matrix. If you use \texttt{svd} directly, it will return exact symbolic result. For this matrix, the result is very long. If you prefer a shorter numeric result, convert the elements of \(A \) to floating-point numbers using \texttt{vpa}. Then use \texttt{svd} to compute singular values of this matrix using variable-precision arithmetic:

\[
S = \texttt{svd(vpa(A))}
\]

\[
S =
\begin{bmatrix}
 3.1387302525015353960741348953506 \\
 3.0107425975027462353291981598225 \\
 1.6053456783345441725883965978052
\end{bmatrix}
\]

Now, compute the singular values and singular vectors of \(A \):

\[
[U,S,V] = \texttt{svd(A)}
\]

\[
U =
\begin{bmatrix}
 0.53254331027335338470683368360204, & 0.765768959488020529989304092179952, \ldots \\
 -0.82525689650849463222502853672224, & 0.3751496652839654519931738605042, \ldots \\
 0.18801243961043281839917114171742, & -0.52236064041897439447429784257224, \ldots \\
\end{bmatrix}
\]

\[
S =
\begin{bmatrix}
 3.1387302525015353960741348953506, & 0, \ldots \\
 0, & 3.0107425975027462353291981598225, \ldots \\
 0, & 0, \ldots \\
\end{bmatrix}
\]

\[
V =
\begin{bmatrix}
 0.18801243961043281839917114171742, & 0.52236064041897439447429784257224, \ldots \\
 -0.82525689650849463222502853672224, & -0.3751496652839654519931738605042, \ldots \\
 0.53254331027335338470683368360204, & -0.765768959488020529989304092179952, \ldots \\
\end{bmatrix}
\]
Solve Algebraic Equation

Symbolic Math Toolbox offers both symbolic and numeric equation solvers. This topic shows you how to solve an equation symbolically using the symbolic solver `solve`. To compare symbolic and numeric solvers, see “Select Numeric or Symbolic Solver” on page 2-121.

In this section...

“Solve an Equation” on page 2-116
“Return the Full Solution to an Equation” on page 2-117
“Work with the Full Solution, Parameters, and Conditions Returned by `solve`” on page 2-117
“Visualize and Plot Solutions Returned by `solve`” on page 2-118
“Simplify Complicated Results and Improve Performance” on page 2-120

Solve an Equation

If `eqn` is an equation, `solve(eqn, x)` solves `eqn` for the symbolic variable `x`.

Use the `==` operator to specify the familiar quadratic equation and solve it using `solve`.

```matlab
syms a b c x
eqn = a*x^2 + b*x + c == 0;
solx = solve(eqn, x)
```

```matlab
solx =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)
```

`solx` is a symbolic vector containing the two solutions of the quadratic equation. If the input `eqn` is an expression and not an equation, `solve` solves the equation `eqn == 0`.

To solve for a variable other than `x`, specify that variable instead. For example, solve `eqn` for `b`.

```matlab
solb = solve(eqn, b)
solb =
```

2-116
Solve Algebraic Equation

\[-(a x^2 + c)/x\]

If you do not specify a variable, `solve` uses `symvar` to select the variable to solve for. For example, `solve(eqn)` solves `eqn` for `x`.

Return the Full Solution to an Equation

`solve` does not automatically return all solutions of an equation. Solve the equation \(\cos(x) = -\sin(x) \). The `solve` function returns one of many solutions.

```matlab
syms x
solx = solve(cos(x) == -sin(x), x);
solx = -pi/4
```

To return all solutions along with the parameters in the solution and the conditions on the solution, set the `ReturnConditions` option to `true`. Solve the same equation for the full solution. Provide three output variables: for the solution to `x`, for the parameters in the solution, and for the conditions on the solution.

```matlab
syms x
[solx param cond] = solve(cos(x) == -sin(x), x, 'ReturnConditions', true);
solx = pi*k - pi/4
param = k
cond = in(k, 'integer')
```

`solx` contains the solution for `x`, which is `pi*k - pi/4`. The `param` variable specifies the parameter in the solution, which is `k`. The `cond` variable specifies the condition `in(k, 'integer')` on the solution, which means `k` must be an integer. Thus, `solve` returns a periodic solution starting at `pi/4` which repeats at intervals of `pi*k`, where `k` is an integer.

Work with the Full Solution, Parameters, and Conditions Returned by `solve`

You can use the solutions, parameters, and conditions returned by `solve` to find solutions within an interval or under additional conditions.
To find values of x in the interval $-2\pi < x < 2\pi$, solve solx for k within that interval under the condition cond. Assume the condition cond using assume.

```matlab
assume(\text{cond})
solk = \text{solve}(-2\pi<\text{solx}, \text{solx}<2\pi, \text{param})
```

```matlab
solk =
-1
 0
 1
 2
```

To find values of x corresponding to these values of k, use subs to substitute for k in solx.

```matlab
xvalues = \text{subs}(\text{solx}, \text{solk})
```

```matlab
xvalues =
-(5\pi)/4
 -\pi/4
 (3\pi)/4
 (7\pi)/4
```

To convert these symbolic values into numeric values for use in numeric calculations, use vpa.

```matlab
xvalues = \text{vpa}(xvalues)
```

```matlab
xvalues =
-3.9269908169872415480783042290994
-0.78539816339744830961566084581988
 2.3561944901923449288469825374596
 5.4977871437821381673096259207391
```

Visualize and Plot Solutions Returned by solve

The previous sections used solve to solve the equation $\cos(x) = -\sin(x)$. The solution to this equation can be visualized using plotting functions such as ezplot and scatter.

Plot both sides of equation $\cos(x) = -\sin(x)$.

```matlab
\text{ezplot}(\cos(x))
\text{hold on}
```
Calculate the values of the functions at the values of x, and superimpose the solutions as points using `scatter`.

```matlab
yvalues = cos(xvalues)
scatter(xvalues, yvalues)
```

```matlab
grid on
ezplot(-sin(x))
title('Both sides of equation cos(x) = -sin(x)')
legend('cos(x)', '-sin(x)', 'Location', 'Best')
```
-0.70710678118654752440084436210485
+0.70710678118654752440084436210485
-0.70710678118654752440084436210485
+0.70710678118654752440084436210485

As expected, the solutions appear at the intersection of the two plots.

Simplify Complicated Results and Improve Performance

If results look complicated, `solve` is stuck, or if you want to improve performance, see, “Resolve Complicated Solutions or Stuck Solver” on page 2-134.
Select Numeric or Symbolic Solver

You can solve equations to obtain a symbolic or numeric answer. For example, a solution to \(\cos(x) = -1 \) is \(\pi \) in symbolic form and 3.14159 in numeric form. The symbolic solution is exact, while the numeric solution approximates the exact symbolic solution.

Symbolic Math Toolbox offers both symbolic and numeric equation solvers. This table can help you choose either the symbolic solver (\texttt{solve}) or the numeric solver (\texttt{vpasolve}). A possible strategy is to try the symbolic solver first, and use the numeric solver if the symbolic solver is stuck.

<table>
<thead>
<tr>
<th>Solve Equations Symbolically Using \texttt{solve}</th>
<th>Solve Equations Numerically Using \texttt{vpasolve}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns exact solutions. Solutions can then be approximated using \texttt{vpa}.</td>
<td>Returns approximate solutions. Precision can be controlled arbitrarily using \texttt{digits}.</td>
</tr>
<tr>
<td>Returns a general form of the solution.</td>
<td>For polynomial equations, returns all numeric solutions that exist. For nonpolynomial equations, returns the first numeric solution found.</td>
</tr>
<tr>
<td>General form allows insight into the solution.</td>
<td>Numeric solutions provide less insight.</td>
</tr>
<tr>
<td>Runs slower.</td>
<td>Runs faster.</td>
</tr>
<tr>
<td>Search ranges can be specified using inequalities.</td>
<td>Search ranges and starting points can be specified.</td>
</tr>
<tr>
<td>\texttt{solve} solves equations and inequalities that contain parameters.</td>
<td>\texttt{vpasolve} does not solve inequalities, nor does it solve equations that contain parameters.</td>
</tr>
<tr>
<td>\texttt{solve} can return parameterized solutions.</td>
<td>\texttt{vpasolve} does not return parameterized solutions.</td>
</tr>
</tbody>
</table>

\texttt{vpasolve} uses variable-precision arithmetic. You can control precision arbitrarily using \texttt{digits}. For examples, see “Control Precision of Numerical Computations” on page 2-87.

See Also

\texttt{solve} | \texttt{vpasolve}

Related Examples

- “Solve Algebraic Equation” on page 2-116
• “Solve Equations Numerically” on page 2-142
• “Solve System of Linear Equations” on page 2-139
Solve System of Algebraic Equations

This topic shows you how to solve a system of equations symbolically using Symbolic Math Toolbox. This toolbox offers both numeric and symbolic equation solvers. For a comparison of numeric and symbolic solvers, see “Select Numeric or Symbolic Solver” on page 2-121.

In this section...

| “Handle the Output of solve” on page 2-123 |
| “Solve a Linear System of Equations” on page 2-125 |
| “Return the Full Solution of a System of Equations” on page 2-126 |
| “Solve a System of Equations Under Conditions” on page 2-128 |
| “Work with Solutions, Parameters, and Conditions Returned by solve” on page 2-129 |
| “Convert Symbolic Results to Numeric Values” on page 2-132 |
| “Simplify Complicated Results and Improve Performance” on page 2-133 |

Handle the Output of solve

Suppose you have the system

\[\begin{align*}
 x^2 y^2 &= 0 \\
 x - \frac{y}{2} &= \alpha,
\end{align*} \]

and you want to solve for \(x \) and \(y \). First, create the necessary symbolic objects.

```matlab
syms x y alpha
```

There are several ways to address the output of `solve`. One way is to use a two-output call.

```matlab
[solx, soly] = solve(x^2*y^2 == 0, x-y/2 == alpha)
```

The call returns the following.

```matlab
solx =
  0
alpha
```
Modify the first equation to \(x^2 y^2 = 1 \). The new system has more solutions.

\[
[\text{solx}, \text{soly}] = \text{solve}(x^2 y^2 == 1, x - y/2 == \text{alpha})
\]

Four distinct solutions are produced.

\[
\text{solx} =
\begin{align*}
\alpha/2 - (\alpha^2 - 2)^{1/2}/2 \\
\alpha/2 - (\alpha^2 + 2)^{1/2}/2 \\
\alpha/2 + (\alpha^2 - 2)^{1/2}/2 \\
\alpha/2 + (\alpha^2 + 2)^{1/2}/2
\end{align*}
\]

\[
\text{soly} =
\begin{align*}
-\alpha - (\alpha^2 - 2)^{1/2} \\
-\alpha - (\alpha^2 + 2)^{1/2} \\
(\alpha^2 - 2)^{1/2} - \alpha \\
(\alpha^2 + 2)^{1/2} - \alpha
\end{align*}
\]

Since you did not specify the dependent variables, \text{solve} uses \text{symvar} to determine the variables.

This way of assigning output from \text{solve} is quite successful for “small” systems. For instance, if you have a 10-by-10 system of equations, typing the following is both awkward and time consuming.

\[
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] = \text{solve}(...)
\]

To circumvent this difficulty, \text{solve} can return a structure whose fields are the solutions. For example, solve the system of equations \(u^2 - v^2 = a^2 \), \(u + v = 1 \), \(a^2 - 2*a = 3 \).

\[
\text{syms} \ u \ v \ a \\
\text{S} = \text{solve}(u^2 - v^2 == a^2, u + v == 1, a^2 - 2*a == 3)
\]

The solver returns its results enclosed in this structure.

\[
\text{S} =
\begin{align*}
a: [2x1 \text{ sym}] \\
u: [2x1 \text{ sym}] \\
v: [2x1 \text{ sym}]
\end{align*}
\]

The solutions for \(a \) reside in the “\(a \)-field” of \(S \).
Solve System of Algebraic Equations

S.a
ans =
 -1
 3

Similar comments apply to the solutions for \(u \) and \(v \). The structure \(S \) can now be manipulated by the field and index to access a particular portion of the solution. For example, to examine the second solution, you can use the following statement to extract the second component of each field.

\[
s2 = [S.a(2), S.u(2), S.v(2)]
\]

\[
s2 =
[3, 5, -4]
\]

The following statement creates the solution matrix \(M \) whose rows comprise the distinct solutions of the system.

\[
M = [S.a, S.u, S.v]
\]

\[
M =
[-1, 1, 0]
[3, 5, -4]
\]

Clear \(\text{solx} \) and \(\text{soly} \) for further use.

clear solx soly

Solve a Linear System of Equations

Linear systems of equations can also be solved using matrix division. For example, solve this system.

\[
\text{clear u v x y}
s\text{yms u v x y}
eqns = [x + 2*y == u, 4*x + 5*y == v];
S = \text{solve(eqns)};
sol = [S.x; S.y]
\]

\[
[A,b] = \text{equationsToMatrix(eqns,x,y)};
z = A\backslash b
\]

\[
sol =
(2*v)/3 - (5*u)/3
\]
\[\frac{4u}{3} - \frac{v}{3} \]

\[z = \frac{(2v}{3} - \frac{(5u}{3}) \]

\[\frac{4u}{3} - \frac{v}{3} \]

Thus, \texttt{sol} and \(z \) produce the same solution, although the results are assigned to different variables.

Return the Full Solution of a System of Equations

\texttt{solve} does not automatically return all solutions of an equation. To return all solutions along with the parameters in the solution and the conditions on the solution, set the \texttt{ReturnConditions} option to \texttt{true}.

Consider the following system of equations:

\[
\sin(x) + \cos(y) = \frac{4}{5} \\
\sin(x) \cos(y) = \frac{1}{10}
\]

Visualize the system of equations using \texttt{ezplot}. To set the \(x \)-axis and \(y \)-axis values in terms of \(\pi \), get the axes handles using \texttt{axes} in \(a \). Create the symbolic array \(S \) of the values \(-2\pi\) to \(2\pi\) at intervals of \(\pi/2 \). To set the ticks to \(S \), use the \texttt{XTick} and \texttt{YTick} properties of \(a \). To set the labels for the \(x \)-and \(y \)-axes, convert \(S \) to character strings. Use \texttt{arrayfun} to apply \texttt{char} to every element of \(S \) to return \(T \). Set the \texttt{XTickLabel} and \texttt{YTickLabel} properties of \(a \) to \(T \).

```matlab
syms x y
eqn1 = sin(x) + cos(y) == 4/5;
eqn2 = sin(x) * cos(y) == 1/10;
a = axes;
h = ezplot(eqn1);
h.LineColor = 'blue';
hold on
grid on
g = ezplot(eqn2);
g.LineColor = 'magenta';
L = sym(-2*pi:pi/2:2*pi);
a.XTick = double(L);
a.YTick = double(L);
```
The solutions lie at the intersection of the two plots. This shows the system has repeated, periodic solutions. To solve this system of equations for the full solution set, use `solve` and set the `ReturnConditions` option to `true`.

```matlab
S = solve(eqn1, eqn2, 'ReturnConditions', true)
```

```
S =
    x: [2x1 sym]
```
solve returns a structure S with the fields S.x for the solution to x, S.y for the solution to y, S.parameters for the parameters in the solution, and S.conditions for the conditions on the solution. Elements of the same index in S.x, S.y, and S.conditions form a solution. Thus, S.x(1), S.y(1), and S.conditions(1) form one solution to the system of equations. The parameters in S.parameters can appear in all solutions.

Index into S to return the solutions, parameters, and conditions.

S.x
S.y
S.parameters
S.conditions

ans =
z1
z1
ans =
z
z
ans =
[z, z1]

Solve a System of Equations Under Conditions

To solve the system of equations under conditions, specify the conditions in the input to solve.

Solve the system of equations considered above for x and y in the interval -2*pi to 2*pi. Overlay the solutions on the plot using scatter.

Srange = solve(eqn1, eqn2, -2*pi<x, x<2*pi, -2*pi<y, y<2*pi, 'ReturnConditions', true);
Work with Solutions, Parameters, and Conditions Returned by `solve`

You can use the solutions, parameters, and conditions returned by `solve` to find solutions within an interval or under additional conditions. This section has the same goal as the previous section, to solve the system of equations within a search range, but with a different approach. Instead of placing conditions directly, it shows how to work with the parameters and conditions returned by `solve`.

For the full solution `S` of the system of equations, find values of `x` and `y` in the interval `-2*pi` to `2*pi` by solving the solutions `S.x` and `S.y` for the parameters `S.parameters` within that interval under the condition `S.conditions`.

```python
scatter(Srange.x, Srange.y)
```
Before solving for x and y in the interval, assume the conditions in S.conditions using assume so that the solutions returned satisfy the condition. Assume the conditions for the first solution.

assume(S.conditions(1))

Find the parameters in S.x and S.y.

paramx = intersect(symvar(S.x), S.parameters)
paramy = intersect(symvar(S.y), S.parameters)

paramx =
z1
paramy =
z

Solve the first solution of x for the parameter paramx.

solparamx(1,:) = solve(S.x(1) > -2*pi, S.x(1) < 2*pi, paramx)
solparamx =
[pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,
 -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]

Similarly, solve the first solution of y for paramy.

solparamy(1,:) = solve(S.y(1) > -2*pi, S.y(1) < 2*pi, paramy)
solparamy =
[acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,
 -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]

Clear the assumptions set by S.conditions(1) using assume. Call assumptions to check that the assumptions are cleared.

assume(S.parameters,'clear')
assumptions
ans =
Empty sym: 1-by-0

Assume the conditions for the second solution.

assume(S.conditions(2))

Solve the second solution to x and y for the parameters paramx and paramy.
Solve System of Algebraic Equations

solparamx(2,:) = solve(S.x(2) > -2*pi, S.x(2) < 2*pi, paramx)
solparamy(2,:) = solve(S.y(2) > -2*pi, S.y(2) < 2*pi, paramy)

solparamx =
[pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,
 -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]
[asin(6^(1/2)/10 + 2/5), pi - asin(6^(1/2)/10 + 2/5),
 asin(6^(1/2)/10 + 2/5) - 2*pi, - pi - asin(6^(1/2)/10 + 2/5)]

solparamy =
[acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,
 -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]
[acos(2/5 - 6^(1/2)/10), acos(2/5 - 6^(1/2)/10) - 2*pi,
 -acos(2/5 - 6^(1/2)/10), 2*pi - acos(2/5 - 6^(1/2)/10)]

The first rows of paramx and paramy form the first solution to the system of equations, and the second rows form the second solution.

To find the values of x and y for these values of paramx and paramy, use subs to substitute for paramx and paramy in S.x and S.y.

solx(1,:) = subs(S.x(1), paramx, solparamx(1,:));
solx(2,:) = subs(S.x(2), paramx, solparamx(2,:));
soly(1,:) = subs(S.y(1), paramy, solparamy(1,:));
soly(2,:) = subs(S.y(2), paramy, solparamy(2,:));

solx =
[pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,
 -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]
[asin(6^(1/2)/10 + 2/5), pi - asin(6^(1/2)/10 + 2/5),
 asin(6^(1/2)/10 + 2/5) - 2*pi, - pi - asin(6^(1/2)/10 + 2/5)]
soly =
[acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,
 -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]
[acos(2/5 - 6^(1/2)/10), acos(2/5 - 6^(1/2)/10) - 2*pi,
 -acos(2/5 - 6^(1/2)/10), 2*pi - acos(2/5 - 6^(1/2)/10)]

Note that solx and soly are the two sets of solutions to x and to y. The full sets of solutions to the system of equations are the two sets of points formed by all possible combinations of the values in solx and soly.

Plot these two sets of points using scatter. Overlay them on the plot of the equations. As expected, the solutions appear at the intersection of the plots of the two equations.

for i = 1:length(solx(1,:))
Convert Symbolic Results to Numeric Values

Symbolic calculations provide exact accuracy, while numeric calculations are approximations. Despite this loss of accuracy, you might need to convert symbolic results to numeric approximations for use in numeric calculations. For a high-accuracy conversion, use variable-precision arithmetic provided by the vpa function. For standard accuracy and better performance, convert to double precision using double.
Use `vpa` to convert the symbolic solutions `solx` and `soly` to numeric form.

```plaintext
vpa(solx)
vpa(soly)
```

```
ans =
[ 2.9859135500977407388300518406219,...
  -3.2972717570818457380952349259371,...
  0.15567910349205429963259154265761,...
  -6.1275062036875339772926952239014]
...
[ 0.7009565134710252478213653614929,...
  2.4406361401187679905905068471302,...
  -5.582287937085612290531502304097,...
  -3.8425491670608184863347799194288]
ans =
[ 0.86983981332387137135918515549046,...
  -5.413454938557151055661016110685,...
  -0.86983981332387137135918515549046,...
  5.413454938557151055661016110685]
...
[ 1.4151172233028441195987301489821,...
  -4.8680680838767423573265566175769,...
  -1.4151172233028441195987301489821,...
  4.8680680838767423573265566175769]
```

Simplify Complicated Results and Improve Performance

If results look complicated, `solve` is stuck, or if you want to improve performance, see, “Resolve Complicated Solutions or Stuck Solver” on page 2-134.
Resolve Complicated Solutions or Stuck Solver

If `solve` returns solutions that look complicated, or if `solve` cannot handle an input, there are many options. These options simplify the solution space for `solve`. These options also help `solve` when the input is complicated, and might allow `solve` to return a solution where it was previously stuck.

In this section...

| “Return Only Real Solutions” on page 2-134 |
| “Apply Simplification Rules” on page 2-134 |
| “Use Assumptions to Narrow Results” on page 2-135 |
| “Simplify Solutions” on page 2-137 |
| “Tips” on page 2-137 |

Return Only Real Solutions

Solve the equation \(x^5 - 1 = 0 \). This equation has five solutions.

```matlab
syms x
solve(x^5 - 1 == 0, x)
```

```
ans =
 1
- (2^(1/2)*(5 - 5^(1/2))^2 - 5^(1/2))/4 - 1/4
(2^(1/2)*(5 - 5^(1/2))^2 + 5^(1/2))/4 - 1/4
5^(1/2)/4 - (2^(1/2)*(5^(1/2) + 5)^2 - 5^(1/2))/4 - 1/4
5^(1/2)/4 + (2^(1/2)*(5^(1/2) + 5)^2 + 5^(1/2))/4 - 1/4
```

If you only need real solutions, specify the `Real` option as `true`. The `solve` function returns the one real solution.

```matlab
solve(x^5 - 1, x, 'Real', true)
```

```
ans =
1
```

Apply Simplification Rules

Solve the following equation. The `solve` function returns a complicated solution.
syms x
solve(x^(5/2) + 1/x^(5/2) == 1, x)

ans =
1/(1/2 - (3^(1/2)*1i)/2)^(2/5)
1/((3^(1/2)*1i)/2 + 1/2)^(2/5)
-(5^(1/2)/4 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 1/4)/((1/2 - (3^(1/2)*1i)/2)^(2/5)
-((2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 5^(1/2)/4 + 1/4)/(1/2 - (3^(1/2)*1i)/2)^(2/5)
-(5^(1/2)/4 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 1/4)/(1/2 + (3^(1/2)*1i)/2)^(2/5)
-((2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 5^(1/2)/4 + 1/4)/(1/2 + (3^(1/2)*1i)/2)^(2/5)

To apply simplification rules when solving equations, specify the IgnoreAnalyticConstraints option as true. The applied simplification rules are not generally correct mathematically but might produce useful solutions, especially in physics and engineering. With this option, the solver does not guarantee the correctness and completeness of the result.

solve(x^(5/2) + 1/x^(5/2) == 1, x, 'IgnoreAnalyticConstraints', true)

ans =
1/(1/2 - (3^(1/2)*1i)/2)^(2/5)
1/((3^(1/2)*1i)/2 + 1/2)^(2/5)

This solution is simpler and more usable.

Use Assumptions to Narrow Results

For solutions to specific cases, set assumptions to return appropriate solutions. Solve the following equation. The solve function returns seven solutions.

syms x
solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)

ans =
1 - 5^(1/2) - 1
-17^(1/2)/2 - 1/2
17^(1/2)/2 - 1/2
-5*2^(1/2)
5*2^(1/2)
5^(1/2) - 1

Assume x is a positive number and solve the equation again. The solve function only returns the four positive solutions.

assume(x > 0)
solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)
ans = 1
17^(1/2)/2 - 1/2
5*2^(1/2)
5^(1/2) - 1

Place the additional assumption that x is an integer using in(x,'integer'). Place additional assumptions on variables using assumeAlso.

assumeAlso(in(x,'integer'))
solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)
ans = 1

solve returns the only positive, integer solution to x.

Clear the assumptions on x for further computations.

syms x clear

Alternatively, to make several assumptions, use the & operator. Make the following assumptions, and solve the following equations.

syms a b c f g h y
assume(f == c & a == h & a == 0)
S = solve([a*x + b*y == c, h*x - g*y == f], [x, y], 'ReturnConditions', true);
S.x
S.y
S.conditions

ans = f/h
ans = 0
ans = b + g == 0

Under the specified assumptions, the solution is x = f/h and y = 0 under the condition b + g == 0.

Clear the assumptions on the variables for further computations.

syms a c f h clear
Simplify Solutions

The `solve` function does not call simplification functions for the final results. To simplify the solutions, call `simplify`.

Solve the following equation. Convert the numbers to symbolic numbers using `sym` to return a symbolic result.

```matlab
syms x
[S, params, conds] = solve(((exp(-x*i)*i)/2 - (exp(x*i)*i)/2)/(exp(-x*i)/2 + exp(x*i)/2) == tan(1/sym(2)), x, 'ReturnConditions', true)
```

```matlab
S = pi*l - (log(-(tan(1/2) - 1i)/(tan(1/2) + 1i))*1i)/2
params = l
conds = in(l, 'integer')
```

Call `simplify` to simplify the result.

```matlab
S = simplify(S)
S = pi*l - (log(cos(1) + sin(1)*1i)*1i)/2
```

Call `simplify` with more steps to simplify the result even further.

```matlab
S = simplify(S, 'Steps', 50)
S = pi*l + 1/2
```

Tips

- To represent a number exactly, use `sym` to convert the number to a floating-point object. For example, use `sym(13)/5` instead of `13/5`. This represents `13/5` exactly instead of converting `13/5` to a floating-point number. For a large number, place the number in quotes. Compare `sym(13)/5`, `sym(1333333333333333333333333333)/5`, and `sym('1333333333333333333333333333')/5`.

```matlab
sym(13)/5
sym(1333333333333333333333333333)/5
```
sym('133333333333333333333')/5
ans =
13/5
ans =
1333333333333333333327872/5
ans =
133333333333333333333/5

Placing the number in quotes and using sym provides the highest accuracy.

- If possible, simplify the system of equations manually before using solve. Try to reduce the number of equations, parameters, and variables.
Solve System of Linear Equations

This section shows you how to solve a system of linear equations using the Symbolic Math Toolbox.

In this section...

“Solve System of Linear Equations Using linsolve” on page 2-139
“Solve System of Linear Equations Using solve” on page 2-140

Solve System of Linear Equations Using linsolve

A system of linear equations

\[a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \]
\[a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \]
\[\ldots \]
\[a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \]

can be represented as the matrix equation \(A\mathbf{x} = \mathbf{b} \), where \(A \) is the coefficient matrix,

\[
A = \begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{pmatrix}
\]

and \(\mathbf{b} \) is the vector containing the right sides of equations,

\[
\mathbf{b} = \begin{pmatrix}
b_1 \\
\vdots \\
b_m
\end{pmatrix}
\]

If you do not have the system of linear equations in the form \(AX = B \), use \texttt{equationsToMatrix} to convert the equations into this form. Consider the following system.
2x + y + z = 2
-x + y - z = 3
x + 2y + 3z = -10

Declare the system of equations.

syms x y z
eqn1 = 2*x + y + z == 2;
eqn2 = -x + y - z == 3;
eqn3 = x + 2*y + 3*z == -10;

Use `equationsToMatrix` to convert the equations into the form \(AX = B \). The second input to `equationsToMatrix` specifies the independent variables in the equations.

\[
[A,B] = \text{equationsToMatrix}([\text{eqn1}, \text{eqn2}, \text{eqn3}], [x, y, z])
\]

\[
A =
\begin{bmatrix}
2 & 1 & 1 \\
-1 & 1 & -1 \\
1 & 2 & 3
\end{bmatrix}
\]

\[
B =
\begin{bmatrix}
2 \\
3 \\
-10
\end{bmatrix}
\]

Use `linsolve` to solve \(AX = B \) for the vector of unknowns \(X \).

\[
X = \text{linsolve}(A,B)
\]

\[
X =
\begin{bmatrix}
3 \\
1 \\
-5
\end{bmatrix}
\]

From \(X \), \(x = 3 \), \(y = 1 \) and \(z = -5 \).

Solve System of Linear Equations Using `solve`

Use `solve` instead of `linsolve` if you have the equations in the form of expressions and not a matrix of coefficients. Consider the same system of linear equations.
\[
\begin{align*}
2x + y + z &= 2 \\
-x + y - z &= 3 \\
x + 2y + 3z &= -10
\end{align*}
\]

Declare the system of equations.

```matlab
syms x y z
eqn1 = 2*x + y + z == 2;
eqn2 = -x + y - z == 3;
eqn3 = x + 2*y + 3*z == -10;
```

Solve the system of equations using `solve`. The inputs to `solve` are a vector of equations, and a vector of variables to solve the equations for.

```matlab
sol = solve([eqn1, eqn2, eqn3], [x, y, z]);
xSol = sol.x
ySol = sol.y
zSol = sol.z
```

\[
\begin{align*}
xSol &= 3 \\
ySol &= 1 \\
zSol &= -5
\end{align*}
\]

`solve` returns the solutions in a structure array. To access the solutions, index into the array.
Solve Equations Numerically

The Symbolic Math Toolbox offers both numeric and symbolic equation solvers. For a comparison of numeric and symbolic solvers, please see “Select Numeric or Symbolic Solver” on page 2-121. An equation or a system of equations can have multiple solutions. To find these solutions numerically, use the function `vpasolve`. For polynomial equations, `vpasolve` returns all solutions. For nonpolynomial equations, `vpasolve` returns the first solution it finds. This shows you how to use `vpasolve` to find solutions to both polynomial and nonpolynomial equations, and how to obtain these solutions to arbitrary precision.

<table>
<thead>
<tr>
<th>In this section...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>“Find All Roots of a Polynomial Function” on page 2-142</td>
<td></td>
</tr>
<tr>
<td>“Find Zeros of a Nonpolynomial Function Using Search Ranges and Starting Points” on page 2-143</td>
<td></td>
</tr>
<tr>
<td>“Obtain Solutions to Arbitrary Precision” on page 2-147</td>
<td></td>
</tr>
<tr>
<td>“Solve Multivariate Equations Using Search Ranges” on page 2-148</td>
<td></td>
</tr>
</tbody>
</table>

Find All Roots of a Polynomial Function

Use `vpasolve` to find all the solutions to function \(f(x) = 6x^7 - 2x^6 + 3x^3 - 8 \).

```matlab
syms f(x)
f(x) = 6*x^7-2*x^6+3*x^3-8;
sol = vpasolve(f)
```

```
sol =
  1.0240240759053702941448316563337
  -0.22974795226118163963098570610724 + 0.96774615576744031073999010695171i
  -0.22974795226118163963098570610724 - 0.96774615576744031073999010695171i
  -0.88080620051762149639205672298326 - 0.504304058840127584376331806592405i
  0.765208781492784655617293267593 + 0.83187331431049713218367239317121i
  -0.88080620051762149639205672298326 + 0.504304058840127584376331806592405i
  0.765208781492784655617293267593 - 0.83187331431049713218367239317121i
```

`vpasolve` returns seven roots of the function, as expected, because the function is a polynomial of degree seven.
Find Zeros of a Nonpolynomial Function Using Search Ranges and Starting Points

Consider the function $f(x) = e^{(x/7)} \cos(2x)$. A plot of the function reveals periodic zeros, with increasing slopes at the zero points as x increases.

```matlab
syms x y
h = ezplot(y == exp(x/7)*cos(2*x),[-2, 25, -10, 10]);
grid on;
```
Use `vpasolve` to find a zero of the function f. Note that `vpasolve` returns only one solution of a nonpolynomial equation, even if multiple solutions exist. On repeated calls, `vpasolve` returns the same result, even if multiple zeros exist.

```matlab
for i = 1:3
    vpasolve(exp(-x/20)*cos(2*x),x)
end
```

```matlab
anans =
19.634954084936207740391521145497
ans =
19.634954084936207740391521145497
ans =
19.634954084936207740391521145497
```

To find multiple solutions, set the option `random` to `true`. This makes `vpasolve` choose starting points randomly. For information on the algorithm that chooses random starting points, see “Algorithms” on page 4-1279 on the `vpasolve` page.

```matlab
for i = 1:3
    vpasolve(exp(-x/20)*cos(2*x),x,'random',true)
end
```

```matlab
anans =
-226.98006922186256147892598444194
ans =
98.174770424681038701957605727484
ans =
58.904862254808623221174563436491
```

To find a zero close to $x = 10$ and to $x = 1000$, set the starting point to 10, and then to 1000.

```matlab
vpasolve(exp(-x/20)*cos(2*x),x,10)
vpasolve(exp(-x/20)*cos(2*x),x,1000)
```

```matlab
anans =
10.210176124166828025003590995658
ans =
999.8118620049516981407362567287
```

To find a zero in the range $15 \leq x \leq 25$, set the search range to $[15 \ 25]$.

```matlab
vpasolve(exp(-x/20)*cos(2*x),x,[15 \ 25])
```
ans =
21.205750411731104359622842837137

To find multiple zeros in the range $[15\ 25]$, you cannot call `vpasolve` repeatedly as it returns the same result on each call, as previously shown. Instead, set `random` to `true` in conjunction with the search range.

```matlab
for i = 1:3
    vpasolve(exp(-x/20)*cos(2*x),x,[15 25],'random',true)
end
```

ans =
21.205750411731104359622842837137
ans =
16.493361431346414501928877762217
ans =
16.493361431346414501928877762217

If you specify the `random` option while also specifying a starting point, `vpasolve` warns you that the two options are incompatible.

```matlab
vpasolve(exp(-x/20)*cos(2*x),x,15,'random',true)
```

Warning: All variables have a starting value for the numeric...
search. The option 'random' has no effect in this case.

> In sym.vpasolve at 166
ans =
14.922565104551517882697556070578

Create the function `findzeros` below to systematically find all zeros for f in a given search range, within the error tolerance. It starts with the input search range and calls `vpasolve` to find a zero. Then, it splits the search range into two around the zero’s value, and recursively calls itself with the new search ranges as inputs to find more zeros. The first input is the function, the second input is the range, and the optional third input allows you to specify the error between a zero and the higher and lower bounds generated from it.

The function is explained section by section here.

Declare the function with the two inputs and one output.

```matlab
function sol = findzeros(f,range,err)
```

If you do not specify the optional argument for error tolerance, `findzeros` sets `err` to `0.001`.

2-145
if nargin < 2
 err = 1e-3;
end

Find a zero in the search range using `vpasolve`.

sol = vpasolve(f,range);

If `vpasolve` does not find a zero, exit.

if(isempty(sol))
 return
endif

If `vpasolve` finds a zero, split the search range into two search ranges above and below the zero.

else
 lowLimit = sol-err;
 highLimit = sol+err;
endif

Call `findzeros` with the lower search range. If `findzeros` returns zeros, copy the values into the solution array and sort them.

 temp = findzeros(f,[range(1) lowLimit],1);
 if ~isempty(temp)
 sol = sort([sol temp]);
 end

eendif

Call `findzeros` with the higher search range. If `findzeros` returns zeros, copy the values into the solution array and sort them.

 temp = findzeros(f,[highLimit range(2)],1);
 if ~isempty(temp)
 sol = sort([sol temp]);
 end
 return
endif

The entire function `findzeros` is as follows.

function sol = findzeros(f,range,err)
 if nargin < 3
Call \texttt{findzeros} with search range [10, 20] to find all zeros in that range for \(f(x) = \exp(-x/20) \cdot \cos(2x) \), within the default error tolerance.

```matlab
syms f(x)
f(x) = exp(-x/20)*cos(2*x);
findzeros(f,[10 20])
```

\[
\text{ans = [10.210176124166828025003590995658, 11.780972450961724644234912687298, ... \\
13.35176877756621263466234378938, 14.922565104551517882697556070578, ... \\
16.49361431346414501928877762217, 18.064157758141311121160199453857, ... \\
19.634954084936207740391521145497]}
```

**Obtain Solutions to Arbitrary Precision**

Use \texttt{digits} to set the precision of the solutions. By default, \texttt{vpasolve} returns solutions to a precision of 32 significant figures. Use \texttt{digits} to increase the precision to 64 significant figures. When modifying \texttt{digits}, ensure that you save its current value so that you can restore it.

```matlab
vpasolve(exp(x/7)*cos(2*x))
digitsOld = digits;
digits(64)
```
Solve Multivariate Equations Using Search Ranges

Consider the following system of equations.

\[ 10(\cos(x) + \cos(y)) = x + y^2 - 0.1x^2y \]

A plot of the equations for \(0 \leq x \leq 3\) and \(0 \leq y \leq 3\) shows that the three surfaces intersect in two points. To better visualize the plot, use \texttt{view}. To scale the colormap values, use \texttt{caxis}.

```matlab
syms x y z
exp1 = 10*(cos(x)+cos(y));
exp2 = x+y^2-0.1*x^2*y;
exp3 = y+x-2.7;
ezsurf(exp1,[0, 2.5])
hold on
grid on
ezsurf(exp2,[0, 2.5])
x1 = @(s,t) s;
y1 = @(s,t) 2.7-s;
z1 = @(s,t) t;
ezsurf(x1,y1,z1,[0,2.5,-20,10])
title('System of Multivariate Equations')
view(69, 28)
caxis([-15 10])
```
Use `vpasolve` to find a point where the surfaces intersect. The function `vpasolve` returns a structure. To access the solution, index into the structure.

```matlab
sol = vpasolve([z == exp1, z == exp2, exp3 == 0]);
[sol.x sol.y sol.z]
```

```matlab
ans =

[2.36974772245479209101337160174, 0.33025227754520207908986628398261, 2.2933543768232277431243854708612]
```
To search a region of the solution space, specify search ranges for the variables. If you specify the ranges $0 \leq x \leq 1.5$ and $1.5 \leq y \leq 2.5$, then `vpasolve` function searches the bounded area shown in the picture.

Use `vpasolve` to find a solution for this search range $0 \leq x \leq 1.5$ and $1.5 \leq y \leq 2.5$.

```matlab
sol = vpasolve([z == exp1, z == exp2, 0 == exp3], [x y z], [0 1.5; 1.5 2.5; NaN NaN]);
[sol.x sol.y sol.z]
```

```
ans =
```
Solve Equations Numerically

To find multiple solutions, you can set the `random` option to `true`. This makes `vpasolve` use random starting points on successive runs. The `random` option can be used in conjunction with search ranges to make `vpasolve` use random starting points within a search range. To omit a search range for `z`, set the search range to `[NaN NaN]`. Because `random` selects starting points randomly, the same solution might be found on successive calls. Call `vpasolve` repeatedly to ensure you find both solutions.

```matlab
clear sol
for i = 1:5
 temp = vpasolve([z == exp1, z == exp2, exp3 == 0],[x y z],[0 3; 0 3;NaN NaN],...
 'random',true);
 sol(i,1) = temp.x;
 sol(i,2) = temp.y;
 sol(i,3) = temp.z;
end
sol
```

```matlab
sol =

[0.91062661725633361176950031551069, 1.789373827436663882304996844893, 3.9641015721356254724107884666807]
[2.369747722454797920910137160174, 0.33025227754520207908986628398261, 2.2933543768232277431243854708612]
[0.91062661725633361176950031551069, 1.789373827436663882304996844893, 3.9641015721356254724107884666807]
[0.91062661725633361176950031551069, 1.789373827436663882304996844893, 3.9641015721356254724107884666807]
[0.91062661725633361176950031551069, 1.789373827436663882304996844893, 3.9641015721356254724107884666807]

Plot the equations using `ezsurf`. Superimpose the solutions as a scatter plot of points with yellow X markers using `scatter3`. To better visualize the plot, make two of the surfaces transparent using `alpha`. Scale the colormap to the plot values using `caxis`, and change the perspective using `view`.

```matlab
clf
ax = axes;
ezsurf(exp1,[-3 2.5 0 2.5])
grid on
hold on
ezsurf(exp2,[0 2.5 0 2.5])
ezsurf(x1,y1,z1,[0,2.5,-20,10])
scatter3(sol(:,1),sol(:,2),sol(:,3),600,'yellow','X','LineWidth',2)
title('Randomly found solutions in specified search range')
```


2 Using Symbolic Math Toolbox Software

\[
\begin{align*}
\text{cz} &= \text{ax.Children}; \\
\text{alpha(cz(2),0)} \\
\text{alpha(cz(3),0)} \\
\text{caxis([0 20])} \\
\text{view(69,28)}
\end{align*}
\]

\textbf{Randomly found solutions in specified search range}

\texttt{vpasolve} finds solutions at the intersection of the surfaces formed by the equations as shown.
Solve a Single Differential Equation

Use \texttt{dsolve} to compute symbolic solutions to ordinary differential equations. You can specify the equations as symbolic expressions containing \texttt{diff} or as strings with the letter \texttt{D} to indicate differentiation.

\textbf{Note:} Because \texttt{D} indicates differentiation, the names of symbolic variables must not contain \texttt{D}.

Before using \texttt{dsolve}, create the symbolic function for which you want to solve an ordinary differential equation. Use \texttt{sym} or \texttt{syms} to create a symbolic function. For example, create a function \(y(x) \):

\begin{verbatim}
syms y(x)
\end{verbatim}

For details, see “Create Symbolic Functions” on page 1-8.

To specify initial or boundary conditions, use additional equations. If you do not specify initial or boundary conditions, the solutions will contain integration constants, such as \(C1, C2 \), and so on.

The output from \texttt{dsolve} parallels the output from \texttt{solve}. That is, you can:

\begin{itemize}
 \item Call \texttt{dsolve} with the number of output variables equal to the number of dependent variables.
 \item Place the output in a structure whose fields contain the solutions of the differential equations.
\end{itemize}

\textbf{First-Order Linear ODE}

Suppose you want to solve the equation \(y'(t) = t*y \). First, create the symbolic function \(y(t) \):

\begin{verbatim}
syms y(t)
\end{verbatim}

Now use \texttt{dsolve} to solve the equation:

\begin{verbatim}
y(t) = dsolve(diff(y,t) == t*y)
\end{verbatim}
\[y(t) = C2 \times \exp(t^2/2) \]

\[y(t) = C2 \times \exp(t^2/2) \] is a solution to the equation for any constant \(C2 \).

Solve the same ordinary differential equation, but now specify the initial condition \(y(0) = 2 \):

\[
\text{syms y(t)}
\]
\[
y(t) = \text{dsolve(diff(y,t) == t*y, y(0) == 2)}
\]
\[
y(t) = 2 \times \exp(t^2/2)
\]

Nonlinear ODE

Nonlinear equations can have multiple solutions, even if you specify initial conditions. For example, solve this equation:

\[
\text{syms x(t)}
\]
\[
x(t) = \text{dsolve((diff(x,t) + x)^2 == 1, x(0) == 0)}
\]

results in

\[
x(t) =
\begin{align*}
\exp(-t) - 1 \\
1 - \exp(-t)
\end{align*}
\]

Second-Order ODE with Initial Conditions

Solve this second-order differential equation with two initial conditions. One initial condition is a derivative \(y'(x) \) at \(x = 0 \). To be able to specify this initial condition, create an additional symbolic function \(\text{Dy} = \text{diff}(y) \). (You also can use any valid function name instead of \(\text{Dy} \).) Then \(\text{Dy}(0) = 0 \) specifies that \(\text{Dy} = 0 \) at \(x = 0 \).

\[
\text{syms y(x)}
\]
\[
\text{Dy} = \text{diff}(y);
\]
\[
y(x) = \text{dsolve(diff(y, x, x) == \cos(2*x) - y, y(0) == 1, Dy(0) == 0)};
\]
\[
y(x) = \text{simplify}(y)
\]
\[
y(x) = 1 - (8 \times \sin(x/2)^4)/3
\]
Third-Order ODE

Solve this third-order ordinary differential equation:

\[\frac{d^3 u}{dx^3} = u \]

\[u(0) = 1, \quad u'(0) = -1, \quad u''(0) = \pi, \]

Because the initial conditions contain the first- and the second-order derivatives, create two additional symbolic functions, \(Dy \) and \(D2y \) to specify these initial conditions:

\[
\begin{align*}
\text{syms} & \quad u(x) \\
\text{Du} & = \text{diff}(u, x); \\
\text{D2u} & = \text{diff}(u, x, 2); \\
\text{u}(x) & = \text{dsolve}\left(\text{diff}(u, x, 3) == u, \ u(0) == 1, \ \text{Du}(0) == -1, \ \text{D2u}(0) == \pi\right) \\
\end{align*}
\]

\[
\begin{align*}
\text{u}(x) & = \\
\frac{(\pi \text{exp}(x))}{3} & - \text{exp}(-x/2)\cos((3^{(1/2)}x)/2)(\pi/3 - 1) - \ldots \\
(3^{(1/2)}\text{exp}(-x/2)\sin((3^{(1/2)}x)/2)(\pi + 1))/3
\end{align*}
\]

More ODE Examples

This table shows examples of differential equations and their Symbolic Math Toolbox syntax. The last example is the Airy differential equation, whose solution is called the Airy function.

<table>
<thead>
<tr>
<th>Differential Equation</th>
<th>MATLAB Command</th>
</tr>
</thead>
</table>
| \[\frac{dy}{dt} + 4y(t) = e^{-t} \] | \text{syms} y(t) \\
| | \text{dsolve}\left(\text{diff}(y) + 4*y == \exp(-t), \ y(0) == 1\right) |
| \(y(0) = 1 \) | |
| \[2x^2y'' + 3xy' - y = 0 \] | \text{syms} y(x) \\
<p>| ((' = d/dx)) | \text{dsolve}\left(2x^2\text{diff}(y, 2) + 3x\text{diff}(y) - y == 0\right) |</p>
<table>
<thead>
<tr>
<th>Differential Equation</th>
<th>MATLAB Command</th>
</tr>
</thead>
</table>
| $\frac{d^2 y}{dx^2} = xy(x)$ | syms y(x)
solve(diff(y, 2) == x*y, y(0) == 0,
y(3) == besselk(1/3, 2*sqrt(3))/pi) |
| $y(0) = 0, \ y(3) = \frac{1}{\pi} K_{1/3}(2\sqrt{3})$ | (The Airy equation) |

See Also

“Solve a System of Differential Equations” on page 2-157
Solve a System of Differential Equations

dsolve can handle several ordinary differential equations in several variables, with or without initial conditions.

In this section...

“Solve System of Differential Equations” on page 2-157
“Solve Differential Equations in Matrix Form” on page 2-159

Solve System of Differential Equations

Solve the system of linear first-order differential equations

\[
\begin{align*}
\frac{df}{dt} &= 3f + 4g, \\
\frac{dg}{dt} &= -4f + 3g.
\end{align*}
\]

First, create the symbolic functions \(f(t) \) and \(g(t) \), and then declare the equations.

```matlab
syms f(t) g(t)
eqn1 = diff(f) == 3*f + 4*g;
eqn2 = diff(g) == -4*f + 3*g;
```

Solve the system by using `dsolve`. The `dsolve` function returns the solutions as elements of the structure \(S \).

```matlab
S = dsolve(eqn1, eqn2)
```

```
S =
   g: [1x1 sym]
   f: [1x1 sym]
```

To return \(f(t) \) and \(g(t) \), access the elements of \(S \).

```matlab
fSol(t) = S.f
gSol(t) = S.g
```
Using Symbolic Math Toolbox Software

fSol(t) =
C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)
gSol(t) =
C1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

Alternatively, store $f(t)$ and $g(t)$ directly by providing the output arguments as a vector.

$[fSol(t) \ gSol(t)] = \text{dsolve}(\text{eqn1, eqn2})$

fSol(t) =
C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)
gSol(t) =
C1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

Specifying initial conditions allows \text{dsolve} to find the values of constants.

Specify initial conditions $f(0) == 0$ and $g(0) == 1$, and solve the equations. \text{dsolve} replaces the constants with their values.

c1 = f(0) == 0;
c2 = g(0) == 1;
$[fSol(t) \ gSol(t)] = \text{dsolve}(\text{eqn1, eqn2, c1, c2})$

fSol(t) =
sin(4*t)*exp(3*t)
gSol(t) =
cos(4*t)*exp(3*t)

Visualize the solutions by using \text{ezplot}.

\text{ezplot(fSol)}
\text{hold on}
\text{ezplot(gSol)}
\text{grid on}
\text{legend('fSol', 'gSol', 'Location', 'best')}
Solve Differential Equations in Matrix Form

You can solve differential equations in matrix form by using `dsolve`.

Consider the system of differential equations

\[
\frac{dx}{dt} = x + 2y + 1, \\
\frac{dy}{dt} = -x + y + t.
\]

The system can be represented in matrix form as
Let

\[Y = \begin{bmatrix} x \\ y \end{bmatrix}, A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ t \end{bmatrix}. \]

The relation is now \(Y' = AY + B \).

Define these matrices and the matrix equation.

```matlab
syms x(t) y(t)
A = [1 2; -1 1];
B = [1; t];
Y = [x; y];
eqn = diff(Y) == A*Y + B
```

```
eqn(t) =
    diff(x(t), t) == x(t) + 2*y(t) + 1
    diff(y(t), t) == t - x(t) + y(t)
```

Solve the matrix equation by using `dsolve`.

```matlab
[xSol(t) ySol(t)] = dsolve(eqn)
```

\[
\begin{align*}
x(t) &= 2^{(1/2)} \exp(t) \cos(2^{(1/2)} t) (C_2 + \exp(-t)(4 \sin(2^{(1/2)} t) + 2^{(1/2)} \cos(2^{(1/2)} t) + 6 t \sin(2^{(1/2)} t) + 6 \cdot 2^{(1/2)} t \cos(2^{(1/2)} t))/18) + 2^{(1/2)} \exp(t) \sin(2^{(1/2)} t) (C_1 - \exp(-t)(4 \cos(2^{(1/2)} t) - 2^{(1/2)} \sin(2^{(1/2)} t) + 6 t \cos(2^{(1/2)} t) - 6 \cdot 2^{(1/2)} t \sin(2^{(1/2)} t))/18) \\
y(t) &= \exp(t) \cos(2^{(1/2)} t) (C_1 - \exp(-t)(4 \cos(2^{(1/2)} t) - 2^{(1/2)} \sin(2^{(1/2)} t) + 6 t \cos(2^{(1/2)} t) - 6 \cdot 2^{(1/2)} t \sin(2^{(1/2)} t))/18) - \exp(t) \sin(2^{(1/2)} t) (C_2 + \exp(-t)(4 \sin(2^{(1/2)} t) + 2^{(1/2)} \cos(2^{(1/2)} t) + 6 t \sin(2^{(1/2)} t) + 6 \cdot 2^{(1/2)} t \cos(2^{(1/2)} t))/18)
\end{align*}
```

Simplify the solution by using `simplify`.

```matlab
xSol(t) = simplify(xSol(t))
```
ySol(t) = simplify(ySol(t))

xSol(t) =
(2*t)/3 + 2^(1/2)*C2*exp(t)*cos(2^(1/2)*t) + 2^(1/2)*C1*exp(t)*sin(2^(1/2)*t) + 1/9
ySol(t) =
C1*exp(t)*cos(2^(1/2)*t) - t/3 - C2*exp(t)*sin(2^(1/2)*t) - 2/9

To find the value of constants, specify initial conditions. When specifying equations in matrix form, you must specify initial conditions in matrix form too. Otherwise, dsolve throws an error.

Specify initial conditions f(0) == 2 and g(0) == -1 in matrix form, and solve the equations. dsolve replaces the constants with their values.

C = Y(0) == [2; -1];
[xSol(t) ySol(t)] = dsolve(eqn, C)

xSol(t) =
(2*t)/3 + (17*exp(t)*cos(2^(1/2)*t))/9 - (7*2^(1/2)*exp(t)*sin(2^(1/2)*t))/9 + 1/9
ySol(t) =
- t/3 - (7*exp(t)*cos(2^(1/2)*t))/9 - (17*2^(1/2)*exp(t)*sin(2^(1/2)*t))/18 - 2/9

Visualize the solutions by using ezplot.

clf
ezplot(ySol)
hold on
ezplot(xSol)
grid on
legend('ySol','xSol','Location','best')
See Also
“Solve a Single Differential Equation” on page 2-153
Differential Algebraic Equations

A system of differential algebraic equations is a system of equations involving unknown functions of one independent variable (typically, the time variable $t$) and their derivatives. These functions are often called state variables. A general form of a DAE system is

$$F(\dot{x}(t), x(t), t) = 0$$

The number of equations $F = [F_1, \ldots, F_n]$ must match the number of state variables $x(t) = [x_1(t), \ldots, x_n(t)]$.

The differential order of a DAE system is the highest differential order of its equations. The differential order of a differential algebraic equation is the highest derivative of its state variables.

The differential index of a DAE system is the number of differentiations needed to reduce the system to a system of ordinary differential equations (ODEs).
Set Up Your DAE Problem

Often, you can solve a system of differential algebraic equations (DAEs) by converting it to a system of DAEs with differential index 1 or 0, and then using MATLAB solvers, such as ode15i, ode15s, or ode23t. These solvers have their own requirements for the system of equations and initial conditions. Most DAE systems do not directly come in the form suitable for the MATLAB solvers, but you can convert them to a suitable form.

These preliminary steps help you set up the DAE system using the functions available in Symbolic Math Toolbox, and then convert the system to numeric function handles acceptable by MATLAB. After completing these steps, call ode15i, ode15s, or ode23t while specifying the system by the MATLAB function handles and providing initial conditions.
Step 1: Equations and Variables

Specify equations and state variables of the system. A system of differential algebraic equations includes equations, dependent variables (state variables), and an independent variable \( t \). Specify equations as symbolic equations (using the == operator) or as symbolic expressions. If you use symbolic expressions, the toolbox assumes that these expressions are equations with right sides equal to 0.
For example, specify the system of equations that describes a two-dimensional pendulum. The functions \( x(t) \) and \( y(t) \) are the state variables of the system that describe the horizontal and vertical positions of the pendulum mass. The function \( T(t) \) is the state variable describing the force that keeps the mass from flying away. The variables \( m, r, \) and \( g \) are the mass, length of the rod, and standard surface gravity on Earth, respectively.

\[
\begin{align*}
syms & \; x(t) \; y(t) \; T(t) \; m \; r \; g; \\
eqs &= [m*diff(x(t), 2) == T(t)/r*x(t), \\
& \quad m*diff(y(t), 2) == T(t)/r*y(t) - m*g, \\
& \quad x(t)^2 + y(t)^2 == r^2]; \\
vars &= [x(t); y(t); T(t)];
\end{align*}
\]

Alternatively, you can specify the same equations as symbolic expressions.

\[
\begin{align*}
eqs &= [m*diff(x(t), 2) - T(t)/r*x(t), \\
& \quad m*diff(y(t), 2) - T(t)/r*y(t) + m*g, \\
& \quad x(t)^2 + y(t)^2 - r^2];
\end{align*}
\]

**Step 2: Differential Order**

Determine if the differential order of the system is 1. For example, the differential order of the two-dimensional pendulum system is 2.

If the system involves higher order differential equations, use `reduceDifferentialOrder` to convert all higher order equations to first-order equations by substituting derivatives with additional state variables. See “Reduce Differential Order of DAE Systems” on page 2-169.

**Step 3: Differential Index**

Check the differential index of the system. To be able to use the MATLAB solvers `ode15i`, `ode15s`, or `ode23t`, your DAE system must be of differential index 1 or 0. (In the latter case, it is a system of ordinary differential equations.) If the differential index of the system is 2 or higher, then reduce it by using `reduceDAEIndex` or `reduceDAEToODE`. See “Check and Reduce Differential Index” on page 2-171.

**Step 4: MATLAB Function Handles**

Convert the system to MATLAB functions acceptable by the MATLAB solvers. If you want to use the `ode15i` solver, then use `daeFunction` to convert the system to a
MATLAB function handle. If you want to use the `ode15s` or `ode23t` solver, then use `massMatrixForm` to extract the mass matrix and the right sides of the system of equations. Then, convert the resulting matrix and vector to MATLAB function handles by using `matlabFunction`. See “Convert DAE Systems to MATLAB Function Handles” on page 2-175.

**Step 5: Consistent Initial Conditions**

If you reduced the differential index of the system, then find consistent initial conditions for the new system. See “Find Consistent Initial Conditions” on page 2-182.

**Step 6: ODE Solvers**

Use one of the MATLAB solvers, `ode15i`, `ode15s`, or `ode23t`, to solve the system. See “Solve DAE Systems Using MATLAB ODE Solvers” on page 2-188.

**Solving DAE Systems Flow Chart**

This flow chart shows possible sequences of steps that you might need to take when solving a DAE system. The flow chart includes the functions that you might need to use. The process involves MATLAB functions, as well as functions available in Symbolic Math Toolbox.
Reduce Differential Order of DAE Systems

**Note:** This is the second step in solving a DAE problem. For the sequence of steps for solving DAE problems, see “Set Up Your DAE Problem” on page 2-164.

At this step, your DAE system must be specified as a collection of equations and state variables. For example, this system of equations describes a two-dimensional pendulum. The functions \(x(t)\) and \(y(t)\) are the state variables of the system that describe the horizontal and vertical positions of the pendulum mass. The function \(T(t)\) is the state variable describing the force that keeps the mass from flying away. The variables \(m\), \(r\), and \(g\) are the mass, length of the rod, and standard surface gravity on Earth, respectively.

\[
\text{syms } x(t) \ y(t) \ T(t) \ m \ r \ g;
\]
\[
\text{eqs}= \left[ m*\text{diff}(x(t), 2) == T(t)/r*x(t), \ ...
\right.
\]
\[
\left. \quad m*\text{diff}(y(t), 2) == T(t)/r*y(t) - m*g, \ ...
\right.
\]
\[
\left. \quad x(t)^2 + y(t)^2 == r^2 \right];
\]
\[
\text{vars} = [x(t); \ y(t); \ T(t)];
\]

The first and second equations have second-order derivatives of the coordinates \(x\) and \(y\). The third equation is an algebraic equation. Thus, the differential order of this DAE system is 2. To visualize where the terms with the state variables and their derivatives appear in this DAE system, display the incidence matrix of the system. The system contains three equations and three state variables, so `incidenceMatrix` returns a 3-by-3 matrix of 1s and 0s. Here, 1s correspond to the terms containing state variables or their derivatives.

\[
\text{M} = \text{incidenceMatrix(eqs, vars)}
\]

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{bmatrix}
\]

Before checking the differential index of the system or solving this DAE system, you must convert it to a first-order DAE system. For this, use the `reduceDifferentialOrder` function that substitutes the derivatives with new variables, such as \(Dxt(t)\) and \(Dyt(t)\). You can call `reduceDifferentialOrder` with
two or three output arguments. The syntax with three output arguments shows which
derivatives correspond to new variables.

\[ \text{[eqs, vars, R]} = \text{reduceDifferentialOrder(eqs, vars)} \]

\[
\text{eqs} = \\
m*\text{diff}(\text{Dxt}(t), t) - (\text{T}(t)\times\text{x}(t))/r \\
g*\text{m} + m*\text{diff}(\text{Dyt}(t), t) - (\text{T}(t)*\text{y}(t))/r \\
\text{x}(t)^2 + \text{y}(t)^2 - \text{r}^2 \\
\text{Dxt}(t) - \text{diff}(\text{x}(t), t) \\
\text{Dyt}(t) - \text{diff}(\text{y}(t), t)
\]

\[
\text{vars} = \\
\text{x}(t) \\
\text{y}(t) \\
\text{T}(t) \\
\text{Dxt}(t) \\
\text{Dyt}(t)
\]

\[
\text{R} = \\
[ \text{Dxt}(t), \text{diff}(\text{x}(t), t)] \\
[ \text{Dyt}(t), \text{diff}(\text{y}(t), t)]
\]

Display the incidence matrix of the new system. The index reduction process introduced
two new variables and two new equations. As a result, \text{incidenceMatrix} now returns a
5-by-5 matrix of 1s and 0s.

\[
\text{M} = \text{incidenceMatrix(eqs, vars)}
\]

\[
\text{M} = \\
1 \hspace{1em} 0 \hspace{1em} 1 \hspace{1em} 1 \hspace{1em} 0 \\
0 \hspace{1em} 1 \hspace{1em} 1 \hspace{1em} 0 \hspace{1em} 1 \\
1 \hspace{1em} 1 \hspace{1em} 0 \hspace{1em} 0 \hspace{1em} 0 \\
1 \hspace{1em} 0 \hspace{1em} 0 \hspace{1em} 1 \hspace{1em} 0 \\
0 \hspace{1em} 1 \hspace{1em} 0 \hspace{1em} 0 \hspace{1em} 1
\]

For the next step in solving your DAE problem, see “Check and Reduce Differential
Index” on page 2-171.
Check and Reduce Differential Index

**Note:** This is the third step in solving a DAE problem. For the sequence of steps for solving DAE problems, see “Set Up Your DAE Problem” on page 2-164.

At this step, your DAE system must be a first-order system. The MATLAB solvers ode15i, ode15s, and ode23t can solve systems of ordinary differential equations or systems of differential algebraic equations of differential index 0 or 1. Therefore, before you can solve a system of DAEs, you must check the differential index of the system. If the index is higher than 1, the next step is to rewrite the system so that the index reduces to 0 or 1.

**In this section...**

“Reduce Differential Index to 1” on page 2-171
“Reduce Differential Index to 0” on page 2-173

**Reduce Differential Index to 1**

Once you have a first-order DAE system, use the isLowIndexDAE function to check the differential index of the system. If the index is 0 or 1, then isLowIndexDAE returns 1 (logical true). In this case, skip the index reduction and go to the next step. If the differential index is 2 or higher, then isLowIndexDAE returns 0 (logical false). For this system of differential algebraic equations, isLowIndexDAE returns 0 (logical false).

```matlab
isLowIndexDAE(eqs,vars)
```

```matlab
ans =
0
```

There are two index reduction functions available in Symbolic Math Toolbox. The reduceDAEIndex function tries to reduce the differential index by differentiating the original equations (Pantelides algorithm) and replacing the derivatives by new variables. The result contains the original equations (with the derivatives replaced by new variables) followed by the new equations. The vector of variables contains the original variables followed by variables generated by reduceDAEIndex.

```matlab
[DAEs,DAEvars] = reduceDAEIndex(eqs,vars)
```
Using Symbolic Math Toolbox Software

DAEs =

\begin{align*}
\text{m*Dxtt(t) - (T(t)*x(t))/r} \\
\text{g*m + m*Dytt(t) - (T(t)*y(t))/r} \\
\text{x(t)^2 + y(t)^2 - r^2} \\
\text{Dxt(t) - Dxt1(t)} \\
\text{Dyt(t) - Dyt1(t)} \\
\text{2*Dxt1(t)*x(t) + 2*Dyt1(t)*y(t)} \\
\text{2*Dxt1t(t)*x(t) + 2*Dxt1(t)^2 + 2*Dyt1(t)^2 + 2*y(t)*diff(Dyt1(t), t)} \\
\text{Dytt(t) - diff(Dyt1(t), t)} \\
\text{Dyt1(t) - diff(y(t), t)}
\end{align*}

DAEvars =

\begin{align*}
x(t) \\
y(t) \\
T(t) \\
Dxt(t) \\
Dyt(t) \\
Dytt(t) \\
Dxtt(t) \\
Dxt1(t) \\
Dyt1(t) \\
Dxt1t(t)
\end{align*}

Often, reduceDAEIndex introduces equations and variables that can be easily eliminated. You can simplify the system by eliminating redundant equations.

\[[\text{DAEs, DAEvars}] = \text{reduceRedundancies(\text{DAEs, DAEvars})}\]

\begin{align*}
\text{DAEs} =
\begin{align*}
\text{-(T(t)*x(t) - m*r*Dxtt(t))/r} \\
\text{(g*m*r - T(t)*y(t) + m*r*Dytt(t))/r} \\
\text{x(t)^2 + y(t)^2 - r^2} \\
\text{2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)} \\
\text{2*Dxtt(t)*x(t) + 2*Dxt(t)^2 + 2*Dyt(t)^2 + 2*y(t)*diff(Dyt(t), t)} \\
\text{Dytt(t) - diff(Dyt(t), t)} \\
\text{Dyt(t) - diff(y(t), t)}
\end{align*}

\text{DAEvars} =
\begin{align*}
x(t) \\
y(t) \\
T(t) \\
Dxt(t) \\
Dyt(t) \\
Dytt(t)
\end{align*}

2-172
Dxtt(t)

Check the differential index of the new system. Now isLowIndexDAE returns 1, which
means that the differential index of the system is 0 or 1.

isLowIndexDAE(DAEs,DAEvars)
ans =
  1

For the next step in solving your DAE problem, see “Convert DAE Systems to MATLAB
Function Handles” on page 2-175.

Reduce Differential Index to 0

Once you have a first-order DAE system, use the isLowIndexDAE function to check the
differential index of the system. If the index is 0 or 1, then isLowIndexDAE returns
1 (logical true). In this case, skip the index reduction and go to the next step. If the
differential index is 2 or higher, then isLowIndexDAE returns 0 (logical false). For this
system of differential algebraic equations, isLowIndexDAE returns 0 (logical false).

isLowIndexDAE(eqs,vars)
ans =
  0

The Pantelides algorithm used by reduceDAEIndex can underestimate the differential
index of a system. After index reduction, the reduceDAEIndex function internally calls
isLowIndexDAE to check the differential index of the new DAE system. If the reduced
index is still 2 or higher, it issues the following warning:

Warning: The index of the reduced DAEs is larger...
than 1. [daetools::reduceDAEIndex]

Another index reduction function, reduceDAEToODE, reduces a DAE system to a system
of implicit ordinary differential equations by using a structural algorithm based on
Gaussian elimination of the mass matrix. This function only works on semilinear DAE
systems, and it is typically slower than reduceDAEIndex. The main advantage of using
reduceDAEToODE is that it reliably reduces semilinear DAE systems to ODE systems
(DAEs of index 0).

Use reduceDAEToODE to reduce the differential index of small semilinear DAE systems
or semilinear DAE systems for which reduceDAEIndex fails to reduce the index to 1.
For example, the system of equations for a two-dimensional pendulum is relatively small (five first-order equations in five variables). The `reduceDAEToODE` function reduces this system to a system of implicit ordinary differential equations as follows.

\[ \text{ODEs, constraints} = \text{reduceDAEToODE(eqs, vars)} \]

\[
\text{ODEs} = \\
Dxt(t) - \text{diff}(x(t), t) \\
Dyt(t) - \text{diff}(y(t), t) \\
m*\text{diff}(Dxt(t), t) - (T(t)*x(t))/r \\
m*\text{diff}(Dyt(t), t) - (T(t)*y(t) - g*m*r)/r \\
-(4*T(t)*y(t) - 2*g*m*r)*\text{diff}(y(t), t) - ... \\
\text{diff}(T(t), t)*(2*x(t)^2 + 2*y(t)^2) - ... \\
4*T(t)*x(t)*\text{diff}(x(t), t) - ... \\
4*m*r*Dxt(t)*\text{diff}(Dxt(t), t) - ... \\
4*m*r*Dyt(t)*\text{diff}(Dyt(t), t)
\]

\[
\text{constraints} = \\
2*g*m*r*y(t) - 2*T(t)*y(t)^2 - 2*m*r*Dxt(t)^2 - ... \\
2*m*r*Dyt(t)^2 - 2*T(t)*x(t)^2 \\
r^2 - y(t)^2 - x(t)^2 \\
2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)
\]

For the next step in solving your DAE problem, see “Convert DAE Systems to MATLAB Function Handles” on page 2-175.
Convert DAE Systems to MATLAB Function Handles

**Note:** This is the **fourth step** in solving a DAE problem. For the sequence of steps for solving DAE problems, see “Set Up Your DAE Problem” on page 2-164.

At this step, your DAE system must be a first-order system of differential index 0 or 1. The system is still a system of symbolic expressions and variables. Before you can use the MATLAB differential solvers, you must convert your DAE or ODE system to a suitable input for these solvers, that is, a MATLAB function handle.

There are two ways to convert a DAE or ODE system to a MATLAB function handle:

- To use the `ode15i` solver, convert a DAE or ODE system to a function handle by using `daeFunction`.
- To use the `ode15s` or `ode23t` solver, find the mass matrix and vector containing the right sides of equations by using `massMatrixForm`. Then convert the result to function handles by using `matlabFunction`. You can use this approach only with semilinear systems.

These topics show how to convert your DAE or ODE system to function handles acceptable by different MATLAB solvers.

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“DAEs to Function Handles for ode15i” on page 2-175</td>
</tr>
<tr>
<td>“ODEs to Function Handles for ode15i” on page 2-177</td>
</tr>
<tr>
<td>“DAEs to Function Handles for ode15s and ode23t” on page 2-178</td>
</tr>
<tr>
<td>“ODEs to Function Handles for ode15s and ode23t” on page 2-179</td>
</tr>
</tbody>
</table>

**DAEs to Function Handles for ode15i**

To use `ode15i`, you need a function handle that describes a DAE system as \( F(t, y(t), y'(t)) = 0 \). Thus, you must convert a DAE system to a function handle \( F = F(y, y, yp) \), where \( t \) is a scalar, and \( y \) and \( yp \) are column vectors.

When you have a first-order low-index DAE system consisting of a vector of equations and a vector of variables that is ready for conversion to a MATLAB function handle, use `daeFunction` to convert the system. If a DAE system contains symbolic parameters
Using Symbolic Math Toolbox Software

(symbolic variables other than those specified in the vector of state variables, \texttt{DAEvars}), then specify these symbolic parameters as additional input arguments of \texttt{daeFunction}. For example, the two-dimensional pendulum model contains the variables \(m\), \(r\), and \(g\). Call \texttt{daeFunction} and provide these variables as additional arguments.

\[
f = \text{daeFunction}(\text{DAEs}, \text{DAEvars}, m, r, g);
\]

Although \texttt{daeFunction} lets you create a function handle containing symbolic parameters without numeric values assigned to them, you cannot use these function handles as input arguments for the \texttt{ode15i} solver. Before calling the solvers, you must assign numeric values to all symbolic parameters.

\[
m = 1.0;
r = 1.0;
g = 9.81;
\]

The function handle \(f\) still contains symbolic parameters. Create a purely numeric function handle \(F\) that you can pass to \texttt{ode15i}.

\[
F = @(t, Y, YP) f(t, Y, YP, m, r, g);
\]

If your DAE system does not contain any symbolic parameters, then \texttt{daeFunction} creates a function handle suitable for \texttt{ode15i}. For example, substitute the parameters \(m = 1.0\), \(r = 1.0\), and \(g = 9.81\) into the equations \texttt{DAEs}. Now the system does not contain symbolic variables other than specified in the vector of state variables \texttt{DAEvars}.

\[
\text{DAEs} = \text{subs}(\text{DAEs})
\]

\[
\begin{align*}
\text{DAEs} &= \\
&= Dxt(t) - T(t)*x(t) \\
&= Dytt(t) - T(t)*y(t) + 981/100 \\
&= x(t)^2 + y(t)^2 - 1 \\
&= 2*Dxt(t)*x(t) + 2*Dyt(t)*y(t) \\
&= 2*Dxtt(t)*x(t) + 2*Dxt(t)^2 + 2*Dyt(t)^2 + 2*y(t)*diff(Dyt(t), t) \\
&= Dytt(t) - diff(Dyt(t), t) \\
&= Dyt(t) - diff(y(t), t)
\end{align*}
\]

Use \texttt{daeFunction} to create a function handle. The result is a function handle suitable for \texttt{ode15i}.

\[
F = \text{daeFunction}(\text{DAEs}, \text{DAEvars});
\]

For the next step in solving your DAE problem, see “Find Consistent Initial Conditions” on page 2-182.
**ODEs to Function Handles for ode15i**

To use `ode15i`, you need a function handle that describes an ODE system as \( F(t, y(t), y'(t)) = 0 \). Thus, you must convert an ODE system to a function handle \( F = F(y, y, yp) \), where \( t \) is a scalar, and \( y \) and \( yp \) are column vectors.

When you have a first-order ODE system consisting of a vector of equations and a vector of variables that is ready for conversion to a MATLAB function handle, use `daeFunction` to convert the system. If an ODE system contains symbolic parameters (symbolic variables other than those specified in the vector of state variables, `vars`), then specify these symbolic parameters as additional input arguments of `daeFunction`. For example, the two-dimensional pendulum model contains the variables \( m \), \( r \), and \( g \). Call `daeFunction` and provide these variables as additional arguments.

\[
f = \text{daeFunction}(\text{ODEs}, \text{vars}, m, r, g);
\]

Although `daeFunction` lets you create a function handle that contains symbolic parameters without numeric values assigned to them, you cannot use these function handles as input arguments for the `ode15i` solver. Before you call the solvers, you must assign numeric values to all symbolic parameters.

\[
m = 1.0;
r = 1.0;
g = 9.81;
\]

The function handle \( f \) still contains symbolic parameters. Create a purely numeric function handle \( F \) that you can pass to `ode15i`.

\[
F = @(t, Y, YP) f(t, Y, YP, m, r, g);
\]

If your ODE system does not contain any symbolic parameters, then `daeFunction` creates a function handle suitable for `ode15i`. For example, substitute the parameters \( m = 1.0 \), \( r = 1.0 \), and \( g = 9.81 \) into the equations `ODEs`. Now the system does not contain symbolic variables other than those specified in the vector of state variables `vars`.

\[
\text{ODEs} = \text{subs(ODEs)}
\]

\[
\text{ODEs} =
\begin{align*}
\text{Dxt}(t) &- \text{diff}(x(t), t) \\
\text{Dyt}(t) &- \text{diff}(y(t), t) \\
\text{diff}(&\text{Dxt}(t), t) - T(t)\times x(t)
\end{align*}
\]
Using Symbolic Math Toolbox Software

\[
\begin{align*}
\text{diff}(	ext{Dyt}(t), t) - T(t)*y(t) + 981/100 - (4*T(t)*y(t) - 981/50)*\text{diff}(y(t), t) - \\
4*Dxt(t)*\text{diff}(Dxt(t), t) - \\
4*Dyt(t)*\text{diff}(Dyt(t), t) - \\
\text{diff}(T(t), t)*(2*x(t)^2 + 2*y(t)^2) - \\
4*T(t)*x(t)*\text{diff}(x(t), t)
\end{align*}
\]

Use \texttt{daeFunction} to create a function handle suitable for \texttt{ode15i}.

\[
F = \texttt{daeFunction(ODEs, vars)};
\]

For the next step in solving your DAE problem, see “Find Consistent Initial Conditions” on page 2-182.

**DAEs to Function Handles for \texttt{ode15s} and \texttt{ode23t}**

To use \texttt{ode15s} or \texttt{ode23t}, you need two function handles: one must represent the mass matrix of a DAE system, and the other must represent the vector containing the right side of the equations. If \( M \) is a mass matrix form and \( F \) is a vector containing the right side of equations, then \( M(t,y(t)) \cdot \text{y}'(t) = F(t,y(t)) \).

When you have a first-order low-index semilinear DAE system consisting of a vector of equations and a vector of variables, use \texttt{massMatrixForm} to find the mass matrix \( M \) and vector \( F \) of the right side of the equations.

\[[M,F] = \texttt{massMatrixForm(DAEs,DAEvars)}\]

\[
M =
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2*y(t) & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
F =
\begin{bmatrix}
(T(t)*x(t) - m*r*Dxtt(t))/r \\
-(g*m*r - T(t)*y(t) + m*r*Dytt(t))/r \\
r^2 - y(t)^2 - x(t)^2 \\
\end{bmatrix}
\]

= 
\begin{bmatrix}
-2*Dxt(t)*x(t) - 2*Dyt(t)*y(t)
\end{bmatrix}
To convert M and F to MATLAB function handles, use two separate `odeFunction` calls.

For inputs that do not contain any symbolic parameters, `odeFunction` creates function handles suitable for the MATLAB ODE solvers. In the previous code sample, the mass matrix M does not contain symbolic variables other than specified in the vector of state variables (DAEvars). Use `odeaeFunction` to create a function handle. The result is a function handle suitable for `ode15s` and `ode23t`.

```matlab
M = odeFunction(M, DAEvars);
```

If M or F contain symbolic parameters (symbolic variables other than those specified in the vector of state variables DAEvars), then specify these symbolic parameters as additional input arguments of `odeFunction`. Because F contains the variables m, r, and g, provide these variables as additional arguments when you call `odeFunction` for F.

```matlab
F = odeFunction(F, DAEvars, m, r, g);
```

Although `odeFunction` lets you create a function handle containing symbolic parameters without numeric values assigned to them, you cannot use these function handles as input arguments for the MATLAB ODE solvers. Before calling the solvers, you must assign numeric values to all symbolic parameters.

```matlab
m = 1.0;
r = 1.0;
g = 9.81;
```

The function handle f still contains symbolic parameters. Create a purely numeric function handle F that you can pass to `ode15s` or `ode23t`.

```matlab
F = @(t, Y) F(t, Y, m, r, g);
```

For the next step in solving your DAE problem, see “Find Consistent Initial Conditions” on page 2-182.

**ODEs to Function Handles for `ode15s` and `ode23t`**

To use `ode15s` or `ode23t`, you need two function handles: one must represent the mass matrix of a ODE system, and the other must represent the vector containing the right
side of the equations. If \( M \) is a mass matrix form and \( F \) is a vector containing the right side of equations, then \( M(t,y(t))*y'(t) = F(t,y(t)) \).

When you have a first-order ODE system consisting of a vector of equations and a vector of variables, use \texttt{massMatrixForm} to find the mass matrix \( M \) and vector \( F \) of the right side of the equations.

\[
[M, F] = \text{massMatrixForm}(\text{ODEs}, \text{vars})
\]

\[
M = \\
\begin{bmatrix}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & m & 0 \\
0 & 0 & 0 & 0 & m \\
-4*T(t)*x(t), 2*g*m*r - 4*T(t)*y(t), -2*x(t)^2 - 2*y(t)^2, -4*m*r*Dxt(t), -4*m*r*Dyt(t)
\end{bmatrix}
\]

\[
F = \\
-\text{Dxt}(t) \\
-\text{Dyt}(t) \\
(T(t)*x(t))/r \\
(T(t)*y(t) - g*m*r)/r \\
0
\]

To convert \( M \) and \( F \) to MATLAB function handles, use two separate \texttt{odeFunction} calls.

If \( M \) or \( F \) contain symbolic parameters (symbolic variables other than specified in the vector of state variables \texttt{DAEvars}'), then specify these symbolic parameters as additional input arguments of \texttt{odeFunction}. In this example, both \( M \) and \( F \) contain the variables \( m \), \( r \), and \( g \). Call \texttt{odeFunction} and provide these variables as additional arguments.

\[
M = \text{odeFunction}(M, \text{vars}, m, r, g);
F = \text{odeFunction}(F, \text{vars}, m, r, g);
\]

Although \texttt{odeFunction} lets you create function handles containing symbolic parameters without numeric values assigned to them, you cannot use these function handles as input arguments for the MATLAB ODE solvers. Before calling the solvers, you must assign numeric values to all symbolic parameters.

\[
m = 1.0;
\]

\[
r = 1.0;
\]

\[
g = 9.81;
\]

The function handles \( M \) and \( F \) still contain symbolic parameters. Create purely numeric function handles that you can pass to \texttt{ode15s} or \texttt{ode23t}.

\[
M = @(t,Y) M(t,Y,m,r,g);
\]

\[
F = @(t,Y) F(t,Y,m,r,g);
\]
\[ F = @(t, Y) F(t, Y, m, r, g); \]

For the next step in solving your DAE problem, see “Find Consistent Initial Conditions” on page 2-182.
Find Consistent Initial Conditions

Note: This is the fifth step in solving a DAE problem. For the sequence of steps for solving DAE problems, see “Set Up Your DAE Problem” on page 2-164.

At this step, you search for initial conditions that satisfy all equations of your new low-index DAE or ODE system. There are two functions that let you find consistent initial conditions:

• If you used reduceDAEIndex to reduce the differential index of the system to 1, then use the MATLAB decic function to find consistent initial conditions for the new DAE system.

• If you used reduceDAEToODE to rewrite the system as a system of implicit ODEs, then use the decic function available in Symbolic Math Toolbox. As one of its input arguments, this function accepts algebraic constraints of the original system returned by reduceDAEToODE and returns consistent initial conditions that satisfy those constraints.

These topics show how to find consistent initial conditions for your DAE or ODE system when you use different solvers.

In this section...

“DAEs: Initial Conditions for ode15i” on page 2-182
“ODEs: Initial Conditions for ode15i” on page 2-184
“DAEs: Initial Conditions for ode15s and ode23t” on page 2-185
“ODEs: Initial Conditions for ode15s and ode23t” on page 2-186

DAEs: Initial Conditions for ode15i

The vector of variables for the first-order DAE system of differential index 1 describing a two-dimensional pendulum is a 7-by-1 vector. Therefore, estimates for initial values of variables and their derivatives must also be 7-by-1 vectors.

DAEvars

DAEvars =
Suppose that the initial angular displacement of the pendulum is 30°, and the origin of the coordinates is at the suspension point of the pendulum. Since \( \cos(30°) = 0.5 \) and \( \sin(30°) = 0.8 \), you can specify the starting points for the search for consistent values of the variables and their derivatives at the time \( t_0 = 0 \) as two 7-by-1 vectors.

\[
y_{0est} = [0.5r; -0.8r; 0; 0; 0; 0; 0];
y_{p0est} = \text{zeros}(7, 1);
\]

Create an option set that specifies numerical tolerances for the numerical search.

\[
\text{opt} = \text{odeset}(\text{'RelTol'}, 10.0^(-7), \text{'AbsTol'}, 10.0^(-7));
\]

Find consistent initial values for the variables and their derivatives by using the MATLAB `decic` function.

\[
[y_0, y_{p0}] = \text{decic}(F, 0, y_{0est}, [], y_{p0est}, [], \text{opt})
\]

\[
y_0 =
\begin{bmatrix}
0.4828 \\
-0.8757 \\
-8.5909 \\
0 \\
0.0000 \\
-2.2866 \\
-4.1477
\end{bmatrix}
\]

\[
y_{p0} =
\begin{bmatrix}
0 \\
0.0000 \\
0 \\
0 \\
-2.2866 \\
0 \\
0
\end{bmatrix}
\]

For the next step in solving your DAE problem, see “Solve DAE Systems Using MATLAB ODE Solvers” on page 2-188.
ODEs: Initial Conditions for ode15i

The vector of variables for the first-order ODE system describing a two-dimensional pendulum is a 5-by-1 vector, therefore, estimates for initial values of variables and their derivatives must also be 5-by-1 vectors.

```matlab
vars
vars =
 x(t)
 y(t)
 T(t)
 Dxt(t)
 Dyt(t)
```

Suppose that the initial angular displacement of the pendulum is 30°, and the origin of the coordinates is at the suspension point of the pendulum. Since cos(30°) = 0.5 and sin(30°) ≈ 0.8, you can specify the starting points for the search for consistent values of the variables and their derivatives at the time t0 = 0 as two 5-by-1 vectors.

```matlab
y0est = [0.5*r; -0.8*r; 0; 0; 0];
yp0est = zeros(5,1);
```

Create an option set that specifies numerical tolerances for the numerical search.

```matlab
opt = odeset('RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));
```

Find initial values consistent with the system of ODEs and with the algebraic constraints by using the decic function available in Symbolic Math Toolbox. The parameter [1,0,0,0,1] in this function call fixes the first and the last element in y0est, so that decic does not change them during the numerical search. The zero elements in [1,0,0,0,1] correspond to those values in y0est for which decic solves the constraint equations.

```matlab
[y0, yp0] = decic(ODEs, vars, constraints, 0, y0est, [1,0,0,0,1], yp0est, opt)
y0 =
 0.5000
 -0.8660
 -8.4957
 0
 0
```
Find Consistent Initial Conditions

yp0 =

-4.2479
-2.4525

For the next step in solving your DAE problem, see “Solve DAE Systems Using MATLAB ODE Solvers” on page 2-188.

**DAEs: Initial Conditions for ode15s and ode23t**

Suppose that the initial angular displacement of the pendulum is 30°, and the origin of the coordinates is at the suspension point of the pendulum. Since \( \cos(30°) = 0.5 \) and \( \sin(30°) = 0.8 \), you can specify the starting points for the search for consistent values of the variables and their derivatives at the time \( t_0 = 0 \) as two 7-by-1 vectors.

\[
y_{0est} = \begin{bmatrix} 0.5 \times r; & -0.8 \times r; & 0; & 0; & 0; & 0; & 0 \end{bmatrix};
\]

\[
yp_{0est} = \text{zeros}(7,1);
\]

Create an option set that contains the mass matrix \( M \) of the system, a vector \( yp_{0est} \) of initial guesses for the derivatives, and specifies numerical tolerances for the numerical search.

\[
\text{opt} = \text{odeset}('Mass', M, 'InitialSlope', yp_{0est},...
\quad 'RelTol', 10.0^(-7), 'AbsTol', 10.0^(-7));
\]

Find consistent initial values for the variables and their derivatives by using the MATLAB \text{decic} function. The first argument of \text{decic} must be a function handle \( f \) describing the DAE by \( f(t,y,yp) = f(t,y,y') = 0 \). In terms of \( M \) and \( F \), this means \( f(t,y,yp) = M(t,y) \times yp - F(t,y) \).

\[
[y_0, yp_0] = \text{decic}(@(t,y,yp) M(t,y) \times yp - F(t,y), 0, y_{0est}, [], yp_{0est}, [], \text{opt})
\]

\[
y_0 =
\begin{bmatrix}
0.4828 \\
-0.8757 \\
-8.5909 \\
0 \\
0.0000 \\
-2.2866 \\
-4.1477
\end{bmatrix}
\]
yp0 =
0
0.0000
0
0
-2.2866
0
0

For the next step in solving your DAE problem, see “Solve DAE Systems Using MATLAB ODE Solvers” on page 2-188.

**ODEs: Initial Conditions for ode15s and ode23t**

Suppose that the initial angular displacement of the pendulum is 30°, and the origin of the coordinates is at the suspension point of the pendulum. Since \( \cos(30°) = 0.5 \) and \( \sin(30°) \approx 0.8 \), you can specify the starting points for the search for consistent values of the variables and their derivatives at the time \( t_0 = 0 \) as two 5-by-1 vectors.

\[
y_{0\text{est}} = [0.5*r; -0.8*r; 0; 0; 0];
yp_{0\text{est}} = \text{zeros}(5,1);
\]

Before you proceed, substitute numeric values for \( m \), \( r \), and \( g \) into \( \text{ODEs} \), \( \text{constraints} \), and \( y_{0\text{est}} \).

\[
m = 1.0;
\]
\[
r = 1.0;
g = 9.81;
\]
\[
\text{ODEs} = \text{subs}(\text{ODEs});
\]
\[
\text{constraints} = \text{subs}(\text{constraints});
\]
\[
y_{0\text{est}} = \text{subs}(y_{0\text{est}});
\]

Create an option set that contains the mass matrix \( M \) of the system and specifies numerical tolerances for the numerical search.

\[
\text{opt} = \text{odeset}('\text{Mass}', M, '\text{'RelTol}', 10.0^{(-7)}, '\text{'AbsTol}', 10.0^{(-7)});\]

Find initial values consistent with the system of ODEs and with the algebraic constraints by using the `decic` function available in Symbolic Math Toolbox. The parameter \( [1,0,0,0,1] \) in this function call fixes the first and the last element in \( y_{0\text{est}} \), so that `decic` does not change them during the numerical search. The zero elements in
\[ [1, 0, 0, 0, 1] \] correspond to those values in \( y_{0\text{est}} \) for which \texttt{decic} solves the constraint equations.

\[
[y_0, y'_{0}] = \texttt{decic}(\text{ODEs, vars, constraints, 0, } y_{0\text{est}}, [1, 0, 0, 0, 1], y'_{0\text{est}}, \text{opt})
\]

\[
y_0 =
\begin{align*}
&0.5000 \\
&-0.8660 \\
&-8.4957 \\
&0 \\
&0
\end{align*}
\]

\[
y'_{0} =
\begin{align*}
&0 \\
&0 \\
&0 \\
&-4.2479 \\
&-2.4525
\end{align*}
\]

For the next step in solving your DAE problem, see “Solve DAE Systems Using MATLAB ODE Solvers” on page 2-188.
Solve DAE Systems Using MATLAB ODE Solvers

Note: This is the final step in solving a DAE problem. For the sequence of steps for solving DAE problems, see “Set Up Your DAE Problem” on page 2-164.

At this step, you must have a MATLAB function handle representing your ODE or DAE system (of differential index 0 or 1, respectively). You also must have two vectors specifying initial conditions for the variables of the system and their first derivatives.

ode15i, ode15s, and ode23t are the MATLAB differential equation solvers recommended for this workflow.

- If you have one function handle representing your DAE system (typically obtained via daeFunction), then use ode15i.
- If your DAE is semilinear, and you have function handles for the mass matrix and the right sides of equations of the DAE system, use ode15s or ode23t.

The following examples show how to solve DAE and ODE systems using different MATLAB solvers.

In this section...

“Solve a DAE System with ode15i” on page 2-188
“Solve an ODE System with ode15i” on page 2-189
“Solve a DAE System with ode15s” on page 2-190
“Solve an ODE System with ode15s” on page 2-191

Solve a DAE System with ode15i

Solve the system integrating over the time span \(0 \leq t \leq 0.5\). Add the grid lines and the legend to the plot.

ode15i(F, [0, 0.5], y0, yp0, opt)

for k = 1:numel(DAEvars)
    S{k} = char(DAEvars(k));
end
Solve an ODE System with `ode15i`

Solve the system integrating over the time span $0 \leq t \leq 0.5$. Add the grid lines and the legend to the plot.

```matlab
legend(S, 'Location', 'Best')
grid on
```

```matlab
ode15i(F, [0, 0.5], y0, yp0, opt)
for k = 1:numel(vars)
```
Solve a DAE System with ode15s

Solve the system integrating over the time span \(0 \leq t \leq 0.5\). Add the grid lines and the legend to the plot.

\[
\text{ode15s}(F, [0, 0.5], y0est, opt)
\]
for k = 1:numel(DAEvars)
    S{k} = char(DAEvars(k));
end

legend(S, 'Location', 'Best')
grid on

Solve an ODE System with ode15s

Solve the system integrating over the time span 0 ≤ t ≤ 0.5. Add the grid lines and the legend to the plot.
ode15s(F, [0, 0.5], y0, opt)

for k = 1:numel(vars)
    S{k} = char(vars(k));
end

legend(S, 'Location', 'Best')
grid on
Compute Fourier and Inverse Fourier Transforms

The Fourier transform of a function $f(x)$ is defined as

$$F[f](w) = \int_{-\infty}^{\infty} f(x)e^{-iwx} dx,$$

and the inverse Fourier transform (IFT) as

$$F^{-1}[f](x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(w)e^{iwx} dw.$$

This documentation refers to this formulation as the Fourier transform of $f$ with respect to $x$ as a function of $w$. Or, more concisely, the Fourier transform of $f$ with respect to $x$ at $w$. Mathematicians often use the notation $F[f]$ to indicate the Fourier transform of $f$. In this setting, the transform is taken with respect to the independent variable of $f$ (if $f = f(t)$, then $t$ is the independent variable; $f = f(x)$ implies that $x$ is the independent variable, etc.) at the default variable $w$. This documentation refers to $F[f]$ as the Fourier transform of $f$ at $w$ and $F^{-1}[f]$ is the IFT of $f$ at $x$. See `fourier` and `ifourier` in the reference pages for tables that show the Symbolic Math Toolbox commands equivalent to various mathematical representations of the Fourier and inverse Fourier transforms.

For example, consider the Fourier transform of the Cauchy density function, $(\pi(1 + x^2))^{-1}$:

```matlab
syms x
cauchy = 1/(pi*(1+x^2));
fcauchy = fourier(cauchy)

fcauchy =
exp(-abs(w))
```

`ezplot(fcauchy)`
The Fourier transform is symmetric, since the original Cauchy density function is symmetric.

To recover the Cauchy density function from the Fourier transform, call `ifourier`:

```
finvfcauchy = ifourier(fcauchy)
```

```
finvfcauchy =
1/(pi*(x^2 + 1))
```

An application of the Fourier transform is the solution of ordinary and partial differential equations over the real line. Consider the deformation of an infinitely long beam resting on an elastic foundation with a shock applied to it at a point. A “real world” analogy to this phenomenon is a set of railroad tracks atop a road bed.
The shock could be induced by a pneumatic hammer blow.

The differential equation idealizing this physical setting is

$$\frac{d^4 y}{dx^4} + \frac{k}{EI} y = \frac{1}{EI} \delta(x), \quad -\infty < x < \infty.$$  

Here, $E$ represents elasticity of the beam (railroad track), $I$ is the “beam constant,” and $k$ is the spring (road bed) stiffness. The shock force on the right side of the differential equation is modeled by the Dirac Delta function $\delta(x)$. The Dirac Delta function has the following important property:

$$\int_{-\infty}^{\infty} f(x-y)\delta(y)dy = f(x).$$

A definition of the Dirac Delta function is

$$\delta(x) = \lim_{n \to \infty} n \chi(-1/2n,1/2n)(x),$$

where
\[
\chi(-1/2n, 1/2n)(x) = \begin{cases} 1 & \text{for } -\frac{1}{2n} < x < \frac{1}{2n} \\ 0 & \text{otherwise}. \end{cases}
\]

Let \(Y(w) = F[y(x)](w)\) and \(\Delta(w) = F[\delta(x)](w)\). Indeed, try the command `fourier(dirac(x), x, w)`. The Fourier transform turns differentiation into exponentiation, and, in particular,

\[
F \left[ \frac{d^4 y}{dx^4} \right](w) = w^4 Y(w).
\]

See a demonstration of this property:

```matlab
syms w y(x)
fourier(diff(y(x), x, 4), x, w)
ans = w^4*fourier(y(x), x, w)
```

Note that you can call the `fourier` command with one, two, or three inputs (see the reference pages for `fourier`). With a single input argument, `fourier(f)` returns a function of the default variable \(w\). If the input argument is a function of \(w\), `fourier(f)` returns a function of \(t\). All inputs to `fourier` must be symbolic objects.

Applying the Fourier transform to the differential equation above yields the algebraic equation

\[
\left( w^4 + \frac{k}{EI} \right) Y(w) = \Delta(w),
\]

or

\[
Y(w) = \Delta(w) G(w),
\]

where

\[
G(w) = \frac{1}{w^4 + \frac{k}{EI}} = F[g(x)](w)
\]
for some function \( g(x) \). That is, \( g \) is the inverse Fourier transform of \( G \):

\[
g(x) = F^{-1}[G(w)](x)
\]

The Symbolic Math Toolbox counterpart to the IFT is \texttt{ifourier}. This behavior of \texttt{ifourier} parallels \texttt{fourier} with one, two, or three input arguments (see the reference pages for \texttt{ifourier}).

Continuing with the solution of the differential equation, observe that the ratio

\[
\frac{K}{EI}
\]

is a relatively “large” number since the road bed has a high stiffness constant \( k \) and a railroad track has a low elasticity \( E \) and beam constant \( I \). Make the simplifying assumption that

\[
\frac{K}{EI} = 1024.
\]

This is done to ease the computation of \( F^{-1}[G(w)](x) \). Now type

\[
G = 1/(w^4 + 1024);
g = \texttt{ifourier}(G, w, x);
g = \texttt{simplify}(g)
\]

\[
g = \frac{\pi \exp(x(-4-4i))\text{(sign}(x) + 1)\text{(}1/1024 + 1i/1024\) - ...}{2\pi}
\]

Since \( Y \) is the product of Fourier transforms, \( y \) is the convolution of the transformed functions. That is, \( F[y] = Y(w) = \Delta(w) \ G(w) = F[\delta] \ F[g] \) implies

\[
y(x) = (\delta \ast g)(x) = \int_{-\infty}^{\infty} g(x - y)\delta(y)dy = g(x).
\]

by the special property of the Dirac Delta function. To plot this function, substitute the domain of \( x \) into \( y(x) \), using the \texttt{subs} command. The resulting graph shows that the impact of a blow on a beam is highly localized; the greatest deflection occurs at the point of impact and falls off sharply from there.
XX = -3:0.05:3;
YY = double(subs(g, x, XX));
plot(XX, YY)
title('Beam Deflection for a Point Shock')
xlabel('x')
ylabel('y(x)')
Compute Laplace and Inverse Laplace Transforms

The Laplace transform of a function $f(t)$ is defined as

$$L[f](s) = \int_0^\infty f(t)e^{-ts} dt,$$

while the inverse Laplace transform (ILT) of $f(s)$ is

$$L^{-1}[f](t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} f(s)e^{st} ds,$$

where $c$ is a real number selected so that all singularities of $f(s)$ are to the left of the line $s = c$. The notation $L[f]$ indicates the Laplace transform of $f$ at $s$. Similarly, $L^{-1}[f]$ is the ILT of $f$ at $t$.

The Laplace transform has many applications including the solution of ordinary differential equations/initial value problems. Consider the resistance-inductor-capacitor (RLC) circuit below.
Let $R_j$ and $I_j$, $j = 1, 2, 3$ be resistances (measured in ohms) and currents (amperes), respectively; $L$ be inductance (henrys), and $C$ be capacitance (farads); $E(t)$ be the electromotive force, and $Q(t)$ be the charge.

By applying Kirchhoff’s voltage and current laws, Ohm’s Law, and Faraday’s Law, you can arrive at the following system of simultaneous ordinary differential equations.

\[
\begin{align*}
\frac{dI_1}{dt} + \frac{R_2}{L} \frac{dQ}{dt} &= \frac{R_2 - R_1}{L} I_1, \quad I_1(0) = I_0. \\
\frac{dQ}{dt} &= \frac{1}{R_3 + R_2} \left( E(t) - \frac{1}{C} Q(t) \right) + \frac{R_2}{R_3 + R_2} I_1, \quad Q(0) = Q_0.
\end{align*}
\]

Solve this system of differential equations using \texttt{laplace}. First treat the $R_j$, $L$, and $C$ as (unknown) real constants and then supply values later on in the computation.

\begin{verbatim}
clear E
syms R1 R2 R3 L C real
\end{verbatim}
syms I1(t) Q(t) s
dI1(t) = diff(I1(t), t);
dQ(t) = diff(Q(t), t);
E(t) = sin(t); % Voltage
eq1(t) = dI1(t) + R2*dQ(t)/L - (R2 - R1)*I1(t)/L;
eq2(t) = dQ(t) - (E(t) - Q/C)/(R2 + R3) - R2*I1(t)/(R2 + R3);

At this point, you have constructed the equations in the MATLAB workspace. An
approach to solving the differential equations is to apply the Laplace transform, which
you will apply to eq1(t) and eq2(t). Transforming eq1(t) and eq2(t)

L1(t) = laplace(eq1,t,s)
L2(t) = laplace(eq2,t,s)

returns

L1(t) =
s*laplace(I1(t), t, s) - I1(0)
+ ((R1 - R2)*laplace(I1(t), t, s))/L
- (R2*(Q(0) - s*laplace(Q(t), t, s)))/L

L2(t) =
s*laplace(Q(t), t, s) - Q(0)
- (R2*laplace(I1(t), t, s))/(R2 + R3) - (C/(s^2 + 1)
- laplace(Q(t), t, s))/(C*(R2 + R3))

Now you need to solve the system of equations L1 = 0, L2 = 0 for
laplace(I1(t),t,s) and laplace(Q(t),t,s), the Laplace transforms of I_1 and
Q, respectively. To do this, make a series of substitutions. For the purposes of this
example, use the quantities R1 = 4 Ω (ohms), R2 = 2 Ω, R3 = 3 Ω, C = 1/4 farads, L =
1.6 H (henrys), I1(0) = 15 A (amperes), and Q(0) = 2 A*sec. Substituting these values in
L1

syms LI1 LQ
NI1 = subs(L1(t),{R1,R2,R3,L,C,I1(0),Q(0)}, ...
{4,2,3,1.6,1/4,15,2})

returns

NI1 =
s*laplace(I1(t), t, s) + (5*s*laplace(Q(t), t, s))/4
+ (5*laplace(I1(t), t, s))/4 - 35/2

The substitution
\[ NQ = \text{subs}(L2, \{R1, R2, R3, L, C, I1(0), Q(0)\}, \{4, 2, 3, 1.6, 1/4, 15, 2\}) \]

returns

\[ NQ(t) = s \cdot \text{laplace}(Q(t), t, s) - \frac{1}{5(s^2 + 1)} - \frac{2 \cdot \text{laplace}(I1(t), t, s)}{5} + \frac{4 \cdot \text{laplace}(Q(t), t, s)}{5} - 2 \]

To solve for \( \text{laplace}(I1(t), t, s) \) and \( \text{laplace}(Q(t), t, s) \), make a final pair of substitutions. First, replace the strings \( \text{laplace}(I1(t), t, s) \) and \( \text{laplace}(Q(t), t, s) \) by the \text{sym} objects \( LI1 \) and \( LQ \), using

\[ NI1 = \text{subs}(NI1, \{\text{laplace}(I1(t), t, s), \text{laplace}(Q(t), t, s)\}, \{LI1, LQ\}) \]

to obtain

\[ NI1 = \left(\frac{5 \cdot LI1}{4} + LI1 \cdot s + \frac{5 \cdot LQ \cdot s}{4}\right) - \frac{35}{2} \]

Collecting terms

\[ NI1 = \text{collect}(NI1, LI1) \]

gives

\[ NI1 = \left(\frac{s}{4} + \frac{5}{4}\right) \cdot LI1 + \frac{5 \cdot LQ \cdot s}{4} - \frac{35}{2} \]

A similar string substitution

\[ NQ = \ldots \]
\[ \text{subs}(NQ, \{\text{laplace}(I1(t), t, s), \text{laplace}(Q(t), t, s)\}, \{LI1, LQ\}) \]

yields

\[ NQ(t) = \left(\frac{4 \cdot LQ}{5} - \frac{2 \cdot LI1}{5} + LQ \cdot s - \frac{1}{5(s^2 + 1)}\right) - 2 \]

which, after collecting terms,

\[ NQ = \text{collect}(NQ, LQ) \]

gives

\[ NQ(t) = \left(\frac{s}{5} + \frac{4}{5}\right) \cdot LQ - \frac{2 \cdot LI1}{5} - \frac{1}{5(s^2 + 1)} - 2 \]
Now, solving for \( LI_1 \) and \( LQ \)

\[
[LI_1, LQ] = \text{solve}(NI_1, NQ, LI_1, LQ)
\]

you obtain

\[
LI_1 = \frac{5 \cdot (60s^3 + 56s^2 + 59s + 56)}{(s^2 + 1)(20s^2 + 51s + 20)}
\]

\[
LQ = \frac{40s^3 + 190s^2 + 44s + 195}{(s^2 + 1)(20s^2 + 51s + 20)}
\]

To recover \( I_1 \) and \( Q \), compute the inverse Laplace transform of \( LI_1 \) and \( LQ \). Inverting \( LI_1 \)

\[
I_1 = \text{ilaplace}(LI_1, s, t)
\]

produces

\[
I_1 = 15 \cdot \exp\left(-\frac{51t}{40}\right) \cdot \left(\cosh\left(\frac{1001^{1/2}t}{40}\right) - \frac{293 \cdot 1001^{1/2} \cdot \sinh\left(\frac{1001^{1/2}t}{40}\right)}{21879}\right) - \frac{5 \cdot \sin(t)}{51}
\]

Inverting \( LQ \)

\[
Q = \text{ilaplace}(LQ, s, t)
\]

yields

\[
Q = \frac{4 \cdot \sin(t)}{51} - \frac{5 \cdot \cos(t)}{51} + \ldots
\]

\[
\left(\frac{107 \cdot \exp\left(-\frac{51t}{40}\right) \cdot \cosh\left(\frac{1001^{1/2}t}{40}\right)}{15301}\right) + \ldots
\]

Now plot the current \( I_1(t) \) and charge \( Q(t) \) in two different time domains, \( 0 \leq t \leq 10 \) and \( 5 \leq t \leq 25 \). The following statements generate the desired plots.

```matlab
subplot(2,2,1)
ezplot(I1,[0,10])
title('Current')
ylabel('I1(t)')
grid
subplot(2,2,2)
ezplot(Q,[0,10])
title('Charge')
ylabel('Q(t)')
grid
```
subplot(2,2,3)
ezplot(I1,[5,25])
title('Current')
ylabel('I1(t)')
grid

text(7,0.25,'Transient')
text(16,0.125,'Steady State')

subplot(2,2,4)
ezplot(Q,[5,25])
title('Charge')
ylabel('Q(t)')
grid

text(7,0.25,'Transient')
text(15,0.16,'Steady State')
Note that the circuit’s behavior, which appears to be exponential decay in the short term, turns out to be oscillatory in the long term. The apparent discrepancy arises because the circuit’s behavior actually has two components: an exponential part that decays rapidly (the “transient” component) and an oscillatory part that persists (the “steady-state” component).
Compute Z-Transforms and Inverse Z-Transforms

The (one-sided) z-transform of a function \( f(n) \) is defined as

\[
Z[f](z) = \sum_{n=0}^{\infty} f(n)z^{-n}.
\]

The notation \( Z[f] \) refers to the z-transform of \( f \) at \( z \). Let \( R \) be a positive number so that the function \( g(z) \) is analytic on and outside the circle \( |z| = R \). Then the inverse z-transform (IZT) of \( g \) at \( n \) is defined as

\[
Z^{-1}[g](n) = \frac{1}{2\pi i} \oint_{|z|=R} g(z)z^{n-1}dz, \quad n = 1, 2, ...
\]

The notation \( Z^{-1}[f] \) means the IZT of \( f \) at \( n \). The Symbolic Math Toolbox commands \texttt{ztrans} and \texttt{iztrans} apply the z-transform and IZT to symbolic expressions, respectively. See \texttt{ztrans} and \texttt{iztrans} for tables showing various mathematical representations of the z-transform and inverse z-transform and their Symbolic Math Toolbox counterparts.

The z-transform is often used to solve difference equations. In particular, consider the famous “Rabbit Problem.” That is, suppose that rabbits reproduce only on odd birthdays (1, 3, 5, 7, ...). If \( p(n) \) is the rabbit population at year \( n \), then \( p \) obeys the difference equation

\[
p(n+2) = p(n+1) + p(n), \quad p(0) = 1, p(1) = 2.
\]

You can use \texttt{ztrans} to find the population each year \( p(n) \). First, apply \texttt{ztrans} to the equations

\[
\text{syms } p(n) \text{ } z \\
\text{eq} = p(n + 2) - p(n + 1) - p(n); \\
\text{Zeq} = \text{ztrans(eq, n, z)}
\]

to obtain

\[
\text{Zeq} = z*p(0) - z*ztrans(p(n), n, z) - z*p(1) + z^2*ztrans(p(n), n, z) - z^2*p(0) - ztrans(p(n), n, z)
\]
Next, replace \( ztrans(p(n), n, z) \) with \( Pz \) and insert the initial conditions for \( p(0) \) and \( p(1) \).

\[
\text{syms Pz} \\
\text{Zeq = subs(Zeq,\{ztrans(p(n), n, z), p(0), p(1)\}, \{Pz, 1, 2\})}
\]

to obtain

\[
\text{Zeq = Pz*z^2 - z - Pz*z - Pz - z^2}
\]

Collecting terms

\[
eq = \text{collect(Zeq, Pz)}
\]
yields

\[
eq = (z^2 - z - 1)*Pz - z^2 - z
\]

Now solve for \( Pz \)

\[
P = \text{solve(eq, Pz)}
\]
to obtain

\[
P = -(z^2 + z)/(- z^2 + z + 1)
\]

To recover \( p(n) \), take the inverse \( z \)-transform of \( P \).

\[
p = \text{iztrans(P, z, n)}; \\
p = \text{simplify(p)}
\]
The result is a bit complicated, but explicit:

\[
p = 4*(-1)^(n/2)*\cos(n*(\pi/2 + \text{asinh}(1/2)*1i)) + ... \\
1/2^n*((3*5^(1/2))/10 - 3/2*(5^(1/2) + 1)^n - ... \\
1/2^n*((3*5^(1/2))/10 + 3/2*(1 - 5^(1/2))^n
\]

Finally, plot \( p \) to show the growth in rabbit population over time.

\[
m = 1:10; \\
y = \text{double(subs(p,n,m))};
\]
plot(m, real(y),'r0')
title('Rabbit Population')
xlabel('years')
ylabel('p')
grid on

References


Diffraction of Light

This example shows how to model the diffraction of light at the edge of a screen using classical electrodynamics. See Jackson [1].

Take a plane wave of intensity $I_0$ and wave number $k$. Assume the wavefronts of the plane wave are parallel to the $xy$-plane and the plane wave travels along the $z$-axis as shown. This plane wave is called the incident wave. A perfectly-conducting, flat diffraction screen occupies half of the $xy$-plane, that is $x < 0$. The plane wave strikes the diffraction screen, and you observe the diffracted wave along the line whose coordinates are $(x, 0, z_0)$, where $z_0 > 0$.

The intensity of the diffracted wave is

$$I = \frac{I_0}{2} \left[ \left( C(\zeta) + \frac{1}{2} \right)^2 + \left( S(\zeta) + \frac{1}{2} \right)^2 \right],$$

where
\[ \zeta = \sqrt{\frac{k}{2z_0}} \cdot x \]

and \( C(\zeta) \) and \( S(\zeta) \) are the Fresnel cosine and sine integrals

\[
C(\zeta) = \int_0^\zeta \cos\left(\frac{\pi t^2}{2}\right)dt
\]

\[
S(\zeta) = \int_0^\zeta \sin\left(\frac{\pi t^2}{2}\right)dt.
\]

Since \( k \) and \( z_0 \) are constants independent of \( x \), set

\[
\sqrt{\frac{k}{2z_0}} = 1
\]

and assume an initial intensity of \( I_0 = 1 \) for simplicity.

The following code generates a plot of intensity as a function of \( x \).

```matlab
x = -50:50;
C = fresnelc(x);
S = fresnels(x);
I0 = 1;
T = (C+1/2).^2 + (S+1/2).^2;
I = (I0/2)*T;
plot(x,I)
xlabel('x')
ylabel('I(x)')
title('Intensity of Diffracted Wave')
```
The graph shows that the diffraction effect is most prominent near the edge of the diffraction screen \((x = 0)\), as you expect.

Values of \(x\) that are large and positive correspond to observation points far away from the screen. Here, you would expect the screen to have no effect on the incident wave. That is, the intensity of the diffracted wave should be the same as that of the incident wave. Similarly, \(x\) values that are large and negative correspond to observation points under the screen that are far away from the screen edge. Here, you would expect the diffracted wave to have zero intensity. These results can be verified by setting

\[
x = [\text{Inf} -\text{Inf}]
\]

in the code to calculate \(I\).
References

Create Plots

In this section...

“Plot with Symbolic Plotting Functions” on page 2-214
“Plot with MATLAB Plotting Functions” on page 2-217
“Plot Multiple Symbolic Functions in One Graph” on page 2-219
“Plot Multiple Symbolic Functions in One Figure” on page 2-221
“Combine Symbolic Function Plots and Numeric Data Plots” on page 2-223

Plot with Symbolic Plotting Functions

MATLAB provides many techniques for plotting numerical data. Graphical capabilities of MATLAB include plotting tools, standard plotting functions, graphic manipulation and data exploration tools, and tools for printing and exporting graphics to standard formats. Symbolic Math Toolbox expands these graphical capabilities and lets you plot symbolic functions using:

- `ezplot` to create 2-D plots of symbolic expressions, equations, or functions in Cartesian coordinates.
- `ezplot3` to create 3-D parametric plots. To create animated plots, use the `animate` option.
- `ezpolar` that creates plots in polar coordinates.
- `ezsurf` to create surface plots. The `ezsurfc` plotting function creates combined surface and contour plots.
- `ezcontour` to create contour plots. The `ezcontourf` function creates filled contour plots.
- `ezmesh` to create mesh plots. The `ezmeshc` function creates combined mesh and contour plots.

For example, plot the symbolic expression \( \sin(6x) \) in Cartesian coordinates. By default, `ezplot` uses the range \(-2\pi < x < 2\pi\):

```matlab
syms x
ezplot(sin(6*x))
```
ezplot also can plot symbolic equations that contain two variables. To define an equation, use ==. For example, plot this trigonometric equation:

```
syms x y
ezplot(sin(x) + sin(y) == sin(x*y))
```
When plotting a symbolic expression, equation, or function, `ezplot` uses the default 60-by-60 grid (mesh setting). The plotting function does not adapt the mesh setting around steep parts of a function plot or around singularities. (These parts are typically less smooth than the rest of a function plot.) Also, `ezplot` does not let you change the mesh setting.

To plot a symbolic expression or function in polar coordinates $r$ (radius) and $\theta$ (polar angle), use the `ezpolar` plotting function. By default, `ezpolar` plots a symbolic expression or function over the domain $0 < \theta < 2\pi$. For example, plot the expression $\sin(6t)$ in polar coordinates:

```plaintext
syms t
ezpolar(sin(6*t))
```
Plot with MATLAB Plotting Functions

When plotting a symbolic expression, you also can use the plotting functions provided by MATLAB. For example, plot the symbolic expression $e^{x/2} \sin(10x)$. First, use `matlabFunction` to convert the symbolic expression to a MATLAB function. The result is a function handle `h` that points to the resulting MATLAB function:

```matlab
syms x
h = matlabFunction(exp(x/2)*sin(10*x));
```

Now, plot the resulting MATLAB function by using one of the standard plotting functions that accept function handles as arguments. For example, use the `fplot` function:
fplot(h, [0 10])
hold on
title('exp(x/2)*sin(10*x)')
hold off

An alternative approach is to replace symbolic variables in an expression with numeric values by using the \texttt{subs} function. For example, in the following expressions \( u \) and \( v \), substitute the symbolic variables \( x \) and \( y \) with the numeric values defined by \texttt{meshgrid}:

\begin{verbatim}
    syms x y
    u = sin(x^2 + y^2);
    v = cos(x*y);
    [X, Y] = meshgrid(-1:.1:1,-1:.1:1);
    U = subs(u, [x y], {X,Y});
\end{verbatim}
\[ V = \text{subs}(v, [x \ y], \{X, Y\}); \]

Now, you can use standard MATLAB plotting functions to plot the expressions \( U \) and \( V \). For example, create the plot of a vector field defined by the functions \( U(X, Y) \) and \( V(X, Y) \):

\[
\text{quiver}(X, Y, U, V)
\]

**Plot Multiple Symbolic Functions in One Graph**

To plot several symbolic functions in one graph, add them to the graph sequentially. To be able to add a new function plot to the graph that already contains a function plot,
use the **hold on** command. This command retains the first function plot in the graph. Without this command, the system replaces the existing plot with the new one. Now, add new plots. Each new plot appears on top of the existing plots. While you use the **hold on** command, you also can change the elements of the graph (such as colors, line styles, line widths, titles) or add new elements. When you finish adding new function plots to a graph and modifying the graph elements, enter the **hold off** command:

```matlab
syms x y
ezplot(exp(x)*sin(20*x) - y, [0, 3, -20, 20])
hold on
p1 = ezplot(exp(x) - y, [0, 3, -20, 20]);
p1.Color = 'red';
p1.LineStyle = '--';
p1.LineWidth = 2;
p2 = ezplot(-exp(x) - y, [0, 3, -20, 20]);
p2.Color = 'red';
p2.LineStyle = '--';
p2.LineWidth = 2;
title('exp(x)sin(20x)')
hold off
```
Plot Multiple Symbolic Functions in One Figure

To display several function plots in one figure without overlapping, divide a figure window into several rectangular panes (tiles). Then, you can display each function plot in its own pane. For example, you can assign different values to symbolic parameters of a function, and plot the function for each value of a parameter. Collecting such plots in one figure can help you compare the plots. To display multiple plots in the same window, use the `subplot` command:

```matlab
subplot(m,n,p)
```

This command partitions the figure window into an m-by-n matrix of small subplots and selects the subplot p for the current plot. MATLAB numbers the subplots along the
first row of the figure window, then the second row, and so on. For example, plot the expression \( \sin(x^2 + y^2)/a \) for the following four values of the symbolic parameter \( a \):

```matlab
syms x y
z = x^2 + y^2;
subplot(2, 2, 1)
ezsurf(sin(z/100))
subplot(2, 2, 2)
ezsurf(sin(z/50))
subplot(2, 2, 3)
ezsurf(sin(z/20))
subplot(2, 2, 4)
ezsurf(sin(z/10))
```
Combine Symbolic Function Plots and Numeric Data Plots

The combined graphical capabilities of MATLAB and the Symbolic Math Toolbox software let you plot numeric data and symbolic functions in one graph. Suppose, you have two discrete data sets, \(x\) and \(y\). Use the `scatter` plotting function to plot these data sets as a collection of points with coordinates \((x1, y1), (x2, y2), \ldots, (x3, y3)\):

```matlab
x = 0:pi/10:4*pi;
y = sin(x) + (-1).^randi(10, 1, 41).*rand(1, 41)./2;
scatter(x, y)
```
Now, suppose you want to plot the sine function on top of the scatter plot in the same graph. First, use the `hold on` command to retain the current plot in the figure. (Without this command, the symbolic plot that you are about to create replaces the numeric data plot.) Then, use `ezplot` to plot the sine function. To change the color or any other property of the plot, create the handle for the `ezplot` function call, and then use the `set` function:

```matlab
hold on
syms t
ezplot(sin(t), [0 4*pi])
hold off
```
MATLAB provides the plotting functions that simplify the process of generating spheres, cylinders, ellipsoids, and so on. The Symbolic Math Toolbox software lets you create a symbolic function plot in the same graph with these volumes. For example, use the following commands to generate the spiral function plot wrapped around the top hemisphere. The animate option switches the ezplot3 function to animation mode. The red dot on the resulting graph moves along the spiral:

```matlab
syms t
x = (1-t)*sin(100*t);
y = (1-t)*cos(100*t);
z = sqrt(1 - x^2 - y^2);
ezplot3(x, y, z, [0 1], 'animate')
title('Symbolic Parametric Plot')
```
Add the sphere with radius 1 and the center at (0, 0, 0) to this graph. The **sphere** function generates the required sphere, and the **mesh** function creates a mesh plot for that sphere. Combining the plots clearly shows that the symbolic parametric function plot is wrapped around the top hemisphere:

```matlab
hold on
[X,Y,Z] = sphere;
mesh(X, Y, Z)
colormap(gray)
title('Symbolic Parametric Plot and a Sphere')
hold off
```
Symbolic Parametric Plot and a Sphere
Explore Function Plots

Plotting a symbolic function can help you visualize and explore the features of the function. Graphical representation of a symbolic function can also help you communicate your ideas or results. MATLAB displays a graph in a special window called a figure window. This window provides interactive tools for further exploration of a function or data plot.
Interactive data exploration tools are available in the **Figure Toolbar** and also from the **Tools** menu. By default, a figure window displays one toolbar that provides shortcuts to the most common operations. You can enable two other toolbars from the **View** menu.

When exploring symbolic function plots, use the same operations as you would for the numeric data plots. For example:

- Zoom in and out on particular parts of a graph (Zoom In/Out). Zooming allows you to see small features of a function plot. Zooming behaves differently for 2-D or 3-D views.

- Shift the view of the graph with the pan tool (Pan). Panning is useful when you have zoomed in on a graph and want to move around the plot to view different portions.

- Rotate 3-D graphs (Rotate 3D). Rotating 3-D graphs allows you to see more features of the surface and mesh function plots.

- Display particular data values on a graph and export them to MATLAB workspace variables (Inspect Data Points).
**Edit Graphs**

MATLAB supports the following two approaches for editing graphs:

- Interactive editing lets you use the mouse to select and edit objects on a graph.
- Command-line editing lets you use MATLAB commands to edit graphs.

These approaches work for graphs that display numeric data plots, symbolic function plots, or combined plots.

To enable the interactive plot editing mode in the MATLAB figure window, click the Edit Plot button ( ) or select **Tools > Edit Plot** from the main menu. If you enable plot editing mode in the MATLAB figure window, you can perform point-and-click editing of your graph. In this mode, you can modify the appearance of a graphics object by double-clicking the object and changing the values of its properties.

The complete collection of properties is accessible through a graphical user interface called the Property Editor. To open a graph in the Property Editor window:

1. Enable plot editing mode in the MATLAB figure window.
2. Double-click any element on the graph.

If you prefer to work from the MATLAB command line or if you want to create a code file, you can edit graphs by using MATLAB plotting commands. For details, see “2-D and 3-D Plots”. Also, you can combine the interactive and command-line editing approaches to achieve the look you want for the graphs you create.
Save Graphs

After you create, edit, and explore a function plot, you might want to save the result. MATLAB provides three different ways to save graphs:

- Save a graph as a MATLAB FIG-file (a binary format). The FIG-file stores all information about a graph, including function plots, graph data, annotations, data tips, menus and other controls. You can open the FIG-file only with MATLAB.

- Export a graph to a different file format. When saving a graph, you can choose a file format other than FIG. For example, you can export your graphs to EPS, JPEG, PNG, BMP, TIFF, PDF, and other file formats. You can open the exported file in an appropriate application.

- Print a graph on paper or print it to file. To ensure the correct plot size, position, alignment, paper size and orientation, use Print Preview.

- Generate a MATLAB file from a graph. You can use the generated code to reproduce the same graph or create a similar graph using different data. This approach is useful for generating MATLAB code for work that you have performed interactively with the plotting tools.

For details, see “Printing and Saving”. 
Generate C or Fortran Code

You can generate C or Fortran code fragments from a symbolic expression, or generate files containing code fragments, using the `ccode` and `fortran` functions. These code fragments calculate numerical values as if substituting numbers for variables in the symbolic expression.

To generate code from a symbolic expression `g`, enter either `ccode(g)` or `fortran(g)`.

For example:

```plaintext
syms x y
z = 30*x^4/(x*y^2 + 10) - x^3*(y^2 + 1)^2;
fortran(z)
```

```plaintext
ans =
t0 = (x**4*3.0D1)/(x*y**2+1.0D1)-x**3*(y**2+1.0D0)**2
```

```plaintext
ccode(z)
```

```plaintext
ans =
t0 = ((x*x*x*x)*3.0E1)/(x*(y*y)+1.0E1)-(x*x*x)*pow(y*y+1.0,2.0);
```

To generate a file containing code, either enter `ccode(g,'file','filename')` or `fortran(g,'file','filename')`. For the example above,

```plaintext
fortran(z, 'file', 'fortrantest')
```

generates a file named `fortrantest` in the current folder. `fortrantest` consists of the following:

```plaintext
t12 = x**2
 t13 = y**2
 t14 = t13+1
 t0 = (t12**2*30)/(t13*x+10)-t12*t14**2*x
```

Similarly, the command

```plaintext
ccode(z,'file','ccodetest')
```

generates a file named `ccodetest` that consists of the lines

```plaintext
t16 = x*x;
t17 = y*y;
```
\begin{verbatim}
t18 = t17+1.0;
t0 = ((t16*t16)*3.0E1)/(t17*x+1.0E1)-t16*(t18*t18)*x;
\end{verbatim}

code and fortran generate many intermediate variables. This is called optimized code. MATLAB generates intermediate variables as a lowercase letter t followed by an automatically generated number, for example t32. Intermediate variables can make the resulting code more efficient by reusing intermediate expressions (such as t12 in fortranTest, and t16 in ccodetest). They can also make the code easier to read by keeping expressions short.

If you work in the MuPAD Notebook app, see generate::C and generate::fortran.
Generate MATLAB Functions

You can use \texttt{matlabFunction} to generate a MATLAB function handle that calculates numerical values as if you were substituting numbers for variables in a symbolic expression. Also, \texttt{matlabFunction} can create a file that accepts numeric arguments and evaluates the symbolic expression applied to the arguments. The generated file is available for use in any MATLAB calculation, whether or not the computer running the file has a license for Symbolic Math Toolbox functions.

If you work in the MuPAD Notebook app, see “Create MATLAB Functions from MuPAD Expressions” on page 3-47.

Generating a Function Handle

\texttt{matlabFunction} can generate a function handle from any symbolic expression. For example:

\begin{verbatim}
syms x y
r = sqrt(x^2 + y^2);
ht = matlabFunction(tanh(r))
\end{verbatim}

\begin{verbatim}
ht = @(x,y)tanh(sqrt(x.^2+y.^2))
\end{verbatim}

You can use this function handle to calculate numerically:

\begin{verbatim}
ht(.5,.5)
\end{verbatim}

\begin{verbatim}
ans =
0.6089
\end{verbatim}

You can pass the usual MATLAB double-precision numbers or matrices to the function handle. For example:

\begin{verbatim}
cc = [.5,3];
dd = [-.5,.5];
ht(cc, dd)
\end{verbatim}

\begin{verbatim}
ans =
0.6089 0.9954
\end{verbatim}
Control the Order of Variables

`matlabFunction` generates input variables in alphabetical order from a symbolic expression. That is why the function handle in “Generating a Function Handle” on page 2-234 has `x` before `y`:

```matlab
ht = @(x,y)tanh((x.^2 + y.^2).^(1./2))
```

You can specify the order of input variables in the function handle using the `vars` option. You specify the order by passing a cell array of strings or symbolic arrays, or a vector of symbolic variables. For example:

```matlab
syms x y z
r = sqrt(x^2 + 3*y^2 + 5*z^2);
ht1 = matlabFunction(tanh(r), 'vars', [y x z])
```

```matlab
ht1 = @(y,x,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))
```

```matlab
ht2 = matlabFunction(tanh(r), 'vars', {'x', 'y', 'z'})
```

```matlab
ht2 = @(x,y,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))
```

```matlab
ht3 = matlabFunction(tanh(r), 'vars', {'x', [y z]})
```

```matlab
ht3 = @(x,in2)tanh(sqrt(x.^2+in2(:,1).^2.*3.0+in2(:,2).^2.*5.0))
```

Generate a File

You can generate a file from a symbolic expression, in addition to a function handle. Specify the file name using the `file` option. Pass a string containing the file name or the path to the file. If you do not specify the path to the file, `matlabFunction` creates this file in the current folder.

This example generates a file that calculates the value of the symbolic matrix `F` for double-precision inputs `t`, `x`, and `y`:

```matlab
syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(F,'file','testMatrix.m')
```
The file `testMatrix.m` contains the following code:

```matlab
function F = testMatrix(t,x,y)
%TESTMATRIX
% F = TESTMATRIX(T,X,Y)

t2 = x.^2;
t3 = tan(y);
t4 = t2.*x;
t5 = t.^2;
t6 = t5 + 1;
t7 = 1./y;
t8 = t6.*t7.*x;
t9 = t3 + t4;
t10 = 1./t9;
F = [-(t10.*(t3 - t4))./t6,t8; t8,- t10.*(3.*t3 - 3.*t2.*x) - 1];
```

`matlabFunction` generates many intermediate variables. This is called *optimized* code. MATLAB generates intermediate variables as a lowercase letter `t` followed by an automatically generated number, for example `t32`. Intermediate variables can make the resulting code more efficient by reusing intermediate expressions (such as `t4`, `t6`, `t8`, `t9`, and `t10` in the calculation of `F`). Using intermediate variables can make the code easier to read by keeping expressions short.

If you don't want the default alphabetical order of input variables, use the `vars` option to control the order. Continuing the example,

```matlab
matlabFunction(F,'file','testMatrix.m','vars',[x y t])
```

generates a file equivalent to the previous one, with a different order of inputs:

```matlab
function F = testMatrix(x,y,t)
...
```

**Name Output Variables**

By default, the names of the output variables coincide with the names you use calling `matlabFunction`. For example, if you call `matlabFunction` with the variable `F`

```matlab
syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w, (1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
```
matlabFunction(F, 'file', 'testMatrix.m', 'vars', [x y t])

the generated name of an output variable is also F:

function F = testMatrix(x, y, t)
...

If you call matlabFunction using an expression instead of individual variables

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w, (1 + t^2)*x/y; (1 + t^2)*x/y, 3*z - 1];
matlabFunction(w + z + F, 'file', 'testMatrix.m', ...
'vars', [x y t])

the default names of output variables consist of the word out followed by the number, for example:

function out1 = testMatrix(x, y, t)
...

To customize the names of output variables, use the output option:

syms x y z
r = x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;
f = matlabFunction(r, q, 'file', 'new_function', ...
'outputs', {'name1', 'name2'})

The generated function returns name1 and name2 as results:

function [name1, name2] = new_function(x, y, z)
...

**Convert MuPAD Expressions**

You can convert a MuPAD expression or function to a MATLAB function:

syms x y
f = evalin(symengine, 'arcsin(x) + arccos(y)');
matlabFunction(f, 'file', 'new_function');

The created file contains the same expressions written in the MATLAB language:

function f = new_function(x, y)
%NEW_FUNCTION
%  F = NEW_FUNCTION(X,Y)

f = asin(x) + acos(y);

**Tip** `matlabFunction` cannot correctly convert some MuPAD expressions to MATLAB functions. These expressions do not trigger an error message. When converting a MuPAD expression or function that is not on the MATLAB vs. MuPAD Expressions list, always check the results of conversion. To verify the results, execute the resulting function.
Generate MATLAB Function Blocks

Using matlabFunctionBlock, you can generate a MATLAB Function block. The generated block is available for use in Simulink models, whether or not the computer running the simulations has a license for Symbolic Math Toolbox.

If you work in the MuPAD Notebook app, see “Create MATLAB Function Blocks from MuPAD Expressions” on page 3-50.

Generate and Edit a Block

Suppose, you want to create a model involving the symbolic expression \( r = \sqrt{x^2 + y^2} \). Before you can convert a symbolic expression to a MATLAB Function block, create an empty model or open an existing one:

```matlab
classdef new_system
 properties
 BlockName
 end
end
```

```matlab
open_system('my_system')
```

Create a symbolic expression and pass it to the `matlabFunctionBlock` command. Also specify the block name:

```matlab
syms x y
r = sqrt(x^2 + y^2);
matlabFunctionBlock('my_system/my_block', r)
```

If you use the name of an existing block, the `matlabFunctionBlock` command replaces the definition of an existing block with the converted symbolic expression.

You can open and edit the generated block. To open a block, double-click it.

```matlab
function r = my_block(x,y)
 r = sqrt(x.^2+y.^2);
end
```

Control the Order of Input Ports

`matlabFunctionBlock` generates input variables and the corresponding input ports in alphabetical order from a symbolic expression. To change the order of input variables, use the `vars` option:

```matlab
syms x y
```
Using Symbolic Math Toolbox Software

\[
\mu = \text{sym('mu')};
\]
\[
dydt = -x - \mu y(x^2 - 1);
\]
\[
\text{matlabFunctionBlock('my_system/vdp', dydt,...
\text{'vars'}, [y \mu x])}
\]

**Name the Output Ports**

By default, `matlabFunctionBlock` generates the names of the output ports as the word `out` followed by the output port number, for example, `out3`. The `output` option allows you to use the custom names of the output ports:

\[
syms x y \\
mu = \text{sym('mu')};
\]
\[
dydt = -x - \mu y(x^2 - 1);
\]
\[
\text{matlabFunctionBlock('my_system/vdp', dydt,...
\text{'outputs','name1'})}
\]

**Convert MuPAD Expressions**

You can convert a MuPAD expression or function to a MATLAB Function block:

\[
syms x y
\]
\[
f = \text{evalin(symengine, 'arcsin(x) + arccos(y)');
\]
\[
\text{matlabFunctionBlock('my_system/my_block', f)}
\]

The resulting block contains the same expressions written in the MATLAB language:

\[
\text{function f = my_block(x,y)}
\]
\[
\text{f = asin(x) + acos(y);}
\]

**Tip** Some MuPAD expressions cannot be correctly converted to a block. These expressions do not trigger an error message. When converting a MuPAD expression or function that is not on the MATLAB vs. MuPAD Expressions list, always check the results of conversion. To verify the results, you can run the simulation containing the resulting block.
Generate Simscape Equations

Simscape software extends the Simulink product line with tools for modeling and simulating multidomain physical systems, such as those with mechanical, hydraulic, pneumatic, thermal, and electrical components. Unlike other Simulink blocks, which represent mathematical operations or operate on signals, Simscape blocks represent physical components or relationships directly. With Simscape blocks, you build a model of a system just as you would assemble a physical system. For more information about Simscape software see “Simscape”.

You can extend the Simscape modeling environment by creating custom components. When you define a component, use the equation section of the component file to establish the mathematical relationships among a component’s variables, parameters, inputs, outputs, time, and the time derivatives of each of these entities. The Symbolic Math Toolbox and Simscape software let you perform symbolic computations and use the results of these computations in the equation section. The `simscapeEquation` function translates the results of symbolic computations to Simscape language equations.

If you work in the MuPAD Notebook app, see “Create Simscape Equations from MuPAD Expressions” on page 3-52.

Convert Algebraic and Differential Equations

Suppose, you want to generate a Simscape equation from the solution of the following ordinary differential equation. As a first step, use the `dsolve` function to solve the equation:

```matlab
syms a y(t)
Dy = diff(y);
s = dsolve(diff(y, 2) == -a^2*y, y(0) == 1, Dy(pi/a) == 0);
s = simplify(s)
```

The solution is:

```matlab
s =
cos(a*t)
```

Then, use the `simscapeEquation` function to rewrite the solution in the Simscape language:

```matlab
simscapeEquation(s)
```
simscapeEquation generates the following code:

\[
\begin{align*}
\text{ans} &= \\
\text{s} &= \cos(a\times\text{time}); \\
\end{align*}
\]

The variable \textit{time} replaces all instances of the variable \textit{t} except for derivatives with respect to \textit{t}. To use the generated equation, copy the equation and paste it to the equation section of the Simscape component file. Do not copy the automatically generated variable \texttt{ans} and the equal sign that follows it.

\textit{simscapeEquation} converts any derivative with respect to the variable \textit{t} to the Simscape notation, \texttt{X.der}, where \texttt{X} is the time-dependent variable. For example, convert the following differential equation to a Simscape equation. Also, here you explicitly specify the left and the right sides of the equation by using the syntax \texttt{simscapeEquation(LHS, RHS)}:

\begin{verbatim}
syms a x(t)
simscapeEquation(diff(x), -a^2*x)
\end{verbatim}

\[
\begin{align*}
\text{ans} &= \\
\text{x.der} &= -a^2\times x; \\
\end{align*}
\]

\textit{simscapeEquation} also translates piecewise expressions to the Simscape language. For example, the result of the following Fourier transform is a piecewise function:

\begin{verbatim}
syms v u x
assume(x, 'real')
f = exp(-x^2*abs(v))*sin(v)/v;
s = fourier(f, v, u)
\end{verbatim}

\[
\begin{align*}
\text{s} &= \\
\text{piecewise}([x \neq 0, \atan((u + 1)/x^2) - \atan((u - 1)/x^2)]) \\
\end{align*}
\]

From this symbolic piecewise equation, \textit{simscapeEquation} generates valid code for the equation section of a Simscape component file:

\begin{verbatim}
simscapeEquation(s)
\end{verbatim}

\[
\begin{align*}
\text{ans} &= \\
\text{if} (x \neq 0.0) \\
&\quad \text{s} == -\atan(1.0/x^2*(u-1.0)) + \atan(1.0/x^2*(u+1.0)); \text{else} \\
&\quad \text{s} == \text{NaN}; \\
\end{align*}
\]
Clear the assumption that $x$ is real:

```matlab
syms x clear
```

**Convert MuPAD Equations**

If you perform symbolic computations in the MuPAD Notebook app and want to convert the results to Simscape equations, use the `generate::Simscape` function in MuPAD.

**Limitations**

The equation section of a Simscape component file supports a limited number of functions. For details and the list of supported functions, see Simscape equations. If a symbolic equation contains the functions that the equation section of a Simscape component file does not support, `simscapeEquation` cannot correctly convert these equations to Simscape equations. Such expressions do not trigger an error message. The following types of expressions are prone to invalid conversion:

- Expressions with infinities
- Expressions returned by `evalin` and `feval`
MuPAD in Symbolic Math Toolbox

- “MuPAD Engines and MATLAB Workspace” on page 3-2
- “Create MuPAD Notebooks” on page 3-3
- “Open MuPAD Notebooks” on page 3-6
- “Save MuPAD Notebooks” on page 3-12
- “Evaluate MuPAD Notebooks from MATLAB” on page 3-13
- “Close MuPAD Notebooks from MATLAB” on page 3-16
- “Edit MuPAD Code in MATLAB Editor” on page 3-18
- “Notebook Files and Program Files” on page 3-20
- “Source Code of the MuPAD Library Functions” on page 3-21
- “Differences Between MATLAB and MuPAD Syntax” on page 3-22
- “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25
- “Reserved Variable and Function Names” on page 3-29
- “Call Built-In MuPAD Functions from MATLAB” on page 3-31
- “Computations in MATLAB Command Window vs. MuPAD Notebook App” on page 3-34
- “Use Your Own MuPAD Procedures” on page 3-38
- “Clear Assumptions and Reset the Symbolic Engine” on page 3-43
- “Create MATLAB Functions from MuPAD Expressions” on page 3-47
- “Create MATLAB Function Blocks from MuPAD Expressions” on page 3-50
- “Create Simscape Equations from MuPAD Expressions” on page 3-52
MuPAD Engines and MATLAB Workspace

A MuPAD engine is a separate process that runs on your computer in addition to a MATLAB process. A MuPAD engine starts when you first call a function that needs a symbolic engine, such as `syms`. Symbolic Math Toolbox functions that use the symbolic engine use standard MATLAB syntax, such as `y = int(x^2)`.

Conceptually, each MuPAD notebook has its own symbolic engine, with an associated workspace. You can have any number of MuPAD notebooks open simultaneously.

The engine workspace associated with the MATLAB workspace is generally empty, except for assumptions you make about variables. For details, see “Clear Assumptions and Reset the Symbolic Engine” on page 3-43.
Create MuPAD Notebooks

Before creating a MuPAD notebook, it is best to decide which interface you intend to use primarily for your task. The two approaches are:

- Perform your computations in the MATLAB Command Window using MuPAD notebooks as an auxiliary tool. This approach implies that you create a MuPAD notebook, and then execute it, transfer data and results, or close it from the MATLAB Command Window.
- Perform your computations and obtain the results in the MuPAD Notebook app. This approach implies that you use the MATLAB Command Window only to access MuPAD, but do not intend to copy data and results between MATLAB and MuPAD.

If you created a MuPAD notebook without creating a handle, and then realized that you need to transfer data and results between MATLAB and MuPAD, use allMuPADNotebooks to create a handle to this notebook:

```matlab
mupad
nb = allMuPADNotebooks
```

This approach does not require saving the notebook. Alternatively, you can save the notebook and then open it again, creating a handle.

If You Need Communication Between Interfaces

If you perform computations in both interfaces, use handles to notebooks. The toolbox uses this handle for communication between the MATLAB workspace and the MuPAD notebook.

To create a blank MuPAD notebook from the MATLAB Command Window, type

```matlab
nb = mupad
```

The variable `nb` is a handle to the notebook. You can use any variable name instead of `nb`.

To create several notebooks, use this syntax repeatedly, assigning a notebook handle to different variables. For example, use the variables `nb1`, `nb2`, and so on.
If You Use MATLAB to Access MuPAD

Use the Apps Tab

To create a new blank notebook:

1. On the MATLAB Toolstrip, click the Apps tab.
2. On the Apps tab, click the down arrow at the end of the Apps section.
3. Under Math, Statistics and Optimization, click the MuPAD Notebook button.

To create several MuPAD notebooks, click the MuPAD Notebook button repeatedly.

Use the mupad Command

To create a new blank notebook, type mupad in the MATLAB Command Window.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open an existing notebook or program file, and access documentation. To open this dialog box, type mupadwelcome in the MATLAB Command Window.
Create New Notebooks from MuPAD

If you already opened a notebook, you can create new notebooks and program files without switching to the MATLAB Command Window:

- To create a new notebook, select **File > New Notebook** from the main menu or use the toolbar.
- To open a new Editor window, where you can create a program file, select **File > New Editor** from the main menu or use the toolbar.
Open MuPAD Notebooks

Before opening a MuPAD notebook, it is best to decide which interface you intend to use primarily for your task. The two approaches are:

- Perform your computations in the MATLAB Command Window using MuPAD notebooks as an auxiliary tool. This approach implies that you open a MuPAD notebook, and then execute it, transfer data and results, or close it from the MATLAB Command Window. If you perform computations in both interfaces, use handles to notebooks. The toolbox uses these handles for communication between the MATLAB workspace and the MuPAD notebook.

- Perform your computations and obtain the results in MuPAD. This approach implies that you use the MATLAB Command Window only to access the MuPAD Notebook app, but do not intend to copy data and results between MATLAB and MuPAD. If you use the MATLAB Command Window only to open a notebook, and then perform all your computations in that notebook, you can skip using a handle.

Tip MuPAD notebook files open in an unevaluated state. In other words, the notebook is not synchronized with its engine when it opens. To synchronize a notebook with its engine, select Notebook > Evaluate All or use evaluateMuPADNotebook. For details, see “Evaluate MuPAD Notebooks from MATLAB” on page 3-13.

If you opened a MuPAD notebook without creating a handle, and then realized that you need to transfer data and results between MATLAB and MuPAD, use allMuPADNotebooks to create a handle to this notebook:

```matlab
mupad
nb = allMuPADNotebooks

nb = Notebook1
```

This approach does not require saving changes in the notebook. Alternatively, you can save the notebook and open it again, this time creating a handle.

If You Need Communication Between Interfaces

The following commands are also useful if you lose the handle to a notebook, in which case, you can save the notebook file and then reopen it with a new handle.
Use the mupad or openmn Command

Open an existing MuPAD notebook file and create a handle to it by using mupad or openmn in the MATLAB Command Window:

\[
\text{nb} = \text{mupad('file\_name')}
\]

\[
\text{nb1} = \text{openmn('file\_name')}
\]

Here, \textit{file\_name} must be a full path, such as H:\Documents\Notes\myNotebook.mn, unless the notebook is in the current folder.

To open a notebook and automatically jump to a particular location, create a link target at that location inside a notebook, and refer to it when opening a notebook. For information about creating link targets, see “Work with Links”. To refer to a link target when opening a notebook, enter:

\[
\text{nb} = \text{mupad('file\_name#linktarget\_name')}
\]

\[
\text{nb} = \text{openmn('file\_name#linktarget\_name')}
\]

Use the open Command

Open an existing MuPAD notebook file and create a handle to it by using the \textit{open} function in the MATLAB Command Window:

\[
\text{nb1} = \text{open('file\_name')}
\]

Here, \textit{file\_name} must be a full path, such as H:\Documents\Notes\myNotebook.mn, unless the notebook is in the current folder.

If You Use MATLAB to Access MuPAD

Double-Click the File Name

You can open an existing MuPAD notebook, program file, or graphic file (.xvc or .xvz) by double-clicking the file name. The system opens the file in the appropriate interface.

Use the mupad or openmn Command

Open an existing MuPAD notebook file by using the \textit{mupad} or \textit{openmn} function in the MATLAB Command Window:
mupad('file_name')
openmn('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myNotebook.mn, unless the notebook is in the current folder.

To open a notebook and automatically jump to a particular location, create a link target at that location inside a notebook, and refer to it when opening a notebook. For information about creating link targets, see “Work with Links”. To refer to a link target when opening a notebook, enter:

mupad('file_name#linktarget_name')
openmn('file_name#linktarget_name')

**Use the open Command**

Open an existing MuPAD notebook file by using open in the MATLAB Command Window:

open('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myNotebook.mn, unless the notebook is in the current folder.

**Use the Welcome to MuPAD Dialog Box**

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open an existing notebook or program file, and access documentation. To open this dialog box, type mupadwelcome in the MATLAB Command Window.
Open MuPAD Notebooks

If you already opened a notebook, you can start new notebooks and open existing ones without switching to the MATLAB Command Window. To open an existing notebook, select **File > Open** from the main menu or use the toolbar. Also, you can open the list of notebooks you recently worked with.

Open MuPAD Program Files and Graphics

Besides notebooks, MuPAD lets you create and use program files (.mu) and graphic files (.xvc or .xvz). Also, you can use the MuPAD Debugger to diagnose problems in your MuPAD code.

Do not use a handle when opening program files and graphic files because there is no communication between these files and the MATLAB Command Window.

Double-Click the File Name

You can open an existing MuPAD notebook, program file, or graphic file by double-clicking the file name. The system opens the file in the appropriate interface.
Use the openmu Command

Symbolic Math Toolbox provides these functions for opening MuPAD files in the interfaces with which these files are associated:

• openmu opens a program file with the extension .mu in the MATLAB Editor.
• openxvc opens an XVC graphic file in the MuPAD Graphics window.
• openxvz opens an XVZ graphic file in the MuPAD Graphics window.

For example, open an existing MuPAD program file by using the openmu function in the MATLAB Command Window:

openmu('H:\Documents\Notes\myProcedure.mu')

You must specify a full path unless the file is in the current folder.

Use the open Command

Open an existing MuPAD file by using open in the MATLAB Command Window:

open('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myProcedure.mu, unless the notebook is in the current folder.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open an existing notebook or program file, and access documentation. To open this dialog box, type mupadwelcome in the MATLAB Command Window.
Open Program Files and Graphics from MuPAD

If you already opened a notebook, you can create new notebooks and program files and open existing ones without switching to the MATLAB Command Window. To open an existing file, select **File > Open** from the main menu or use the toolbar.

You also can open the Debugger window from within a MuPAD notebook. For details, see “Open the Debugger”.

**Note:** You cannot access the MuPAD Debugger from the MATLAB Command Window.
Save MuPAD Notebooks

To save changes in a notebook:

1. Switch to the notebook. (You cannot save changes in a MuPAD notebook from the MATLAB Command Window.)

2. Select File > Save or File > Save As from the main menu or use the toolbar.

If you want to save and close a notebook, you can use the `close` function in the MATLAB Command Window. If the notebook has been modified, then MuPAD brings up the dialog box asking if you want to save changes. Click Yes to save the modified notebook.

**Note:** You can lose data when saving a MuPAD notebook. A notebook saves its inputs and outputs, but not the state of its engine. In particular, MuPAD does not save variables copied into a notebook using `setVar(nb,...).`
Evaluate **MuPAD Notebooks from MATLAB**

When you open a saved MuPAD notebook file, the notebook displays the results (outputs), but the engine does not “remember” them. For example, suppose you saved the notebook `myFile1.mn` in your current folder and then opened it:

```matlab
nb = mupad('myFile1.mn');
```

Suppose that `myFile1.mn` performs these computations.

```plaintext
\[
\begin{align*}
 z := & \sin(x) \\
 \sin(x) \\
 y := & z/(1 + z^2) \\
 \frac{\sin(x)}{\sin(x)^2 + 1} \\
 w := & \text{simplify}(y/(1 - y)) \\
 \frac{\sin(x)}{\sin(x)^2 - \sin(x) + 1} \\
\end{align*}
\]
```

Open that file and try to use the value `w` without synchronizing the notebook with its engine. The variable `w` currently has no assigned value.

```plaintext
\[
\begin{align*}
 z := & \sin(x) \\
 \sin(x) \\
 y := & z/(1 + z^2) \\
 \frac{\sin(x)}{\sin(x)^2 + 1} \\
 w := & \text{simplify}(y/(1 - y)) \\
 \frac{\sin(x)}{\sin(x)^2 - \sin(x) + 1} \\
 w + 1 \\
 w + 1
\end{align*}
\]
To synchronize a MuPAD notebook with its engine, you must evaluate the notebook as follows:

1. Open the notebooks that you want to evaluate. Symbolic Math Toolbox cannot evaluate MuPAD notebooks without opening them.
2. Use `evaluateMuPADNotebook`. Alternatively, you can evaluate the notebook by selecting `Notebook > Evaluate All` from the main menu of the MuPAD notebook.
3. Perform your computations using data and results obtained from MuPAD notebooks.
4. Close the notebooks. This step is optional.

For example, evaluate the notebook `myFile1.mn` located in your current folder:

```matlab
evaluateMuPADNotebook(nb)
```

```
z := sin(x)

y := z/(1 + z^2)
    = sin(x)/sin(x)^2 + 1

w := simplify(y/(1 - y))
    = sin(x)/(sin(x)^2 - sin(x) + 1)

w + 1
    = sin(x)/(sin(x)^2 - sin(x) + 1) + 1
```

Now, you can use the data and results from that notebook in your computations. For example, copy the variables `y` and `w` to the MATLAB workspace:

```matlab
y = getVar(nb,'y')
w = getVar(nb,'w')

y =
sin(x)/(sin(x)^2 + 1)

w =
```

\[
\frac{\sin(x)}{\sin(x)^2 - \sin(x) + 1}
\]

You can evaluate several notebooks in a single call by passing a vector of notebook handles to `evaluateMuPADNotebook`:

```matlab
nb1 = mupad('myFile1.mn');
nb2 = mupad('myFile2.mn');
evaluateMuPADNotebook([nb1,nb2])
```

Also, you can use `allMuPADNotebooks` that returns handles to all currently open notebooks. For example, if you want to evaluate the notebooks with the handles `nb1` and `nb2`, and no other notebooks are currently open, then enter:

```matlab
evaluateMuPADNotebook(allMuPADNotebooks)
```

If any calculation in a notebook throws an error, then `evaluateMuPADNotebook` stops. The error messages appear in the MATLAB Command Window and in the MuPAD notebook. When you evaluate several notebooks and one of them throws an error, `evaluateMuPADNotebook` does not proceed to the next notebook. It stops and displays an error message immediately. If you want to skip calculations that cause errors and evaluate all input regions that run without errors, use `'IgnoreErrors',true`:

```matlab
evaluateMuPADNotebook(allMuPADNotebooks,'IgnoreErrors',true)
```
Close MuPAD Notebooks from MATLAB

To close notebooks from the MATLAB Command Window, use the `close` function and specify the handle to that notebook. For example, create the notebook with the handle `nb`:

```matlab
nb = mupad;
```

Now, close the notebook:

```matlab
close(nb)
```

If you do not have a handle to the notebook (for example, if you created it without specifying a handle or accidentally deleted the handle later), use `allMuPADNotebooks` to return handles to all currently open notebooks. This function returns a vector of handles. For example, create three notebooks without handles:

```matlab
mupad
mupad
mupad
```

Use `allMuPADNotebooks` to get a vector of handles to these notebooks:

```matlab
nbhandles = allMuPADNotebooks
```

```matlab
nbhandles =
Notebook1
Notebook2
Notebook3
```

Close the first notebook (`Notebook1`):

```matlab
close(nbhandles(1))
```

Close all notebooks:

```matlab
close(allMuPADNotebooks)
```

If you modify a notebook and then try to close it, MuPAD brings up the dialog box asking if you want to save changes. To suppress this dialog box, call `close` with the `'force'` flag. You might want to use this flag if your task requires opening many notebooks, evaluating them, and then closing them. For example, suppose that you want to evaluate the notebooks `myFile1.mn`, `myFile2.mn`, ..., `myFile10.mn` located in your current folder. First, open the notebooks. If you do not have any other notebooks open, you can
skip specifying the handles and later use allMuPADNotebooks. Otherwise, do not forget to specify the handles.

```matlab
mupad('myFile1.mn')
mupad('myFile2.mn')
...
mupad('myFile10.mn')
```

Evaluate all notebooks:

```matlab
evaluateMuPADNotebook(allMuPADNotebooks)
```

When you evaluate MuPAD notebooks, you also modify them. Therefore, when you try to close them, the dialog box asking you to save changes will appear for each notebook. To suppress the dialog box and discard changes, use the 'force' flag:

```matlab
close(allMuPADNotebooks,'force')
```
Edit MuPAD Code in MATLAB Editor

The default interface for editing MuPAD code is the MATLAB Editor. Alternatively, you can create and edit your code in any text editor. The MATLAB Editor automatically formats the code and, therefore, helps you avoid errors, or at least reduce their number.

Note: The MATLAB Editor cannot evaluate or debug MuPAD code.

To open an existing MuPAD file with the extension `.mu` in the MATLAB Editor, double-click the file name or select **Open** and navigate to the file.

After editing the code, save the file. Note that the extension `.mu` allows the Editor to recognize and open MuPAD program files. Thus, if you intend to open the files in the MATLAB Editor, save them with the extension `.mu`. Otherwise, you can specify other extensions suitable for text files, for example, `.txt` or `.tst`.
Comments in MuPAD Procedures

Enter a comment in a .mu file by entering the // characters. All text following the // on the same line is ignored. The // characters do not affect text on succeeding lines. To create a multi-line comment, start with the /* characters and end the comment with the */ characters. All text between these characters is ignored. You can nest comments using /* and */.
Notebook Files and Program Files

The two main types of files in MuPAD are:

- Notebook files, or notebooks
- Program files

A **notebook file** has the extension `.mn` and lets you store the result of the work performed in the MuPAD Notebook app. A notebook file can contain text, graphics, and any MuPAD commands and their outputs. A notebook file can also contain procedures and functions.

By default, a notebook file opens in the MuPAD Notebook app. Creating a new notebook or opening an existing one does not automatically start the MuPAD engine. This means that although you can see the results of computations as they were saved, MuPAD does not remember evaluating them. (The “MuPAD Workspace” is empty.) You can evaluate any or all commands after opening a notebook.

A **program file** is a text file that contains any code snippet that you want to store separately from other computations. Saving a code snippet as a program file can be very helpful when you want to use the code in several notebooks. Typically, a program file contains a single procedure, but it also can contain one or more procedures or functions, assignments, statements, tests, or any other valid MuPAD code.

Tip If you use a program file to store a procedure, MuPAD does not require the name of that program file to match the name of a procedure.

The most common approach is to write a procedure and save it as a program file with the extension `.mu`. This extension allows the MATLAB Editor to recognize and open the file later. Nevertheless, a program file is just a text file. You can save a program file with any extension that you use for regular text files.

To evaluate the commands from a program file, you must execute a program file in a notebook. For details about executing program files, see “Read MuPAD Procedures” on page 3-39.
Source Code of the MuPAD Library Functions

You can display the source code of the MuPAD built-in library functions. If you work in the MuPAD Notebook app, enter `expose(name)`, where `name` is the library function name. The MuPAD Notebook app displays the code as plain text with the original line breaks and indentations.

You can also display the code of a MuPAD library function in the MATLAB Command Window. To do this, use the `evalin` or `feval` function to call the MuPAD `expose` function:

```matlab
sprintf(char(feval(symengine, 'expose', 'numlib::tau')))
```

```matlab
ans =
proc(a)
    name numlib::tau;
begin
    if args(0) <> 1 then
        error(message("symbolic:numlib:IncorrectNumberOfArguments"))
    else
        if (~testtype(a, Type::Numeric)) then
            return(procname(args()))
        else
            if domtype(a) <> DOM_INT then
                error(message("symbolic:numlib:ArgumentInteger"))
            end_if
        end_if
    end_if;
numlib::numdivisors(a)
end_proc
```

MuPAD also includes kernel functions written in C++. You cannot access the source code of these functions.
Differences Between MATLAB and MuPAD Syntax

There are several differences between MATLAB and MuPAD syntax. Be aware of which interface you are using in order to use the correct syntax:

- Use MATLAB syntax in the MATLAB workspace, except for the functions `evalin(symengine,...)` and `feval(symengine,...)`, which use MuPAD syntax.
- Use MuPAD syntax in MuPAD notebooks.

You must define MATLAB variables before using them. However, every expression entered in a MuPAD notebook is assumed to be a combination of symbolic variables unless otherwise defined. This means that you must be especially careful when working in MuPAD notebooks, since fewer of your typos cause syntax errors.

This table lists common tasks, meaning commands or functions, and how they differ in MATLAB and MuPAD syntax.

Common Tasks in MATLAB and MuPAD Syntax

<table>
<thead>
<tr>
<th>Task</th>
<th>MATLAB Syntax</th>
<th>MuPAD Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment</td>
<td>=</td>
<td>:=</td>
</tr>
<tr>
<td>List variables</td>
<td>whos</td>
<td>anames(All, User)</td>
</tr>
<tr>
<td>Numerical value of expression</td>
<td>double(expression)</td>
<td>float(expression)</td>
</tr>
<tr>
<td>Suppress output</td>
<td>;</td>
<td>:</td>
</tr>
<tr>
<td>Enter matrix</td>
<td>[x11,x12,x13; x21,x22,x23]</td>
<td>matrix([[x11,x12,x13], [x21,x22,x23]])</td>
</tr>
<tr>
<td>{a,b,c}</td>
<td>cell array</td>
<td>set</td>
</tr>
<tr>
<td>Auto-completion</td>
<td>Tab</td>
<td>Ctrl+space bar</td>
</tr>
<tr>
<td>Equality, inequality</td>
<td>==, ~=</td>
<td>=, <></td>
</tr>
</tbody>
</table>

The next table lists differences between MATLAB expressions and MuPAD expressions.

MATLAB vs. MuPAD Expressions

<table>
<thead>
<tr>
<th>MATLAB Expression</th>
<th>MuPAD Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inf</td>
<td>infinity</td>
</tr>
<tr>
<td>MATLAB Expression</td>
<td>MuPAD Expression</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>pi</td>
<td>PI</td>
</tr>
<tr>
<td>i</td>
<td>I</td>
</tr>
<tr>
<td>NaN</td>
<td>undefined</td>
</tr>
<tr>
<td>fix</td>
<td>trunc</td>
</tr>
<tr>
<td>asin</td>
<td>arcsin</td>
</tr>
<tr>
<td>acos</td>
<td>arccos</td>
</tr>
<tr>
<td>atan</td>
<td>arctan</td>
</tr>
<tr>
<td>asinh</td>
<td>arcsinh</td>
</tr>
<tr>
<td>acosh</td>
<td>arccosh</td>
</tr>
<tr>
<td>atanh</td>
<td>arctanh</td>
</tr>
<tr>
<td>acsc</td>
<td>arccsc</td>
</tr>
<tr>
<td>asec</td>
<td>arcsec</td>
</tr>
<tr>
<td>acot</td>
<td>arccot</td>
</tr>
<tr>
<td>acsch</td>
<td>arccsch</td>
</tr>
<tr>
<td>asech</td>
<td>arccsech</td>
</tr>
<tr>
<td>acoth</td>
<td>arccoth</td>
</tr>
<tr>
<td>besselj</td>
<td>besselJ</td>
</tr>
<tr>
<td>bessely</td>
<td>besselY</td>
</tr>
<tr>
<td>besseli</td>
<td>besselI</td>
</tr>
<tr>
<td>besselk</td>
<td>besselK</td>
</tr>
<tr>
<td>lambertw</td>
<td>lambertW</td>
</tr>
<tr>
<td>sinint</td>
<td>Si</td>
</tr>
<tr>
<td>cosint</td>
<td>Ci</td>
</tr>
<tr>
<td>eulergamma</td>
<td>EULER</td>
</tr>
<tr>
<td>conj</td>
<td>conjugate</td>
</tr>
<tr>
<td>catalan</td>
<td>CATALAN</td>
</tr>
</tbody>
</table>

The MuPAD definition of exponential integral differs from the Symbolic Math Toolbox counterpart.
<table>
<thead>
<tr>
<th>Symbolic Math Toolbox Definition</th>
<th>MuPAD Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential integral</td>
<td></td>
</tr>
<tr>
<td>(\text{expint}(x) = -\text{Ei}(-x) = \int_{x}^{\infty} \frac{\exp(-t)}{t} , dt \text{ for } x > 0 = \text{Ei}(1, x))</td>
<td>(\text{Ei}(x) = \int_{-\infty}^{x} \frac{e^t}{t} , dt \text{ for } x < 0.)</td>
</tr>
<tr>
<td></td>
<td>(\text{Ei}(n, x) = \int_{1}^{\infty} \frac{\exp(-xt)}{t^n} , dt.)</td>
</tr>
<tr>
<td></td>
<td>The definitions of (\text{Ei}) extend to the complex plane, with a branch cut along the negative real axis.</td>
</tr>
</tbody>
</table>
Copy Variables and Expressions Between MATLAB and MuPAD

You can copy a variable from a MuPAD notebook to a variable in the MATLAB workspace using a MATLAB command. Similarly, you can copy a variable or symbolic expression in the MATLAB workspace to a variable in a MuPAD notebook using a MATLAB command. To do either assignment, you need to know the handle to the MuPAD notebook you want to address.

The only way to assign variables between a MuPAD notebook and the MATLAB workspace is to open the notebook using the following syntax:

```matlab
nb = mupad;
```

You can use any variable name for the handle `nb`. To open an existing notebook file, use the following syntax:

```matlab
nb = mupad('file_name');
```

Here `file_name` must be a full path unless the notebook is in the current folder. The handle `nb` is used only for communication between the MATLAB workspace and the MuPAD notebook.

- To copy a symbolic variable in the MATLAB workspace to a variable in the MuPAD notebook engine with the same name, enter this command in the MATLAB Command Window:

  ```matlab
  setVar(notebook_handle, 'MuPADvar', MATLABvar)
  ```

 For example, if `nb` is the handle to the notebook and `z` is the variable, enter:

  ```matlab
  setVar(nb, 'z', z)
  ```

 There is no indication in the MuPAD notebook that variable `z` exists. To check that it exists, enter the command `anames(All, User)` in the notebook.

- To assign a symbolic expression to a variable in a MuPAD notebook, enter:

  ```matlab
  setVar(notebook_handle, 'variable', expression)
  ```

 at the MATLAB command line. For example, if `nb` is the handle to the notebook, `exp(x) - sin(x)` is the expression, and `z` is the variable, enter:

  ```matlab
  syms x
  ```
setVar(nb, 'z', exp(x) - sin(x))

For this type of assignment, \(x \) must be a symbolic variable in the MATLAB workspace.

Again, there is no indication in the MuPAD notebook that variable \(z \) exists. Check that it exists by entering this command in the notebook:

\[\text{anames(All, User)} \]

To copy a symbolic variable in a MuPAD notebook to a variable in the MATLAB workspace, enter in the MATLAB Command Window:

\[\text{MATLABvar} = \text{getVar(notebook_handle, 'variable');} \]

For example, if \(nb \) is the handle to the notebook, \(z \) is the variable in the MuPAD notebook, and \(u \) is the variable in the MATLAB workspace, enter:

\[u = \text{getVar(nb, 'z')}; \]

Communication between the MATLAB workspace and the MuPAD notebook occurs in the notebook's engine. Therefore, variable \(z \) must be synchronized into the notebook's MuPAD engine before using \(\text{getVar} \), and not merely displayed in the notebook. If you try to use \(\text{getVar} \) to copy an undefined variable \(z \) in the MuPAD engine, the resulting MATLAB variable \(u \) is empty. For details, see “Evaluate MuPAD Notebooks from MATLAB” on page 3-13.

Tip Do all copying and assignments from the MATLAB workspace, not from a MuPAD notebook.
Copy and Paste Using the System Clipboard

You can also copy and paste between notebooks and the MATLAB workspace using standard editing commands. If you copy a result in a MuPAD notebook to the system clipboard, you might get the text associated with the expression, or a picture, depending on your operating system and application support.

For example, consider this MuPAD expression:

\[
\begin{align*}
y & := \frac{e^x}{x^2 + 1} \\
& = \frac{\exp(x)}{(1 + x^2)}
\end{align*}
\]

Select the output with the mouse and copy it to the clipboard:

\[
\begin{align*}
y & := \frac{e^x}{x^2 + 1} \\
& = \frac{\exp(x)}{(1 + x^2)}
\end{align*}
\]

Paste this into the MATLAB workspace. The result is text:

\[
\exp(x) / (x^2 + 1)
\]
If you paste it into Microsoft® WordPad on a Windows® system, the result is a picture.
Reserved Variable and Function Names

Both MATLAB and MuPAD have their own reserved keywords, such as function names, special values, and names of mathematical constants. Using reserved keywords as variable or function names can result in errors. If a variable name or a function name is a reserved keyword in one or both interfaces, you can get errors or incorrect results. If you work in one interface and a name is a reserved keyword in another interface, the error and warning messages are produced by the interface you work in. These messages can specify the cause of the problem incorrectly.

Tip The best approach is to avoid using reserved keywords as variable or function names, especially if you use both interfaces.

In MuPAD, function names are protected. Normally, the system does not let you redefine a standard function or use its name as a variable. (To be able to modify a standard MuPAD function you must first remove its protection.) Even when you work in the MATLAB Command Window, the MuPAD engine handles symbolic computations. Therefore, MuPAD function names are reserved keywords in this case. Using a MuPAD function name while performing symbolic computations in the MATLAB Command Window can lead to an error:

```
solve('D - 10')
```

The message does not indicate the real cause of the problem:

```
Error using solve (line 263)
Specify a variable for which you solve.
```

To fix this issue, use the `syms` function to declare `D` as a symbolic variable. Then call the symbolic solver without using quotes:

```
syms D
solve(D - 10)
```

In this case, the toolbox replaces `D` with some other variable name before passing the expression to the MuPAD engine:

```
ans =
10
```
To list all MuPAD function names, enter this command in the MATLAB Command Window:

```matlab
evalin(symengine, 'anames()')
```

If you work in a MuPAD notebook, enter:

```matlab
anames()
```
Call Built-In MuPAD Functions from MATLAB

To access built-in MuPAD functions at the MATLAB command line, use `evalin(symengine,...)` or `feval(symengine,...)`. These functions are designed to work like the existing MATLAB `evalin` and `feval` functions.

`evalin` and `feval` do not open a MuPAD notebook, and therefore, you cannot use these functions to access MuPAD graphics capabilities.

evalin

For `evalin`, the syntax is

\[
y = \text{evalin}(\text{symengine},'\text{MuPAD_Expression}');
\]

Use `evalin` when you want to perform computations in the MuPAD language, while working in the MATLAB workspace. For example, to make a three-element symbolic vector of the \(\sin(kx)\) function, \(k = 1\) to \(3\), enter:

\[
y = \text{evalin}(\text{symengine},'[\sin(k*x) \; k = 1..3]')
\]

\[
y = [\sin(x), \sin(2*x), \sin(3*x)]
\]

feval

For evaluating a MuPAD function, you can also use the `feval` function. `feval` has a different syntax than `evalin`, so it can be simpler to use. The syntax is:

\[
y = \text{feval}(\text{symengine},'\text{MuPAD_Function}',x1,...,xn);
\]

`MuPAD_Function` represents the name of a MuPAD function. The arguments \(x1,...,xn\) must be symbolic variables, numbers, or strings. For example, to find the tenth element in the Fibonacci sequence, enter:

\[
z = \text{feval}(\text{symengine},'\text{numlib::fibonacci}',10)
\]

\[
z = 55
\]

The next example compares the use of a symbolic solution of an equation to the solution returned by the MuPAD numeric `fsolve` function near the point \(x = 3\). The symbolic solver returns these results:
\begin{verbatim}
 syms x
 f = sin(x^2);
 solve(f)

 ans =
 0

 The numeric solver \texttt{fsolve} returns this result:

 \texttt{feval(symengine, 'numeric::fsolve', f, 'x=3')}

 ans =
 x == 3.0699801238394654654386548746678

 As you might expect, the answer is the numerical value of $\sqrt{3\pi}$. The setting of MATLAB \texttt{format} does not affect the display; it is the full returned value from the MuPAD \texttt{'numeric::fsolve'} function.

 \textbf{evalin vs. feval}

 The \texttt{evalin(symengine,...)} function causes the MuPAD engine to evaluate a string. Since the MuPAD engine workspace is generally empty, expressions returned by \texttt{evalin(symengine,...)} are not simplified or evaluated according to their definitions in the MATLAB workspace. For example:

 \begin{verbatim}
 syms x
 y = x^2;
 evalin(symengine, 'cos(y)')
 \end{verbatim}

 \texttt{ans =}
 \texttt{cos(y)}

 Variable \texttt{y} is not expressed in terms of \texttt{x} because \texttt{y} is unknown to the MuPAD engine.

 In contrast, \texttt{feval(symengine,...)} can pass symbolic variables that exist in the MATLAB workspace, and these variables are evaluated before being processed in the MuPAD engine. For example:

 \begin{verbatim}
 syms x
 y = x^2;
 feval(symengine,'cos',y)
 \end{verbatim}

 \texttt{ans =}
\end{verbatim}
cos(x^2)

Floating-Point Arguments of evalin and feval

By default, MuPAD performs all computations in an exact form. When you call the `evalin` or `feval` function with floating-point numbers as arguments, the toolbox converts these arguments to rational numbers before passing them to MuPAD. For example, when you calculate the incomplete gamma function, the result is the following symbolic expression:

\[y = \text{feval}(\text{symengine}, \text{'igamma'}, 0.1, 2.5) \]

\[y = \text{igamma}(1/10, 5/2) \]

To approximate the result numerically with double precision, use the `double` function:

```matlab
format long
double(y)
```

\[\text{ans} = 0.028005841168289 \]

Alternatively, use quotes to prevent the conversion of floating-point arguments to rational numbers. (The toolbox treats arguments enclosed in quotes as strings.) When MuPAD performs arithmetic operations on numbers involving at least one floating-point number, it automatically switches to numeric computations and returns a floating-point result:

```matlab
feval(symengine, 'igamma', '0.1', 2.5)
```

\[\text{ans} = 0.028005841168289177028337498391181 \]

For further computations, set the format for displaying outputs back to `short`:

```matlab
format short
```
Computations in MATLAB Command Window vs. MuPAD Notebook App

When computing with Symbolic Math Toolbox, you can choose to work in the MATLAB Command Window or in the MuPAD Notebook app. The MuPAD engine that performs all symbolic computations is the same for both interfaces. The choice of the interface mostly depends on your preferences.

Working in the MATLAB Command Window lets you perform all symbolic computations using the familiar MATLAB language. The toolbox contains hundreds of MATLAB symbolic functions for common tasks, such as differentiation, integration, simplification, transforms, and equation solving. If your task requires a few specialized symbolic functions not available directly from this interface, you can use `evalin` or `feval` to call MuPAD functions. See “Call Built-In MuPAD Functions from MATLAB” on page 3-31.

Working in the MATLAB Command Window is recommended if you use other toolboxes or MATLAB as a primary tool for your current task and only want to embed a few symbolic computations in your code.

Working in the MuPAD Notebook app requires you to use the MuPAD language, which is optimized for symbolic computations. In addition to solving common mathematical problems, MuPAD functions cover specialized areas, such as number theory and combinatorics. Also, for some computations the performance is better in the MuPAD Notebook app than in the MATLAB Command Window. The reason is that the engine returns the results in the MuPAD language. To display them in the MATLAB Command Window, the toolbox translates the results to the MATLAB language.

Working in the MuPAD Notebook app is recommended when your task mainly consists of symbolic computations. It is also recommended if you want to document your work and results, for example, embed graphics, animations, and descriptive text with your calculations. Symbolic results computed in the MuPAD Notebook app can be accessed from the MATLAB Command Window, which helps you integrate symbolic results into larger MATLAB applications.

Learning the MuPAD language and using the MuPAD Notebook app for your symbolic computations provides the following benefits.

Results Displayed in Typeset Math

By default, the MuPAD Notebook app displays results in typeset math making them look very similar to what you see in mathematical books. In addition, the MuPAD Notebook app

- Uses standard mathematical notations in output expressions.
- Uses abbreviations to make a long output expression with common subexpressions shorter and easier to read. You can disable abbreviations.
- Wraps long output expressions, including long numbers, fractions and matrices, to make them fit the page. If you resize the notebook window, MuPAD automatically adjusts outputs. You can disable wrapping of output expressions.

Alternatively, you can display pretty-printed outputs similar to those that you get in the MATLAB Command Window when you use `pretty`. You can also display outputs as plain text. For details, see “Use Different Output Modes”.

In a MuPAD notebook, you can copy or move output expressions, including expressions in typeset math, to any input or text region within the notebook, or to another notebook. If you copy or move an output expression to an input region, the expression appears as valid MuPAD input.

Graphics and Animations

The MuPAD Notebook app provides very extensive graphic capabilities to help you visualize your problem and display results. Here you can create a wide variety of plots, including:

- 2-D and 3-D plots in Cartesian, polar, and spherical coordinates
- Plots of continuous and piecewise functions and functions with singularities
- Plots of discrete data sets
- Surfaces and volumes by using predefined functions
- Turtle graphics and Lindenmayer systems
- Animated 2-D and 3-D plots

Graphics in the MuPAD Notebook app is interactive. You can explore and edit plots, for example:
• Change colors, fonts, legends, axes appearance, grid lines, tick marks, line, and marker styles.
• Zoom and rotate plots without reevaluating them.
• Display coordinates of any point on the plot.

After you create and customize a plot, you can export it to various vector and bitmap file formats, including EPS, SVG, PDF, PNG, GIF, BMP, TIFF, and JPEG. The set of the file formats available for exporting graphics from a MuPAD notebook can be limited by your operating system.

You can export animations as AVI files (on Windows systems), as animated GIF files, or as sequences of static images.

More Functionality in Specialized Mathematical Areas

While both MATLAB and MuPAD interfaces provide functions for performing common mathematical tasks, MuPAD also provides functions that cover many specialized areas. For example, MuPAD libraries support computations in the following areas:

• Combinatorics
• Graph theory
• Gröbner bases
• Linear optimization
• Polynomial algebra
• Number theory
• Statistics

MuPAD libraries also provide large collections of functions for working with ordinary differential equations, integral and discrete transforms, linear algebra, and more.

More Options for Common Symbolic Functions

Most functions for performing common mathematical computations are available in both MATLAB and MuPAD interfaces. For example, you can solve equations and systems of equations using `solve`, simplify expressions using `simplify`, compute integrals using `int`, and compute limits using `limit`. Note that although the function names are the same, the syntax of the function calls depends on the interface that you use.
Results of symbolic computations can be very long and complicated, especially because the toolbox assumes all values to be complex by default. For many symbolic functions you can use additional parameters and options to help you limit the number and complexity and also to control the form of returned results. For example, \texttt{solve} accepts the \texttt{Real} option that lets you restrict all symbolic parameters of an equation to real numbers. It also accepts the \texttt{VectorFormat} option that you can use to get solutions of a system as a set of vectors.

Typically, the functions available in MuPAD accept more options than the analogous functions in the MATLAB Command Window. For example, in MuPAD you can use the \texttt{VectorFormat} option. This option is not directly available for the \texttt{solve} function called in the MATLAB Command Window.

Possibility to Expand Existing Functionality

The MuPAD programming language supports multiple programming styles, including imperative, functional, and object-oriented programming. The system includes a few basic functions written in C++, but the majority of the MuPAD built-in functionality is implemented as library functions written in the MuPAD language. You can extend the built-in functionality by writing custom symbolic functions and libraries, defining new function environments, data types, and operations on them in the MuPAD language. MuPAD implements data types as domains (classes). Domains with similar mathematical structure typically belong to a category. Domains and categories allow you to use the concepts of inheritance, overloading methods and operators. The language also uses axioms to state properties of domains and categories.

“Object-Oriented Programming” contains information to get you started with object-oriented programming in MuPAD.
Use Your Own MuPAD Procedures

Write MuPAD Procedures

A MuPAD procedure is a text file that you can write in any text editor. The recommended practice is to “Edit MuPAD Code in MATLAB Editor” on page 3-18.

To define a procedure, use the proc function. Enclose the code in the begin and end_proc functions:

myProc:= proc(n)
begin
 if n = 1 or n = 0 then
 1
 else
 n * myProc(n - 1)
 end_if;
end_proc:

By default, a MuPAD procedure returns the result of the last executed command. You can force a procedure to return another result by using return. In both cases, a procedure returns only one result. To get multiple results from a procedure, combine them into a list or other data structure, or use the print function.

• If you just want to display the results, and do not need to use them in further computations, use the print function. With print, your procedure still returns one result, but prints intermediate results on screen. For example, this procedure prints the value of its argument in each call:

myProcPrint:= proc(n)
begin
 print(n);
 if n = 0 or n = 1 then
 return(1);
 end_if;
 n * myProcPrint(n - 1);
end_proc:

• If you want to use multiple results of a procedure, use ordered data structures, such as lists or matrices as return values. In this case, the result of the last executed command is technically one object, but it can contain more than one value. For example, this procedure returns the list of two entries:
myProcSort := proc(a, b)
begin
 if a < b then
 [a, b]
 else
 [b, a]
 end_if;
end_proc:

Avoid using unordered data structures, such as sequences and sets, to return multiple results of a procedure. The order of the entries in these structures can change unpredictably.

When you save the procedure, it is recommended to use the extension .mu. For details, see “Notebook Files and Program Files” on page 3-20. The name of the file can differ from the name of the procedure. Also, you can save multiple procedures in one file.

Steps to Take Before Calling a Procedure

To be able to call a procedure, you must first execute the code defining that procedure, in a notebook. If you write a procedure in the same notebook, simply evaluate the input region that contains the procedure. If you write a procedure in a separate file, you must read the file into a notebook. Reading a file means finding it and executing the commands inside it.

Read MuPAD Procedures

If you work in the MuPAD Notebook app and create a separate program file that contains a procedure, use one of the following methods to execute the procedure in a notebook. The first approach is to select Notebook > Read Commands from the main menu.

Alternatively, you can use the read function. The function call read(filename) searches for the program file in this order:

1. Folders specified by the environment variable READPATH
2. filename regarded as an absolute path
3. Current folder (depends on the operating system)

If you want to call the procedure from the MATLAB Command Window, you still need to execute that procedure before calling it. See “Call Your Own MuPAD Procedures” on page 3-40.
Use Startup Commands and Scripts

Alternatively, you can add a MuPAD procedure to startup commands of a particular notebook. This method lets you execute the procedure every time you start a notebook engine. Startup commands are executed silently, without any visible outputs in the notebook. You can copy the procedure to the dialog box that specifies startup commands or attach the procedure as a startup script. For information, see “Hide Code Lines”.

Call Your Own MuPAD Procedures

You can extend the functionality available in the toolbox by writing your own procedures in the MuPAD language. This section explains how to call such procedures at the MATLAB Command Window.

Suppose you wrote the myProc procedure that computes the factorial of a nonnegative integer.

```
1  myProc := proc(n)
2      begin
3          if n = 1 or n = 0 then
4              1
5          else
6              n*myProc(n - 1)
7          end_if;
8      end_proc:
```

Save the procedure as a file with the extension .mu. For example, save the procedure as myProcedure.mu in the folder C:/MuPAD.
Return to the MATLAB Command Window. Before calling the procedure at the MATLAB command line, enter:

```matlab
read(symengine, 'C:/MuPAD/myProcedure.mu')
```

The `read` command reads and executes the `myProcedure.mu` file in MuPAD. After that, you can call the `myProc` procedure with any valid parameter. For example, compute the factorial of 15:

```matlab
feval(symengine, 'myProc', 15)
```

```plaintext
ans =
1307674368000
```

If your MuPAD procedure accepts string arguments, enclose these arguments in two sets of quotes: double quotes inside single quotes. Single quotes suppress evaluation of the argument before passing it to the MuPAD procedure, and double quotes let MuPAD recognize that the argument is a string. For example, this MuPAD procedure converts a string to lowercase and checks if reverting that string changes it.

```plaintext
reverted := proc(s:DOM_STRING)
    begin
        s := stringlib::lower(s);
        if s = revert(s) then
            1
        else
            0
        end_if
    end_proc:
```
In the MATLAB Command Window, use the `read` command to read and execute `reverted.mu`.

```matlab
read(symengine, 'C:/MuPAD/reverted.mu')
```

Now, use `feval` to call the procedure `reverted`. To pass a string argument to the procedure, use double quotes inside single quotes.

```matlab
feval(symengine, 'reverted', '"Abccba"')
```

```matlab
ans =
1
```
Clear Assumptions and Reset the Symbolic Engine

The symbolic engine workspace associated with the MATLAB workspace is usually empty. The MATLAB workspace tracks the values of symbolic variables, and passes them to the symbolic engine for evaluation as necessary. However, the symbolic engine workspace contains all assumptions you make about symbolic variables, such as whether a variable is real, positive, integer, greater or less than some value, and so on. These assumptions can affect solutions to equations, simplifications, and transformations, as explained in “Effects of Assumptions on Computations” on page 3-45.

Note: These commands

```matlab
syms x
x = sym('x');
clear x
```

clear any existing value of `x` in the MATLAB workspace, but do not clear assumptions about `x` in the symbolic engine workspace.

If you make an assumption about the nature of a variable, for example, using the commands

```matlab
syms x
assume(x,'real')
```

or

```matlab
syms x
assume(x > 0)
```

then clearing the variable `x` from the MATLAB workspace does not clear the assumption from the symbolic engine workspace. To clear the assumption, enter the command

```matlab
assume(x,'clear')
```

For details, see “Check Assumptions Set On Variables” on page 3-44 and “Effects of Assumptions on Computations” on page 3-45.

If you reset the symbolic engine by entering the command

```matlab
reset(symengine)
```
MATLAB no longer recognizes any symbolic variables that exist in the MATLAB workspace. Clear the variables with the `clear` command, or renew them with the `syms` or `sym` command.

This example shows how the MATLAB workspace and the symbolic engine workspace respond to a sequence of commands.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>MATLAB Workspace</th>
<th>MuPAD Engine Workspace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>syms x positive</code> or <code>syms x; assume(x > 0)</code></td>
<td>x</td>
<td>x > 0</td>
</tr>
<tr>
<td>2</td>
<td><code>clear x</code></td>
<td>empty</td>
<td>x > 0</td>
</tr>
<tr>
<td>3</td>
<td><code>syms x</code></td>
<td>x</td>
<td>x > 0</td>
</tr>
<tr>
<td>4</td>
<td><code>assume(x,'clear')</code></td>
<td>x</td>
<td>empty</td>
</tr>
</tbody>
</table>

Check Assumptions Set On Variables

To check whether a variable, say x, has any assumptions in the symbolic engine workspace associated with the MATLAB workspace, use the `assumptions` function in the MATLAB Command Window:

```matlab
assumptions(x)
```

If the function returns an empty symbolic object, there are no additional assumptions on the variable. (The default assumption is that x can be any complex number.) Otherwise, there are additional assumptions on the value of that variable.

For example, while declaring the symbolic variable x make an assumption that the value of this variable is a real number:

```matlab
syms x real
assumptions(x)
```

```matlab
ans =
in(x, 'real')
```

Another way to set an assumption is to use the `assume` function:

```matlab
syms z
```
Clear Assumptions and Reset the Symbolic Engine

```matlab
assume(z ~= 0);
assumptions(z)

ans =
z ~= 0

To see assumptions set on all variables in the MATLAB workspace, use `assumptions` without input arguments:

```matlab
assumptions
```

```matlab
ans =
[in(x, 'real'), z ~= 0]
```

Clear assumptions set on `x` and `z`:

```matlab
assume([x z],'clear')
assumptions
```

```matlab
ans =
Empty sym: 1-by-0
```

**Effects of Assumptions on Computations**

Assumptions can affect many computations, including results returned by the `solve` function. They also can affect the results of simplifications. For example, solve this equation without any additional assumptions on its variable:

```matlab
syms x
solve(x^4 == 1, x)
```

```matlab
ans =
-1
 1
-1i
 1i
```

Now solve the same equation assuming that `x` is real:

```matlab
syms x real
solve(x^4 == 1, x)
```

```matlab
ans =
-1
```
Use the **assumeAlso** function to add the assumption that \( x \) is also positive:

```plaintext
assumeAlso(x > 0)
solve(x^4 == 1, x)
```

```plaintext
ans =
 1
```

Clearing \( x \) does not change the underlying assumptions that \( x \) is real and positive:

```plaintext
clear x
syms x
assumptions(x)
solve(x^4 == 1, x)
```

```plaintext
ans =
[0 < x, in(x, 'real')]
ans =
 1
```

Clearing \( x \) with **assume(x,'clear')** clears the assumption:

```plaintext
assume(x,'clear')
assumptions(x)
```

```plaintext
ans =
Empty sym: 1-by-0
```
Create MATLAB Functions from MuPAD Expressions

Symbolic Math Toolbox lets you create a MATLAB function from a symbolic expression. A MATLAB function created from a symbolic expression accepts numeric arguments and evaluates the expression applied to the arguments. You can generate a function handle or a file that contains a MATLAB function. The generated file is available for use in any MATLAB calculation, independent of a license for Symbolic Math Toolbox functions.

If you work in the MATLAB Command Window, see “Generate MATLAB Functions” on page 2-234.

When you use the MuPAD Notebook app, all your symbolic expressions are written in the MuPAD language. To be able to create a MATLAB function from such expressions, you must convert it to the MATLAB language. There are two approaches for converting a MuPAD expression to the MATLAB language:

- Assign the MuPAD expression to a variable, and copy that variable from a notebook to the MATLAB workspace. This approach lets you create a function handle or a file that contains a MATLAB function. It also requires using a handle to the notebook.
- Generate MATLAB code from the MuPAD expression in a notebook. This approach limits your options to creating a file. You can skip creating a handle to the notebook.

The generated MATLAB function can depend on the approach that you chose. For example, code can be optimized differently or not optimized at all.

Suppose you want to create a MATLAB function from a symbolic matrix that converts spherical coordinates of any point to its Cartesian coordinates. First, open a MuPAD notebook with the handle `notebook_handle`:

```plaintext
notebook_handle = mupad;
```

In this notebook, create the symbolic matrix \( S \) that converts spherical coordinates to Cartesian coordinates:

```plaintext
x := r*sin(a)*cos(b):
y := r*sin(a)*sin(b):
z := r*cos(b):
S := matrix([x, y, z]):
```

Now convert matrix \( S \) to the MATLAB language. Choose the best approach for your task.
Copy MuPAD Variables to the MATLAB Workspace

If your notebook has a handle, like `notebook_handle` in this example, you can copy variables from that notebook to the MATLAB workspace with the `getVar` function, and then create a MATLAB function. For example, to convert the symbolic matrix `S` to a MATLAB function:

1. Copy variable `S` to the MATLAB workspace:
   ```matlab
 S = getVar(notebook_handle, 'S')
 ``
 Variable `S` and its value (the symbolic matrix) appear in the MATLAB workspace and in the MATLAB Command Window:
   ```matlab
   S =
   r*cos(b)*sin(a)
   r*sin(a)*sin(b)
   r*cos(b)
   ```

2. Use `matlabFunction` to create a MATLAB function from the symbolic matrix. To generate a MATLAB function handle, use `matlabFunction` without additional parameters:
   ```matlab
   h = matlabFunction(S)
   h = @(a,b,r)[r.*cos(b).*sin(a);r.*sin(a).*sin(b);r.*cos(b)]
   ``
   To generate a file containing the MATLAB function, use the parameter `file` and specify the path to the file and its name. For example, save the MATLAB function to the file `cartesian.m` in the current folder:
   ```matlab
 S = matlabFunction(S, 'file', 'cartesian.m');
   ```
   You can open and edit `cartesian.m` in the MATLAB Editor.
Generate MATLAB Code in a MuPAD Notebook

To generate the MATLAB code from a MuPAD expression within the MuPAD notebook, use the `generate::MATLAB` function. Then, you can create a new file that contains an empty MATLAB function, copy the code, and paste it there. Alternatively, you can create a file with a MATLAB formatted string representing a MuPAD expression, and then add appropriate syntax to create a valid MATLAB function.

1. In the MuPAD Notebook app, use the `generate::MATLAB` function to generate MATLAB code from the MuPAD expression. Instead of printing the result on screen, use the `fprint` function to create a file and write the generated code to that file:

   ```plaintext
 fprint(Unquoted, Text, "cartesian.m", generate::MATLAB(S)):
   ```

   **Note:** If the file with this name already exists, `fprint` replaces the contents of this file with the converted expression.

2. Open `cartesian.m`. It contains a MATLAB formatted string representing matrix S:

   ```plaintext
 S = zeros(3,1);
 S(1,1) = r*cos(b)*sin(a);
 S(2,1) = r*sin(a)*sin(b);
 S(3,1) = r*cos(b);
   ```

3. To convert this file to a valid MATLAB function, add the keywords `function` and `end`, the function name (must match the file name), input and output arguments, and comments:

   ```plaintext
 function S = cartesian(r, a, b)
 % CARTESIAN Converts spherical coordinates
 % to Cartesian coordinates.
 % Angles are measured in radians.
 S = zeros(3,1);
 S(1,1) = r*cos(b)*sin(a);
 S(2,1) = r*sin(a)*sin(b);
 S(3,1) = r*cos(b);
 end
   ```
Create MATLAB Function Blocks from MuPAD Expressions

Symbolic Math Toolbox lets you create a MATLAB function block from a symbolic expression. The generated block is available for use in Simulink models, whether or not the computer that runs the simulations has a license for Symbolic Math Toolbox.

If you work in the MATLAB Command Window, see “Generate MATLAB Function Blocks” on page 2-239.

The MuPAD Notebook app does not provide a function for generating a block. Therefore, to be able to create a block from the MuPAD expression:

1. In a MuPAD notebook, assign that expression to a variable.
2. Use the `getVar` function to copy that variable from a notebook to the MATLAB workspace.

For details about these steps, see “Copy MuPAD Variables to the MATLAB Workspace” on page 3-48.

When the expression that you want to use for creating a MATLAB function block appears in the MATLAB workspace, use the `matlabFunctionBlock` function to create a block from that expression.

For example, open a MuPAD notebook with the handle `notebook_handle`:

```matlab
notebook_handle = mupad;
```

In this notebook, create the following symbolic expression:

```plaintext
r := sqrt(x^2 + y^2)
```

Use `getVar` to copy variable `r` to the MATLAB workspace:

```matlab
r = getVar(notebook_handle, 'r')
```

Variable `r` and its value appear in the MATLAB workspace and in the MATLAB Command Window:

```plaintext
r =
(x^2 + y^2)^(1/2)
```

Before generating a MATLAB Function block from the expression, create an empty model or open an existing one. For example, create and open the new model `my_system`: 
new_system('my_system')
open_system('my_system')

Since the variable and its value are in the MATLAB workspace, you can use \texttt{matlabFunctionBlock} to generate the block \texttt{my\_block}:

\texttt{matlabFunctionBlock('my\_system/my\_block', r)}

You can open and edit the block in the MATLAB Editor. To open the block, double-click it:

\begin{verbatim}
function r = my\_block(x,y)
    \%#codegen
    r = sqrt(x.^2+y.^2);
\end{verbatim}
Create Simscape Equations from MuPAD Expressions

Symbolic Math Toolbox lets you integrate symbolic computations into the Simscape modeling workflow by using the results of these computations in the Simscape equation section.

If you work in the MATLAB Command Window, see “Generate Simscape Equations” on page 2-241.

If you work in the MuPAD Notebook app, you can:

- Assign the MuPAD expression to a variable, copy that variable from a notebook to the MATLAB workspace, and use `simscapeEquation` to generate the Simscape equation in the MATLAB Command Window.
- Generate the Simscape equation from the MuPAD expression in a notebook.

In both cases, to use the generated equation, you must manually copy the equation and paste it to the equation section of the Simscape component file.

For example, follow these steps to generate a Simscape equation from the solution of the ordinary differential equation computed in the MuPAD Notebook app:

1. Open a MuPAD notebook with the handle `notebook_handle`:
   ```matlab
 notebook_handle = mupad;
   ```
2. In this notebook, define the following equation:
   ```matlab
 s := ode(y'(t) = y(t)^2, y(t));
   ```
3. Decide whether you want to generate the Simscape equation in the MuPAD Notebook app or in the MATLAB Command Window.

**Generate Simscape Equations in the MuPAD Notebook App**

To generate the Simscape equation in the same notebook, use `generate::Simscape`. To display generated Simscape code on screen, use the `print` function. To remove quotes and expand special characters like line breaks and tabs, use the printing option `Unquoted`:

```matlab
print(Unquoted, generate::Simscape(s))
```

This command returns the Simscape equation that you can copy and paste to the Simscape equation section:
Create Simscape Equations from MuPAD Expressions

-y^2+y.der == 0.0;

**Generate Simscape Equations in the MATLAB Command Window**

To generate the Simscape equation in the MATLAB Command Window, follow these steps:

1. Use `getVar` to copy variable `s` to the MATLAB workspace:

   ```matlab
 s = getVar(notebook_handle, 's')
   ```

   Variable `s` and its value appear in the MATLAB workspace and in the MATLAB Command Window:

   ```matlab
 s = ode(diff(y(t), t) - y(t)^2, y(t))
   ```

2. Use `simscapeEquation` to generate the Simscape equation from `s`:

   ```matlab
 SimscapeEquation(s)
   ```

   You can copy and paste the generated equation to the Simscape equation section. Do not copy the automatically generated variable `ans` and the equal sign that follows it.

   ```matlab
 ans =
 s == (-y^2+y.der == 0.0);
Functions — Alphabetical List
abs

Absolute value of real or complex value

Syntax

abs(z)
abs(A)

Description

abs(z) returns the absolute value of z. If z is complex, abs(z) returns the complex modulus (magnitude) of z.

abs(A) returns the absolute value of each element of A. If A is complex, abs(A) returns the complex modulus (magnitude) of each element of A.

Input Arguments

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Examples

Compute absolute values of these symbolic real numbers:

[abs(sym(1/2)), abs(sym(0)), abs(sym(pi) - 4)]

ans =
[1/2, 0, 4 - pi]
Compute the absolute values of each element of matrix A:

```matlab
A = sym([[(1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2]]);
abs(A)
```

```matlab
ans =
  [ 5^(1/2)/2, 25]
  [ 2^(1/2), (pi*5^(1/2)*18^(1/2))/18]
```

Compute the absolute value of this expression assuming that the value x is negative:

```matlab
syms x
assume(x < 0)
abs(5*x^3)
```

```matlab
ans =
-5*x^3
```

For further computations, clear the assumption:

```matlab
syms x clear
```

More About

Complex Modulus

The absolute value of a complex number $z = x + y*i$ is the value $|z| = \sqrt{x^2 + y^2}$. Here, x and y are real numbers. The absolute value of a complex number is also called a complex modulus.

Tips

- Calling `abs` for a number that is not a symbolic object invokes the MATLAB `abs` function.

See Also

angle | imag | real | sign | signIm

Introduced before R2006a
acos

Symbolic inverse cosine function

Syntax

```latex
acos(X)
```

Description

```latex
acos(X) returns the inverse cosine function (arccosine function) of X.
```

Examples

Inverse Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, `acos` returns floating-point or exact symbolic results.

Compute the inverse cosine function for these numbers. Because these numbers are not symbolic objects, `acos` returns floating-point results.

```latex
A = acos([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1])
```

```latex
A =
3.1416  1.9106  2.0944  1.3181  1.0472  0.5236  0
```

Compute the inverse cosine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, `acos` returns unresolved symbolic calls.

```latex
symA = acos(sym([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1]))
```

```latex
symA =
[ pi, pi - acos(1/3), (2*pi)/3, acos(1/4), pi/3, pi/6, 0]
```

Use `vpa` to approximate symbolic results with floating-point numbers:
acos

vpa(symA)

ans =
[3.1415926535897932384626433832795,...
 1.9106326249018556327142050315,...
 2.0943951023931954923084289221863,...
 1.318116071652817965745664254646,...
 1.0471975511965977461542144610932,...
 0.52359877559829887307710723054658,...
 0]

Plot Inverse Cosine Function

Plot the inverse cosine function on the interval from -1 to 1.

syms x
ezplot(acos(x), [-1, 1])
grid on
Handle Expressions Containing Inverse Cosine Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `acos`.

Find the first and second derivatives of the inverse cosine function:

```matlab
syms x
diff(acos(x), x)
diff(acos(x), x, x)
```

```matlab
ans =
-1/(1 - x^2)^(1/2)
```
Find the indefinite integral of the inverse cosine function:
\[
\int \arccos(x) \, dx
\]
\[
\text{ans} = x \cdot \arccos(x) - (1 - x^2)^{1/2}
\]

Find the Taylor series expansion of \(\arccos(x) \):
\[
\text{taylor(}\arccos(x), x)\]
\[
\text{ans} = -\frac{3x^5}{40} - \frac{x^3}{6} - x + \frac{\pi}{2}
\]

Rewrite the inverse cosine function in terms of the natural logarithm:
\[
\text{rewrite(}\arccos(x), \text{'log'})\]
\[
\text{ans} = -\log(x + (1 - x^2)^{1/2}1i)*1i
\]

Input Arguments

- **\(X \) — Input**
 - symbolic number
 - symbolic variable
 - symbolic expression
 - symbolic function
 - symbolic vector
 - symbolic matrix

 Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

- \(\text{acot} \)
- \(\text{acsc} \)
- \(\text{asec} \)
- \(\text{asin} \)
- \(\text{atan} \)
- \(\text{cos} \)
- \(\text{cot} \)
- \(\text{csc} \)
- \(\text{sec} \)
- \(\text{sin} \)
- \(\text{tan} \)

Introduced before R2006a
acosh

Symbolic inverse hyperbolic cosine function

Syntax

`acosh(X)`

Description

`acosh(X)` returns the inverse hyperbolic cosine function of `X`.

Examples

Inverse Hyperbolic Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, `acosh` returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cosine function for these numbers. Because these numbers are not symbolic objects, `acosh` returns floating-point results.

```matlab
A = acosh([-1, 0, 1/6, 1/2, 1, 2])
```

```matlab
A =
    0.0000 + 3.1416i  0.0000 + 1.5708i  0.0000 + 1.4033i...
    0.0000 + 1.0472i  0.0000 + 0.0000i  1.3170 + 0.0000i
```

Compute the inverse hyperbolic cosine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, `acosh` returns unresolved symbolic calls.

```matlab
symA = acosh(sym([-1, 0, 1/6, 1/2, 1, 2]))
```

```matlab
symA =
    [ pi*1i, (pi*1i)/2, acosh(1/6), (pi*1i)/3, 0, acosh(2)]
```

Use `vpa` to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =

[3.1415926535897932384626433832795i,...
 1.5707963267948966192313216916398i,...
 1.4033482475752072886780470855961i,...
 1.0471975511965977461542144610932i,...
 0,...
 1.316957896924816708625046347308]

Plot Inverse Hyperbolic Cosine Function

Plot the inverse hyperbolic cosine function on the interval from 1 to 10.

syms x
ezplot(acosh(x), [1, 10])
grid on
Handle Expressions Containing Inverse Hyperbolic Cosine Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `acosh`.

Find the first and second derivatives of the inverse hyperbolic cosine function:

```matlab
syms x
diff(acosh(x), x)
diff(acosh(x), x, x)
```

```
ans =
1/(x^2 - 1)^(1/2)
```
\[\text{ans} = \frac{-x}{(x^2 - 1)^{3/2}} \]

Find the indefinite integral of the inverse hyperbolic cosine function:
\[\int \text{acosh}(x) \, dx \]
\[\text{ans} = x \cdot \text{acosh}(x) - (x^2 - 1)^{1/2} \]

Find the Taylor series expansion of \(\text{acosh}(x) \) for \(x > 1 \):
\[\text{assume}(x > 1) \]
\[\text{taylor} (\text{acosh}(x), x) \]
\[\text{ans} = \frac{x^5 i}{40} + \frac{x^3 i}{6} + x i - \frac{\pi i}{2} \]

For further computations, clear the assumption:
\[\text{syms} x \quad \text{clear} \]

Rewrite the inverse hyperbolic cosine function in terms of the natural logarithm:
\[\text{rewrite} (\text{acosh}(x), ' \text{log}') \]
\[\text{ans} = \ln(x + (x^2 - 1)^{1/2}) \]

Input Arguments

X — Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a
acot

Symbolic inverse cotangent function

Syntax

acot(X)

Description

acot(X) returns the inverse cotangent function (arccotangent function) of X.

Examples

Inverse Cotangent Function for Numeric and Symbolic Arguments

Depending on its arguments, acot returns floating-point or exact symbolic results.

Compute the inverse cotangent function for these numbers. Because these numbers are not symbolic objects, acot returns floating-point results.

\[A = \text{acot}([-1, -1/3, -1/\sqrt{3}, 1/2, 1, \sqrt{3}]) \]

\[A = \begin{bmatrix} -0.7854 & -1.2490 & -1.0472 & 1.1071 & 0.7854 & 0.5236 \end{bmatrix} \]

Compute the inverse cotangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, acot returns unresolved symbolic calls.

\[\text{symA} = \text{acot}(\text{sym}([-1, -1/3, -1/\sqrt{3}, 1/2, 1, \sqrt{3}])) \]

\[\text{symA} = \begin{bmatrix} -\frac{\pi}{4}, -\text{acot}(1/3), -\pi/3, \text{acot}(1/2), \pi/4, \pi/6 \end{bmatrix} \]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-0.78539816339744830961566084581988,...
-1.2490457723982544258299170772811,...
-1.0471975511965977461542144610932,...
1.1071487177940905030170654601785,...
0.78539816339744830961566084581988,...
0.52359877559829887307710723054658]

Plot Inverse Cotangent Function

Plot the inverse cotangent function on the interval from -10 to 10.

```matlab
syms x
ezplot(acot(x), [-10, 10])
grid on
```
Handle Expressions Containing Inverse Cotangent Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `acot`.

Find the first and second derivatives of the inverse cotangent function:

```matlab
syms x
diff(acot(x), x)
diff(acot(x), x, x)
```

```
ans =
-1/(x^2 + 1)
```
\[
\text{ans} = \frac{2x}{(x^2 + 1)^2}
\]

Find the indefinite integral of the inverse cotangent function:
\[
\text{int}(\text{acot}(x), x)
\]
\[
\text{ans} = \log(x^2 + 1) + x \cdot \text{acot}(x)
\]

Find the Taylor series expansion of \(\text{acot}(x) \) for \(x > 0 \):
\[
\text{assume}(x > 0)\quad \text{taylor}(\text{acot}(x), x)
\]
\[
\text{ans} = -\frac{x^5}{5} + \frac{x^3}{3} - x + \frac{\pi}{2}
\]

For further computations, clear the assumption:
\[
\text{syms} \quad x \quad \text{clear}
\]

Rewrite the inverse cotangent function in terms of the natural logarithm:
\[
\text{rewrite}(\text{acot}(x), '\log')
\]
\[
\text{ans} = \frac{\log(1 - 1i/x)*1i}{2} - \frac{(\log(1i/x + 1)*1i)}{2}
\]

Input Arguments

\(X \) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acos | acsc | asec | asin | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a
acoth
Symbolic inverse hyperbolic cotangent function

Syntax
acoth(X)

Description
acoth(X) returns the inverse hyperbolic cotangent function of X.

Examples

Inverse Hyperbolic Cotangent Function for Numeric and Symbolic Arguments

Depending on its arguments, acoth returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cotangent function for these numbers. Because these numbers are not symbolic objects, acoth returns floating-point results.

A = acoth([-pi/2, -1, 0, 1/2, 1, pi/2])

A =
-0.7525 + 0.0000i -Inf + 0.0000i 0.0000 + 1.5708i...
0.5493 + 1.5708i Inf + 0.0000i 0.7525 + 0.0000i

Compute the inverse hyperbolic cotangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, acoth returns unresolved symbolic calls.

symA = acoth(sym([-pi/2, -1, 0, 1/2, 1, pi/2]))

symA =
Use \texttt{vpa} to approximate symbolic results with floating-point numbers:

\begin{verbatim}
vpa(symA)
\end{verbatim}

\texttt{ans =}
\begin{verbatim}
[-0.75246926714192715916204347800251,...
 Inf,...
 -1.5707963267948966192313216916398i,...
 0.54930614433405484569762261846126...
 - 1.5707963267948966192313216916398i,...
 Inf,...
 0.75246926714192715916204347800251]
\end{verbatim}

Plot Inverse Hyperbolic Cotangent Function

Plot the inverse hyperbolic cotangent function on the interval from -10 to 10.

\begin{verbatim}
syms x
ezplot(acoth(x), [-10, 10])
grid on
\end{verbatim}
Handle Expressions Containing Inverse Hyperbolic Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing acoth.

Find the first and second derivatives of the inverse hyperbolic cotangent function:

```matlab
syms x
diff(acoth(x), x)
diff(acoth(x), x, x)
```

```matlab
ans =
-1/(x^2 - 1)
```
ans =
(2*x)/(x^2 - 1)^2

Find the indefinite integral of the inverse hyperbolic cotangent function:
```
int(acoth(x), x)
```
ans =
log(x^2 - 1)/2 + x*acoth(x)

Find the Taylor series expansion of \(\text{acoth}(x) \) for \(x > 0 \):
```
assume(x > 0)
taylor(acoth(x), x)
```
ans =
x^5/5 + x^3/3 + x - (\pi*1i)/2

For further computations, clear the assumption:
```
syms x clear
```

Rewrite the inverse hyperbolic cotangent function in terms of the natural logarithm:
```
rewrite(acoth(x), 'log')
```
ans =
log(1/x + 1)/2 - log(1 - 1/x)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acsch | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a
\textbf{acsc}

Symbolic inverse cosecant function

\textbf{Syntax}

acsc(X)

\textbf{Description}

acsc(X) returns the inverse cosecant function (arccosecant function) of X.

\textbf{Examples}

Inverse Cosecant Function for Numeric and Symbolic Arguments

Depending on its arguments, acsc returns floating-point or exact symbolic results.

Compute the inverse cosecant function for these numbers. Because these numbers are not symbolic objects, acsc returns floating-point results.

A = acsc([-2, 0, 2/sqrt(3), 1/2, 1, 5])

A =
-0.5236 + 0.0000i 1.5708 -Inf 1.0472 + 0.0000i 1.5708...
-1.3170i 1.5708 + 0.0000i 0.2014 + 0.0000i

Compute the inverse cosecant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, acsc returns unresolved symbolic calls.

symA = acsc(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5]))

symA =
[-pi/6, Inf, pi/3, asin(2), pi/2, asin(1/5)]

Use \texttt{vpa} to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-0.52359877559829887307710723054658,...
Inf,...
1.0471975511965977461542144610932,...
1.5707963267948966192313216916398...
 - 1.3169578969248165734029498707969i,...
1.5707963267948966192313216916398,...
0.20135792079033079660099758712022]

Plot Inverse Cosecant Function

Plot the inverse cosecant function on the interval from -10 to 10.

```matlab
syms x
ezplot(acsc(x), [-10, 10])
grid on
```
Handle Expressions Containing Inverse Cosecant Function

Many functions, such as \texttt{diff}, \texttt{int}, \texttt{taylor}, and \texttt{rewrite}, can handle expressions containing \texttt{acsc}.

Find the first and second derivatives of the inverse cosecant function:

\begin{verbatim}
syms x
diff(acsc(x), x)
diff(acsc(x), x, x)
\end{verbatim}

\begin{verbatim}
ans =
 -1/(x^2*(1 - 1/x^2)^(1/2))
\end{verbatim}
Find the indefinite integral of the inverse cosecant function:

\[\int \text{acsc}(x) \, dx \]

\[
\text{ans} = \frac{2}{x^3(1 - 1/x^2)^{1/2}} + \frac{1}{x^5(1 - 1/x^2)^{3/2}}
\]

Find the Taylor series expansion of \(\text{acsc}(x) \) around \(x = \infty \):

\[\text{taylor}(\text{acsc}(x), x, \infty) \]

\[
\text{ans} = \frac{1}{x} + \frac{1}{6x^3} + \frac{3}{40x^5}
\]

Rewrite the inverse cosecant function in terms of the natural logarithm:

\[\text{rewrite}(\text{acsc}(x), \text{log}) \]

\[
\text{ans} = -\log\left(\frac{i}{x} + (1 - \frac{1}{x^2})^{1/2}\right)i
\]

Input Arguments

\(X \) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acos | acot | asec | asin | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a
acsch

Symbolic inverse hyperbolic cosecant function

Syntax

acsch(X)

Description

acsch(X) returns the inverse hyperbolic cosecant function of X.

Examples

Inverse Hyperbolic Cosecant Function for Numeric and Symbolic Arguments

Depending on its arguments, acsch returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cosecant function for these numbers. Because these numbers are not symbolic objects, acsch returns floating-point results.

A = acsch([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3])

A =
 0.0000 + 0.5236i Inf + 0.0000i 0.0000 - 1.0472i...
 1.4436 + 0.0000i 0.0000 - 1.5708i 0.3275 + 0.0000i

Compute the inverse hyperbolic cosecant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, acsch returns unresolved symbolic calls.

symA = acsch(sym([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3]))

symA =
 (pi*1i)/6, Inf, -(pi*1i)/3, asinh(2), -(pi*1i)/2, asinh(1/3)]
Use `vpa` to approximate symbolic results with floating-point numbers:

```
vpa(symA)
```

```
ans =
   [ 0.52359877559829887307710723054658i,...
   Inf,...
   -1.0471975511965977461542144610932i,...
   1.4436354751788103424932767402731,...
   -1.5707963267948966192313216916398i,...
   0.32745015023725844332253525998826]
```

Plot Inverse Hyperbolic Cosecant Function

Plot the inverse hyperbolic cosecant function on the interval from -10 to 10.

```
syms x
ezplot(acsch(x), [-10, 10])
grid on
```
Handle Expressions Containing Inverse Hyperbolic Cosecant Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `acsch`.

Find the first and second derivatives of the inverse hyperbolic cosecant function:

```plaintext
syms x
diff(acsch(x), x)
diff(acsch(x), x, x)
```

```plaintext
ans =
-1/(x^2*(1/x^2 + 1)^(1/2))
```
ans =
\frac{2}{x^3(1/x^2 + 1)^{1/2}} - \frac{1}{x^5(1/x^2 + 1)^{3/2}}

Find the indefinite integral of the inverse hyperbolic cosecant function:

\int(\text{acsch}(x), x)

\begin{align*}
\text{ans} &= x\cdot\text{asinh}(1/x) + \text{asinh}(x)\cdot\text{sign}(x) \\
\end{align*}

Find the Taylor series expansion of \text{acsch}(x) around \(x = \text{Inf}\):

\text{taylor(acsch}(x), x, \text{Inf})

\begin{align*}
\text{ans} &= \frac{1}{x} - \frac{1}{6x^3} + \frac{3}{40x^5} \\
\end{align*}

Rewrite the inverse hyperbolic cosecant function in terms of the natural logarithm:

\text{rewrite(acsch}(x), \text{'log'})

\begin{align*}
\text{ans} &= \log((1/x^2 + 1)^{1/2} + 1/x) \\
\end{align*}

Input Arguments

\(X\) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

\text{acosh} | \text{acoth} | \text{asech} | \text{asinh} | \text{atanh} | \text{cosh} | \text{coth} | \text{csch} | \text{sech} | \text{sinh} | \text{tanh}

Introduced before R2006a
adjoint

Adjoint of symbolic square matrix

Syntax

\[X = \text{adjoint}(A) \]

Description

\(X = \text{adjoint}(A) \) returns the adjoint matrix \(X \) of \(A \). The adjoint of a matrix \(A \) is the matrix \(X \), such that \(A*X = \text{det}(A) * \text{eye}(n) = X*A \), where \(n \) is the number of rows in \(A \) and \(\text{eye}(n) \) is the \(n \)-by-\(n \) identity matrix.

Input Arguments

\(A \)

Symbolic square matrix.

Output Arguments

\(X \)

Symbolic square matrix of the same size as \(A \).

Examples

Compute the adjoint of this symbolic matrix:

```matlab
syms x y z
A = sym([x y z; 2 1 0; 1 0 2]);
X = adjoint(A)
X =
[ 2, -2*y, -z]
```
Verify that \(A \times X = \text{det}(A) \times \text{eye}(3)\), where \(\text{eye}(3)\) is the 3-by-3 identity matrix:

\[
isAlways(A \times X == \text{det}(A) \times \text{eye}(3))
\]

\[
\begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1 \\
\end{bmatrix}
\]

Also verify that \(\text{det}(A) \times \text{eye}(3) = X \times A\):

\[
isAlways(\text{det}(A) \times \text{eye}(3) == X \times A)
\]

\[
\begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1 \\
\end{bmatrix}
\]

Compute the inverse of this matrix by computing its adjoint and determinant:

\[
syms \ a \ b \ c \ d \\
A = [a \ b; \ c \ d]; \\
invA = \text{adjoint}(A) / \text{det}(A)
\]

\[
\begin{bmatrix}
 d/(a*d - b*c), & -b/(a*d - b*c) \\
 -c/(a*d - b*c), & a/(a*d - b*c) \\
\end{bmatrix}
\]

Verify that \(\text{invA}\) is the inverse of \(A\):

\[
isAlways(\text{invA} == \text{inv}(A))
\]

\[
\begin{bmatrix}
 1 & 1 \\
 1 & 1 \\
\end{bmatrix}
\]

More About

Adjoint of Square Matrix

The adjoint of a square matrix \(A\) is the square matrix \(X\), such that the \((i,j)\)-th entry of \(X\) is the \((j,i)\)-th cofactor of \(A\).
Cofactor of Matrix

The \((j,i)\)-th cofactor of \(A\) is defined as

\[
a_{ji} = (-1)^{i+j} \det(A_{ij})
\]

\(A_{ij}\) is the submatrix of \(A\) obtained from \(A\) by removing the \(i\)-th row and \(j\)-th column.

See Also

det | inv | rank

Introduced in R2013a
airy

Airy function

Syntax

airy(x)
airy(0,x)
airy(1,x)
airy(2,x)
airy(3,x)
airy(n,x)

Description

airy(x) returns the Airy function of the first kind, Ai(x).
airy(0,x) is equivalent to airy(x).
airy(1,x) returns the derivative of the Airy function of the first kind, Ai'(x).
airy(2,x) returns the Airy function of the second kind, Bi(x).
airy(3,x) returns the derivative of the Airy function of the second kind, Bi'(x).
airy(n,x) returns a vector or matrix of derivatives of the Airy function.

Input Arguments

x

Symbolic number, variable, expression, or function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If x is a vector or matrix, airy returns the Airy functions for each element of x.

n

Vector or matrix of numbers 0, 1, 2, and 3.
Examples

Solve this second-order differential equation. The solutions are the Airy functions of the first and the second kind.

```matlab
syms y(x)
dsolve(diff(y, 2) - x*y == 0)
```

\[
\text{ans} = C2 \cdot \text{airy}(0, x) + C3 \cdot \text{airy}(2, x)
\]

Verify that the Airy function of the first kind is a valid solution of the Airy differential equation:

```matlab
syms x
isAlways(diff(airy(0, x), x, 2) - x*airy(0, x) == 0)
```

\[
\text{ans} = 1
\]

Verify that the Airy function of the second kind is a valid solution of the Airy differential equation:

```matlab
isAlways(diff(airy(2, x), x, 2) - x*airy(2, x) == 0)
```

\[
\text{ans} = 1
\]

Compute the Airy functions for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```matlab
[airy(1), airy(1, 3/2 + 2*i), airy(2, 2), airy(3, 1/101)]
```

\[
\text{ans} = \\
0.1353 + 0.0000i \quad 0.1641 + 0.1523i \quad 3.2981 + 0.0000i \quad 0.4483 + 0.0000i
\]

Compute the Airy functions for the numbers converted to symbolic objects. For most symbolic (exact) numbers, `airy` returns unresolved symbolic calls.

```matlab
[airy(sym(1)), airy(1, sym(3/2 + 2*i)), airy(2, sym(2)), airy(3, sym(1/101))]
```

\[
\text{ans} = \\
[\text{airy}(0, 1), \text{airy}(1, 3/2 + 2i), \text{airy}(2, 2), \text{airy}(3, 1/101)]
\]
For symbolic variables and expressions, \texttt{airy} also returns unresolved symbolic calls:

\begin{verbatim}
 syms x y
 [airy(x), airy(1, x^2), airy(2, x - y), airy(3, x*y)]
\end{verbatim}

\begin{verbatim}
 ans =
 [airy(0, x), airy(1, x^2), airy(2, x - y), airy(3, x*y)]
\end{verbatim}

Compute the Airy functions for \(x = 0 \). The Airy functions have special values for this parameter.

\begin{verbatim}
 airy(sym(0))
 ans =
 3^(1/3)/(3*gamma(2/3))

 airy(1, sym(0))
 ans =
 -(3^(1/6)*gamma(2/3))/(2*pi)

 airy(2, sym(0))
 ans =
 3^(5/6)/(3*gamma(2/3))

 airy(3, sym(0))
 ans =
 (3^(2/3)*gamma(2/3))/(2*pi)
\end{verbatim}

If you do not use \texttt{sym}, you call the MATLAB \texttt{airy} function that returns numeric approximations of these values:

\begin{verbatim}
 [airy(0), airy(1, 0), airy(2, 0), airy(3, 0)]
\end{verbatim}

\begin{verbatim}
 ans =
 0.3550 -0.2588 0.6149 0.4483
\end{verbatim}

Differentiate the expressions involving the Airy functions:

\begin{verbatim}
 syms x y
 diff(airy(x^2))
 diff(diff(airy(3, x^2 + x*y - y^2), x), y)
\end{verbatim}
ans =
2*x*airy(1, x^2)

ans =
airy(2, x^2 + x*y - y^2)*(x^2 + x*y - y^2) +...
airy(2, x^2 + x*y - y^2)*(x - 2*y)*(2*x + y) +...
airy(3, x^2 + x*y - y^2)*(x - 2*y)*(2*x + y)*(x^2 + x*y - y^2)

Compute the Airy function of the first kind for the elements of matrix A:

syms x
A = [-1, 0; 0, x];
airy(A)

ans =
[airy(0, -1), 3^(1/3)/(3*gamma(2/3))]
[3^(1/3)/(3*gamma(2/3)), airy(0, x)]

Plot the Airy function Ai(x) and its derivative Ai’(x):

syms x
ezplot(airy(x))
hold on
ezplot(airy(1,x))

title('Airy function Ai and its first derivative')
hold off
More About

Airy Functions

The Airy functions $Ai(x)$ and $Bi(x)$ are linearly independent solutions of this differential equation:

$$\frac{d^2 y}{dx^2} - xy = 0$$
Tips

- Calling `airy` for a number that is not a symbolic object invokes the MATLAB `airy` function.
- When you call `airy` with two input arguments, at least one argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, `airy(n,x)` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

See Also

`besseli` | `besselj` | `besselk` | `bessely`

Introduced in R2012a
all

Test whether all equations and inequalities represented as elements of symbolic array are valid

Syntax

```
all(A)
all(A,dim)
```

Description

`all(A)` tests whether all elements of `A` return logical 1 (`true`). If `A` is a matrix, `all` tests all elements of each column. If `A` is a multidimensional array, `all` tests all elements along one dimension.

`all(A,dim)` tests along the dimension of `A` specified by `dim`.

Input Arguments

`A`

Symbolic vector, matrix, or multidimensional symbolic array. For example, it can be an array of symbolic equations, inequalities, or logical expressions with symbolic subexpressions.

`dim`

Integer. For example, if `A` is a matrix, `all(A,1)` tests elements of each column and returns a row vector of logical 1s and 0s. `all(A,2)` tests elements of each row and returns a column vector of logical 1s and 0s.

Default: The first dimension that is not equal to 1 (non-singleton dimension). For example, if `A` is a matrix, `all(A)` treats the columns of `A` as vectors.
Examples

Create vector \(V \) that contains the symbolic equation and inequalities as its elements:

```matlab
syms x
V = [x ~= x + 1, abs(x) >= 0, x == x];
```

Use `all` to test whether all of them are valid for all values of \(x \):

```matlab
all(V)
ans =
1
```

Create this matrix of symbolic equations and inequalities:

```matlab
syms x
M = [x == x, x == abs(x); abs(x) >= 0, x ~= 2*x]
```

```matlab
M =
[ x == x, x == abs(x)]
[ 0 <= abs(x), x ~= 2*x]
```

Use `all` to test equations and inequalities of this matrix. By default, `all` tests whether all elements of each column are valid for all possible values of variables. If all equations and inequalities in the column are valid (return logical 1), then `all` returns logical 1 for that column. Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the first column and 0 for the second column:

```matlab
all(M)
ans =
1 0
```

Create this matrix of symbolic equations and inequalities:

```matlab
syms x
M = [x == x, x == abs(x); abs(x) >= 0, x ~= 2*x]
```

```matlab
M =
[ x == x, x == abs(x)]
[ 0 <= abs(x), x ~= 2*x]
```

For matrices and multidimensional arrays, `all` can test all elements along the specified dimension. To specify the dimension, use the second argument of `all`. For example, to test all elements of each column of a matrix, use the value 1 as the second argument:
all(M, 1)
ans =
 1 0

To test all elements of each row, use the value 2 as the second argument:
all(M, 2)
ans =
 0
 1

Test whether all elements of this vector return logical 1s. Note that all also converts all numeric values outside equations and inequalities to logical 1s and 0s. The numeric value 0 becomes logical 0:
syms x
all([0, x == x])
an
ans =
 0

All nonzero numeric values, including negative and complex values, become logical 1s:
all([1, 2, -3, 4 + i, x == x])
an
ans =
 1

More About

Tips

• If A is an empty symbolic array, all(A) returns logical 1.
• If some elements of A are just numeric values (not equations or inequalities), all converts these values as follows. All numeric values except 0 become logical 1. The value 0 becomes logical 0.
• If A is a vector and all its elements return logical 1, all(A) returns logical 1. If one or more elements are zero, all(A) returns logical 0.
• If A is a multidimensional array, all(A) treats the values along the first dimension that is not equal to 1 (nonsingleton dimension) as vectors, returning logical 1 or 0 for each vector.
See Also
and | any | isAlways | not | or | xor

Introduced in R2012a
allMuPADNotebooks

All open notebooks

Syntax

$$L = \text{allMuPADNotebooks}$$

Description

$$L = \text{allMuPADNotebooks}$$ returns a vector with handles (pointers) to all currently open MuPAD notebooks.

If there are no open notebooks, \text{allMuPADNotebooks} returns an empty object \text{[empty mupad]}.

Examples

Identify All Open Notebooks

Get a vector of handles to all currently open MuPAD notebooks.

Suppose that your current folder contains MuPAD notebooks named \text{myFile1.mn} and \text{myFile2.mn}. Open them keeping their handles in variables \text{nb1} and \text{nb2}, respectively. Also create a new notebook with the handle \text{nb3}:

```plaintext
nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 = myFile1

nb2 = myFile2

nb3 = Notebook1
```
Suppose that there are no other open notebooks. Use `allMuPADNotebooks` to get a vector of handles to these notebooks:

```matlab
callNBs = allMuPADNotebooks
```

`allNBs = myFile1 myFile2 Notebook1`

Create Handle to Existing Notebook

If you already created a MuPAD notebook without a handle or if you lost the handle to a notebook, use `allMuPADNotebooks` to create a new handle. Alternatively, you can save the notebook, close it, and then open it again using a handle.

Create a new notebook:

```matlab
mupad
```

Suppose that you already performed some computations in that notebook, and now want to transfer a few variables to the MATLAB workspace. To be able to do it, you need to create a handle to this notebook:

```matlab
nb = allMuPADNotebooks
```

`nb = Notebook1`

Now, you can use `nb` when transferring data and results between the notebook `Notebook1` and the MATLAB workspace. This approach does not require you to save `Notebook1`.

```matlab
getVar(nb, 'x')
```

`ans = x`

- “Create MuPAD Notebooks” on page 3-3
- “Open MuPAD Notebooks” on page 3-6
- “Save MuPAD Notebooks” on page 3-12
- “Evaluate MuPAD Notebooks from MATLAB” on page 3-13
- “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25
• “Close MuPAD Notebooks from MATLAB” on page 3-16

Output Arguments

L — All open MuPAD notebooks
 vector of handles to notebooks

All open MuPAD notebooks, returned as a vector of handles to these notebooks.

See Also
 close | evaluateMuPADNotebook | getVar | mupad | mupadNotebookTitle | openmn | setVar

Introduced in R2013b
and

Logical AND for symbolic expressions

Syntax

A & B
and (A, B)

Description

A & B represents the logical conjunction. A & B is true only when both A and B are true.

and (A, B) is equivalent to A & B.

Input Arguments

A

Symbolic equation, inequality, or logical expression that contains symbolic subexpressions.

B

Symbolic equation, inequality, or logical expression that contains symbolic subexpressions.

Examples

Combine these symbolic inequalities into the logical expression using &:

```
syms x y
xy = x >= 0 & y >= 0;
```

Set the corresponding assumptions on variables x and y using assume:
assume(xy)

Verify that the assumptions are set:

assumptions

ans =
[0 <= x, 0 <= y]

Combine two symbolic inequalities into the logical expression using &:

syms x
range = 0 < x & x < 1;

Replace variable x with these numeric values. If you replace x with 1/2, then both inequalities are valid. If you replace x with 10, both inequalities are invalid. Note that subs does not evaluate these inequalities to logical 1 or 0.

x1 = subs(range, x, 1/2)
x2 = subs(range, x, 10)

x1 =
0 < 1/2 & 1/2 < 1
x2 =
0 < 10 & 10 < 1

To evaluate these inequalities to logical 1 or 0, use isAlways:

isAlways(x1)
isAlways(x2)

ans =
1
ans =
0

Note that simplify does not simplify these logical expressions to logical 1 or 0. Instead, they return symbolic values TRUE or FALSE.

s1 = simplify(x1)
s2 = simplify(x2)

s1 =
TRUE

s2 = FALSE

Convert symbolic TRUE or FALSE to logical values using `isAlways`:

```matlab
isAlways(s1)
isAlways(s2)
```

```
ans =
   1
ans =
   0
```

The recommended approach to define a range of values is using `&`. Nevertheless, you can define a range of values of a variable as follows:

```matlab
syms x
range = 0 < x < 1;
```

Now if you want to replace variable `x` with numeric values, use symbolic numbers instead of MATLAB double-precision numbers. To create a symbolic number, use `sym`

```matlab
x1 = subs(range, x, sym(1/2))
x2 = subs(range, x, sym(10))
```

```
x1 =
   (0 < 1/2) < 1
x2 =
   (0 < 10) < 1
```

Evaluate these inequalities to logical 1 or 0 using `isAlways`.

```matlab
isAlways(x1)
isAlways(x2)
```

```
ans =
   1
ans =
   0
```
More About

Tips

- If you call simplify for a logical expression containing symbolic subexpressions, you can get symbolic values TRUE or FALSE. These values are not the same as logical 1 (true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use isAlways.

See Also
all | any | isAlways | not | or | xor

Introduced in R2012a
angle

Symbolic polar angle

Syntax

\[\text{angle}(Z) \]

Description

\(\text{angle}(Z) \) computes the polar angle of the complex value \(Z \).

Input Arguments

\(Z \)

Symbolic number, variable, expression, function. The function also accepts a vector or matrix of symbolic numbers, variables, expressions, functions.

Examples

Compute the polar angles of these complex numbers. Because these numbers are not symbolic objects, you get floating-point results.

\[
[\text{angle}(1 + i), \text{angle}(4 + \pi i), \text{angle}(\text{Inf} + \text{Inf}i)]
\]

\[
\text{ans} = \\
0.7854 \quad 0.6658 \quad 0.7854
\]

Compute the polar angles of these complex numbers which are converted to symbolic objects:

\[
[\text{angle}(ext{sym}(1) + i), \text{angle}(ext{sym}(4) + \text{sym}(\pi)i), \text{angle}(\text{Inf} + \text{sym}(\text{Inf})i)]
\]

\[
\text{ans} = \\
[\pi/4, \text{atan}(\pi/4), \pi/4]
\]
Compute the limits of these symbolic expressions:

```matlab
syms x
limit(angle(x + x^2*i/(1 + x)), x, -Inf)
limit(angle(x + x^2*i/(1 + x)), x, Inf)
```

```matlab
ans =
-(3*pi)/4
ans =
pi/4
```

Compute the polar angles of the elements of matrix Z:

```matlab
Z = sym([sqrt(3) + 3*i, 3 + sqrt(3)*i; 1 + i, i]);
angle(Z)
```

```matlab
ans =
[ pi/3, pi/6]
[ pi/4, pi/2]
```

Alternatives

For real X and Y such that Z = X + Y*i, the call `angle(Z)` is equivalent to `atan2(Y,X)`.

More About

Tips

- Calling `angle` for numbers (or vectors or matrices of numbers) that are not symbolic objects invokes the MATLAB `angle` function.
- If Z = 0, then `angle(Z)` returns 0.

See Also

`atan2` | `conj` | `imag` | `real` | `sign` | `signIm`

Introduced in R2013a
any
Test whether at least one of equations and inequalities represented as elements of symbolic array is valid

Syntax

\[\text{any}(A) \]
\[\text{any}(A, \text{dim}) \]

Description

\(\text{any}(A) \) tests whether at least one element of \(A \) returns logical 1 (true). If \(A \) is a matrix, \(\text{any} \) tests elements of each column. If \(A \) is a multidimensional array, \(\text{any} \) tests elements along one dimension.

\(\text{any}(A, \text{dim}) \) tests along the dimension of \(A \) specified by \(\text{dim} \).

Input Arguments

\(A \)
Symbolic vector, matrix, or multidimensional symbolic array. For example, it can be an array of symbolic equations, inequalities, or logical expressions with symbolic subexpressions.

\(\text{dim} \)
Integer. For example, if \(A \) is a matrix, \(\text{any}(A, 1) \) tests elements of each column and returns a row vector of logical 1s and 0s. \(\text{any}(A, 2) \) tests elements of each row and returns a column vector of logical 1s and 0s.

\textbf{Default:} The first dimension that is not equal to 1 (non-singleton dimension). For example, if \(A \) is a matrix, \(\text{any}(A) \) treats the columns of \(A \) as vectors.
Examples

Create vector \(V \) that contains the symbolic equation and inequalities as its elements:

```matlab
syms x real
V = [x ~= x + 1, abs(x) >= 0, x == x];
```

Use `any` to test whether at least one of them is valid for all values of \(x \):

```matlab
any(V)
```

```matlab
ans =
    1
```

Create this matrix of symbolic equations and inequalities:

```matlab
syms x real
M = [x == 2*x, x == abs(x); abs(x) >= 0, x == 2*x]
```

```matlab
M =
[    x == 2*x, x == abs(x)]
[ 0 <= abs(x),    x == 2*x]
```

Use `any` to test equations and inequalities of this matrix. By default, `any` tests whether any element of each column is valid for all possible values of variables. If at least one equation or inequality in the column is valid (returns logical 1), then `any` returns logical 1 for that column. Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the first column and 0 for the second column:

```matlab
any(M)
```

```matlab
ans =
    1     0
```

Create this matrix of symbolic equations and inequalities:

```matlab
syms x real
M = [x == 2*x, x == abs(x); abs(x) >= 0, x == 2*x]
```

```matlab
M =
[    x == 2*x, x == abs(x)]
[ 0 <= abs(x),    x == 2*x]
```

For matrices and multidimensional arrays, `any` can test elements along the specified dimension. To specify the dimension, use the second argument of `any`. For example, to test elements of each column of a matrix, use the value 1 as the second argument:
any(M, 1)
ans =
 1 0

To test elements of each row, use the value 2 as the second argument:

any(M, 2)
an =
 0
 1

Test whether any element of this vector returns logical 1. Note that any also converts all numeric values outside equations and inequalities to logical 1s and 0s. The numeric value 0 becomes logical 0:

syms x
any([0, x == x + 1])
an =
 0

All nonzero numeric values, including negative and complex values, become logical 1s:

any([-4 + i, x == x + 1])
an =
 1

More About

Tips

• If A is an empty symbolic array, any(A) returns logical 0.
• If some elements of A are just numeric values (not equations or inequalities), any converts these values as follows. All nonzero numeric values become logical 1. The value 0 becomes logical 0.
• If A is a vector and any of its elements returns logical 1, any(A) returns logical 1. If all elements are zero, any(A) returns logical 0.
• If A is a multidimensional array, any(A) treats the values along the first dimension that is not equal to 1 (non-singleton dimension) as vectors, returning logical 1 or 0 for each vector.
See Also
all | and | isAlways | not | or | xor

Introduced in R2012a
argnames

Input variables of symbolic function

Syntax

argnames(f)

Description

argnames(f) returns input variables of f.

Input Arguments

f
Symbolic function.

Examples

Create this symbolic function:

```
syms f(x, y)
f(x, y) = x + y;
```

Use argnames to find input variables of f:

```
argnames(f)
an =
[ x, y]
```

Create this symbolic function:

```
syms f(a, b, x, y)
f(x, b, y, a) = a*x + b*y;
```
Use `argnames` to find input variables of `f`. When returning variables, `argnames` uses the same order as you used when you defined the function:

```matlab
argnames(f)
```

```matlab
ans =
[ x, b, y, a]
```

See Also

`formula` | `sym` | `syms` | `symvar`

Introduced in R2012a
\textbf{asec}

Symbolic inverse secant function

\textbf{Syntax}

\texttt{asec(X)}

\textbf{Description}

\texttt{asec(X)} returns the inverse secant function (arcsecant function) of \(X\).

\textbf{Examples}

\textbf{Inverse Secant Function for Numeric and Symbolic Arguments}

Depending on its arguments, \texttt{asec} returns floating-point or exact symbolic results.

Compute the inverse secant function for these numbers. Because these numbers are not symbolic objects, \texttt{asec} returns floating-point results.

\(A = \texttt{asec([-2, 0, 2/sqrt(3), 1/2, 1, 5]})\)

\(A =
\begin{array}{cccc}
2.0944 + 0.0000i & 0.0000 + \text{Inf}i & 0.5236 + 0.0000i & \\
0.0000 + 1.3170i & 0.0000 + 0.0000i & 1.3694 + 0.0000i & \\
\end{array}\)

Compute the inverse secant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, \texttt{asec} returns unresolved symbolic calls.

\(\texttt{symA} = \texttt{asec(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5])})\)

\(\texttt{symA} =
\begin{array}{cccc}
(2\pi)/3, \text{Inf}, \pi/6, \text{acos}(2), 0, \text{acos}(1/5) & & & \\
\end{array}\)

Use \texttt{vpa} to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[2.0943951023931954923084289221863,...
Inf,...
0.52359877559829887307710723054658,...
1.3169578969248165734029498707969i,...
0,...
1.369438406004565900175862252964]

Plot Inverse Secant Function

Plot the inverse secant function on the interval from -10 to 10.

```matlab
syms x
ezplot(asec(x), [-10, 10])
grid on
```
Handle Expressions Containing Inverse Secant Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `asec`.

Find the first and second derivatives of the inverse secant function:

```matlab
syms x
diff(asec(x), x)
diff(asec(x), x, x)
```

```
ans =
1/(x^2*(1 - 1/x^2)^(1/2))
```
ans =
- 2/(x^3*(1 - 1/x^2)^(1/2)) - 1/(x^5*(1 - 1/x^2)^(3/2))

Find the indefinite integral of the inverse secant function:
int(asec(x), x)
ans =
x*acos(1/x) - acosh(x)*sign(x)

Find the Taylor series expansion of asec(x) around x = Inf:
taylor(asec(x), x, Inf)
an =
 pi/2 - 1/x - 1/(6*x^3) - 3/(40*x^5)

Rewrite the inverse secant function in terms of the natural logarithm:
rewrite(asec(x), 'log')
an =
- log(1/x + (1 - 1/x^2)^(1/2)*1i)*1i

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acot | acsc | asin | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a
\textbf{asech}

Symbolic inverse hyperbolic secant function

\textbf{Syntax}

\texttt{asech}(X)

\textbf{Description}

\texttt{asech}(X) returns the inverse hyperbolic secant function of \texttt{X}.

\textbf{Examples}

\textbf{Inverse Hyperbolic Secant Function for Numeric and Symbolic Arguments}

Depending on its arguments, \texttt{asech} returns floating-point or exact symbolic results.

Compute the inverse hyperbolic secant function for these numbers. Because these numbers are not symbolic objects, \texttt{asech} returns floating-point results.

\[
A = \texttt{asech}([-2, 0, 2/\sqrt{3}, 1/2, 1, 3])
\]

\[
A = \\
0.0000 + 2.0944i
\text{Inf} + 0.0000i
0.0000 + 0.5236i
1.3170 + 0.0000i
0.0000 + 0.0000i
0.0000 + 1.2310i
\]

Compute the inverse hyperbolic secant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, \texttt{asech} returns unresolved symbolic calls.

\[
symA = \texttt{asech}(\texttt{sym}([-2, 0, 2/\sqrt{3}, 1/2, 1, 3]))
\]

\[
symA = \\
[(\pi*2i)/3, \text{Inf}, (\pi*1i)/6, \text{acosh}(2), 0, \text{acosh}(1/3)]
\]

Use \texttt{vpa} to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[2.0943951023931954923084289221863i,...
Inf,...
0.52359877559829887307710723054658i,...
1.316957896924816708625046347308,...
0,...
1.230959417340774682134929178248i]

Plot Inverse Hyperbolic Secant Function

Plot the inverse hyperbolic secant function on the interval from 0 to 1.

```matlab
syms x
ezplot(asech(x), [0, 1])
grid on
```
Find the first and second derivatives of the inverse hyperbolic secant function:

```matlab
syms x
diff(asech(x), x)
diff(asech(x), x, x)
```

\[\text{ans} = \frac{-1}{x^2\left(\frac{1}{x^2} - 1\right)^{1/2}} \]
Find the indefinite integral of the inverse hyperbolic secant function:

\[\int \text{asech}(x) \, dx \]

\[\text{ans} = \frac{2}{x^3(1/x^2 - 1)^{1/2}} - \frac{1}{x^5(1/x^2 - 1)^{3/2}} \]

Find the Taylor series expansion of \(\text{asech}(x) \) around \(x = \infty \):

\[\text{taylor} \left(\text{asech}(x), x, \infty \right) \]

\[\text{ans} = \frac{\pi i}{2} - \frac{i}{x} - \frac{i}{6x^3} - \frac{3i}{40x^5} \]

Rewrite the inverse hyperbolic secant function in terms of the natural logarithm:

\[\text{rewrite} \left(\text{asech}(x), '\log' \right) \]

\[\text{ans} = \log(\left(\frac{1}{x^2} - 1\right)^{1/2} + \frac{1}{x}) \]

Input Arguments

X — Input

- symbolic number
- symbolic variable
- symbolic expression
- symbolic function
- symbolic vector
- symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

- `acosh`
- `acoth`
- `acsch`
- `asinh`
- `atanh`
- `cosh`
- `coth`
- `csch`
- `sech`
- `sinh`
- `tanh`

Introduced before R2006a
asinx

Symbolic inverse sine function

Syntax

asin(X)

Description

asin(X) returns the inverse sine function (arcsine function) of X.

Examples

Inverse Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, asin returns floating-point or exact symbolic results.

Compute the inverse sine function for these numbers. Because these numbers are not symbolic objects, asin returns floating-point results.

\[
A = \text{asin}([-1, -1/3, -1/2, 1/4, 1/2, \sqrt{3}/2, 1])
\]

\[
A =
\begin{bmatrix}
-1.5708 \\
-0.3398 \\
-0.5236 \\
0.2527 \\
0.5236 \\
1.0472 \\
1.5708
\end{bmatrix}
\]

Compute the inverse sine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, asin returns unresolved symbolic calls.

\[
symA = \text{asin}(\text{sym}([-1, -1/3, -1/2, 1/4, 1/2, \sqrt{3}/2, 1]))
\]

\[
symA =
\begin{bmatrix}
-\pi/2 \\
-\text{asin}(1/3) \\
-\pi/6 \\
\text{asin}(1/4) \\
\pi/6 \\
\pi/3 \\
\pi/2
\end{bmatrix}
\]

Use vpa to approximate symbolic results with floating-point numbers:
\texttt{vpa(symA)}

\texttt{ans =}
[-1.5707963267948966192313216916398,...
-0.33983690945412193709639251339176,...
-0.52359877559829887307710723054658,...
 0.25268025514207865348565743699371,...
 0.52359877559829887307710723054658,...
 1.0471975511965977461542144610932,...
 1.5707963267948966192313216916398]}

\textbf{Plot Inverse Sine Function}

Plot the inverse sine function on the interval from -1 to 1.

\texttt{syms x}
\texttt{ezplot(asin(x), [-1, 1])}
\texttt{grid on}
Handle Expressions Containing Inverse Sine Function

Many functions, such as \texttt{diff}, \texttt{int}, \texttt{taylor}, and \texttt{rewrite}, can handle expressions containing \texttt{asin}.

Find the first and second derivatives of the inverse sine function:

\begin{verbatim}
 syms x
diff(asin(x), x)
diff(asin(x), x, x)
\end{verbatim}

\texttt{ans} =
\[\frac{1}{\sqrt{1 - x^2}} \]
ans =
x/(1 - x^2)^(3/2)

Find the indefinite integral of the inverse sine function:

\[\int \arcsin(x) \, dx = x \arcsin(x) + (1 - x^2)^{1/2} \]

Find the Taylor series expansion of \(\arcsin(x) \):

\[\text{taylor}(\arcsin(x), x) \]

\[\text{ans} = \left(\frac{3x^5}{40} + x^3/6 \right) + x \]

Rewrite the inverse sine function in terms of the natural logarithm:

\[\text{rewrite}(\arcsin(x), \ 'log') \]

\[\text{ans} = -\log((1 - x^2)^{1/2} + x*i)*i \]

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acos | acot | acsc | asec | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a
asinh

Symbolic inverse hyperbolic sine function

Syntax

asinh(X)

Description

asinh(X) returns the inverse hyperbolic sine function of X.

Examples

Inverse Hyperbolic Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, asinh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic sine function for these numbers. Because these numbers are not symbolic objects, asinh returns floating-point results.

A = asinh([-i, 0, 1/6, i/2, i, 2])

A =

0.0000 - 1.5708i 0.0000 + 0.0000i 0.1659 + 0.0000i...
0.0000 + 0.5236i 0.0000 + 1.5708i 1.4436 + 0.0000i

Compute the inverse hyperbolic sine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, asinh returns unresolved symbolic calls.

symA = asinh(sym([-i, 0, 1/6, i/2, i, 2]))

symA =

[-(pi*1i)/2, 0, asinh(1/6), (pi*1i)/6, (pi*1i)/2, asinh(2)]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-1.5707963267948966192313216916398i,...
 0,...
0.16590455026930117643502171631553,...
0.52359877559829887307710723054658i,...
1.5707963267948966192313216916398i,...
1.4436354751788103012444253181457]

Plot Inverse Hyperbolic Sine Function

Plot the inverse hyperbolic sine function on the interval from -10 to 10.

```matlab
syms x
ezplot(asinh(x), [-10, 10])
grid on
```
Handle Expressions Containing Inverse Hyperbolic Sine Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `asinh`.

Find the first and second derivatives of the inverse hyperbolic sine function:

```matlab
syms x
diff(asinh(x), x)
diff(asinh(x), x, x)

ans =
1/(x^2 + 1)^(1/2)
```
Find the indefinite integral of the inverse hyperbolic sine function:

\[\int \text{asinh}(x) \, dx \]

\[\text{ans} = \frac{x \text{asinh}(x)}{ \sqrt{x^2 + 1}} - \frac{x}{ \sqrt{x^2 + 1}} \]

Find the Taylor series expansion of \(\text{asinh}(x) \):

\[\text{taylor} \left(\text{asinh}(x), x \right) \]

\[\text{ans} = \frac{3x^5}{40} - \frac{x^3}{6} + x \]

Rewrite the inverse hyperbolic sine function in terms of the natural logarithm:

\[\text{rewrite} \left(\text{asinh}(x), \text{log} \right) \]

\[\text{ans} = \log(x + \sqrt{x^2 + 1}) \]

Input Arguments

\(X \) — Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

\(\text{acosh} | \text{acoth} | \text{acsch} | \text{asech} | \text{atanh} | \text{cosh} | \text{coth} | \text{csch} | \text{sech} | \text{sinh} | \text{tanh} \)

Introduced before R2006a
assume

Set assumption on symbolic object

Syntax

assume(condition)
assume(expr,set)
assume(expr,'clear')

Description

assume(condition) states that condition is valid for all symbolic variables in condition. It also removes any assumptions previously made on these symbolic variables.

assume(expr,set) states that expr belongs to set. This new assumption replaces previously set assumptions on all variables in expr.

assume(expr,'clear') clears all assumptions on all variables in expr.

Examples

Common Assumptions

Set an assumption using the associated syntax.

<table>
<thead>
<tr>
<th>Assume ‘x’ is</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>real</td>
<td>assume(x,'real')</td>
</tr>
<tr>
<td>rational</td>
<td>assume(x,'rational')</td>
</tr>
<tr>
<td>positive</td>
<td>assume(x > 0)</td>
</tr>
<tr>
<td>an integer between 2 and 10</td>
<td>assume(in(x,'integer') & x>2 & x<10)</td>
</tr>
</tbody>
</table>
Assume ‘x’ is | Syntax
---|---
less than -1 or greater than 1 | `assume(x<-1 | x>1)`
not equal to 0 | `assume(x ~= 0)`
even | `assume(x/2,'integer')`
odd | `assume((x - 1)/2,'integer')`
between 0 and 2π | `assume(x>0 & x<2*pi)`
a multiple of π | `assume(x/pi,'integer')`

Assume Variable Is Even or Odd

Assume the symbolic variable x is even, by setting the assumption that x/2 is an integer.

Assume x is even.

```matlab
syms x
assume(x/2,'integer')
```

Find all even numbers between 0 and 10 using `solve`.

```matlab
solve(x>0,x<10,x)
```

```
ans =
  2
  4
  6
  8
```

Assume x is odd by setting the assumption that (x-1)/2 is an integer. Find all odd numbers between 0 and 10 using `solve`.

```matlab
assume((x-1)/2,'integer')
solve(x>0,x<10,x)
```

```
ans =
  1
  3
  5
  7
  9
```

Clear assumptions on x for further computations.
assume(x, 'clear')

Assumptions on Integrand

Compute an indefinite integral with and without the assumption on the symbolic parameter \(a\).

Use `assume` to set an assumption that \(a\) does not equal -1.

```matlab
syms x a
assume(a ~= -1)
```

Compute this integral.

```matlab
int(x^a, x)
```

```matlab
ans =
x^(a + 1)/(a + 1)
```

Now, clear the assumption and compute the same integral. Without assumptions, `int` returns this piecewise result.

```matlab
assume(a, 'clear')
int(x^a, x)
```

```matlab
ans =
piecewise([a == -1, log(x)], [a ~= -1, x^(a + 1)/(a + 1)])
```

Assumptions on Parameters and Variables of Equation

Use assumptions on the symbolic parameter and variable in the kinematic equation for free fall motion.

Calculate the time during which the object falls from a certain height by solving the kinematic equation for free fall motion. Assume the gravitational acceleration \(g\) is positive.

```matlab
syms g h t
assume(g > 0)
solve(h == g*t^2/2, t)
```

```matlab
ans =
```
Additionally, you can set assumptions on variables for which you solve an equation. When you set assumptions on such variables, the solver compares obtained solutions with the specified assumptions. This additional task can slow down the solver.

Assume time \(t \) is positive and solve the same equation again.

\[
\text{assume}(t > 0) \\
\text{solve}(h == g*t^2/2,t)
\]

Warning: The solutions are valid under the following conditions: \(0 < h \). To include parameters and conditions in the solution, specify the 'ReturnConditions' option.

\[
\text{ans} = (2^{(1/2)}*h^{(1/2)})/g^{(1/2)}
\]

The solver returns a warning that \(h \) must be positive. This warning follows as the object is above ground.

For further computations, clear the assumptions.

\[
\text{assume}([g t], 'clear')
\]

Use Assumptions for Simplification

Setting appropriate assumptions can result in simpler expressions.

Try to simplify the expression \(\sin(2\pi n) \) using \texttt{simplify}. The \texttt{simplify} function cannot simplify the input and returns the input as it is.

\[
\text{syms } n \\
\text{simplify}(\sin(2*n*pi))
\]

\[
\text{ans} = \sin(2*pi*n)
\]

Assume \(n \) is an integer. \texttt{simplify} now simplifies the expression.

\[
\text{assume}(n, 'integer')
\]
simplify(sin(2*n*pi))
ans =
0

For further computations, clear the assumption.
assume(n,'clear')

Assumptions on Expressions

Set assumption on the symbolic expression.

You can set assumptions not only on variables, but also on expressions. For example, compute this integral.
syms x
int(1/abs(x^2 - 1),x)
ans =
-atanh(x)/sign(x^2 - 1)

Set the assumption $x^2 - 1 > 0$ to produce a simpler result.
assume(x^2 - 1 > 0)
int(1/abs(x^2 - 1),x)
ans =
-atanh(x)

For further computations, clear the assumption.
assume(x,'clear')

Assumptions Reducing Number of Solutions

Use assumptions to restrict the returned solutions of an equation to a particular interval.

Solve this equation.
syms x
solve(x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6 + (365*x)/2 + 250/3, x)
ans =
Use `assume` to restrict the solutions to the interval $-1 \leq x \leq 1$.

```matlab
assume(-1 <= x <= 1)
solve(x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6 + (365*x)/2 + 250/3, x)
```

```
ans =
    -1
   -1/3
    1/2
```

Set several assumptions simultaneously by using the logical operators `and`, `or`, `xor`, `not`, or their shortcuts. For example, all negative solutions less than -1 and all positive solutions greater than 1.

```matlab
assume(x < -1 | x > 1)
solve(x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6 + (365*x)/2 + 250/3, x)
```

```
ans =
     -5
     100
```

For further computations, clear the assumptions.

```matlab
assume(x,'clear')
```

Assumptions on Matrix Elements

Set assumptions on all elements of a matrix using `sym`.

Create the 3-by-3 symbolic matrix `A` with auto-generated elements. Specify the `set` as `rational`.

```matlab
A = sym('A',[3 3],'rational')
```

```
A =
    [ A1_1, A1_2, A1_3]
    [ A2_1, A2_2, A2_3]
    [ A3_1, A3_2, A3_3]
```
Return the assumptions on the elements of \(\mathbf{A} \) using `assumptions`.

```matlab
assumptions(A)
```

\[
\text{ans} = \\
[\text{in}(A3_1, \text{`rational'}), \text{in}(A2_1, \text{`rational'}), \text{in}(A1_1, \text{`rational'}), ... \\
\text{in}(A3_2, \text{`rational'}), \text{in}(A2_2, \text{`rational'}), \text{in}(A1_2, \text{`rational'}), ... \\
\text{in}(A3_3, \text{`rational'}), \text{in}(A2_3, \text{`rational'}), \text{in}(A1_3, \text{`rational'})]
\]

You can also use `assume` to set assumptions on all elements of a matrix. Assume all elements of \(\mathbf{A} \) are positive using `assume`.

```matlab
assume(A,'positive')
```

For further computations, clear the assumptions.

```matlab
assume(A,'clear')
```

Input Arguments

- **condition** — Assumption statement
 symbolic expression | symbolic equation | symbolic relation | vector or matrix of symbolic expressions, equations, or relations

 Assumption statement, specified as a symbolic expression, equation, relation, or vector or matrix of symbolic expressions, equations, or relations. You also can combine several assumptions by using the logical operators `and`, `or`, `xor`, `not`, or their shortcuts.

- **expr** — Expression to set assumption on
 symbolic variable | symbolic expression | vector or matrix of symbolic variables or expressions

 Expression to set assumption on, specified as a symbolic variable, expression, vector, or matrix. If `expr` is a vector or matrix, then `assume(expr, set)` sets an assumption that each element of `expr` belongs to `set`.

- **set** — Set of integer, rational, real, or positive numbers
 'integer' | 'rational' | 'real' | 'positive'

 Set of integer, rational, real, or positive numbers, specified as one of these strings: 'integer', 'rational', 'real', or 'positive'.

  ```matlab
  ```
More About

Tips

• **assume** removes any assumptions previously set on the symbolic variables. To retain previous assumptions while adding a new assumption, use **assumeAlso**.

• When you delete a symbolic variable from the MATLAB workspace using **clear**, all assumptions that you set on that variable remain in the symbolic engine. If you later declare a new symbolic variable with the same name, it inherits these assumptions.

• To clear all assumptions set on a symbolic variable **var**, use this command.

```matlab
assume(var,'clear')
```

• To delete all objects in the MATLAB workspace and close the MuPAD engine associated with the MATLAB workspace clearing all assumptions, use this command:

```matlab
clear all
```

• MATLAB projects complex numbers in inequalities to the real axis. If **condition** is an inequality, then both sides of the inequality must represent real values. Inequalities with complex numbers are invalid because the field of complex numbers is not an ordered field. (It is impossible to tell whether $5 + i$ is greater or less than $2 + 3i$.) For example, $x > i$ becomes $x > 0$, and $x <= 3 + 2i$ becomes $x <= 3$.

• The toolbox does not support assumptions on symbolic functions. Make assumptions on symbolic variables and expressions instead.

• When you create a new symbolic variable using **sym** and **syms**, you also can set an assumption that the variable is real, positive, integer, or rational.

```matlab
a = sym('a','real');
b = sym('b','integer');
c = sym('c','positive');
d = sym('d','positive');
e = sym('e','rational');
```

or more efficiently

```matlab
syms a real
syms b integer
syms c d positive
syms e rational
```

• “Default Assumption” on page 1-27
See Also
and | assumeAlso | assumptions | clear all | in | isAlways | not | or | sym | syms

Introduced in R2012a
assumeAlso

Add assumption on symbolic object

Syntax

```matlab
assumeAlso(condition)
assumeAlso(expr,set)
```

Description

`assumeAlso(condition)` states that `condition` is valid for all symbolic variables in `condition`. It retains all assumptions previously set on these symbolic variables.

`assumeAlso(expr,set)` states that `expr` belongs to `set`, in addition to all previously made assumptions.

Examples

Assumptions Specified as Relations

Set assumptions using `assume`. Then add more assumptions using `assumeAlso`.

Solve this equation assuming that both `x` and `y` are nonnegative.

```matlab
syms x y
assume(x >= 0 & y >= 0)
s = solve(x^2 + y^2 == 1, y)
```

Warning: The solutions are valid under the following conditions: `x <= 1; x == 1`. To include parameters and conditions in the solution, specify the 'ReturnConditions' option.

> In solve>warnIfParams at 514
> In solve at 356
s =
\begin{align*}
(1 - x)^{(1/2)}(x + 1)^{(1/2)} \\
-(1 - x)^{(1/2)}(x + 1)^{(1/2)}
\end{align*}

The solver warns that both solutions hold only under certain conditions.

Add the assumption that \(x < 1 \). To add a new assumption without removing the previous one, use \texttt{assumeAlso}.
\begin{verbatim}
assumeAlso(x < 1)
\end{verbatim}

Solve the same equation under the expanded set of assumptions.
\begin{verbatim}
s = solve(x^2 + y^2 == 1, y)
s =
(1 - x)^{(1/2)}(x + 1)^{(1/2)}
\end{verbatim}

For further computations, clear the assumptions.
\begin{verbatim}
assume([x y],'clear')
\end{verbatim}

Assumptions Specified as Sets

Set assumptions using \texttt{syms}. Then add more assumptions using \texttt{assumeAlso}.

When declaring the symbolic variable \(n \), set an assumption that \(n \) is positive.
\begin{verbatim}
syms n positive
\end{verbatim}

Using \texttt{assumeAlso}, add more assumptions on the same variable \(n \). For example, assume also that \(n \) is an integer.
\begin{verbatim}
assumeAlso(n,'integer')
\end{verbatim}

Return all assumptions affecting variable \(n \) using \texttt{assumptions}. In this case, \(n \) is a positive integer.
\begin{verbatim}
assumptions(n)
an =
[in(n, 'integer'), 0 < n]
\end{verbatim}

For further computations, clear the assumptions.
assume(n,'clear')

Assumptions on Matrix Elements

Use the assumption on a matrix as a shortcut for setting the same assumption on each matrix element.

Create the 3-by-3 symbolic matrix A with auto-generated elements. To assume every element of A is rational, specify set as 'rational'.

$A = \text{sym('A',}[3\ 3],'	ext{rational}')}$

$A =
\begin{bmatrix}
A_{1_1}, A_{1_2}, A_{1_3} \\
A_{2_1}, A_{2_2}, A_{2_3} \\
A_{3_1}, A_{3_2}, A_{3_3}
\end{bmatrix}$

Now, add the assumption that each element of A is greater than 1.

assumeAlso($A > 1$)

Return assumptions affecting elements of A using assumptions:

assumptions(A)

ans =
\begin{bmatrix}
\text{in}(A_{1_1}, '\text{rational'}), \text{in}(A_{1_2}, '\text{rational'}), \text{in}(A_{1_3}, '\text{rational'}),... \\
\text{in}(A_{2_1}, '\text{rational'}), \text{in}(A_{2_2}, '\text{rational'}), \text{in}(A_{2_3}, '\text{rational'}),... \\
\text{in}(A_{3_1}, '\text{rational'}), \text{in}(A_{3_2}, '\text{rational'}), \text{in}(A_{3_3}, '\text{rational'}),... \\
1 < A_{1_1}, 1 < A_{1_2}, 1 < A_{1_3}, 1 < A_{2_1}, 1 < A_{2_2}, 1 < A_{2_3}, 1... \\
< A_{3_1}, 1 < A_{3_2}, 1 < A_{3_3}
\end{bmatrix}$

For further computations, clear the assumptions.

assume($A', '\text{clear'}$)

Contradicting Assumptions

When you add assumptions, ensure that the new assumptions do not contradict the previous assumptions. Contradicting assumptions can lead to inconsistent and unpredictable results. In some cases, assumeAlso detects conflicting assumptions and issues an error.
Try to set contradicting assumptions. `assumeAlso` returns an error.

```matlab
syms y
assume(y,'real')
assumeAlso(y == i)

Error using mupadmex
Error in MuPAD command: Inconsistent assumptions detected. [property:::setgroup]
```

`assumeAlso` does not guarantee to detect contradicting assumptions. For example, assume that `y` is nonzero, and both `y` and `y*i` are real values.

```matlab
syms y
assume(y ~= 0)
assumeAlso(y,'real')
assumeAlso(y*i,'real')
```

Return all assumptions affecting variable `y` using `assumptions`:

```matlab
assumptions(y)
```

```matlab
ans =
[ in(y, 'real'), y ~= 0, in(y*i, 'real')]
```

For further computations, clear the assumptions.

```matlab
assume(y,'clear')
```

Input Arguments

- **condition** — Assumption statement
 - symbolic expression | symbolic equation | relation | vector or matrix of symbolic expressions, equations, or relations

 Assumption statement, specified as a symbolic expression, equation, relation, or vector or matrix of symbolic expressions, equations, or relations. You also can combine several assumptions by using the logical operators `and`, `or`, `xor`, `not`, or their shortcuts.

- **expr** — Expression to set assumption on
 - symbolic variable | symbolic expression | vector or matrix of symbolic variables or expressions
Expression to set assumption on, specified as a symbolic variable, expression, or a vector or matrix of symbolic variables or expressions. If \(\text{expr} \) is a vector or matrix, then \(\text{assumeAlso}(\text{expr, set}) \) sets an assumption that each element of \(\text{expr} \) belongs to \(\text{set} \).

\(\text{set} \) — Set of integer, rational, real, or positive numbers
\{\text{integer}, \text{rational}, \text{real}, \text{positive}\}

Set of integer, rational, real, or positive numbers, specified as one of these strings:
\{\text{integer}, \text{rational}, \text{real}, \text{positive}\}.

More About

Tips

- \text{assumeAlso} keeps all assumptions previously set on the symbolic variables. To replace previous assumptions with the new one, use \text{assume}.
- When adding assumptions, always check that a new assumption does not contradict the existing assumptions. To see existing assumptions, use \text{assumptions}. Symbolic Math Toolbox does not guarantee to detect conflicting assumptions. Conflicting assumptions can lead to unpredictable and inconsistent results.
- When you delete a symbolic variable from the MATLAB workspace using \text{clear}, all assumptions that you set on that variable remain in the symbolic engine. If later you declare a new symbolic variable with the same name, it inherits these assumptions.
- To clear all assumptions set on a symbolic variable \text{var} use this command.

 \text{assume(var,'clear')}

 To clear all objects in the MATLAB workspace and close the MuPAD engine associated with the MATLAB workspace resetting all its assumptions, use this command.

 \text{clear all}
- MATLAB projects complex numbers in inequalities to the real axis. If \text{condition} is an inequality, then both sides of the inequality must represent real values. Inequalities with complex numbers are invalid because the field of complex numbers is not an ordered field. (It is impossible to tell whether \(5 + i \) is greater or less than \(2 + 3i \).) For example, \(x > i \) becomes \(x > 0 \), and \(x <= 3 + 2i \) becomes \(x <= 3 \).
- The toolbox does not support assumptions on symbolic functions. Make assumptions on symbolic variables and expressions instead.
• Instead of adding assumptions one by one, you can set several assumptions in one function call. To set several assumptions, use `assume` and combine these assumptions by using the logical operators `and`, `or`, `xor`, `not`, `all`, `any`, or their shortcuts.

• “Default Assumption” on page 1-27

See Also

`and` | `assume` | `assumptions` | `clear all` | `in` | `isAlways` | `not` | `or` | `sym` | `syms`

Introduced in R2012a
assumptions

Show assumptions affecting symbolic variable, expression, or function

Syntax

assumptions(var)

Description

assumptions(var) returns all assumptions that affect variable var. If var is an expression or function, assumptions returns all assumptions that affect all variables in var.

assumptions returns all assumptions that affect all variables in MATLAB Workspace.

Examples

Assumptions on Variables

Assume that the variable n is an integer using assume. Return the assumption using assumptions.

syms n
assume(n,'integer')
assumptions

ans =
 in(n, 'integer')

The syntax in(n, 'integer') indicates n is an integer.

Assume that n is less than x and that x < 42 using assume. The assume function replaces old assumptions on input with the new assumptions. Return all assumptions that affect n.

syms x
assume(n<x & x<42)
assumptions(n)
ans =
[n < x, x < 42]

assumptions returns the assumption \(x < 42 \) because it affects \(n \) through the assumption \(n < x \). Thus, assumptions returns the transitive closure of assumptions, which is all assumptions that mathematically affect the input.

Set the assumption on variable \(m \) that \(1 < m < 3 \). Return all assumptions on \(m \) and \(x \) using assumptions.

syms m
assume(1<m<3)
assumptions([m x])
ans =
[1 < m, m < 3, n < x, x < 42]

To see the assumptions that affect all variables, use assumptions without any arguments.

assumptions
ans =
[n < x, x < 42, 1 < m, m < 3]

For further computations, clear the assumptions.

assume([m n x],'clear')

Multiple Assumptions on One Variable

You cannot set an additional assumption on a variable using assume because assume clears all previous assumptions on that variable. To set an additional assumption on a variable, using assumeAlso.

Set an assumption on \(x \) using assume. Set an additional assumption on \(x \) use assumeAlso. Use assumptions to return the multiple assumptions on \(x \).

syms x
assume(x,'real')
assumeAlso(x<0)
assumptions(x)
ans =
assumptions

The syntax \texttt{in(x, 'real')} indicates \(x\) is \texttt{real}.

For further computations, clear the assumptions.
\begin{verbatim}
assume(x,'clear')
\end{verbatim}

Assumptions Affecting Expressions and Functions

\texttt{assumptions} accepts symbolic expressions and functions as input and returns all assumptions that affect all variables in the symbolic expressions or functions.

Set assumptions on variables in a symbolic expression. Find all assumptions that affect all variables in the symbolic expression using \texttt{assumptions}.
\begin{verbatim}
syms a b c
expr = a*exp(b)*sin(c);
assume(a+b > 3 & in(a,'integer') & in(c,'real'))
assumptions(expr)
\end{verbatim}
\begin{verbatim}
an = [3 < a + b, in(a, 'integer'), in(c, 'real')]
\end{verbatim}

Find all assumptions that affect all variables that are inputs to a symbolic function.
\begin{verbatim}
syms f(a,b,c)
assumptions(f)
\end{verbatim}
\begin{verbatim}
an = [3 < a + b, in(a, 'integer'), in(c, 'real')]
\end{verbatim}

Clear the assumptions for further computations.
\begin{verbatim}
assume([a b c],'clear')
\end{verbatim}

Restore Old Assumptions

To restore old assumptions, first store the assumptions returned by \texttt{assumptions}. Then you can restore these assumptions at any point by calling \texttt{assume} or \texttt{assumeAlso}.

Solve the equation for a spring using \texttt{dsolve} under the assumptions that the mass and spring constant are \texttt{positive}.
\begin{verbatim}
syms m k positive
syms x(t)
\end{verbatim}
```markdown
dsolve(m*diff(x,t,t) == -k*x, x(0)==0)
ans =
C8*sin((k^(1/2)*t)/m^(1/2))

Suppose you want to explore solutions unconstrained by assumptions, but want to
restore the assumptions afterwards. First store the assumptions using `assumptions`,
then clear the assumptions and solve the equation. `dsolve` returns unconstrained
solutions.

tmp = assumptions;
assume([m k],'clear')
dsolve(m*diff(x,t,t) == -k*x, x(0)==0)
ans =
C10*exp((t*(-k*m)^(1/2))/m) + C10*exp(-(t*(-k*m)^(1/2))/m)

Restore the original assumptions using `assume`.

assume(tmp)

After computations are complete, clear assumptions using `assume`.

assume([m k],'clear')
```

Input Arguments

`var` — Symbolic input to check for assumptions
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic multidimensional array

Symbolic input for which to show assumptions, specified as a symbolic variable,
expression, or function, or a vector, matrix, or multidimensional array of symbolic
variables, expressions, or functions.

More About

Tips

- When you delete a symbolic object from the MATLAB workspace by using `clear`, all
 assumptions that you set on that object remain in the symbolic engine. If you declare
 a new symbolic variable with the same name, it inherits these assumptions.
• To clear all assumptions set on a symbolic variable `var` use this command.

```matlab
assume(var,'clear')
```

• To close the MuPAD engine associated with the MATLAB workspace resetting all its assumptions, use this command.

```matlab
reset(symengine)
```

Immediately before or after executing `reset(symengine)` you should clear all symbolic objects in the MATLAB workspace.

• To clear all objects in the MATLAB workspace and close the MuPAD engine associated with the MATLAB workspace resetting all its assumptions, use this command.

```matlab
clear all
```

• “Default Assumption” on page 1-27

See Also

`and` | `assume` | `assumeAlso` | `clear` | `clear all` | `in` | `isAlways` | `not` | `or` | `sym` | `syms`

Introduced in R2012a
atan

Symbolic inverse tangent function

Syntax

atan(X)

Description

atan(X) returns the inverse tangent function (arctangent function) of X.

Examples

Inverse Tangent Function for Numeric and Symbolic Arguments

Depending on its arguments, atan returns floating-point or exact symbolic results.

Compute the inverse tangent function for these numbers. Because these numbers are not symbolic objects, atan returns floating-point results.

A = atan([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)])

A =

<table>
<thead>
<tr>
<th></th>
<th>-0.7854</th>
<th>-0.3218</th>
<th>-0.5236</th>
<th>0.4636</th>
<th>0.7854</th>
<th>1.0472</th>
</tr>
</thead>
</table>

Compute the inverse tangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, atan returns unresolved symbolic calls.

symA = atan(sym([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)]))

symA =

[-pi/4, -atan(1/3), -pi/6, atan(1/2), pi/4, pi/3]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-0.78539816339744830961566084581988,...
-0.32175055439664219340140461435866,...
-0.523598775559829887307710723054658,...
0.46364760900080611621425623146121,...
0.78539816339744830961566084581988,...
1.0471975511965977461542144610932]

Plot Inverse Tangent Function

Plot the inverse tangent function on the interval from -10 to 10.

```matlab
syms x
ezplot(atan(x), [-10, 10])
grid on
```
Handle Expressions Containing Inverse Tangent Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `atan`.

Find the first and second derivatives of the inverse tangent function:

```matlab
syms x
diff(atan(x), x)
diff(atan(x), x, x)
```

```
ans =
1/(x^2 + 1)
```
\(\text{atan} \)

\[
\text{ans} = \frac{-2x}{(x^2 + 1)^2}
\]

Find the indefinite integral of the inverse tangent function:

\[
\text{int(atan(x), x)}
\]

\[
\text{ans} = x\tan(x) - \frac{\log(x^2 + 1)}{2}
\]

Find the Taylor series expansion of \(\text{atan}(x) \):

\[
\text{taylor(atan(x), x)}
\]

\[
\text{ans} = \frac{x^5}{5} - \frac{x^3}{3} + x
\]

Rewrite the inverse tangent function in terms of the natural logarithm:

\[
\text{rewrite(atan(x), 'log')}
\]

\[
\text{ans} = \frac{\log(1 - x*1i)*1i}{2} - \frac{\log(1 + x*1i)*1i}{2}
\]

Input Arguments

- **X** — Input
 - symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acos | acot | acsc | asec | asin | atan2 | cos | cot | csc | sec | sin | tan

Introduced before R2006a
atan2
Symbolic four-quadrant inverse tangent

Syntax
atan2(Y, X)

Description
atan2(Y, X) computes the four-quadrant inverse tangent (arctangent) of Y and X. If Y and X are vectors or matrices, atan2 computes arctangents element by element.

Input Arguments
Y
Symbolic number, variable, expression, function. The function also accepts a vector or matrix of symbolic numbers, variables, expressions, functions. If Y is a number, it must be real. If Y is a vector or matrix, it must either be a scalar or have the same dimensions as X. All numerical elements of Y must be real.

X
Symbolic number, variable, expression, function. The function also accepts a vector or matrix of symbolic numbers, variables, expressions, functions. If X is a number, it must be real. If X is a vector or matrix, it must either be a scalar or have the same dimensions as Y. All numerical elements of X must be real.

Examples
Compute the arctangents of these parameters. Because these numbers are not symbolic objects, you get floating-point results.

[atan2(1, 1), atan2(pi, 4), atan2(Inf, Inf)]
Compute the arctangents of these parameters which are converted to symbolic objects:

\[\text{atan2(sym(1), 1), atan2(sym(pi), sym(4)), atan2(Inf, sym(Inf))} \]

\[\text{ans} = [\pi/4, \text{atan}(\pi/4), \pi/4] \]

Compute the limits of this symbolic expression:

\[\begin{align*}
\text{syms } x \\
\text{limit(atan2(x^2/(1 + x), x), x, -Inf)} \\
\text{limit(atan2(x^2/(1 + x), x), x, Inf)}
\end{align*} \]

\[\text{ans} = \\
-(3\pi)/4 \\
\text{ans} = \\
\pi/4 \]

Compute the arctangents of the elements of matrices \(Y \) and \(X \):

\[Y = \text{sym}([3 \quad \text{sqrt}(3); 1 \quad 1]); \\
X = \text{sym}([\text{sqrt}(3) \quad 3; 1 \quad 0]); \\
\text{atan2}(Y, X) \]

\[\text{ans} = \\
[\pi/3, \pi/6] \\
[\pi/4, \pi/2] \]

Alternatives

For complex \(Z = X + Y*i \), the call \(\text{atan2}(Y, X) \) is equivalent to \(\text{angle}(Z) \).

More About

atan2 vs. atan

If \(X \neq \mathbf{0} \) and \(Y \neq \mathbf{0} \), then
atan2(Y, X) = atan\left(\frac{Y}{X}\right) + \frac{\pi}{2} \text{sign}(Y)(1 - \text{sign}(X))

Results returned by \texttt{atan2} belong to the closed interval \([-\pi, \pi]\). Results returned by \texttt{atan} belong to the closed interval \([-\pi/2, \pi/2]\).

Tips

- Calling \texttt{atan2} for numbers (or vectors or matrices of numbers) that are not symbolic objects invokes the MATLAB \texttt{atan2} function.
- If one of the arguments \(X\) and \(Y\) is a vector or a matrix, and another one is a scalar, then \texttt{atan2} expands the scalar into a vector or a matrix of the same length with all elements equal to that scalar.
- Symbolic arguments \(X\) and \(Y\) are assumed to be real.
- If \(X = 0\) and \(Y > 0\), then \texttt{atan2}(Y, X) returns \(\pi/2\).

 If \(X = 0\) and \(Y < 0\), then \texttt{atan2}(Y, X) returns \(-\pi/2\).

 If \(X = Y = 0\), then \texttt{atan2}(Y, X) returns 0.

See Also

\texttt{angle} | \texttt{atan} | \texttt{conj} | \texttt{imag} | \texttt{real}

Introduced in R2013a
atanh

Symbolic inverse hyperbolic tangent function

Syntax

atanh(X)

Description

atanh(X) returns the inverse hyperbolic tangent function of X.

Examples

Inverse Hyperbolic Tangent Function for Numeric and Symbolic Arguments

Depending on its arguments, atanh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic tangent function for these numbers. Because these numbers are not symbolic objects, atanh returns floating-point results.

A = atanh([-i, 0, 1/6, i/2, i, 2])

A =
 0.0000 - 0.7854i 0.0000 + 0.0000i 0.1682 + 0.0000i...
 0.0000 + 0.4636i 0.0000 + 0.7854i 0.5493 + 1.5708i

Compute the inverse hyperbolic tangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, atanh returns unresolved symbolic calls.

symA = atanh(sym([-i, 0, 1/6, i/2, i, 2]))

symA =
 [-(pi*1i)/4, 0, atanh(1/6), atanh(1i/2), (pi*1i)/4, atanh(2)]
Use `vpa` to approximate symbolic results with floating-point numbers:

```matlab
vpa(symA)
```

```
ans =
[ -0.78539816339744830961566084581988i,...
0,...
0.168236118310606465252967051085,...
0.46364760900080611621425623146121i,...
0.78539816339744830961566084581988i,...
0.54930614433405484569762261846126 - 1.5707963267948966192313216916398i]
```

Plot Inverse Hyperbolic Tangent Function

Plot the inverse hyperbolic tangent function on the interval from -1 to 1.

```matlab
syms x
ezplot(atanh(x), [-1, 1])
grid on
```
Handle Expressions Containing Inverse Hyperbolic Tangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing atanh.

Find the first and second derivatives of the inverse hyperbolic tangent function:

```matlab
syms x
diff(atanh(x), x)
diff(atanh(x), x, x)
```

```
ans =
-1/(x^2 - 1)
```
Find the indefinite integral of the inverse hyperbolic tangent function:
\[\int \text{atanh}(x) \, dx \]
\[\text{ans} = \frac{\log(x^2 - 1)}{2} + x \cdot \text{atanh}(x) \]

Find the Taylor series expansion of \text{atanh}(x):
\[\text{taylor(atanh(x), x)} \]
\[\text{ans} = \frac{x^5}{5} + \frac{x^3}{3} + x \]

Rewrite the inverse hyperbolic tangent function in terms of the natural logarithm:
\[\text{rewrite(atanh(x), 'log')} \]
\[\text{ans} = \frac{\log(x + 1)}{2} - \frac{\log(1 - x)}{2} \]

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a
bernoulli

Bernoulli numbers and polynomials

Syntax

bernoulli(n)
bernoulli(n,x)

Description

bernoulli(n) returns the nth Bernoulli number.
bernoulli(n,x) returns the nth Bernoulli polynomial.

Examples

Bernoulli Numbers with Odd and Even Indices

The 0th Bernoulli number is 1. The next Bernoulli number can be -1/2 or 1/2, depending on the definition. The bernoulli function uses -1/2. The Bernoulli numbers with even indices \(n > 1 \) alternate the signs. Any Bernoulli number with an odd index \(n > 2 \) is 0.

Compute the even-indexed Bernoulli numbers with the indices from 0 to 10. Because these indices are not symbolic objects, bernoulli returns floating-point results.
bernoulli(0:2:10)

ans =
 1.0000 0.1667 -0.0333 0.0238 -0.0333 0.0758

Compute the same Bernoulli numbers for the indices converted to symbolic objects:
bernoulli(sym(0:2:10))

ans =
[1, 1/6, -1/30, 1/42, -1/30, 5/66]

Compute the odd-indexed Bernoulli numbers with the indices from 1 to 11:
bernoulli(sym(1:2:11))

ans =
[-1/2, 0, 0, 0, 0, 0]

Bernoulli Polynomials

For the Bernoulli polynomials, use `bernoulli` with two input arguments.

Compute the first, second, and third Bernoulli polynomials in variables \(x \), \(y \), and \(z \), respectively:

```matlab
syms x y z
bernoulli(1, x)
bernoulli(2, y)
bernoulli(3, z)
```

```matlab
ans =
x - 1/2
ans =
y^2 - y + 1/6
ans =
z^3 - (3*z^2)/2 + z/2
```

If the second argument is a number, `bernoulli` evaluates the polynomial at that number. Here, the result is a floating-point number because the input arguments are not symbolic numbers:

```matlab
bernoulli(2, 1/3)
```

```matlab
ans =
-0.0556
```

To get the exact symbolic result, convert at least one of the numbers to a symbolic object:

```matlab
bernoulli(2, sym(1/3))
```

```matlab
ans =
-1/18
```

Plot Bernoulli Polynomials

Plot the first six Bernoulli polynomials.
Handle Expressions Containing Bernoulli Polynomials

Many functions, such as `diff` and `expand`, handles expressions containing `bernoulli`.
Find the first and second derivatives of the Bernoulli polynomial:

```matlab
syms n x
diff(bernoulli(n,x^2), x)

ans =
2*n*x*bernoulli(n - 1, x^2)

diff(bernoulli(n,x^2), x, x)

ans =
2*n*bernoulli(n - 1, x^2) +...
4*n*x^2*bernoulli(n - 2, x^2)*(n - 1)
```

Expand these expressions containing the Bernoulli polynomials:

```matlab
expand(bernoulli(n, x + 3))

ans =
bernoulli(n, x) + (n*(x + 1)^n)/(x + 1) +...
(n*(x + 2)^n)/(x + 2) + (n*x^n)/x

eexpand(bernoulli(n, 3*x))

ans =
(3^n*bernoulli(n, x))/3 + (3^n*bernoulli(n, x + 1/3))/3 +...
(3^n*bernoulli(n, x + 2/3))/3
```

Input Arguments

n — Index of the Bernoulli number or polynomial

- nonnegative integer
- symbolic nonnegative integer
- symbolic variable
- symbolic expression
- symbolic function
- symbolic vector
- symbolic matrix

Index of the Bernoulli number or polynomial, specified as a nonnegative integer, symbolic nonnegative integer, variable, expression, function, vector, or matrix. If `n` is a vector or matrix, `bernoulli` returns Bernoulli numbers or polynomials for each element of `n`. If one input argument is a scalar and the other one is a vector or a matrix, `bernoulli(n,x)` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

x — Polynomial variable

- symbolic variable
- symbolic expression
- symbolic function
- symbolic vector
- symbolic matrix
Polyomial variable, specified as a symbolic variable, expression, function, vector, or matrix. If \(x \) is a vector or matrix, `bernoulli` returns Bernoulli numbers or polynomials for each element of \(x \). When you use the `bernoulli` function to find Bernoulli polynomials, at least one argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, `bernoulli(n,x)` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

More About

Bernoulli Polynomials

The Bernoulli polynomials are defined as follows:

\[
\frac{te^{xt}}{e^{t} - 1} = \sum_{n=0}^{\infty} \text{bernoulli}(n, x) \frac{t^n}{n!}
\]

Bernoulli Numbers

The Bernoulli numbers are defined as follows:

\[
\text{bernoulli}(n) = \text{bernoulli}(n, 0)
\]

See Also

`euler`

Introduced in R2014a
bernstein
Bernstein polynomials

Syntax
bernstein(f,n,t)
bernstein(g,n,t)
bernstein(g,var,n,t)

Description
bernstein(f,n,t) with a function handle \(f \) returns the \(n \)th-order Bernstein polynomial
\[
\text{symsum}(\text{nchoosek}(n,k) \cdot t^k \cdot (1-t)^{(n-k)} \cdot f(k/n), k, 0, n),
\]
evaluated at the point \(t \). This polynomial approximates the function \(f \) over the interval \([0,1]\).

bernstein(g,n,t) with a symbolic expression or function \(g \) returns the \(n \)th-order Bernstein polynomial, evaluated at the point \(t \). This syntax regards \(g \) as a univariate function of the variable determined by \text{symvar}(g,1).

If any argument is symbolic, \text{bernstein} converts all arguments except a function handle to symbolic, and converts a function handle’s results to symbolic.

bernstein(g,var,n,t) with a symbolic expression or function \(g \) returns the approximating \(n \)th-order Bernstein polynomial, regarding \(g \) as a univariate function of the variable \(\text{var} \).

Examples

Approximation of Sine Function Specified as Function Handle
Approximate the sine function by the 10th- and 100th-degree Bernstein polynomials:

\[
\text{syms } t
\]
b10 = bernstein(@(t) sin(2*pi*t), 10, t);
b100 = bernstein(@(t) sin(2*pi*t), 100, t);

Plot \(\sin(2\pi t) \) and its approximations:

```matlab
ezplot(sin(2*pi*t),[0,1])
hold on
ezplot(b10,[0,1])
ezplot(b100,[0,1])

legend('sine function','10th-degree polynomial','100th-degree polynomial')
title('Bernstein polynomials')
hold off```

![Bernstein polynomials](image)
Approximation of Exponential Function Specified as Symbolic Expression

Approximate the exponential function by the second-order Bernstein polynomial in the variable \( t \):

```matlab
syms x t
bernstein(exp(x), 2, t)
```

\[
\text{ans} = (t - 1)^2 + t^2 \cdot \exp(1) - 2t \cdot \exp(1/2) \cdot (t - 1)
\]

Approximate the multivariate exponential function. When you approximate a multivariate function, `bernstein` regards it as a univariate function of the default variable determined by `symvar`. The default variable for the expression \( y \cdot \exp(x \cdot y) \) is \( x \):

```matlab
syms x y t
symvar(y*exp(x*y), 1)
```

\[
\text{ans} = x
\]

`bernstein` treats this expression as a univariate function of \( x \):

```matlab
bernstein(y*exp(x*y), 2, t)
```

\[
\text{ans} = y \cdot (t - 1)^2 + t^2 \cdot y \cdot \exp(y) - 2t \cdot y \cdot \exp(y/2) \cdot (t - 1)
\]

To treat \( y \cdot \exp(x \cdot y) \) as a function of the variable \( y \), specify the variable explicitly:

```matlab
bernstein(y*exp(x*y), y, 2, t)
```

\[
\text{ans} = t^2 \cdot \exp(x) - t \cdot \exp(x/2) \cdot (t - 1)
\]

Approximation of Linear Ramp Specified as Symbolic Function

Approximate function \( f \) representing a linear ramp by the fifth-order Bernstein polynomials in the variable \( t \):

```matlab
syms f(t)
```
\[ f(t) = \text{triangularPulse}(1/4, 3/4, \infty, t); \]
\[ p = \text{bernstein}(f, 5, t) \]
\[ p = 7t^3(t - 1)^2 - 3t^2(t - 1)^3 - 5t^4(t - 1) + t^5 \]

Simplify the result:

\[ \text{simplify}(p) \]
\[ \text{ans} = -t^2(2t - 3) \]

**Numerical Stability of Simplified Bernstein Polynomials**

When you simplify a high-order symbolic Bernstein polynomial, the result often cannot be evaluated in a numerically stable way.

Approximate this rectangular pulse function by the 100th-degree Bernstein polynomial, and then simplify the result:

\[ f = @(x)\text{rectangularPulse}(1/4, 3/4, x); \]
\[ b1 = \text{bernstein}(f, 100, \text{sym}'t')); \]
\[ b2 = \text{simplify}(b1); \]

Convert the polynomial \( b1 \) and the simplified polynomial \( b2 \) to MATLAB functions:

\[ f1 = \text{matlabFunction}(b1); \]
\[ f2 = \text{matlabFunction}(b2); \]

Compare the plot of the original rectangular pulse function, its numerically stable Bernstein representation \( f1 \), and its simplified version \( f2 \). The simplified version is not numerically stable.

\[ t = 0:0.001:1; \]
\[ \text{plot}(t, f(t), t, f1(t), t, f2(t)) \]
\[ \text{hold on} \]
\[ \text{legend('original function','Bernstein polynomial',... \]}
\[ \text{    'simplified Bernstein polynomial')} \]
\[ \text{hold off} \]
Input Arguments

\( f \) — Function to be approximated by a polynomial

function handle

Function to be approximated by a polynomial, specified as a function handle. \( f \) must accept one scalar input argument and return a scalar value.

\( g \) — Function to be approximated by a polynomial

symbolic expression  |  symbolic function
Function to be approximated by a polynomial, specified as a symbolic expression or function.

**n — Bernstein polynomial order**
nonnegative integer

Bernstein polynomial order, specified as a nonnegative number.

**t — Evaluation point**
number | symbolic number | symbolic variable | symbolic expression | symbolic function

Evaluation point, specified as a number, symbolic number, variable, expression, or function. If \( t \) is a symbolic function, the evaluation point is the mathematical expression that defines \( t \). To extract the mathematical expression defining \( t \), `bernstein` uses `formula(t)`.

**var — Free variable**
symbolic variable

Free variable, specified as a symbolic variable.

**More About**

**Bernstein Polynomials**

A Bernstein polynomial is a linear combination of Bernstein basis polynomials.

A Bernstein polynomial of degree \( n \) is defined as follows:

\[
B(t) = \sum_{k=0}^{n} \beta_k b_{k,n}(t).
\]

Here,

\[
b_{k,n}(t) = \binom{n}{k} t^k (1-t)^{n-k}, \quad k = 0,\ldots,n
\]
are the Bernstein basis polynomials, and \( \binom{n}{k} \) is a binomial coefficient.

The coefficients \( \beta_k \) are called Bernstein coefficients or Bezier coefficients.

If \( f \) is a continuous function on the interval \([0, 1]\) and

\[
B_n(f)(t) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) b_k,n(t)
\]

is the approximating Bernstein polynomial, then

\[
\lim_{n \to \infty} B_n(f)(t) = f(t)
\]

uniformly in \( t \) on the interval \([0, 1]\).

**Tips**

- Symbolic polynomials returned for symbolic \( t \) are numerically stable when substituting numerical values between 0 and 1 for \( t \).
- If you simplify a symbolic Bernstein polynomial, the result can be unstable when substituting numerical values for the curve parameter \( t \).

**See Also**

bernsteinMatrix | formula | nchoosek | symsum | symvar

**Introduced in R2013b**
bernsteinMatrix

Bernstein matrix

**Syntax**

\[ B = \text{bernsteinMatrix}(n, t) \]

**Description**

\[ B = \text{bernsteinMatrix}(n, t), \text{ where } t \text{ is a vector, returns the } \text{length}(t)\text{-by-(n+1)} \]

Bernstein matrix \( B \), such that \( B(i, k+1) = \text{nchoosek}(n, k) \times t(i)^k \times (1-t(i))^{(n-k)} \).

Here, the index \( i \) runs from 1 to \( \text{length}(t) \), and the index \( k \) runs from 0 to \( n \).

The Bernstein matrix is also called the Bezier matrix.

Use Bernstein matrices to construct Bezier curves:

\[ \text{bezierCurve} = \text{bernsteinMatrix}(n, t) \times \text{P} \]

Here, the \( n+1 \) rows of the matrix \( \text{P} \) specify the control points of the Bezier curve. For example, to construct the second-order 3-D Bezier curve, specify the control points as:

\[ \text{P} = [p0x, p0y, p0z; \ p1x, p1y, p1z; \ p2x, p2y, p2z] \]

**Examples**

**2-D Bezier Curve**

Plot the fourth-order Bezier curve specified by the control points \( p0 = [0 \ 1] \), \( p1 = [4 \ 3] \), \( p2 = [6 \ 2] \), \( p3 = [3 \ 0] \), \( p4 = [2 \ 4] \). Create a matrix with each row representing a control point:

\[ \text{P} = [0 \ 1; \ 4 \ 3; \ 6 \ 2; \ 3 \ 0; \ 2 \ 4]; \]

Compute the fourth-order Bernstein matrix \( B \):
syms t
B = bernsteinMatrix(4, t)

B =
\[
\begin{bmatrix}
(t - 1)^4, -4*t*(t - 1)^3, 6*t^2*(t - 1)^2, -4*t^3*(t - 1), t^4
\end{bmatrix}
\]

Construct the Bezier curve:

bezIerCurve = simplify(B*P)

bezIerCurve =
\[
\begin{bmatrix}
-2*t*(- 5*t^3 + 6*t^2 + 6*t - 8), 5*t^4 + 8*t^3 - 18*t^2 + 8*t + 1
\end{bmatrix}
\]

Plot the curve adding the control points to the plot:

ezplot(bezierCurve(1), bezierCurve(2), [0, 1])
hold on
scatter(P(:,1), P(:,2), 'filled')
title('Fourth-order Bezier curve')
hold off
3-D Bezier Curve

Construct the third-order Bezier curve specified by the 4-by-3 matrix \( P \) of control points. Each control point corresponds to a row of the matrix \( P \).

\[
P = \begin{bmatrix} 0 & 0 & 0; 2 & 2 & 2; 2 & -1 & 1; 6 & 1 & 3 \end{bmatrix};
\]

Compute the third-order Bernstein matrix:

```matlab
syms t
B = bernsteinMatrix(3,t)
```

\[
B =
\]
Construct the Bezier curve:

\[
\text{bezierCurve} = \text{simplify}(B*P)
\]

\[
\text{bezierCurve} = \\
[ 6*t*(t^2 - t + 1), t*(10*t^2 - 15*t + 6), 3*t*(2*t^2 - 3*t + 2) ]
\]

Plot the curve adding the control points to the plot:

\[
\text{ezplot3}(\text{bezierCurve}(1), \text{bezierCurve}(2), \text{bezierCurve}(3), [0, 1])
\]

\[
\text{hold on}
\]

\[
\text{scatter3}(P(:,1), P(:,2), P(:,3), 'filled')
\]

\[
\text{hold off}
\]
3-D Bezier Curve with Evaluation Point Specified as Vector

Construct the third-order Bezier curve with the evaluation point specified by the following 1-by-101 vector $t$:

$t = 0:1/100:1;$

Compute the third-order 101-by-4 Bernstein matrix and specify the control points:

$B = \text{bernsteinMatrix}(3,t);$  
$P = \begin{bmatrix} 0 & 0 & 0; 2 & 2 & 2; 2 & -1 & 1; 6 & 1 & 3 \end{bmatrix};$

Construct and plot the Bezier curve. Add grid lines and control points to the plot.

$\text{bezierCurve} = B*P;$  
$\text{plot3}($$\text{bezierCurve}(:,1), \text{bezierCurve}(:,2), \text{bezierCurve}(:,3))$  
$\text{hold on}$  
$\text{grid}$  
$\text{scatter3}($$P(:,1), P(:,2), P(:,3),'filled')$  
$\text{hold off}$
Input Arguments

**n — Approximation order**
nonnegative integer

Approximation order, specified as a nonnegative integer.

**t — Evaluation point**
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic vector

4-120
Evaluation point, specified as a number, symbolic number, variable, expression, or vector.

**Output Arguments**

B — Bernstein matrix
matrix

Bernstein matrix, returned as a `length(t)`-by-`n+1` matrix.

**See Also**

bernstein | nchoosek | symsum | symvar

*Introduced in R2013b*
besseli

Modified Bessel function of the first kind

Syntax

besseli(nu,z)

Description

besseli(nu,z) returns the modified Bessel function of the first kind, $I_\nu(z)$.

Input Arguments

nu

Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If nu is a vector or matrix, besseli returns the modified Bessel function of the first kind for each element of nu.

z

Symbolic number, variable, expression, or function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If z is a vector or matrix, besseli returns the modified Bessel function of the first kind for each element of z.

Examples

Solve this second-order differential equation. The solutions are the modified Bessel functions of the first and the second kind.

```matlab
syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)
```

ans =

$C_2*besseli(nu, z) + C_3*besselk(nu, z)$
Verify that the modified Bessel function of the first kind is a valid solution of the modified Bessel differential equation.

```matlab
syms nu z
isAlways(z^2*diff(besseli(nu, z), z, 2) + z*diff(besseli(nu, z), z)...
 - (z^2 + nu^2)*besseli(nu, z) == 0)
ans = 1
```

Compute the modified Bessel functions of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```matlab
[besseli(0, 5), besseli(-1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2*i)]
ans =
27.2399 + 0.0000i 1.5906 + 0.0000i 1.7951 + 0.0000i -0.1523 + 1.0992i
```

Compute the modified Bessel functions of the first kind for the numbers converted to symbolic objects. For most symbolic (exact) numbers, `besseli` returns unresolved symbolic calls.

```matlab
[besseli(sym(0), 5), besseli(sym(-1), 2),...
 besseli(1/3, sym(7/4)), besseli(sym(1), 3/2 + 2*i)]
ans =
[besseli(0, 5), besseli(1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2i)]
```

For symbolic variables and expressions, `besseli` also returns unresolved symbolic calls:

```matlab
syms x y
[besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]
ans =
[besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]
```

If the first parameter is an odd integer multiplied by $1/2$, `besseli` rewrites the Bessel functions in terms of elementary functions:

```matlab
syms x
besseli(1/2, x)
ans =
(2^(1/2)*sinh(x))/(x^(1/2)*pi^(1/2))
besseli(-1/2, x)
```
ans =
(2^(1/2)*cosh(x))/(x^(1/2)*pi^(1/2))

besseli(-3/2, x)
ans =
(2^(1/2)*(sinh(x) - cosh(x)/x))/(x^(1/2)*pi^(1/2))

besseli(5/2, x)
ans =
-(2^(1/2)*((3*cosh(x))/x - sinh(x)*(3/x^2 + 1)))/(x^(1/2)*pi^(1/2))

Differentiate the expressions involving the modified Bessel functions of the first kind:

```matlab
syms x y
diff(besseli(1, x))
```
```
diff(diff(besseli(0, x^2 + x*y - y^2), x), y)
```
```
ans =
besseli(0, x) - besseli(1, x)/x

ans =
besseli(1, x^2 + x*y - y^2) +...
(2*x + y)*(besseli(0, x^2 + x*y - y^2)*(x - 2*y) -...
(besseli(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))
```

Call `besseli` for the matrix `A` and the value 1/2. The result is a matrix of the modified Bessel functions `besseli(1/2, A(i,j))`.

```matlab
syms x
A = [-1, pi; x, 0];
besseli(1/2, A)
```
```
ans =
[(2^(1/2)*sinh(1)*1i)/pi^(1/2), (2^(1/2)*sinh(pi))/pi
[(2^(1/2)*sinh(x))/(x^(1/2)*pi^(1/2)), 0]
```

Plot the modified Bessel functions of the first kind for \( v = 0, 1, 2, 3 \):

```matlab
syms x y
for nu = [0, 1, 2, 3]
 ezplot(besseli(nu, x))
 hold on
end
```
More About

Modified Bessel Functions of the First Kind

The modified Bessel differential equation

```matlab
axis([0, 4, -0.1, 4])
grid on
ylabel('I_v(x)')
legend('I_0', 'I_1', 'I_2', 'I_3', 'Location', 'Best')
title('Modified Bessel functions of the first kind')
hold off
```
\[ z^2 \frac{d^2 w}{dz^2} + z \frac{dw}{dz} - \left( z^2 + \nu^2 \right) w = 0 \]

has two linearly independent solutions. These solutions are represented by the modified Bessel functions of the first kind, \( I_\nu(z) \), and the modified Bessel functions of the second kind, \( K_\nu(z) \):

\[ w(z) = C_1 I_\nu(z) + C_2 K_\nu(z) \]

This formula is the integral representation of the modified Bessel functions of the first kind:

\[ I_\nu(z) = \frac{(z/2)^\nu}{\sqrt{\pi} \Gamma(\nu + 1/2)} \int_0^\pi e^{z \cos(t)} \sin(2t)^{2\nu} \, dt \]

**Tips**

- Calling `besseli` for a number that is not a symbolic object invokes the MATLAB `besseli` function.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, `besseli(nu, z)` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

**References**


**See Also**

`airy` | `besselj` | `besselk` | `bessely`
Introduced in R2014a
besselj

Bessel function of the first kind

Syntax

besselj(nu,z)

Description

besselj(nu,z) returns the Bessel function of the first kind, \( J_\nu(z) \).

Input Arguments

nu

Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If \( nu \) is a vector or matrix, \( \text{besseli} \) returns the Bessel function of the first kind for each element of \( nu \).

z

Symbolic number, variable, expression, or function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If \( z \) is a vector or matrix, \( \text{besseli} \) returns the Bessel function of the first kind for each element of \( z \).

Examples

Solve this second-order differential equation. The solutions are the Bessel functions of the first and the second kind.

```matlab
syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) +(z^2 - nu^2)*w == 0)
```

ans =
\[ C2\cdot\text{besselj}(nu, z) + C3\cdot\text{bessely}(nu, z) \]
Verify that the Bessel function of the first kind is a valid solution of the Bessel differential equation:

```matlab
syms nu z
isAlways(z^2*diff(besselj(nu, z), z, 2) + z*diff(besselj(nu, z), z)...
+ (z^2 - nu^2)*besselj(nu, z) == 0)
ans =
 1
```

Compute the Bessel functions of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```matlab
[besselj(0, 5), besselj(-1, 2), besselj(1/3, 7/4),...
besselj(1, 3/2 + 2*i)]
ans =
-0.1776 + 0.0000i -0.5767 + 0.0000i 0.5496 + 0.0000i 1.6113 + 0.3982i
```

Compute the Bessel functions of the first kind for the numbers converted to symbolic objects. For most symbolic (exact) numbers, `besselj` returns unresolved symbolic calls.

```matlab
[besselj(sym(0), 5), besselj(sym(-1), 2),...
besselj(1/3, sym(7/4)), besselj(sym(1), 3/2 + 2*i)]
ans =
[besselj(0, 5), -besselj(1, 2), besselj(1/3, 7/4), besselj(1, 3/2 + 2i)]
```

For symbolic variables and expressions, `besselj` also returns unresolved symbolic calls:

```matlab
syms x y
[besselj(x, y), besselj(1, x^2), besselj(2, x - y), besselj(x^2, x*y)]
ans =
[besselj(x, y), besselj(1, x^2), besselj(2, x - y), besselj(x^2, x*y)]
```

If the first parameter is an odd integer multiplied by 1/2, `besselj` rewrites the Bessel functions in terms of elementary functions:

```matlab
syms x
besselj(1/2, x)
ans =
(2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2))
besselj(-1/2, x)
```
ans = 
(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2))

besselj(-3/2, x)

ans = 
-(2^(1/2)*(sin(x) + cos(x)/x))/(x^(1/2)*pi^(1/2))

besselj(5/2, x)

ans = 
-(2^(1/2)*((3*cos(x))/x - sin(x)*(3/x^2 - 1)))/(x^(1/2)*pi^(1/2))

Differentiate the expressions involving the Bessel functions of the first kind:

syms x y
diff(besselj(1, x))

ans =
besselj(0, x) - besselj(1, x)/x

ans =
- besselj(1, x^2 + x*y - y^2) -...
(2*x + y)*(besselj(0, x^2 + x*y - y^2)*(x - 2*y) -...
(besselj(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Call besselj for the matrix A and the value 1/2. The result is a matrix of the Bessel functions besselj(1/2, A(i,j)).

syms x
A = [-1, pi; x, 0];
besselj(1/2, A)

ans =
[    (2^(1/2)*sin(1)*1i)/pi^(1/2), 0]
[ (2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2)), 0]

Plot the Bessel functions of the first kind for ν = 0, 1, 2, 3:

syms x y
for nu = [0, 1, 2, 3]
    ezplot(besselj(nu, x), [0, 10])
    hold on
end
axis([0, 10, -0.5, 1.1])
grid on
ylabel('J_v(x)')
legend(['J_0', 'J_1', 'J_2', 'J_3', 'Location', 'Best'])
title('Bessel functions of the first kind')
hold off

More About

Bessel Functions of the First Kind

The Bessel differential equation
\[ z^2 \frac{d^2 w}{dz^2} + z \frac{dw}{dz} + \left( z^2 - \nu^2 \right) w = 0 \]

has two linearly independent solutions. These solutions are represented by the Bessel functions of the first kind, \( J_\nu(z) \), and the Bessel functions of the second kind, \( Y_\nu(z) \):

\[ w(z) = C_1 J_\nu(z) + C_2 Y_\nu(z) \]

This formula is the integral representation of the Bessel functions of the first kind:

\[ J_\nu(z) = \frac{(z/2)^\nu}{\sqrt{\pi} \Gamma(\nu + 1/2)} \int_0^\pi \cos(z \cos(t)) \sin(t)^{2\nu} \, dt \]

**Tips**

- Calling `besselj` for a number that is not a symbolic object invokes the MATLAB `besselj` function.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, `besselj(nu, z)` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

**References**


**See Also**

`airy`, `besseli`, `besselk`, `bessely`
besselk

Modified Bessel function of the second kind

Syntax

besselk(nu,z)

Description

besselk(nu,z) returns the modified Bessel function of the second kind, $K_r(z)$.

Input Arguments

nu

Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If nu is a vector or matrix, besseli returns the modified Bessel function of the second kind for each element of nu.

z

Symbolic number, variable, expression, or function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If z is a vector or matrix, besseli returns the modified Bessel function of the second kind for each element of z.

Examples

Solve this second-order differential equation. The solutions are the modified Bessel functions of the first and the second kind.

```matlab
syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)
```

ans =

$C_2*besseli(nu, z) + C_3*besselk(nu, z)$
Verify that the modified Bessel function of the second kind is a valid solution of the modified Bessel differential equation:

```matlab
syms nu z
isAlways(z^2*diff(besselk(nu, z), z, 2) + z*diff(besselk(nu, z), z)...
 - (z^2 + nu^2)*besselk(nu, z) == 0)
```

```matlab
ans =
 1
```

Compute the modified Bessel functions of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```matlab
[besselk(0, 5), besselk(-1, 2), besselk(1/3, 7/4),...
 besselk(1, 3/2 + 2*i)]
```

```matlab
ans =
 0.0037 + 0.0000i 0.1399 + 0.0000i 0.1594 + 0.0000i -0.1620 - 0.1066i
```

Compute the modified Bessel functions of the second kind for the numbers converted to symbolic objects. For most symbolic (exact) numbers, `besselk` returns unresolved symbolic calls.

```matlab
[besselk(sym(0), 5), besselk(sym(-1), 2),...
 besselk(1/3, sym(7/4)), besselk(sym(1), 3/2 + 2*i)]
```

```matlab
ans =
[besselk(0, 5), besselk(1, 2), besselk(1/3, 7/4), besselk(1, 3/2 + 2i)]
```

For symbolic variables and expressions, `besselk` also returns unresolved symbolic calls:

```matlab
syms x y
[besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]
```

```matlab
ans =
[besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]
```

If the first parameter is an odd integer multiplied by 1/2, `besselk` rewrites the Bessel functions in terms of elementary functions:

```matlab
syms x
besselk(1/2, x)
```

```matlab
ans =
(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))
```

```matlab
besselk(-1/2, x)
```
ans = 
(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))

besselk(-3/2, x)

ans = 
(2^(1/2)*pi^(1/2)*exp(-x)*(1/x + 1))/(2*x^(1/2))

besselk(5/2, x)

ans = 
(2^(1/2)*pi^(1/2)*exp(-x)*(3/x + 3/x^2 + 1))/(2*x^(1/2))

Differentiate the expressions involving the modified Bessel functions of the second kind:

```matlab
syms x y
diff(besselk(1, x))
diff(diff(besselk(0, x^2 + x*y - y^2), x), y)
```

```matlab
ans =
- besselk(1, x)/x - besselk(0, x)

ans =
(2*x + y)*(besselk(0, x^2 + x*y - y^2)*(x - 2*y) +...
(besselk(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2)) -...
besselk(1, x^2 + x*y - y^2)
```

Call `besselk` for the matrix A and the value 1/2. The result is a matrix of the modified Bessel functions `besselk(1/2, A(i,j))`.

```matlab
syms x
A = [-1, pi; x, 0];
besselk(1/2, A)
```

```matlab
ans =
[-(2^(1/2)*pi^(1/2)*exp(1)*1i)/2, (2^(1/2)*exp(-pi))/2]
[(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2)), Inf]
```

Plot the modified Bessel functions of the second kind for ν = 0, 1, 2, 3:

```matlab
syms x y
for nu = [0, 1, 2, 3]
 ezplot(besselk(nu, x))
 hold on
end```
More About

Modified Bessel Functions of the Second Kind

The modified Bessel differential equation
\[
\frac{d^2w}{dz^2} + \frac{dw}{dz} - \left(z^2 + \nu^2\right)w = 0
\]

has two linearly independent solutions. These solutions are represented by the modified Bessel functions of the first kind, \(I_\nu(z)\), and the modified Bessel functions of the second kind, \(K_\nu(z)\):

\[w(z) = C_1 I_\nu(z) + C_2 K_\nu(z)\]

The modified Bessel functions of the second kind are defined via the modified Bessel functions of the first kind:

\[K_\nu(z) = \frac{\pi/2}{\sin(\nu\pi)}(I_{-\nu}(z) - I_\nu(z))\]

Here \(I_\nu(z)\) are the modified Bessel functions of the first kind:

\[I_\nu(z) = \frac{(z/2)^\nu}{\sqrt{\pi\Gamma(\nu + 1/2)}} \int_0^\pi e^{z\cos(t)} \sin(t)^{2\nu} \, dt\]

Tips

- Calling `besselk` for a number that is not a symbolic object invokes the MATLAB `besselk` function.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, `besselk(nu, z)` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

See Also
airy | besseli | besselj | bessely

Introduced in R2014a
bessely

Bessel function of the second kind

Syntax

bessely(nu,z)

Description

bessely(nu,z) returns the Bessel function of the second kind, \(Y_\nu(z) \).

Input Arguments

nu

Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If \(\nu \) is a vector or matrix, bessely returns the Bessel function of the second kind for each element of \(\nu \).

z

Symbolic number, variable, expression, or function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If \(z \) is a vector or matrix, bessely returns the Bessel function of the second kind for each element of \(z \).

Examples

Solve this second-order differential equation. The solutions are the Bessel functions of the first and the second kind.

syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) + (z^2 - nu^2)*w == 0)

ans =
C2*besselj(nu, z) + C3*bessely(nu, z)

Verify that the Bessel function of the second kind is a valid solution of the Bessel differential equation:

syms nu z
isAlways(z^2*diff(bessely(nu, z), z, 2) + z*diff(bessely(nu, z), z)...
 + (z^2 - nu^2)*bessely(nu, z) == 0)

ans =
 1

Compute the Bessel functions of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

[bessely(0, 5), bessely(-1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2*i)]

ans =
 -0.3085 + 0.0000i 0.1070 + 0.0000i 0.2358 + 0.0000i -0.4706 + 1.5873i

Compute the Bessel functions of the second kind for the numbers converted to symbolic objects. For most symbolic (exact) numbers, bessely returns unresolved symbolic calls.

[bessely(sym(0), 5), bessely(sym(-1), 2),...
 bessely(1/3, sym(7/4)), bessely(sym(1), 3/2 + 2*i)]

ans =
 [bessely(0, 5), -bessely(1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2i)]

For symbolic variables and expressions, bessely also returns unresolved symbolic calls:

syms x y
[bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]

ans =
 [bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]

If the first parameter is an odd integer multiplied by 1/2, besseli rewrites the Bessel functions in terms of elementary functions:

syms x
bessely(1/2, x)

ans =
 -(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2))

bessely(-1/2, x)
\[
\text{bessely}(1, x)
\]
\[
\text{bessely}(0, x^2 + x \cdot y - y^2)
\]
\[
\text{bessely}(1/2, A)
\]
\[
\text{bessely}(v, x)
\]
\[
\text{ezplot(bessely(nu, x), [0, 10])}
\]

Differentiate the expressions involving the Bessel functions of the second kind:

\[
\text{syms x y}
\]
\[
\text{diff(bessely(1, x))}
\]
\[
\text{diff(diff(bessely(0, x^2 + x \cdot y - y^2), x), y)}
\]
\[
\text{ans = bessely(0, x) - bessely(1, x)/x}
\]
\[
\text{ans =}
\text{bessely(1, x^2 + x \cdot y - y^2) -...}
\text{(2}x + y)\text{*(bessely(0, x^2 + x} \cdot y - y^2)\text{)*(x - 2}y) -...}
\text{(bessely(1, x^2 + x} \cdot y - y^2)\text{)*(x - 2}y)/(x^2 + x} \cdot y - y^2)
\]

Call \text{bessely} for the matrix \(A\) and the value 1/2. The result is a matrix of the Bessel functions \text{bessely}(1/2, A(i,j)).

\[
\text{syms x}
\]
\[
A = [-1, \pi; x, 0];
\text{bessely(1/2, A)}
\]
\[
\text{ans =}
\begin{bmatrix}
(2^{(1/2)} \cdot \cos(1) \cdot 1i)/\pi^{(1/2)}, & 2^{(1/2)}/\pi \\
-(2^{(1/2)} \cdot \cos(1))/\pi^{(1/2)}, & \text{Inf}
\end{bmatrix}
\]

Plot the Bessel functions of the second kind for \(v = 0, 1, 2, 3:\)

\[
\text{syms x y}
\text{for nu = [0, 1, 2, 3]}
\text{ezplot(bessely(nu, x), [0, 10])}
\text{hold on}
\text{end}
More About

Bessel Function of the Second Kind

The Bessel differential equation

```matlab
axis([0, 10, -1, 0.6])
grid on
ylabel('Y_v(x)')
legend('Y_0', 'Y_1', 'Y_2', 'Y_3', 'Location', 'Best')
title('Bessel functions of the second kind')
hold off
```
\[z^2 \frac{d^2 w}{dz^2} + z \frac{dw}{dz} + \left(z^2 - \nu^2 \right) w = 0 \]

has two linearly independent solutions. These solutions are represented by the Bessel functions of the first kind, \(J_\nu(z) \), and the Bessel functions of the second kind, \(Y_\nu(z) \):

\[w(z) = C_1 J_\nu(z) + C_2 Y_\nu(z) \]

The Bessel functions of the second kind are defined via the Bessel functions of the first kind:

\[Y_\nu(z) = \frac{J_\nu(z) \cos(\nu\pi) - J_{-\nu}(z)}{\sin(\nu\pi)} \]

Here \(J_\nu(z) \) are the Bessel function of the first kind:

\[J_\nu(z) = \frac{(z/2)^\nu}{\sqrt{\pi} \Gamma(\nu + 1/2)} \int_0^\pi \cos(z \cos(t)) \sin(t)^{2\nu} \, dt \]

Tips

- Calling `bessely` for a number that is not a symbolic object invokes the MATLAB `bessely` function.

At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, `bessely(nu, z)` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

See Also
airy | besseli | besselj | besselk

Introduced in R2014a
beta

Beta function

Syntax

`beta(x,y)`

Description

`beta(x,y)` returns the beta function of `x` and `y`.

Input Arguments

`x`

Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If `x` is a vector or matrix, `beta` returns the beta function for each element of `x`.

`y`

Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If `y` is a vector or matrix, `beta` returns the beta function for each element of `y`.

Examples

Compute the beta function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:

```matlab
[beta(1, 5), beta(3, sqrt(2)), beta(pi, exp(1)), beta(0, 1)]
```

```ans =
   0.2000    0.1716    0.0379       Inf
```
Compute the beta function for the numbers converted to symbolic objects:

\[
[\text{beta}(\text{sym}(1), 5), \text{beta}(3, \text{sym}(2)), \text{beta}(\text{sym}(4), \text{sym}(4))]
\]

\[
\text{ans} = [\ 1/5, 1/12, 1/140]
\]

If one or both parameters are complex numbers, convert these numbers to symbolic objects:

\[
[\text{beta}(\text{sym}(i), 3/2), \text{beta}(\text{sym}(i), i), \text{beta}(\text{sym}(i + 2), 1 - i)]
\]

\[
\text{ans} = [\ (\pi^{1/2}\gamma(1i))/(2\gamma(3/2 + 1i)), \gamma(1i)^2/\gamma(2i),...
(\pi*(1/2 + 1i/2))/\sinh(\pi)]
\]

Compute the beta function for negative parameters. If one or both arguments are negative numbers, convert these numbers to symbolic objects:

\[
[\text{beta}(\text{sym}(-3), 2), \text{beta}(\text{sym}(-1/3), 2), \text{beta}(\text{sym}(-3), 4), \text{beta}(\text{sym}(-3), -2)]
\]

\[
\text{ans} = [\ 1/6, -9/2, \text{Inf}, \text{Inf}]
\]

Call `beta` for the matrix \(A \) and the value \(1 \). The result is a matrix of the beta functions \(\text{beta}(A(i,j),1) \):

\[
A = \text{sym}([1 2; 3 4]);
\text{beta}(A,1)
\]

\[
\text{ans} = [\ 1, 1/2]
[\ 1/3, 1/4]
\]

Differentiate the beta function, then substitute the variable \(t \) with the value \(2/3 \) and approximate the result using `vpa`:

\[
\text{syms t}
\text{u} = \text{diff}((\text{beta}(t^2 + 1, t))
\text{vpa}((\text{subs}(\text{u}, t, 2/3), 10))
\]

\[
\text{u} = \text{beta}(t, t^2 + 1)*(\psi(t) + 2*t*\psi(t^2 + 1) -\ldots
\psi(t^2 + t + 1)*(2*t + 1))
\]

\[
\text{ans} =
\]
Expand these beta functions:

```matlab
syms x y
expand(beta(x, y))
expand(beta(x + 1, y - 1))
```

```matlab
ans =
(gamma(x)*gamma(y))/gamma(x + y)
```

```matlab
ans =
-(x*gamma(x)*gamma(y))/(gamma(x + y) - y*gamma(x + y))
```

More About

Beta Function

This integral defines the beta function:

\[
B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
\]

Tips

- The beta function is uniquely defined for positive numbers and complex numbers with positive real parts. It is approximated for other numbers.
- Calling `beta` for numbers that are not symbolic objects invokes the MATLAB `beta` function. This function accepts real arguments only. If you want to compute the beta function for complex numbers, use `sym` to convert the numbers to symbolic objects, and then call `beta` for those symbolic objects.
- If one or both parameters are negative numbers, convert these numbers to symbolic objects using `sym`, and then call `beta` for those symbolic objects.
- If the beta function has a singularity, `beta` returns the positive infinity `Inf`.
- `beta(0, 0)` returns `NaN`.
- `beta(x,y) = beta(y,x)` and `beta(x,A) = beta(A,x)`.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, \(\text{beta}(x, y) \) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

See Also

gamma | factorial | nchoosek | psi

Introduced in R2014a
cat

Concatenate symbolic arrays along specified dimension

Syntax

\texttt{cat(dim,A1,...,AN)}

Description

\texttt{cat(dim,A1,...,AN)} concatenates the arrays \(A1,...,AN\) along dimension \(dim\). The remaining dimensions must be the same size.

Examples

Concatenate Two Vectors into Matrix

Create vectors \(A\) and \(B\).

\[
\begin{align*}
A &= \text{sym}('a%d',[1 4]) \\
B &= \text{sym}('b%d',[1 4])
\end{align*}
\]

\[
A = \\
\begin{bmatrix}
a1, a2, a3, a4
\end{bmatrix}
\]

\[
B = \\
\begin{bmatrix}
b1, b2, b3, b4
\end{bmatrix}
\]

To concatenate \(A\) and \(B\) into a matrix, specify dimension \(dim\) as 1.

\texttt{cat(1,A,B)}

\[
\begin{align*}
\text{ans} &= \\
\begin{bmatrix}
a1, a2, a3, a4 \\
b1, b2, b3, b4
\end{bmatrix}
\end{align*}
\]

Alternatively, use the syntax \([A;B]\).

\[A;B\]
Concatenate Two Vectors into One Vector

To concatenate two vectors into one vector, specify dimension \(\text{dim} \) as 2.

\[
A = \text{sym}(\text{a%d}', [1 \ 4]);
B = \text{sym}(\text{b%d}', [1 \ 4]);
cat(2, A, B)
\]

Alternatively, use the syntax \([A \ B] \).

\[
[A \ B]
\]

Concatenate Multidimensional Arrays Along Their Third Dimension

Create arrays \(A \) and \(B \).

\[
A = \text{sym}(\text{a%d%d}', [2 \ 2]);
A(:,:,2) = -A
B = \text{sym}(\text{b%d%d}', [2 \ 2]);
B(:,:,2) = -B
A(:,:,1) =
[a11, a12]
[a21, a22]
A(:,:,2) =
[-a11, -a12]
[-a21, -a22]

B(:,:,1) =
[b11, b12]
[b21, b22]
B(:,:,2) =
[-b11, -b12]
[-b21, -b22]
Concatenate A and B by specifying dimension \texttt{dim} as 3.

\begin{verbatim}
cat(3,A,B)
\end{verbatim}

\begin{verbatim}
ans(:,:,1) =
[a11, a12]
[a21, a22]
ans(:,:,2) =
[-a11, -a12]
[-a21, -a22]
ans(:,:,3) =
[b11, b12]
[b21, b22]
ans(:,:,4) =
[-b11, -b12]
[-b21, -b22]
\end{verbatim}

Input Arguments

\texttt{dim} — Dimension to concatenate arrays along
positive integer

Dimension to concatenate arrays along, specified as a positive integer.

\texttt{A1,...,AN} — Input arrays
symbolic variables | symbolic vectors | symbolic matrices | symbolic multidimensional arrays

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional arrays.

See Also

horzcat | reshape | vertcat

Introduced in R2010b
catalan

Catalan constant

Syntax

catalan

Description

catalan represents the Catalan constant. To get a floating-point approximation with the current precision set by digits, use vpa(catalan).

Examples

Approximate Catalan Constant

Find a floating-point approximation of the Catalan constant with the default number of digits and with the 10-digit precision.

Use vpa to approximate the Catalan constant with the default 32-digit precision:

vpa(catalan)

ans =
0.91596559417721901505460351493238

Set the number of digits to 10 and approximate the Catalan constant:

old = digits(10);
vpa(catalan)

ans =
0.9159655942

Restore the default number of digits:

digits(old)
More About

Catalan Constant

The Catalan constant is defined as follows:

\[
catalan = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \ldots
\]

See Also
dilog | eulergamma

Introduced in R2014a
ccode

C code representation of symbolic expression

Syntax

ccode(s)
ccode(s,'file',fileName)

Description

ccode(s) returns a fragment of C that evaluates the symbolic expression s.

ccode(s,'file',fileName) writes an “optimized” C code fragment that evaluates the symbolic expression s to the file named fileName. “Optimized” means intermediate variables are automatically generated in order to simplify the code. MATLAB generates intermediate variables as a lowercase letter t followed by an automatically generated number, for example t32.

Examples

The statements

syms x
f = taylor(log(1+x));
code(f)

return

t0 = x-(x*x)*(1.0/2.0)+(x*x*x)*(1.0/3.0)-(x*x*x*x)*(1.0/4.0)+...
(x*x*x*x*x)*(1.0/5.0);

The statements

H = sym(hilb(3));
code(H)

return
H[0][0] = 1.0;
H[0][1] = 1.0/2.0;
H[0][2] = 1.0/3.0;
H[1][0] = 1.0/2.0;
H[1][1] = 1.0/3.0;
H[1][2] = 1.0/4.0;
H[2][0] = 1.0/3.0;
H[2][1] = 1.0/4.0;
H[2][2] = 1.0/5.0;

The statements

```matlab
syms x
z = exp(-exp(-x));
code(diff(z,3),'file','ccodetest')
```

return a file named ccodetest containing the following:

```matlab
t2 = exp(-x);
t3 = exp(-t2);
t0 = t3*exp(x*(-2.0))*(-3.0)+t3*exp(x*(-3.0))+t2*t3;
```

See Also

fortran | latex | matlabFunction | pretty

Introduced before R2006a
ceil

Round symbolic matrix toward positive infinity

Syntax

\[Y = \text{ceil}(x) \]

Description

\[Y = \text{ceil}(x) \] is the matrix of the smallest integers greater than or equal to \(x \).

Examples

\[\begin{align*}
x &= \text{sym}(-5/2); \\
\text{[fix}(x) \text{ floor}(x) \text{ round}(x) \text{ ceil}(x) \text{ frac}(x)]
\end{align*} \]

\[\text{ans} = \\
\begin{bmatrix}
-2 & -3 & -3 & -2 & -1/2
\end{bmatrix}
\]

See Also

round | floor | fix | frac

Introduced before R2006a
char

Convert symbolic objects to strings

Syntax

`char(A)`

Description

`char(A)` converts a symbolic scalar or a symbolic array to a string.

Input Arguments

A

Symbolic scalar or symbolic array.

Examples

Convert symbolic expressions to strings, and then concatenate the strings:

```matlab
syms x
y = char(x^3 + x^2 + 2*x - 1);
name = [y, ' represents a polynomial expression']
```

```
name =
2*x + x^2 + x^3 - 1 represents a polynomial expression
```

Note that `char` changes the order of the terms in the resulting string.

Convert a symbolic matrix to a string:

```matlab
A = sym(hilb(3))
char(A)
```

```
A =
```

4-157
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

ans =
matrix([[1, 1/2, 1/3], [1/2, 1/3, 1/4], [1/3, 1/4, 1/5]])

More About

Tips

• char can change term ordering in an expression.

See Also

sym | double | pretty

Introduced before R2006a
charpoly

Characteristic polynomial of matrix

Syntax

charpoly(A)
charpoly(A,var)

Description

charpoly(A) returns a vector of the coefficients of the characteristic polynomial of A. If A is a symbolic matrix, charpoly returns a symbolic vector. Otherwise, it returns a vector of double-precision values.

charpoly(A,var) returns the characteristic polynomial of A in terms of var.

Input Arguments

A
Matrix.

var
Free symbolic variable.

Default: If you do not specify var, charpoly returns a vector of coefficients of the characteristic polynomial instead of returning the polynomial itself.

Examples

Compute the characteristic polynomial of the matrix A in terms of the variable x:

syms x
A = sym([1 1 0; 0 1 0; 0 0 1]);

\texttt{charpoly}(A, x)
\begin{verbatim}
an = x^3 - 3*x^2 + 3*x - 1
\end{verbatim}

To find the coefficients of the characteristic polynomial of \(A\), call \texttt{charpoly} with one argument:
\begin{verbatim}
A = sym([1 1 0; 0 1 0; 0 0 1]);
charpoly(A)
an = [1, -3, 3, -1]
\end{verbatim}

Find the coefficients of the characteristic polynomial of the symbolic matrix \(A\). For this matrix, \texttt{charpoly} returns the symbolic vector of coefficients:
\begin{verbatim}
A = sym([1 2; 3 4]);
P = charpoly(A)
P = [1, -5, -2]
\end{verbatim}

Now find the coefficients of the characteristic polynomial of the matrix \(B\), all elements of which are double-precision values. Note that in this case \texttt{charpoly} returns coefficients as double-precision values:
\begin{verbatim}
B = ([1 2; 3 4]);
P = charpoly(B)
P = 1 -5 -2
\end{verbatim}

\textbf{More About}

\textbf{Characteristic Polynomial of Matrix}

The characteristic polynomial of an \(n\)-by-\(n\) matrix \(A\) is the polynomial \(p_A(x)\), such that

\[p_A(x) = \det(xI_n - A) \]

Here \(I_n\) is the \(n\)-by-\(n\) identity matrix.
References

See Also
det | eig | jordan | minpoly | poly2sym | sym2poly

Introduced in R2012b
chebyshevT

Chebyshev polynomials of the first kind

Syntax

chebyshevT(n, x)

Description

chebyshevT(n, x) represents the nth degree Chebyshev polynomial of the first kind at the point x.

Examples

First Five Chebyshev Polynomials of the First Kind

Find the first five Chebyshev polynomials of the first kind for the variable x.

syms x
chebyshevT([0, 1, 2, 3, 4], x)

ans =
[1, x, 2*x^2 - 1, 4*x^3 - 3*x, 8*x^4 - 8*x^2 + 1]

Chebyshev Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, chebyshevT returns floating-point or exact symbolic results.

Find the value of the fifth-degree Chebyshev polynomial of the first kind at these points. Because these numbers are not symbolic objects, chebyshevT returns floating-point results.

chebyshevT(5, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])
Find the value of the fifth-degree Chebyshev polynomial of the first kind for the same numbers converted to symbolic objects. For symbolic numbers, `chebyshevT` returns exact symbolic results.

\[
\text{chebyshevT}(5, \text{sym}([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]))
\]

\[
\text{ans} = \begin{bmatrix}
361/486, & 61/64, & 241/243, & 1/2, & -118/243, & -57/64
\end{bmatrix}
\]

Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Chebyshev polynomials by direct calls of `chebyshevT` is numerically stable. However, first computing the polynomial using a symbolic variable, and then substituting variable-precision values into this expression can be numerically unstable.

Find the value of the 500th-degree Chebyshev polynomial of the first kind at \(1/3\) and `vpa(1/3)`. Floating-point evaluation is numerically stable.

\[
\text{chebyshevT}(500, 1/3)
\]
\[
\text{chebyshevT}(500, \text{vpa}(1/3))
\]

\[
\begin{align*}
\text{ans} &= 0.9631 \\
\text{ans} &= 0.963114126817085233778571286718
\end{align*}
\]

Now, find the symbolic polynomial \(T_{500} = \text{chebyshevT}(500, x)\), and substitute \(x = \text{vpa}(1/3)\) into the result. This approach is numerically unstable.

\[
\text{syms} \ x \\
\text{T500} = \text{chebyshevT}(500, x);
\]
\[
\text{subs}(\text{T500}, x, \text{vpa}(1/3))
\]

\[
\text{ans} = -3293905791337500897482813472768.0
\]

Approximate the polynomial coefficients by using `vpa`, and then substitute \(x = \text{sym}(1/3)\) into the result. This approach is also numerically unstable.
subs(vpa(T500), x, sym(1/3))

ans =
1202292431349342132757038366720.0

Plot Chebyshev Polynomials of the First Kind

Plot these five Chebyshev polynomials of the first kind.

```matlab
syms x y
for n = [0, 1, 2, 3, 4]
    ezplot(chebyshevT(n, x))
    hold on
end
hold off

axis([-1.5, 1.5, -2, 2])
grid on
ylabel('T_n(x)')
legend('T_0(x)', 'T_1(x)', 'T_2(x)', 'T_3(x)', 'T_4(x)', 'Location', 'Best')
title('Chebyshev polynomials of the first kind')
```
Input Arguments

n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.
Evaluation point, specified as a number, symbolic number, variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Chebyshev Polynomials of the First Kind

Chebyshev polynomials of the first kind are defined as \(T_n(x) = \cos(n \arccos(x)) \).

These polynomials satisfy the recursion formula

\[
T(0, x) = 1, \quad T(1, x) = x, \quad T(n, x) = 2xT(n-1, x) - T(n-2, x)
\]

Chebyshev polynomials of the first kind are orthogonal on the interval \(-1 \leq x \leq 1\) with respect to the weight function

\[
w(x) = \frac{1}{\sqrt{1-x^2}}
\]

Chebyshev polynomials of the first kind are a special case of the Jacobi polynomials

\[
T(n, x) = \frac{2^{2n} (n!)^2}{(2n)!} P\left(n, -\frac{1}{2}, -\frac{1}{2}, x\right)
\]

and Gegenbauer polynomials

\[
T(n, x) = \frac{n}{2} G(n, 0, x)
\]

Tips

- `chebyshevT` returns floating-point results for numeric arguments that are not symbolic objects.
• `chebyshevT` acts element-wise on nonscalar inputs.
• At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then `chebyshevT` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

See Also
`chebyshevU` | `gegenbauerC` | `hermiteH` | `jacobiP` | `laguerreL` | `legendreP`

Introduced in R2014b
chebyshevU

Chebyshev polynomials of the second kind

Syntax

chebyshevU(n, x)

Description

chebyshevU(n, x) represents the nth degree Chebyshev polynomial of the second kind at the point x.

Examples

First Five Chebyshev Polynomials of the Second Kind

Find the first five Chebyshev polynomials of the second kind for the variable x.

syms x
chebyshevU([0, 1, 2, 3, 4], x)

ans =
[1, 2*x, 4*x^2 - 1, 8*x^3 - 4*x, 16*x^4 - 12*x^2 + 1]

Chebyshev Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, chebyshevU returns floating-point or exact symbolic results.

Find the value of the fifth-degree Chebyshev polynomial of the second kind at these points. Because these numbers are not symbolic objects, chebyshevU returns floating-point results.

chebyshevU(5, [1/6, 1/3, 1/2, 2/3, 4/5])
Find the value of the fifth-degree Chebyshev polynomial of the second kind for the same numbers converted to symbolic objects. For symbolic numbers, `chebyshevU` returns exact symbolic results.

\[
\text{chebyshevU}(5, \text{sym}([1/6, 1/4, 1/3, 1/2, 2/3, 4/5]))
\]

\[
\begin{align*}
\text{ans} &= \\
&= [\frac{208}{243}, \frac{33}{32}, \frac{230}{243}, 0, -\frac{308}{243}, -\frac{3432}{3125}]
\end{align*}
\]

Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Chebyshev polynomials by direct calls of `chebyshevU` is numerically stable. However, first computing the polynomial using a symbolic variable, and then substituting variable-precision values into this expression can be numerically unstable.

Find the value of the 500th-degree Chebyshev polynomial of the second kind at \(1/3\) and `vpa(1/3)`. Floating-point evaluation is numerically stable.

\[
\text{chebyshevU}(500, 1/3)
\]

\[
\text{chebyshevU}(500, \text{vpa}(1/3))
\]

\[
\begin{align*}
\text{ans} &= \\
&= 0.8680
\end{align*}
\]

\[
\begin{align*}
\text{ans} &= \\
&= 0.86797529488884242798157148968078
\end{align*}
\]

Now, find the symbolic polynomial \(U_{500} = \text{chebyshevU}(500, x)\), and substitute \(x = \text{vpa}(1/3)\) into the result. This approach is numerically unstable.

\[
\text{syms } x
\]

\[
\text{U500} = \text{chebyshevU}(500, x);
\]

\[
\text{subs(U500, } x, \text{vpa}(1/3))
\]

\[
\begin{align*}
\text{ans} &= \\
&= 63080680195950160912110845952.0
\end{align*}
\]

Approximate the polynomial coefficients by using `vpa`, and then substitute \(x = \text{sym}(1/3)\) into the result. This approach is also numerically unstable.
subs(vpa(U500), x, sym(1/3))

ans =
-1878009301399851172833781612544.0

Plot Chebyshev Polynomials of the Second Kind

Plot the first five Chebyshev polynomials of the second kind.

```matlab
syms x y
for n = [0, 1, 2, 3, 4]
    ezplot(chebyshevU(n, x))
    hold on
end

hold off

axis([-1.5, 1.5, -2, 2])
grid on
ylabel('U_n(x)')
legend('U_0(x)', 'U_1(x)', 'U_2(x)', 'U_3(x)', 'U_4(x)', 'Location', 'Best')
title('Chebyshev polynomials of the second kind')
```
Input Arguments

\(n \) — Degree of polynomial

Nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.
x — Evaluation point

Evaluation point, specified as a number, symbolic number, variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

More About

Chebyshev Polynomials of the Second Kind

Chebyshev polynomials of the second kind are defined as follows:

\[
U(n, x) = \frac{\sin((n + 1)\cos(x))}{\sin(a\cos(x))}
\]

These polynomials satisfy the recursion formula

\[
U(0, x) = 1, \quad U(1, x) = 2x, \quad U(n, x) = 2xU(n - 1, x) - U(n - 2, x)
\]

Chebyshev polynomials of the second kind are orthogonal on the interval -1 ≤ x ≤ 1 with respect to the weight function

\[
w(x) = \sqrt{1 - x^2}
\]

Chebyshev polynomials of the second kind are a special case of the Jacobi polynomials

\[
U(n, x) = \frac{2^{2n}n!(n + 1)!}{(2n + 1)!}P\left(\frac{1}{2}, \frac{1}{2}, x\right)
\]

and Gegenbauer polynomials

\[
U(n, x) = G(n, 1, x)
\]
Tips

- `chebyshevU` returns floating-point results for numeric arguments that are not symbolic objects.
- `chebyshevU` acts element-wise on nonscalar inputs.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then `chebyshevU` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

See Also

`chebyshevT` | `gegenbauerC` | `hermiteH` | `jacobiP` | `laguerreL` | `legendreP`

Introduced in R2014b
children

Subexpressions or terms of symbolic expression

Syntax

children(expr)
children(A)

Description

children(expr) returns a vector containing the child subexpressions of the symbolic expression expr. For example, the child subexpressions of a sum are its terms.

children(A) returns a cell array containing the child subexpressions of each expression in A.

Input Arguments

expr
Symbolic expression, equation, or inequality.

A
Vector or matrix of symbolic expressions, equations, or inequalities.

Examples

Find the child subexpressions of this expression. Child subexpressions of a sum are its terms.

syms x y
children(x^2 + x*y + y^2)
Find the child subexpressions of this expression. This expression is also a sum, only some terms of that sum are negative.

\[
\text{children}(x^2 - x*y - y^2)
\]

\[
\text{ans} = \\
[-x*y, x^2, -y^2]
\]

The child subexpression of a variable is the variable itself:

\[
\text{children}(x)
\]

\[
\text{ans} = \\
x
\]

Create the symbolic expression using `sym`. With this approach, you do not create symbolic variables corresponding to the terms of the expression. Nevertheless, `children` finds the terms of the expression:

\[
\text{children(sym('a + b + c'))}
\]

\[
\text{ans} = \\
[a, b, c]
\]

Find the child subexpressions of this equation. The child subexpressions of an equation are the left and right sides of that equation.

\[
\text{syms x y} \\
\text{children}(x^2 + x*y == y^2 + 1)
\]

\[
\text{ans} = \\
[x^2 + y*x, y^2 + 1]
\]

Find the child subexpressions of this inequality. The child subexpressions of an inequality are the left and right sides of that inequality.

\[
\text{children(sin(x) < cos(x))}
\]

\[
\text{ans} = \\
[\sin(x), \cos(x)]
\]

Call the `children` function for this matrix. The result is the cell array containing the child subexpressions of each element of the matrix.
syms x y
s = children([x + y, sin(x)*cos(y); x^3 - y^3, exp(x*y^2)])

s =
 [1x2 sym] [1x2 sym]
 [1x2 sym] [1x1 sym]

To access the contents of cells in the cell array, use braces:

s{1:4}
ans =
[x, y]
ans =
[x^3, -y^3]
ans =
[cos(y), sin(x)]
ans =
x*y^2

See Also
coeffs | numden | subs

Introduced in R2012a
chol

Cholesky factorization

Syntax

T = chol(A)
[T,p] = chol(A)
[T,p,S] = chol(A)
[T,p,s] = chol(A,'vector')
___ = chol(A,'lower')
___ = chol(A,'nocheck')
___ = chol(A,'real')
___ = chol(A,'lower','nocheck','real')
[T,p,s] = chol(A,'lower','vector','nocheck','real')

Description

T = chol(A) returns an upper triangular matrix T, such that T'*T = A. A must be a Hermitian positive definite matrix. Otherwise, this syntax throws an error.

[T,p] = chol(A) computes the Cholesky factorization of A. This syntax does not error if A is not a Hermitian positive definite matrix. If A is a Hermitian positive definite matrix, then p is 0. Otherwise, T is sym([]), and p is a positive integer (typically, p = 1).

[T,p,S] = chol(A) returns a permutation matrix S, such that T'*T = S'*A*S, and the value p = 0 if matrix A is Hermitian positive definite. Otherwise, it returns a positive integer p and an empty object S = sym([]).

[T,p,s] = chol(A,'vector') returns the permutation information as a vector s, such that A(s,s) = T'*T. If A is not recognized as a Hermitian positive definite matrix, then p is a positive integer and s = sym([]).

___ = chol(A,'lower') returns a lower triangular matrix T, such that T*T' = A.

___ = chol(A,'nocheck') skips checking whether matrix A is Hermitian positive definite. 'nocheck' lets you compute Cholesky factorization of a matrix that contains symbolic parameters without setting additional assumptions on those parameters.
___ = chol(A, 'real') computes the Cholesky factorization of A using real arithmetic. In this case, chol computes a symmetric factorization \(A = T \cdot T \) instead of a Hermitian factorization \(A = T' \cdot T \). This approach is based on the fact that if A is real and symmetric, then \(T' \cdot T = T \cdot T \). Use 'real' to avoid complex conjugates in the result.

___ = chol(A, 'lower', 'nocheck', 'real') computes the Cholesky factorization of A with one or more of these optional arguments: 'lower', 'nocheck', and 'real'. These optional arguments can appear in any order.

\[T, p, s = chol(A, 'lower', 'vector', 'nocheck', 'real') \] computes the Cholesky factorization of A and returns the permutation information as a vector s. You can use one or more of these optional arguments: 'lower', 'nocheck', and 'real'. These optional arguments can appear in any order.

Input Arguments

A

Symbolic matrix.

'lower'

Flag that prompts chol to return a lower triangular matrix instead of an upper triangular matrix.

'vector'

Flag that prompts chol to return the permutation information in the form of a vector. To use this flag, you must specify three output arguments.

'nocheck'

Flag that prompts chol to avoid checking whether matrix A is Hermitian positive definite. Use this flag if A contains symbolic parameters, and you want to avoid additional assumptions on these parameters.

'real'

Flag that prompts chol to use real arithmetic. Use this flag if A contains symbolic parameters, and you want to avoid complex conjugates.
Output Arguments

T

Upper triangular matrix, such that $T^*T = A$, or lower triangular matrix, such that
$TT^* = A$.

p

Value 0 if A is Hermitian positive definite or if you use 'nocheck'.

If `chol` does not identify A as a Hermitian positive definite matrix, then p is a positive
integer. R is an upper triangular matrix of order $q = p - 1$, such that $R^*R = A(1:q,1:q)$.

S

Permutation matrix.

s

Permutation vector.

Examples

Compute the Cholesky factorization of the 3-by-3 Hilbert matrix. Because these numbers are not symbolic objects, you get floating-point results.

```matlab
chol(hilb(3))
```

```
ans =
   1.0000    0.5000    0.3333
        0    0.2887    0.2887
        0         0    0.0745
```

Now convert this matrix to a symbolic object, and compute the Cholesky factorization:

```matlab
chol(sym(hilb(3)))
```

```
ans =
[ 1, 1/2, 1/3]
```
Functions — Alphabetical List

[0, 3^(1/2)/6, 3^(1/2)/6]
[0, 0, 5^(1/2)/30]

Compute the Cholesky factorization of the 3-by-3 Pascal matrix returning a lower triangular matrix as a result:

\[
\text{chol(sym(pascal(3)), 'lower')}
\]

\[
\text{ans = }
\begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{bmatrix}
\]

Try to compute the Cholesky factorization of this matrix. Because this matrix is not Hermitian positive definite, chol used without output arguments or with one output argument throws an error:

\[
A = \text{sym}([1 1 1; 1 2 3; 1 3 5]);
\]

\[
T = \text{chol(A)}
\]

Error using sym/chol (line 132)
Cannot prove that input matrix is Hermitian positive definite.
Define a Hermitian positive definite matrix by setting appropriate assumptions on matrix components, or use 'nocheck' to skip checking whether the matrix is Hermitian positive definite.

To suppress the error, use two output arguments, T and p. If the matrix is not recognized as Hermitian positive definite, then this syntax assigns an empty symbolic object to T and the value 1 to p:

\[
[T,p] = \text{chol(A)}
\]

\[
T =
\begin{bmatrix}
\text{empty sym}
\end{bmatrix}
\]

\[
p = 1
\]

For a Hermitian positive definite matrix, p is 0:

\[
[T,p] = \text{chol(sym(pascal(3)))}
\]

\[
T =
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 2
\end{bmatrix}
\]
Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix returning the permutation matrix:

\[A = \text{sym(invhilb}(3)); \]
\[[T, p, S] = \text{chol}(A) \]

\[
\begin{bmatrix}
3 & -12 & 10 \\
0 & 4 \cdot 3^{(1/2)} & -5 \cdot 3^{(1/2)} \\
0 & 0 & 5^{(1/2)}
\end{bmatrix}
\]

\[p = 0 \]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix returning the permutation information as a vector:

\[A = \text{sym(invhilb}(3)); \]
\[[T, p, S] = \text{chol}(A,'vector') \]

\[
\begin{bmatrix}
3 & -12 & 10 \\
0 & 4 \cdot 3^{(1/2)} & -5 \cdot 3^{(1/2)} \\
0 & 0 & 5^{(1/2)}
\end{bmatrix}
\]

\[p = 0 \]

\[
\begin{bmatrix}
1 & 2 & 3
\end{bmatrix}
\]

Compute the Cholesky factorization of matrix \(A \) containing symbolic parameters. Without additional assumptions on the parameter \(a \), this matrix is not Hermitian. To make \text{isAlways} return logical 0 (false) for undecidable conditions, set \text{Unknown} to \text{false}.

\text{syms a}
\text{A = [a 0; 0 a]}
\text{isAlways(A == A','Unknown','false')}
By setting assumptions on \(a\) and \(b\), you can define \(A\) to be Hermitian positive definite. Therefore, you can compute the Cholesky factorization of \(A\):

```plaintext
assume(a > 0)
chol(A)
```

```plaintext
ans =
[ [ a^(1/2), 0 ],
[ 0, a^(1/2) ]
]
```

For further computations, remove the assumptions:

```plaintext
syms a clear

'nocheck' lets you skip checking whether \(A\) is a Hermitian positive definite matrix. Thus, this flag lets you compute the Cholesky factorization of a symbolic matrix without setting additional assumptions on its components:

```plaintext
A = [a 0; 0 a];
chol(A,'nocheck')
```

```plaintext
ans =
[[a^(1/2), 0],
[0, a^(1/2)]
]
```

If you use 'nocheck' for computing the Cholesky factorization of a matrix that is not Hermitian positive definite, \texttt{chol} can return a matrix \(T\) for which the identity \(T'*T = A\) does not hold. To make \texttt{isAlways} return logical \texttt{0} (false) for undecidable conditions, set Unknown to \texttt{false}.

```plaintext
T = chol(sym([1 1; 2 1]), 'nocheck')
```

```plaintext
T =
[[1, 2],
[0, 3^(1/2)*1i]
]
```

```plaintext
isAlways(A == T'*T,'Unknown',false)
```

```plaintext
ans =
[[0, 0],
[0, 0]
]
```
Compute the Cholesky factorization of this matrix. To skip checking whether it is Hermitian positive definite, use 'nocheck'. By default, chol computes a Hermitian factorization $A = T'\cdot T$. Thus, the result contains complex conjugates.

```plaintext
syms a b
A = [a b; b a];
T = chol(A, 'nocheck')
```

```
T =
[a^(1/2), conj(b)/conj(a^(1/2))]
[0, (a*abs(a) - abs(b)^2)^(1/2)/abs(a)^(1/2)]
```

To avoid complex conjugates in the result, use 'real':

```plaintext
T = chol(A, 'nocheck', 'real')
```

```
T =
[a^(1/2), b/a^(1/2)]
[0, ((a^2 - b^2)/a)^(1/2)]
```

When you use this flag, chol computes a symmetric factorization $A = T.'\cdot T$ instead of a Hermitian factorization $A = T'\cdot T$. To make isAlways return logical 0 (false) for undecidable conditions, set Unknown to false.

```plaintext
isAlways(A == T.'\cdot T)
```

```
ans =
1 1
1 1
```

```plaintext
isAlways(A == T'\cdot T,'Unknown','false')
```

```
ans =
0 0
0 0
```

**More About**

**Hermitian Positive Definite Matrix**

A square complex matrix $A$ is Hermitian positive definite if $v'\cdot A\cdot v$ is real and positive for all nonzero complex vectors $v$, where $v'$ is the conjugate transpose (Hermitian transpose) of $v$. 4-183
Cholesky Factorization of a Matrix

The Cholesky factorization of a Hermitian positive definite $n$-by-$n$ matrix $A$ is defined by an upper or lower triangular matrix with positive entries on the main diagonal. The Cholesky factorization of matrix $A$ can be defined as $T'*T = A$, where $T$ is an upper triangular matrix. Here $T'$ is the conjugate transpose of $T$. The Cholesky factorization also can be defined as $T*T' = A$, where $T$ is a lower triangular matrix. $T$ is called the Cholesky factor of $A$.

Tips

- Calling chol for numeric arguments that are not symbolic objects invokes the MATLAB chol function.
- If you use 'nocheck', then the identities $T'*T = A$ (for an upper triangular matrix $T$) and $T*T' = A$ (for a lower triangular matrix $T$) are not guaranteed to hold.
- If you use 'real', then the identities $T'*T = A$ (for an upper triangular matrix $T$) and $T*T' = A$ (for a lower triangular matrix $T$) are only guaranteed to hold for a real symmetric positive definite $A$.
- To use 'vector', you must specify three output arguments. Other flags do not require a particular number of output arguments.
- If you use 'matrix' instead of 'vector', then chol returns permutation matrices, as it does by default.
- If you use 'upper' instead of 'lower', then chol returns an upper triangular matrix, as it does by default.
- If $A$ is not a Hermitian positive definite matrix, then the syntaxes containing the argument $p$ typically return $p = 1$ and an empty symbolic object $T$.
- To check whether a matrix is Hermitian, use the operator ' (or its functional form ctranspose). Matrix $A$ is Hermitian if and only if $A' = A$, where $A'$ is the conjugate transpose of $A$.

See Also

chol | ctranspose | eig | isAlways | lu | qr | svd | transpose | vpa

Introduced in R2013a
clear all

Remove items from MATLAB workspace and reset MuPAD engine

Syntax

clear all

Description

clear all clears all objects in the MATLAB workspace and closes the MuPAD engine associated with the MATLAB workspace resetting all its assumptions.

See Also

reset

Introduced in R2008b
close

Close MuPAD notebook

Syntax

close(nb)
close(nb,'force')

Description

close(nb) closes the MuPAD notebook with the handle nb. If you modified the notebook, close(nb) brings up a dialog box asking if you want to save the changes.

close(nb,'force') closes notebook nb without prompting you to save the changes. If you modified the notebook, close(nb,'force') discards the changes.

This syntax can be helpful when you evaluate MuPAD notebooks by using evaluateMuPADNotebook. When you evaluate a notebook, MuPAD inserts results in the output regions or at least inserts the new input region at the bottom of the notebook, thus modifying the notebook. If you want to close the notebook quickly without saving such changes, use close(nb,'force').

Examples

Close One Notebook

Open and close an existing notebook.

Suppose that your current folder contains a MuPAD notebook named myFile1.mn. Open this notebook keeping its handle in the variable nb1:

nb1 = mupad('myFile1.mn');

Suppose that you finished using this notebook and now want to close it. Enter this command in the MATLAB Command Window. If you have unsaved changes in that notebook, then this command will bring up a dialog box asking if you want to save the changes.
close(nb1)

Close Several Notebooks

Use a vector of notebook handles to close several notebooks.

Suppose that your current folder contains MuPAD notebooks named `myFile1.mn` and `myFile2.mn`. Open them keeping their handles in variables `nb1` and `nb2`, respectively. Also create a new notebook with the handle `nb3`:

\begin{verbatim}
nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad
\end{verbatim}

Close `myFile1.mn` and `myFile2.mn`. If you have unsaved changes in any of these two notebooks, then this command will bring up a dialog box asking if you want to save the changes.

\begin{verbatim}
close([nb1, nb2])
\end{verbatim}

Close All Open Notebooks

Identify and close all currently open MuPAD notebooks.

Get a list of all currently open notebooks:

\begin{verbatim}
allNBs = allMuPADNotebooks;
\end{verbatim}

Close all notebooks. If you have unsaved changes in any notebook, then this command will bring up a dialog box asking if you want to save the changes.

\begin{verbatim}
close(allNBs)
\end{verbatim}

Close All Open Notebooks and Discard Modifications

Identify and close all currently open MuPAD notebooks without saving changes.
Get a list of all currently open notebooks:

```matlab
allNBs = allMuPADNotebooks;
```

Close all notebooks using the `force` flag to suppress the dialog box that offers you to save changes:

```matlab
close(allNBs, 'force')
```

- “Create MuPAD Notebooks” on page 3-3
- “Open MuPAD Notebooks” on page 3-6
- “Save MuPAD Notebooks” on page 3-12
- “Evaluate MuPAD Notebooks from MATLAB” on page 3-13
- “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25
- “Close MuPAD Notebooks from MATLAB” on page 3-16

## Input Arguments

### `nb` — Pointer to MuPAD notebook

- `handle to notebook`
- `vector of handles to notebooks`

Pointer to notebook, specified as a MuPAD notebook handle or a vector of handles. You create the notebook handle when opening a notebook with the `mupad` or `openmn` function.

You can get the list of all open notebooks using the `allMuPADNotebooks` function. `close` accepts a vector of handles returned by `allMuPADNotebooks`.

## See Also

- `allMuPADNotebooks`
- `evaluateMuPADNotebook`
- `getVar`
- `mupad`
- `mupadNotebookTitle`
- `openmn`
- `setVar`

Introduced in R2013b
coeffs

Coefficients of polynomial

Syntax

C = coeffs(p)
C = coeffs(p,var)
C = coeffs(p,vars)
[C,T] = coeffs(___)  

Description

C = coeffs(p) returns coefficients of the polynomial p with respect to all variables determined in p by symvar.

C = coeffs(p,var) returns coefficients of the polynomial p with respect to the variable var.

C = coeffs(p,vars) returns coefficients of the multivariate polynomial p with respect to the variables vars.

[C,T] = coeffs(____) returns the coefficient C and the corresponding terms T of the polynomial p.

Examples

Coefficients of Univariate Polynomial

Find the coefficients of this univariate polynomial:

```matlab
syms x
c = coeffs(16*x^2 + 19*x + 11)
c =
```
Coefficients of Multivariate Polynomial with Respect to Particular Variable

Find the coefficients of this polynomial with respect to variable $x$ and variable $y$:

```matlab
syms x y
cx = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, x)
cy = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, y)

cx =
[4*y^3, 3*y^2, 2*y, 1]

cy =
[x^3, 2*x^2, 3*x, 4]
```

Coefficients of Multivariate Polynomial with Respect to Two Variables

Find the coefficients of this polynomial with respect to both variables $x$ and $y$:

```matlab
syms x y
cxy = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [x,y])
cyx = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [y,x])

cxy =
[4, 3, 2, 1]

cyx =
[1, 2, 3, 4]
```

Coefficients and Corresponding Terms of Univariate Polynomial

Find the coefficients and the corresponding terms of this univariate polynomial:

```matlab
syms x
[c,t] = coeffs(16*x^2 + 19*x + 11)

c =
[16, 19, 11]

t =
[x^2, x, 1]
```
Coefficients and Corresponding Terms of Multivariate Polynomial

Find the coefficients and the corresponding terms of this polynomial with respect to variable x and variable y:

```matlab
syms x y
cx = [1, 2*y, 3*y^2, 4*y^3]
tx = [x^3, x^2, x, 1]
cy = [4, 3*x, 2*x^2, x^3]
ty = [y^3, y^2, y, 1]
```

Find the coefficients of this polynomial with respect to both variables x and y:

```matlab
syms x y
cxy = [1, 2, 3, 4]
txy = [x^3, x^2*y, x*y^2, y^3]
cyx = [4, 3, 2, 1]
tyx = [y^3, x*y^2, x^2*y, x^3]
```

Input Arguments

p — Polynomial
symbolic expression | symbolic function
Polynomial, specified as a symbolic expression or function.

**var — Polynomial variable**  
symbolic variable

Polynomial variable, specified as a symbolic variable.

**vars — Polynomial variables**  
vector of symbolic variables

Polynomial variables, specified as a vector of symbolic variables.

**Output Arguments**

**C — Coefficients of polynomial**  
symbolic vector | symbolic number | symbolic expression

Coefficients of polynomial, returned as a vector of symbolic numbers and expressions. If there is only one coefficient and one corresponding term, then \( C \) is returned as a scalar.

**T — Terms of polynomial**  
symbolic vector | symbolic expression | symbolic number

Terms of polynomial, returned as a vector of symbolic expressions and numbers. If there is only one coefficient and one corresponding term, then \( T \) is returned as a scalar.

**See Also**

poly2sym | sym2poly

**Introduced before R2006a**
**collect**

Collect coefficients

**Syntax**

```
collect(P)
collect(P,var)
```

**Description**

`collect(P)` rewrites `P` in terms of the powers of the default variable determined by `symvar`.

`collect(P,var)` rewrites `P` in terms of the powers of the variable `var`. If `P` is a vector or matrix, this syntax regards each element of `P` as a polynomial in `var`.

**Examples**

**Collect Coefficients in Terms of Powers of Default Variable**

Collect the coefficients of this symbolic expression:

```
syms x
collect((exp(x) + x)*(x + 2))
```

```
ans =
x^2 + (exp(x) + 2)*x + 2*exp(x)
```

Because you did not specify the variable of a polynomial, `collect` uses the default variable defined by `symvar`. For this expression, the default variable is `x`:

```
symvar((exp(x) + x)*(x + 2), 1)
```

```
ans =
```
Collect Coefficients in Terms of Powers of Particular Variable

Rewrite this symbolic expression specifying the variables in terms of which you want to collect the coefficients:

```matlab
syms x y
collect(x^2*y + y*x - x^2 - 2*x, x)
collect(x^2*y + y*x - x^2 - 2*x, y)
```

```
ans =
(y - 1)*x^2 + (y - 2)*x
ans =
(x^2 + x)*y - x^2 - 2*x
```

Collect Coefficients in Terms of Powers of i and pi

Rewrite these expressions in terms of the powers of \( i \) and \( \pi \), respectively:

```matlab
syms x y
collect(2*x*i - 3*i*y, i)
collect(x*pi*(pi - y) + x*(pi + i) + 3*pi*y, pi)
```

```
ans =
(2*x - 3*y)*1i
ans =
x*pi^2 + (x + 3*y - x*y)*pi + x*1i
```

Collect Coefficients for Each Element of Matrix

If the argument is a vector or a matrix, then `collect` rewrites each element:

```matlab
syms x y
collect([((x + 1)*(y + 1), x^2 + x*(x - y); 2*x*y - x, x*y + x/y], x)
```

```
ans =
[(y + 1)*x + y + 1, 2*x^2 - y*x]
[(2*y - 1)*x, (y + 1/y)*x]
```
Input Arguments

P — Input expression
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input expression, specified as a symbolic expression, function, vector, or matrix.

var — Variable in terms of which you collect coefficients
symbolic variable | symbolic expression

Variable in terms of which you collect the coefficients, specified as a symbolic variable or symbolic expression, such as i or pi.

See Also
combine | expand | factor | horner | numden | rewrite | simplify |
simplifyFraction | symvar

Introduced before R2006a
Colon, :  
Create symbolic vectors, array subscripting, and for-loop iterators

Syntax

\[ m:n \]
\[ m:d:n \]
\[ x:x+r \]
\[ x:d:x+r \]

Description

\[ m:n \] returns a symbolic vector of values \([m, m+1, \ldots, n]\), where \(m\) and \(n\) are symbolic constants. If \(n\) is not an increment of \(m\), then the last value of the vector stops before \(n\). This behavior holds for all syntaxes.

\[ m:d:n \] returns a symbolic vector of values \([m, m+d, \ldots, n]\), where \(d\) is a rational number.

\[ x:x+r \] returns a symbolic vector of values \([x, x+1, \ldots, x+r]\), where \(x\) is a symbolic variable and \(r\) is a rational number.

\[ x:d:x+r \] returns a symbolic vector of values \([x, x+d, \ldots, x+r]\), where \(d\) and \(r\) are rational numbers.

Examples

Create Numeric and Symbolic Arrays

Use the colon operator to create numeric and symbolic arrays. Because these inputs are not symbolic objects, you receive floating-point results.

\[ 1/2:7/2 \]

\[ \text{ans} = \]
\[ \begin{array}{cccc}
0.5000 & 1.5000 & 2.5000 & 3.5000 \\
\end{array} \]
To obtain symbolic results, convert the inputs to symbolic objects.

\[ \text{sym}(1/2):\text{sym}(7/2) \]

\[
\text{ans} = \\
[ 1/2, 3/2, 5/2, 7/2]
\]

Specify the increment used.

\[ \text{sym}(1/2):2/3:\text{sym}(7/2) \]

\[
\text{ans} = \\
[ 1/2, 7/6, 11/6, 5/2, 19/6]
\]

**Obtain Increments of Symbolic Variable**

\[
\text{syms } x \\
x:x+2
\]

\[
\text{ans} = \\
[ x, x + 1, x + 2]
\]

Specify the increment used.

\[
\text{syms } x \\
x:3/7:x+2
\]

\[
\text{ans} = \\
[ x, x + 3/7, x + 6/7, x + 9/7, x + 12/7]
\]

Obtain increments between \(x\) and \(2*x\) in intervals of \(x/3\).

\[
\text{syms } x \\
x:x/3:2*x
\]

\[
\text{ans} = \\
[ x, (4*x)/3, (5*x)/3, 2*x]
\]

**Find Product of Harmonic Series**

Find the product of the first four terms of the harmonic series.

\[
\text{syms } x \\
p = \text{sym}(1); \\
\text{for } i = x:x+3
\]
\[ p = \frac{1}{x(x + 1)(x + 2)(x + 3)} \]

Use `expand` to obtain the full polynomial.

\[ \text{expand}(p) \]

\[ \text{ans} = \frac{1}{x^4 + 6x^3 + 11x^2 + 6x} \]

Use `subs` to replace `x` with 1 and find the product in fractions.

\[ p = \text{subs}(p, x, 1) \]

\[ p = \frac{1}{24} \]

Use `vpa` to return the result as a floating-point value.

\[ \text{vpa}(p) \]

\[ \text{ans} = 0.04166666666666666666666666666667 \]

You can also perform the described operations in a single line of code.

\[ \text{vpa}(\text{subs}(\text{expand}(\text{prod}(1./x:x+3)), x, 1)) \]

\[ \text{ans} = 0.04166666666666666666666666666667 \]

**Input Arguments**

- **m** — Input
  symbolic constant

  Input, specified as a symbolic constant.

- **n** — Input
  symbolic constant
Input, specified as a symbolic constant.

\( x \) — Input  
symbolic variable

Input, specified as a symbolic variable.

\( r \) — Upper bound on vector values  
symbolic rational

Upper bound on vector values, specified as a symbolic rational. For example, \( x : x + 2 \) returns \( [ x, x + 1, x + 2 ] \).

\( d \) — Increment in vector values  
symbolic rational

Increment in vector values, specified as a symbolic rational. For example, \( x : 1/2 : x + 2 \) returns \( [ x, x + 1/2, x + 1, x + 3/2, x + 2 ] \).

See Also  
reshape

Introduced before R2006a
colspace

Column space of matrix

Syntax

B = colspace(A)

Description

B = colspace(A) returns a matrix whose columns form a basis for the column space of A. The matrix A can be symbolic or numeric.

Examples

Find the basis for the column space of this matrix:

A = sym([2,0;3,4;0,5])
B = colspace(A)

A =
[ 2, 0]
[ 3, 4]
[ 0, 5]

B =
[ 1, 0]
[ 0, 1]
[ -15/8, 5/4]

See Also
null | size

Introduced before R2006a
**combine**

Combine terms of identical algebraic structure

**Syntax**

\[ Y = \text{combine}(S) \]
\[ Y = \text{combine}(S,T) \]
\[ Y = \text{combine}(\_,\_,\text{Name},\text{Value}) \]

**Description**

\[ Y = \text{combine}(S) \] rewrites products of powers in the expression \( S \) as a single power.

\[ Y = \text{combine}(S,T) \] combines multiple calls to the target function \( T \) in the expression \( S \). Use \text{combine} to implement the inverse functionality of \text{expand} with respect to the majority of the applied rules.

\[ Y = \text{combine}(\_,\_,\text{Name},\text{Value}) \] calls \text{combine} using additional options specified by one or more \text{Name},\text{Value} pair arguments.

**Examples**

**Powers of the Same Base**

Combine powers of the same base.

```matlab
syms x y z
combine(x^y*x^z)
```

\[ \text{ans} = x^{y + z} \]

Combine powers of numeric arguments. To prevent MATLAB from evaluating the expression, use \text{sym} to convert at least one numeric argument into a symbolic value.
syms x y
combine(x^(3)*x^y*x^exp(sym(1)))

ans =
x^(y + exp(1) + 3)

Here, sym converts 1 into a symbolic value, preventing MATLAB from evaluating the expression $e^1$.

**Powers of the Same Exponent**

Combine powers with the same exponents in certain cases.

combine(sqrt(sym(2))*sqrt(3))

ans =
$6^{1/2}$

combine does not usually combine the powers because the internal simplifier applies the same rules in the opposite direction to expand the result.

syms x y
combine(y^5*x^5)

ans =
x^5*y^5

**Terms with Logarithms**

Combine terms with logarithms by specifying the target argument as log. For real positive numbers, the logarithm of a product equals the sum of the logarithms of its factors.

$S = \log(\text{sym}(2)) + \log(\text{sym}(3));$

combine(S,'log')

ans =
$\log(6)$

Try combining $\log(a) + \log(b)$. Because $a$ and $b$ are assumed to be complex numbers by default, the rule does not hold and combine does not combine the terms.
syms a b
S = log(a) + log(b);
combine(S,'log')

ans =
log(a) + log(b)

Apply the rule by setting assumptions such that \(a\) and \(b\) satisfy the conditions for the rule.

assume(a > 0)
assume(b > 0)
S = log(a) + log(b);
combine(S,'log')

ans =
log(a*b)

For future computations, clear the assumptions set on variables \(a\) and \(b\).

syms a clear
syms b clear

Alternatively, apply the rule by ignoring analytic constraints using IgnoreAnalyticConstraints.

syms a b
S = log(a) + log(b);
combine(S,'log','IgnoreAnalyticConstraints',true)

ans =
log(a*b)

**Terms with Sine and Cosine Function Calls**

Rewrite products of sine and cosine functions as a sum of the functions by setting the target argument to sincos.

syms a b
combine(sin(a)*cos(b) + sin(b)^2,'sincos')

ans =
sin(a + b)/2 - cos(2*b)/2 + sin(a - b)/2 + 1/2
Rewrite sums of sine and cosine functions by setting the target argument to sincos.

```matlab
combine(cos(a) + sin(a), 'sincos')
```

```
ans =
2^(1/2)*cos(a - pi/4)
```

`combine` does not rewrite powers of sine or cosine functions with negative integer exponents.

```matlab
syms a b
combine(sin(b)^(-2)*cos(b)^(-2), 'sincos')
```

```
ans =
1/(cos(b)^2*sin(b)^2)
```

**Exponential Terms**

Combine terms with exponents by specifying the target argument as exp.

```matlab
combine(exp(sym(3))*exp(sym(2)), 'exp')
```

```
ans =
exp(5)
```

```matlab
syms a
combine(exp(a)^3, 'exp')
```

```
ans =
exp(3*a)
```

**Terms with Integrals**

Combine terms with integrals by specifying the target argument as int.

```matlab
syms a f(x) g(x)
combine(int(f(x),x) + int(g(x),x), 'int')
combine(a*int(f(x),x), 'int')
```

```
ans =
int(f(x) + g(x), x)
ans =
int(a*f(x), x)
```
Combine integrals with the same limits.

```matlab
syms a b h(z)
combine(int(f(x),x,a,b)+int(h(z),z,a,b),'int')
```

```matlab
ans =
int(f(x) + h(x), x, a, b)
```

**Terms with Inverse Tangent Function Calls**

Combine two calls to the inverse tangent function by specifying the target argument as `atan`.

```matlab
syms a b
assume(abs(a*b) < 1)
combine(atan(a) + atan(b),'atan')
```

```matlab
ans =
atan((a + b)/(a*b - 1))
```

Combine two calls to the inverse tangent function. `combine` simplifies the expression to a symbolic value if possible.

```matlab
assume(a > 0)
combine(atan(a) + atan(1/a),'atan')
```

```matlab
ans =
pi/2
```

For further computations, clear the assumptions:

```matlab
syms a clear
syms b clear
```

**Terms with Calls to Gamma Function**

Combine multiple gamma functions by specifying the target as `gamma`.

```matlab
syms x
combine(gamma(x)*gamma(1-x), 'gamma')
```

```matlab
ans =
-pi/sin(pi*(x - 1))
```
combine simplifies quotients of gamma functions to rational expressions.

**Multiple Input Expressions in One Call**

Evaluate multiple expressions in one function call by using a symbolic matrix as the input parameter.

```matlab
S = [sqrt(sym(2))*sqrt(5), sqrt(2)*sqrt(sym(11))];
combine(S)
```

```matlab
ans =
 [10^(1/2), 22^(1/2)]
```

**Input Arguments**

- **S — Input expression**
  symbolic expression | symbolic vector | symbolic matrix | symbolic function

  Input expression, specified as a symbolic expression, function, or as a vector or matrix of symbolic expressions or functions.

  combine works recursively on subexpressions of S.

  If S is a symbolic matrix, combine is applied to all elements of the matrix.

- **T — Target function**
  'atan' | 'exp' | 'gamma' | 'int' | 'log' | 'sincos' | 'sinhcosh'

  Target function, specified as 'atan', 'exp', 'gamma', 'int', 'log', 'sincos', or 'sinhcosh'. The rewriting rules apply only to calls to the target function.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: `combine(log (a) + log (b), 'log', 'IgnoreAnalyticConstraints', true)`
'IgnoreAnalyticConstraints' — Simplification rules applied to expressions and equations
false (default) | true

Simplification rules applied to expressions and equations, specified as the comma-separated pair consisting of IgnoreAnalyticConstraints and one of these values.

<table>
<thead>
<tr>
<th>false</th>
<th>Use strict simplification rules.</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Apply purely algebraic simplifications that generally are not correct, but can give simpler results. For example, ( \log(a) + \log(b) = \log(a*b) ). This option is most useful in simplifying expressions where direct use of the solver returns complicated results. Setting IgnoreAnalyticConstraints to true can lead to wrong or incomplete results.</td>
</tr>
</tbody>
</table>

Output Arguments

Y — Expression with combined functions
symbolic variable | symbolic number | symbolic expression | symbolic vector | symbolic matrix

Expression with the combined functions, returned as a symbolic variable, number, expression, or as a vector or matrix of symbolic variables, numbers, or expressions.

More About

Algorithms

combine applies the following rewriting rules to the input expression S, depending on the value of the target argument T.

- When T = 'exp', combine applies these rewriting rules where valid,

\[ e^a e^b = e^{a+b} \]
\[(e^a)^b = e^{ab}.\]

- When \( T = '\log' \),

\[\log(a) + \log(b) = \log(ab).\]

If \( b < 1000 \),

\[b \log(a) = \log(a^b).\]

When \( b \geq 1000 \), \texttt{combine} does not apply this second rule.

The rules applied to rewrite logarithms do not hold for arbitrary complex values of \( a \) and \( b \). Specify appropriate properties for \( a \) or \( b \) to enable these rewriting rules.

- When \( T = '\int' \),

\[a \int f(x) \, dx = \int af(x) \, dx\]

\[\int f(x) \, dx + \int g(x) \, dx = \int f(x) + g(x) \, dx\]

\[\int_a^b f(x) \, dx + \int_a^b g(x) \, dx = \int_a^b f(x) + g(x) \, dx\]

\[\int_a^b f(x) \, dx + \int_a^b g(y) \, dy = \int_a^b f(y) + g(y) \, dy\]

\[\int_a^b yf(x) \, dx + \int_a^b xg(y) \, dy = \int_a^b yf(c) + xf(c) \, dc.\]

- When \( T = '\sin\cos' \),

\[\sin(x) \sin(y) = \frac{\cos(x - y)}{2} - \frac{\cos(x + y)}{2}.\]

\texttt{combine} applies similar rules for \( \sin(x) \cos(y) \) and \( \cos(x) \cos(y) \).
\[ A \cos(x) + B \sin(x) = A \sqrt{1 + \frac{B^2}{A^2}} \cos \left( x + \tan^{-1} \left( \frac{-B}{A} \right) \right). \]

- When \( T = \text{atan} \) where \( x \) and \( y \) are such that \( |xy| < 1 \),

\[ \tan(x) + \tan(y) = \tan \left( \frac{x + y}{1 - xy} \right). \]

- When \( T = \text{sinhcosh} \),

\[ \sinh(x) \sinh(y) = \frac{\cosh(x + y)}{2} - \frac{\cosh(x - y)}{2}. \]

\textit{combine} applies similar rules for \( \sinh(x) \cosh(y) \) and \( \cosh(x) \cosh(y) \).

\textit{combine} applies the previous rules recursively to powers of \( \sinh \) and \( \cosh \) with positive integral exponents.

- When \( T = \text{gamma} \),

\[ a \Gamma(a) = \Gamma(a+1). \]

and,

\[ \frac{\Gamma(a+1)}{\Gamma(a)} = a. \]

For positive integers \( n \),

\[ \Gamma(-a) \Gamma(a) = -\frac{\pi}{\sin(\pi a)}. \]

\textbf{See Also}

\textit{collect} | \textit{expand} | \textit{factor} | \textit{horner} | \textit{numden} | \textit{rewrite} | \textit{simplify} | \textit{simplifyFraction}
Introduced in R2014a
**compose**

Functional composition

**Syntax**

```latex
compose(f,g)
compose(f,g,z)
compose(f,g,x,z)
compose(f,g,x,y,z)
compose(f,g,x,y,z)
```

**Description**

**compose(f,g)** returns \( f(g(y)) \) where \( f = f(x) \) and \( g = g(y) \). Here \( x \) is the symbolic variable of \( f \) as defined by `symvar` and \( y \) is the symbolic variable of \( g \) as defined by `symvar`.

**compose(f,g,z)** returns \( f(g(z)) \) where \( f = f(x) \), \( g = g(y) \), and \( x \) and \( y \) are the symbolic variables of \( f \) and \( g \) as defined by `symvar`.

**compose(f,g,x,z)** returns \( f(g(z)) \) and makes \( x \) the independent variable for \( f \). That is, if \( f = \cos(x/t) \), then `compose(f,g,x,z)` returns \( \cos(g(z)/t) \) whereas `compose(f,g,t,z)` returns \( \cos(x/g(z)) \).

**compose(f,g,x,y,z)** returns \( f(g(z)) \) and makes \( x \) the independent variable for \( f \) and \( y \) the independent variable for \( g \). For \( f = \cos(x/t) \) and \( g = \sin(y/u) \), `compose(f,g,x,y,z)` returns \( \cos(\sin(z/u)/t) \) whereas `compose(f,g,x,u,z)` returns \( \cos(\sin(y/z)/t) \).

**Examples**

Suppose

```latex
syms x y z t u
f = 1/(1 + x^2);
g = sin(y);
h = x^t;
```
\( p = \exp(-y/u); \)

Then

\[
\begin{align*}
  a &= \text{compose}(f, g) \\
  b &= \text{compose}(f, g, t) \\
  c &= \text{compose}(h, g, x, z) \\
  d &= \text{compose}(h, g, t, z) \\
  e &= \text{compose}(h, p, x, y, z) \\
  f &= \text{compose}(h, p, t, u, z)
\end{align*}
\]

returns:

\[
\begin{align*}
  a &= 1/(\sin(y)^2 + 1) \\
  b &= 1/(\sin(t)^2 + 1) \\
  c &= \sin(z)^t \\
  d &= x^\sin(z) \\
  e &= \exp(-z/u)^t \\
  f &= x^{\exp(-y/z)}
\end{align*}
\]

**See Also**

`finverse` | `subs` | `syms`

**Introduced before R2006a**
cond

Condition number of matrix

Syntax

cond(A)
cond(A,P)

Description

cond(A) returns the 2-norm condition number of matrix A.

cond(A,P) returns the P-norm condition number of matrix A.

Input Arguments

A
Symbolic matrix.

P
One of these values 1, 2, inf, or 'fro'.

• cond(A,1) returns the 1-norm condition number.
• cond(A,2) or cond(A) returns the 2-norm condition number.
• cond(A,inf) returns the infinity norm condition number.
• cond(A,'fro') returns the Frobenius norm condition number.

Default: 2

Examples

Compute the 2-norm condition number of the inverse of the 3-by-3 magic square A:

A = inv(sym(magic(3)));
condN2 = cond(A)

condN2 = 
\( \frac{5 \times 3^{(1/2)}}{2} \)

Use \texttt{vpa} to approximate the result with 20-digit accuracy:

\texttt{vpa(condN2, 20)}

ans =
4.3301270189221932338

Compute the 1-norm condition number, the Frobenius condition number, and the infinity condition number of the inverse of the 3-by-3 magic square \( A \):

\( A = \text{inv(sym(magic(3)))}; \)
\( \text{condN1} = \text{cond(A, 1)} \)
\( \text{condNf} = \text{cond(A, 'fro')} \)
\( \text{condNi} = \text{cond(A, inf)} \)

\( \text{condN1} = 16/3 \)
\( \text{condNf} = \frac{(285^{(1/2)} \times 391^{(1/2)})}{60} \)
\( \text{condNi} = 16/3 \)

Use \texttt{vpa} to approximate these condition numbers with 20-digit accuracy:

\texttt{vpa(condN1, 20)}
\texttt{vpa(condNf, 20)}
\texttt{vpa(condNi, 20)}

ans =
5.333333333333333

ans =
5.563646885511936

ans =
5.333333333333333

Compute the condition numbers of the 3-by-3 Hilbert matrix \( H \) approximating the results with 30-digit accuracy:
H = sym(hilb(3));
condN2 = vpa(cond(H), 30)
condN1 = vpa(cond(H, 1), 30)
condNf = vpa(cond(H, 'fro'), 30)
condNi = vpa(cond(H, inf), 30)

condN2 =
524.056777586060817870782845928 +...
1.42681147881398269481283800423e-38i

condN1 =
748.0

condNf =
526.158821079719236517033364845

condNi =
748.0

Hilbert matrices are classic examples of ill-conditioned matrices.

More About

Condition Number of a Matrix

Condition number of a matrix is the ratio of the largest singular value of that matrix to the smallest singular value. The P-norm condition number of the matrix A is defined as \( \text{norm}(A,P) \times \text{norm}(\text{inv}(A),P) \), where \( \text{norm} \) is the norm of the matrix A.

Tips

• Calling \texttt{cond} for a numeric matrix that is not a symbolic object invokes the MATLAB \texttt{cond} function.

See Also
equationsToMatrix | inv | linsolve | norm | rank

Introduced in R2012b
**conj**

Symbolic complex conjugate

**Syntax**

`conj(X)`

**Description**

`conj(X)` is the complex conjugate of `X`.

For a complex `X`, `conj(X) = real(X) - i*imag(X)`.

**See Also**

`real` | `imag`

**Introduced before R2006a**
**cos**

Symbolic cosine function

**Syntax**

\[ \cos(X) \]

**Description**

\( \cos(X) \) returns the cosine function of \( X \).

**Examples**

**Cosine Function for Numeric and Symbolic Arguments**

Depending on its arguments, \( \cos \) returns floating-point or exact symbolic results.

Compute the cosine function for these numbers. Because these numbers are not symbolic objects, \( \cos \) returns floating-point results.

\[
A = \cos([-2, -\pi, \pi/6, 5\pi/7, 11])
\]

\[
A = \\
-0.4161 \quad -1.0000 \quad 0.8660 \quad -0.6235 \quad 0.0044
\]

Compute the cosine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, \( \cos \) returns unresolved symbolic calls.

\[
symA = \cos(sym([-2, -\pi, \pi/6, 5\pi/7, 11]))
\]

\[
symA = \\
[ \cos(2), \ -1, \ 3^{(1/2)}/2, \ -\cos((2\pi)/7), \ cos(11)]
\]

Use \( \text{vpa} \) to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-0.41614683654714238699756822950076,...
-1.0,...
0.86602540378443864676372317075294,...
-0.62348980185873353052500488400424,...
0.0044256979880507857483550247239416]

**Plot Cosine Function**

Plot the cosine function on the interval from $-4\pi$ to $4\pi$.

```matlab
syms x
ezplot(cos(x), [-4*pi, 4*pi])
grid on
```
Handle Expressions Containing Cosine Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `cos`.

Find the first and second derivatives of the cosine function:

```matlab
syms x
diff(cos(x), x)
diff(cos(x), x, x)
```

```matlab
ans =
-sin(x)
```
ans = -cos(x)

Find the indefinite integral of the cosine function:
int(cos(x), x)
ans = sin(x)

Find the Taylor series expansion of cos(x):
taylor(cos(x), x)
ans = x^4/24 - x^2/2 + 1

Rewrite the cosine function in terms of the exponential function:
rewrite(cos(x), 'exp')
ans = exp(-x*1i)/2 + exp(x*1i)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Cosine Function

The cosine of an angle, α, defined with reference to a right angled triangle is

\[
\cos(\alpha) = \frac{\text{adjacent side}}{\text{hypotenuse}} = \frac{b}{h}.
\]
The cosine of a complex angle, \( \alpha \), is

\[
\cos(\alpha) = \frac{e^{i\alpha} + e^{-i\alpha}}{2}.
\]

**See Also**

acos | acot | acsc | asec | asin | atan | cot | csc | sec | sin | tan

**Introduced before R2006a**
cosh

Symbolic hyperbolic cosine function

Syntax

cosh(X)

Description

cosh(X) returns the hyperbolic cosine function of X.

Examples

Hyperbolic Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, cosh returns floating-point or exact symbolic results.

Compute the hyperbolic cosine function for these numbers. Because these numbers are not symbolic objects, cosh returns floating-point results.

A = cosh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A =
   3.7622   -1.0000    0.8660   -0.6235   -0.0000

Compute the hyperbolic cosine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, cosh returns unresolved symbolic calls.

symA = cosh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))

symA =
   [ cosh(2), -1, 3^(1/2), -cosh((pi*2i)/7), 0]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ 3.7621956910836314595622134777737,...
-1.0,...
0.86602540378443864676372317075294,...
-0.62348980185873353052500488400424,...
0]

**Plot Hyperbolic Cosine Function**

Plot the hyperbolic cosine function on the interval from $-\pi$ to $\pi$.

sym x
ezplot(cosh(x), [-pi, pi])
grid on
Handle Expressions Containing Hyperbolic Cosine Function

Many functions, such as \texttt{diff}, \texttt{int}, \texttt{taylor}, and \texttt{rewrite}, can handle expressions containing \texttt{cosh}.

Find the first and second derivatives of the hyperbolic cosine function:

\begin{verbatim}
syms x
diff(cosh(x), x)
diff(cosh(x), x, x)
\end{verbatim}

\texttt{ans = sinh(x)}
cosh

ans =
cosh(x)

Find the indefinite integral of the hyperbolic cosine function:
int(cosh(x), x)
ans =
sinh(x)

Find the Taylor series expansion of $\cosh(x)$:
taylor(cosh(x), x)
ans =
x^4/24 + x^2/2 + 1

Rewrite the hyperbolic cosine function in terms of the exponential function:
rewrite(cosh(x), 'exp')
ans =
exp(-x)/2 + exp(x)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | coth | csch | sech | sinh | tanh

Introduced before R2006a
**coshint**

Hyperbolic cosine integral function

**Syntax**

coshint(X)

**Description**

coshint(X) returns the hyperbolic cosine integral function of X.

**Examples**

**Hyperbolic Cosine Integral Function for Numeric and Symbolic Arguments**

Depending on its arguments, coshint returns floating-point or exact symbolic results.

Compute the hyperbolic cosine integral function for these numbers. Because these numbers are not symbolic objects, coshint returns floating-point results.

\[ \text{A} = \text{coshint}([-1, 0, 1/2, 1, \pi/2, \pi]) \]

\[ \text{A} = \begin{array}{cccc}
0.8379 + 3.1416i & -\text{Inf} + 0.0000i & -0.0528 + 0.0000i & 0.8379... \\
+ 0.0000i & 1.7127 + 0.0000i & 5.4587 + 0.0000i \\
\end{array} \]

Compute the hyperbolic cosine integral function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, coshint returns unresolved symbolic calls.

\[ \text{symA} = \text{coshint}(\text{sym}([-1, 0, 1/2, 1, \pi/2, \pi])) \]

\[ \text{symA} = \begin{array}{cccc}
\text{coshint}(1) + \pi*1i, & -\text{Inf}, & \text{coshint}(1/2), & \text{coshint}(1), \text{coshint}(\pi/2), \text{coshint}(\pi) \\
\end{array} \]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ 0.83786694098020824089467857943576...
 + 3.1415926535897932384626433832795i,...
-Inf,...
-0.052776844956493615913136063326141,...
0.83786694098020824089467857943576,...
1.71266073648442810799515698977796,...
5.4587340442160681980014878977798]

**Plot Hyperbolic Cosine Integral Function**

Plot the hyperbolic cosine integral function on the interval from 0 to $2\pi$.

```matlab
syms x
ezplot(coshint(x), [0, 2*pi])
grid on
```
Handle Expressions Containing Hyperbolic Cosine Integral Function

Many functions, such as `diff` and `int`, can handle expressions containing `coshint`.

Find the first and second derivatives of the hyperbolic cosine integral function:

```plaintext
syms x
diff(coshint(x), x)
diff(coshint(x), x, x)
```

```plaintext
ans =
cosh(x)/x
```

```plaintext
ans =
```
\[ \frac{\sinh(x)}{x} - \frac{\cosh(x)}{x^2} \]

Find the indefinite integral of the hyperbolic cosine integral function:

\[ \text{int}(\text{coshint}(x), \ x) \]

\[ \text{ans} = \]
\[ x \cdot \text{coshint}(x) - \sinh(x) \]

**Input Arguments**

\( X \) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

**More About**

**Hyperbolic Cosine Integral Function**

The hyperbolic cosine integral function is defined as follows:

\[ \text{Chi}(x) = \gamma + \log(x) + \int_{0}^{x} \frac{\cosh(t) - 1}{t} dt \]

Here, \( \gamma \) is the Euler-Mascheroni constant:

\[ \gamma = \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right) \]

**References**

See Also

cos | cosint | eulergamma | int | sinhint | sinint | ssinint

Introduced in R2014a
cosint

Cosine integral function

Syntax

```matlab
cosint(X)
```

Description

`cosint(X)` returns the cosine integral function of `X`.

Examples

**Cosine Integral Function for Numeric and Symbolic Arguments**

Depending on its arguments, `cosint` returns floating-point or exact symbolic results.

Compute the cosine integral function for these numbers. Because these numbers are not symbolic objects, `cosint` returns floating-point results.

```matlab
A = cosint([-1, 0, pi/2, pi, 1])
```

```
A =
 0.3374 + 3.1416i -Inf + 0.0000i 0.4720 + 0.0000i...
 0.0737 + 0.0000i 0.3374 + 0.0000i
```

Compute the cosine integral function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, `cosint` returns unresolved symbolic calls.

```matlab
symA = cosint(sym([-1, 0, pi/2, pi, 1]))
```

```
symA =
[cosint(1) + pi*1i, -Inf, cosint(pi/2), cosint(pi), cosint(1)]
```

Use `vpa` to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ 0.33740392290096813466264620388915...
+ 3.1415926535897932384626433832795i,...
-Inf,...
0.4720065143956865077760610761413,...
0.07366791204642548599010096523015,...
0.33740392290096813466264620388915]

**Plot Cosine Integral Function**

Plot the cosine integral function on the interval from 0 to 4*π.

```matlab
syms x
ezplot(cosint(x), [0, 4*pi])
grid on
```
Handle Expressions Containing Cosine Integral Function

Many functions, such as diff and int, can handle expressions containing cosint.

Find the first and second derivatives of the cosine integral function:

```matlab
syms x
diff(cosint(x), x)
diff(cosint(x), x, x)

ans =
cos(x)/x

ans =
```
- \( \cos(x)/x^2 - \sin(x)/x \)

Find the indefinite integral of the cosine integral function:

\[
\int \text{cosint}(x), x) \n\]

\[
\text{ans} = x \cdot \text{cosint}(x) - \sin(x) \n\]

**Input Arguments**

\( X \) — Input  
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix  

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

**More About**

**Cosine Integral Function**

The cosine integral function is defined as follows:

\[
\text{Ci}(x) = \gamma + \log(x) + \int_0^x \frac{\cos(t) - 1}{t} \, dt 
\]

Here, \( \gamma \) is the Euler-Mascheroni constant:

\[
\gamma = \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right) 
\]

**References**

*Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.* (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
See Also

cos | coshint | eulergamma | int | sinhint | sinint | ssinint

Introduced before R2006a
**cot**

Symbolic cotangent function

**Syntax**

cot(X)

**Description**

cot(X) returns the cotangent function of X.

**Examples**

**Cotangent Function for Numeric and Symbolic Arguments**

Depending on its arguments, cot returns floating-point or exact symbolic results.

Compute the cotangent function for these numbers. Because these numbers are not symbolic objects, cot returns floating-point results.

A = cot([-2, -pi/2, pi/6, 5*pi/7, 11])

A =
    0.4577   -0.0000    1.7321   -0.7975   -0.0044

Compute the cotangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, cot returns unresolved symbolic calls.

symA = cot(sym([-2, -pi/2, pi/6, 5*pi/7, 11]))

symA =
[ -cot(2), 0, 3^(1/2), -cot((2*pi)/7), cot(11)]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ 0.45765755436028576375027741043205,...
  0,...
  1.7320508075688772935274463415059,...
 -0.79747338888240396141568825421443,...
 -0.0044257413313241136855482762848043]

**Plot Cotangent Function**

Plot the cotangent function on the interval from $-\pi$ to $\pi$.

```matlab
syms x
ezplot(cot(x), [-pi, pi])
grid on
```
Handle Expressions Containing Cotangent Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `cot`.

Find the first and second derivatives of the cotangent function:

```matlab
syms x
diff(cot(x), x)
diff(cot(x), x, x)
```

```matlab
ans =
- cot(x)^2 - 1
```
\begin{align*}
\text{ans} &= 2 \cdot \cot(x) \cdot (\cot(x)^2 + 1) \\
& \text{Find the indefinite integral of the cotangent function:} \\
\text{int}(\cot(x), x) \\
\text{ans} &= \log(\sin(x)) \\
& \text{Find the Taylor series expansion of } \cot(x) \text{ around } x = \frac{\pi}{2}: \\
\text{taylor}(\cot(x), x, \frac{\pi}{2}) \\
\text{ans} &= \frac{\pi}{2} - x - (x - \frac{\pi}{2})^3/3 - \frac{(2)(x - \frac{\pi}{2})^5}{15} \\
& \text{Rewrite the cotangent function in terms of the sine and cosine functions:} \\
\text{rewrite}(\cot(x), '\text{sincos}') \\
\text{ans} &= \frac{\cos(x)}{\sin(x)} \\
& \text{Rewrite the cotangent function in terms of the exponential function:} \\
\text{rewrite}(\cot(x), '\text{exp}') \\
\text{ans} &= \frac{(\exp(x \cdot 2i) \cdot 1i + 1i)}{(\exp(x \cdot 2i) - 1)} \\
\end{align*}

\textbf{Input Arguments}

\textbf{X — Input} \\
\text{symbolic number} | \text{symbolic variable} | \text{symbolic expression} | \text{symbolic function} | \text{symbolic vector} | \text{symbolic matrix} \\

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

\textbf{More About}

\textbf{Cotangent Function} \\
The cotangent of an angle, $\alpha$, defined with reference to a right angled triangle is
The cotangent of a complex angle \( \alpha \) is

\[
\cot(\alpha) = \frac{e^{i\alpha} + e^{-i\alpha}}{e^{i\alpha} - e^{-i\alpha}}.
\]
See Also
acos | acot | acsc | asec | asin | atan | cos | csc | sec | sin | tan

Introduced before R2006a
**coth**

Symbolic hyperbolic cotangent function

**Syntax**

coth(X)

**Description**

coth(X) returns the hyperbolic cotangent function of X

**Examples**

**Hyperbolic Cotangent Function for Numeric and Symbolic Arguments**

Depending on its arguments, coth returns floating-point or exact symbolic results.

Compute the hyperbolic cotangent function for these numbers. Because these numbers are not symbolic objects, coth returns floating-point results.

A = coth([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A =

-1.0373 + 0.0000i   0.0000 + 0.5774i   0.0000 - 1.7321i...
0.0000 + 0.7975i   0.0000 - 0.0000i

Compute the hyperbolic cotangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, coth returns unresolved symbolic calls.

symA = coth(sym([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2]))

symA =

[ -coth(2), (3^(1/2)*1i)/3, -3^(1/2)*1i, -coth((pi*2i)/7), 0]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ -1.0373147207275480958778097647678,...
0.57735026918962576450914878050196i,...
-1.7320508075688772935274463415059i,...
0.7974733888240396141568825421443i,...
0]

**Plot Hyperbolic Cotangent Function**

Plot the hyperbolic cotangent function on the interval from -10 to 10.

syms x
ezplot(coth(x), [-10, 10])
grid on
Handle Expressions Containing Hyperbolic Cotangent Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `coth`.

Find the first and second derivatives of the hyperbolic cotangent function:

```matlab
syms x
diff(coth(x), x)
diff(coth(x), x, x)
```

```matlab
ans =
1 - coth(x)^2
```
\[
\text{ans} = 2\coth(x)(\coth(x)^2 - 1)
\]

Find the indefinite integral of the hyperbolic cotangent function:
\[
\int \coth(x) \, dx
\]
\[
\text{ans} = \log(\sinh(x))
\]

Find the Taylor series expansion of \(\coth(x)\) around \(x = \pi i/2\):
\[
\text{taylor(\coth(x), x, \pi i/2)}
\]
\[
\text{ans} = x - (\pi i/2) - (x - (\pi i/2))^3/3 + (2(x - (\pi i/2)^5)/15
\]

Rewrite the hyperbolic cotangent function in terms of the exponential function:
\[
\text{rewrite(\coth(x), 'exp')}
\]
\[
\text{ans} = (\exp(2x) + 1)/(\exp(2x) - 1)
\]

### Input Arguments

\(X\) — Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

### See Also

acosh | acoth | acsch | asech | asinh | atanh | cosh | csch | sech | sinh | tanh

Introduced before R2006a
**csc**

Symbolic cosecant function

**Syntax**

csc(X)

**Description**

csc(X) returns the cosecant function of X.

**Examples**

**Cosecant Function for Numeric and Symbolic Arguments**

Depending on its arguments, csc returns floating-point or exact symbolic results.

Compute the cosecant function for these numbers. Because these numbers are not symbolic objects, csc returns floating-point results.

A = csc([-2, -pi/2, pi/6, 5*pi/7, 11])

A =
-1.0998   -1.0000    2.0000    1.2790   -1.0000

Compute the cosecant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, csc returns unresolved symbolic calls.

symA = csc(sym([-2, -pi/2, pi/6, 5*pi/7, 11]))

symA =
[ -1/sin(2), -1, 2, 1/sin((2*pi)/7), 1/sin(11)]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ -1.0997501702946164667566973970263,...
-1.0,...
2.0,...
1.279048007689326057478506072714,...
-1.000097935452091313874644503551]

**Plot Cosecant Function**

Plot the cosecant function on the interval from \(-4\pi\) to \(4\pi\).

```matlab
syms x
ezplot(csc(x), [-4*pi, 4*pi])
grid on
```
Handle Expressions Containing Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing csc.

Find the first and second derivatives of the cosecant function:

```syms x
diff(csc(x), x)
diff(csc(x), x, x)
```

```
ans =
-cos(x)/sin(x)^2
```
\[
\text{ans} = \frac{1}{\sin(x)} + \frac{2\cos(x)^2}{\sin(x)^3}
\]

Find the indefinite integral of the cosecant function:

\[
\int \csc(x) \, dx
\]

\[
\text{ans} = \log(\tan(x/2))
\]

Find the Taylor series expansion of \(\csc(x)\) around \(x = \pi/2\):

\[
\text{taylor}(\csc(x), x, \pi/2)
\]

\[
\text{ans} = (x - \pi/2)^2/2 + (5(x - \pi/2)^4)/24 + 1
\]

Rewrite the cosecant function in terms of the exponential function:

\[
\text{rewrite}(\csc(x), '\exp')
\]

\[
\text{ans} = \frac{1}{((\exp(-x*1i)*1i)/2 - (\exp(x*1i)*1i)/2)}
\]

**Input Arguments**

\(X\) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

**More About**

**Cosecant Function**

The cosecant of an angle, \(\alpha\), defined with reference to a right angled triangle is

\[
csc(\alpha) = \frac{1}{\sin(\alpha)} = \frac{\text{hypotenuse}}{\text{opposite side}} = \frac{h}{a}.
\]
The cosecant of a complex angle, $\alpha$, is

$$\csc(\alpha) = \frac{2i}{e^{i\alpha} - e^{-i\alpha}}.$$

**See Also**

acos | acot | acsc | asec | asin | atan | cos | cot | csc | sin | tan

**Introduced before R2006a**
csch

Symbolic hyperbolic cosecant function

Syntax

csch(X)

Description

csch(X) returns the hyperbolic cosecant function of X.

Examples

Hyperbolic Cosecant Function for Numeric and Symbolic Arguments

Depending on its arguments, csch returns floating-point or exact symbolic results.

Compute the hyperbolic cosecant function for these numbers. Because these numbers are not symbolic objects, csch returns floating-point results.

A = csch([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2])

A =
-0.2757 + 0.0000i  0.0000 + 1.0000i  Inf + 0.0000i...
0.0000 - 1.1547i  0.0000 - 1.2790i  0.0000 - 1.0000i

Compute the hyperbolic cosecant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, csch returns unresolved symbolic calls.

symA = csch(sym([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2]))

symA =
[ -1/sinh(2), 1i, Inf, -(3^(1/2)*2i)/3, 1/sinh((pi*2i)/7), -1i]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-0.27572056477178320775835148216303,...
1.0i,...
Inf,...
-1.1547005383792515290182975610039i,...
-1.2790480076899326057478506072714i,...
-1.0i]

Plot Hyperbolic Cosecant Function

Plot the hyperbolic cosecant function on the interval from -10 to 10.

syms x
ezplot(csch(x), [-10, 10])
grid on
Handle Expressions Containing Hyperbolic Cosecant Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `csch`.

Find the first and second derivatives of the hyperbolic cosecant function:

```matlab
syms x
diff(csch(x), x)
diff(csch(x), x, x)
```

```matlab
ans =
 -cosh(x)/sinh(x)^2
```
ans =
(2*cosh(x)^2)/sinh(x)^3 - 1/sinh(x)

Find the indefinite integral of the hyperbolic cosecant function:

\[ \int \text{csch}(x) \, dx \]

ans =
\[ \log(\tanh(x/2)) \]

Find the Taylor series expansion of \( \text{csch}(x) \) around \( x = \pi i/2 \):

\[ \text{taylor(csch}(x), x, \pi i/2) \]

ans =
\[ ((x - (\pi i)/2)^2*1i)/2 - ((x - (\pi i)/2)^4*5i)/24 - 1i \]

Rewrite the hyperbolic cosecant function in terms of the exponential function:

\[ \text{rewrite(csch}(x), \ 'exp') \]

ans =
\[ -1/(\exp(-x)/2 - \exp(x)/2) \]

**Input Arguments**

\( X \) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

**See Also**

acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | sech | sinh | tanh

Introduced before R2006a
Symbolic matrix complex conjugate transpose

**Syntax**

\[ A' \]
\[ \text{ctranspose}(A) \]

**Description**

\[ A' \] computes the complex conjugate transpose of \( A \).

\[ \text{ctranspose}(A) \] is equivalent to \( A' \).

**Examples**

**Conjugate Transpose of Real Matrix**

Create a 2-by-3 matrix, the elements of which represent real numbers.

```matlab
syms x y real
A = [x x x; y y y]
A =
[x, x, x]
[y, y, y]
```

Find the complex conjugate transpose of this matrix.

\[ A' \]

```matlab
ans =
[x, y]
[x, y]
[x, y]
```

If all elements of a matrix represent real numbers, then its complex conjugate transform equals to its nonconjugate transform.
isAlways(A' == A.')

ans =
    1  1
    1  1
    1  1

**Conjugate Transpose of Complex Matrix**

Create a 2-by-2 matrix, the elements of which represent complex numbers.

```matlab
syms x y real
A = [x + y*i x - y*i; y + x*i y - x*i]
```

\[
A = \\
\begin{bmatrix}
x + y\cdot i & x - y\cdot i \\
y + x\cdot i & y - x\cdot i
\end{bmatrix}
\]

Find the conjugate transpose of this matrix. The complex conjugate transpose operator, \( A' \), performs a transpose and negates the sign of the imaginary portion of the complex elements in \( A \).

```matlab
A'
```

ans =
    [ x - y*i, y - x*i]
    [ x + y*i, y + x*i]

For a matrix of complex numbers with nonzero imaginary parts, the complex conjugate transform is not equal to the nonconjugate transform.

```matlab
isAlways(A' == A.','.Unknown','.false')
```

ans =
    0  0
    0  0

**Input Arguments**

\( A \) — Input
type of number or symbolic expression | symbolic number | symbolic variable | symbolic expression | symbolic vector | symbolic matrix | symbolic multidimensional array
Input, specified as a number or a symbolic number, variable, expression, vector, matrix, multidimensional array.

**More About**

**Complex Conjugate Transpose**

The complex conjugate transpose of a matrix interchanges the row and column index for each element, reflecting the elements across the main diagonal. The operation also negates the imaginary part of any complex numbers.

For example, if \( B = A' \) and \( A(1,2) \) is \( 1+1i \), then the element \( B(2,1) \) is \( 1-1i \).

**See Also**

ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus | power | rdivide | times | transpose

Introduced before R2006a
cumprod

Symbolic cumulative product

Syntax

B = cumprod(A)
B = cumprod(A,dim)
B = cumprod(___,direction)

Description

B = cumprod(A) returns an array the same size as A containing the cumulative product.

- If A is a vector, then cumprod(A) returns a vector containing the cumulative product of the elements of A.
- If A is a matrix, then cumprod(A) returns a matrix containing the cumulative products of each column of A.

B = cumprod(A,dim) returns the cumulative product along dimension dim. For example, if A is a matrix, then cumprod(A,2) returns the cumulative product of each row.

B = cumprod(___,direction) specifies the direction using any of the previous syntaxes. For instance, cumprod(A,2,'reverse') returns the cumulative product within the rows of A by working from end to beginning of the second dimension.

Examples

Cumulative Product of Vector

Create a vector and find the cumulative product of its elements.

V = 1./factorial(sym([1:5]))
prod_V = cumprod(V)
V =
[ 1  1/2  1/6  1/24  1/120]

prod_V =
[ 1  1/2  1/12  1/288  1/34560]

Cumulative Product of Each Column in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix X all elements of which equal x.

syms x
X = x*ones(4,4)

X =
[ x, x, x, x]

Compute the cumulative product of the elements of X. By default, cumprod returns the cumulative product of each column.

productX = cumprod(X)

productX =
[ x, x, x, x]
[ x^2, x^2, x^2, x^2]
[ x^3, x^3, x^3, x^3]
[ x^4, x^4, x^4, x^4]

Cumulative Product of Each Row in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix, all elements of which equal x.

syms x
X = x*ones(4,4)

X =
[ x, x, x, x]

Compute the cumulative product of each row of the matrix X.
productX = cumprod(X,2)
productX =
[ x, x^2, x^3, x^4]

**Reverse Cumulative Product**

Create matrix a 4-by-4 symbolic matrix X all elements of which equal x.

syms x
X = x*ones(4,4)
X =
[ x, x, x, x]

Calculate the cumulative product along the columns in both directions. Specify the 'reverse' option to work from right to left in each row.

columnsDirect = cumprod(X)
columnsReverse = cumprod(X,'reverse')
columnsDirect =
[ x, x, x, x]
[ x^2, x^2, x^2, x^2]
[ x^3, x^3, x^3, x^3]
[ x^4, x^4, x^4, x^4]
columnsReverse =
[ x^4, x^4, x^4, x^4]
[ x^3, x^3, x^3, x^3]
[ x^2, x^2, x^2, x^2]
[ x, x, x, x]

Calculate the cumulative product along the rows in both directions. Specify the 'reverse' option to work from right to left in each row.

rowsDirect = cumprod(X,2)
rowsReverse = cumprod(X,2,'reverse')
rowsDirect =
[ x, x^2, x^3, x^4]

rowsReverse =
[ x^4, x^3, x^2, x]

### Input Arguments

- **A** — Input array
  symbolic vector | symbolic matrix

  Input array, specified as a vector or matrix.

- **dim** — Dimension to operate along
  positive integer

  Dimension to operate along, specified as a positive integer. The default value is 1.

  Consider a two-dimensional input array, `A`.

  - `cumprod(A, 1)` works on successive elements in the columns of `A` and returns the cumulative product of each column.
  - `cumprod(A, 2)` works on successive elements in the rows of `A` and returns the cumulative product of each row.
cumprod returns A if dim is greater than ndims(A).

**direction — Direction of cumulation**

'default' | 'reverse'

Direction of cumulation, specified as the string 'forward' (default) or 'reverse'.

- 'forward' works from 1 to end of the active dimension.
- 'reverse' works from end to 1 of the active dimension.

**Output Arguments**

B — Cumulative product array

vector | matrix

Cumulative product array, returned as a vector or matrix of the same size as the input A.

**See Also**

cumsum | int | symprod | symsum

Introduced in R2013b
cumsum

Symbolic cumulative sum

Syntax

B = cumsum(A)
B = cumsum(A,dim)
B = cumsum(___,direction)

Description

B = cumsum(A) returns an array the same size as A containing the cumulative sum.

• If A is a vector, then cumsum(A) returns a vector containing the cumulative sum of the elements of A.

• If A is a matrix, then cumsum(A) returns a matrix containing the cumulative sums of each column of A.

B = cumsum(A,dim) returns the cumulative sum along dimension dim. For example, if A is a matrix, then cumsum(A,2) returns the cumulative sum of each row.

B = cumsum(___,direction) specifies the direction using any of the previous syntaxes. For instance, cumsum(A,2,'reverse') returns the cumulative sum within the rows of A by working from end to beginning of the second dimension.

Examples

Cumulative Sum of Vector

Create a vector and find the cumulative sum of its elements.

V = 1./factorial(sym([1:5]))
sum_V = cumsum(V)

V =
Cumulative Sum of Each Column in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix \( A \) all elements of which equal 1.

\[
A = \text{sym(ones}(4,4))
\]

\[
A = \\
[ 1, 1, 1, 1 ] \\
[ 1, 1, 1, 1 ] \\
[ 1, 1, 1, 1 ] \\
[ 1, 1, 1, 1 ]
\]

Compute the cumulative sum of elements of \( A \). By default, \text{cumsum} returns the cumulative sum of each column.

\[
\text{sumA} = \text{cumsum}(A)
\]

\[
\text{sumA} = \\
[ 1, 1, 1, 1 ] \\
[ 2, 2, 2, 2 ] \\
[ 3, 3, 3, 3 ] \\
[ 4, 4, 4, 4 ]
\]

Cumulative Sum of Each Row in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix \( A \) all elements of which equal 1.

\[
A = \text{sym(ones}(4,4))
\]

\[
A = \\
[ 1, 1, 1, 1 ] \\
[ 1, 1, 1, 1 ] \\
[ 1, 1, 1, 1 ] \\
[ 1, 1, 1, 1 ]
\]

Compute the cumulative sum of each row of the matrix \( A \).

\[
\text{sumA} = \text{cumsum}(A,2)
\]
sumA = 
[ 1, 2, 3, 4]  
[ 1, 2, 3, 4]  
[ 1, 2, 3, 4]  
[ 1, 2, 3, 4]  

Reverse Cumulative Sum

Create matrix a 4-by-4 symbolic matrix, all elements of which equal 1.

A = sym(ones(4,4))

A =
[ 1, 1, 1, 1]  
[ 1, 1, 1, 1]  
[ 1, 1, 1, 1]  
[ 1, 1, 1, 1]  

Calculate the cumulative sum along the columns in both directions. Specify the 'reverse' option to work from right to left in each row.

columnsDirect = cumsum(A)
columnsReverse = cumsum(A,'reverse')

columnsDirect =
[ 1, 1, 1, 1]  
[ 2, 2, 2, 2]  
[ 3, 3, 3, 3]  
[ 4, 4, 4, 4]  

columnsReverse =
[ 4, 4, 4, 4]  
[ 3, 3, 3, 3]  
[ 2, 2, 2, 2]  
[ 1, 1, 1, 1]  

Calculate the cumulative sum along the rows in both directions. Specify the 'reverse' option to work from right to left in each row.

rowsDirect = cumsum(A,2)
rowsReverse = cumsum(A,2,'reverse')

rowsDirect =
[ 1, 2, 3, 4]  

rowsReverse =
[ 4, 3, 2, 1]
[ 4, 3, 2, 1]
[ 4, 3, 2, 1]
[ 4, 3, 2, 1]

**Input Arguments**

**A — Input array**

symbolic vector | symbolic matrix

Input array, specified as a vector or matrix.

**dim — Dimension to operate along**

positive integer

Dimension to operate along, specified as a positive integer. The default value is 1.

Consider a two-dimensional input array, A:

- `cumsum(A, 1)` works on successive elements in the columns of A and returns the cumulative sum of each column.
- `cumsum(A, 2)` works on successive elements in the rows of A and returns the cumulative sum of each row.

```
cumsum(A, 1)
cumsum(A, 2)
```

cumsum returns A if dim is greater than ndims(A).
direction — Direction of cumulation
'forward' (default) | 'reverse'

Direction of cumulation, specified as the string 'forward' (default) or 'reverse'.

- 'forward' works from 1 to end of the active dimension.
- 'reverse' works from end to 1 of the active dimension.

Output Arguments

B — Cumulative sum array
vector | matrix

Cumulative sum array, returned as a vector or matrix of the same size as the input A.

See Also
cumprod | int | symprod | symsum

Introduced in R2013b
curl

Curl of vector field

Syntax

curl(V,X)
curl(V)

Description

curl(V,X) returns the curl of the vector field $V$ with respect to the vector $X$. The vector field $V$ and the vector $X$ are both three-dimensional.

curl(V) returns the curl of the vector field $V$ with respect to the vector of variables returned by symvar($V$,3).

Input Arguments

$V$

Three-dimensional vector of symbolic expressions or symbolic functions.

$x$

Three-dimensional vector with respect to which you compute the curl.

Examples

Compute the curl of this vector field with respect to vector $X = (x, y, z)$ in Cartesian coordinates:

syms x y z
\[
\text{curl}([x^3y^2z, y^3z^2x, z^3x^2y], [x, y, z])
\]

\[
\begin{align*}
\text{ans} &= x^2z^3 - 2xy^3z \\
&\quad - 2x^3yz + y^3z^2
\end{align*}
\]

Compute the curl of the gradient of this scalar function. The curl of the gradient of any scalar function is the vector of 0s:

\[
\begin{align*}
\text{syms} & \ x \ y \ z \\
\text{f} &= x^2 + y^2 + z^2 \\
\text{curl(gradient(f, [x, y, z]), [x, y, z])}
\end{align*}
\]

\[
\begin{align*}
\text{ans} &= 0 \\
&\quad 0 \\
&\quad 0
\end{align*}
\]

The vector Laplacian of a vector field \(V\) is defined as:

\[
\nabla^2V = \nabla(\nabla \cdot V) - \nabla \times (\nabla \times V)
\]

Compute the vector Laplacian of this vector field using the \texttt{curl}, \texttt{divergence}, and \texttt{gradient} functions:

\[
\begin{align*}
\text{syms} & \ x \ y \ z \\
\text{V} &= [x^2y, y^2z, z^2x] \\
\text{gradient(divergence(V, [x, y, z])), [x, y, z]) - curl(curl(V, [x, y, z]), [x, y, z])}
\end{align*}
\]

\[
\begin{align*}
\text{ans} &= 2y \\
&\quad 2z \\
&\quad 2x
\end{align*}
\]

More About

Curl of a Vector Field

The curl of the vector field \(V = (V_1, V_2, V_3)\) with respect to the vector \(X = (X_1, X_2, X_3)\) in Cartesian coordinates is the vector
\[ \text{curl}(V) = \nabla \times V = \begin{pmatrix} \frac{\partial V_3}{\partial X_2} - \frac{\partial V_2}{\partial X_3} \\ \frac{\partial V_1}{\partial X_3} - \frac{\partial V_3}{\partial X_1} \\ \frac{\partial V_2}{\partial X_1} - \frac{\partial V_1}{\partial X_2} \end{pmatrix} \]

See Also

diff | divergence | gradient | jacobian | hessian | laplacian | potential | vectorPotential

Introduced in R2012a
daeFunction

Convert system of differential algebraic equations to MATLAB function handle suitable for ode15i

Syntax

\[ f = \text{daeFunction}(\text{eqs}, \text{vars}) \]
\[ f = \text{daeFunction}(\text{eqs}, \text{vars}, p_1, \ldots, p_N) \]
\[ f = \text{daeFunction}(\_\_\_, \text{Name}, \text{Value}) \]

Description

\( f = \text{daeFunction}(\text{eqs}, \text{vars}) \) converts a system of symbolic first-order differential algebraic equations (DAEs) to a MATLAB function handle acceptable as an input argument to the numerical MATLAB DAE solver ode15i.

\( f = \text{daeFunction}(\text{eqs}, \text{vars}, p_1, \ldots, p_N) \) lets you specify the symbolic parameters of the system as \( p_1, \ldots, p_N \).

\( f = \text{daeFunction}(\_\_\_, \text{Name}, \text{Value}) \) uses additional options specified by one or more Name,Value pair arguments.

Examples

Convert DAE System to Function Handle

Create the system of differential algebraic equations. Here, the symbolic functions \( x_1(t) \) and \( x_2(t) \) represent the state variables of the system. The system also contains constant symbolic parameters \( a, b \), and the parameter function \( r(t) \). These parameters do not represent state variables. Specify the equations and state variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

\[ \text{syms } x_1(t) \ x_2(t) \ a \ b \ r(t) \]
eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,
      x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t), x2(t)];

Use daeFunction to generate a MATLAB function handle f depending on the variables x1(t), x2(t) and on the parameters a, b, r(t).

f = daeFunction(eqs, vars, a, b, r(t))

f = @(t,in2,in3,param1,param2,param3)[in3(1,:)-param1.*in2(1,:)
                                    -param2.*in2(2,:).^2;
                                    -param3.^2+in2(1,:).^2+in2(2,:).^2]

You also can generate a file instead of generating a MATLAB function handle. If the file myfile.m already exists in the current folder, daeFunction replaces the existing function with the converted symbolic expression. You can open and edit the resulting file.

f = daeFunction(eqs, vars, a, b, r(t), 'File', 'myfile');

function eqs = myfile(t,in2,in3,param1,param2,param3)
%MYFILE
%    EQS = MYFILE(T,IN2,IN3,PARAM1,PARAM2,PARAM3)
YP1 = in3(1,:);
x1 = in2(1,:);
x2 = in2(2,:);
t2 = x2.^2;
eqs = [YP1-param2.*t2-param1.*x1;
       t2-param3.^2+x1.^2];

Specify the parameter values, and create the reduced function handle F as follows.

a = -0.6;
b = -0.1;
r = @(t) cos(t)/(1 + t^2);
F = @(t, Y, YP) f(t,Y,YP,a,b,r(t));

Specify consistent initial conditions for the DAE system.

t0 = 0;
y0 = [-r(t0)*sin(0.1); r(t0)*cos(0.1)];
yp0= [a*y0(1) + b*y0(2)^2; 1.234];

Now, use ode15i to solve the system of equations.

ode15i(F, [t0, 1], y0, yp0)
Input Arguments

**eqs — System of first-order DAEs**
vector of symbolic equations | vector of symbolic expressions

System of first-order DAEs, specified as a vector of symbolic equations or expressions. Here, expressions represent equations with zero right side.

**vars — State variables**
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as \( x(t) \).
Example: \([x(t), y(t)]\) or \([x(t); y(t)]\)

\(p_1, \ldots, p_N\) — Parameters of system
symbolic variables | symbolic functions | symbolic function calls | symbolic vector | symbolic matrix

Parameters of the system, specified as symbolic variables, functions, or function calls, such as \(f(t)\). You can also specify parameters of the system as a vector or matrix of symbolic variables, functions, or function calls. If \(\text{eqs}\) contains symbolic parameters other than the variables specified in \(\text{vars}\), you must specify these additional parameters as \(p_1, \ldots, p_N\).

Name-Value Pair Arguments
Example: \(\text{daeFunction(eqns, vars, 'File', 'myfile')}\)

Specify optional comma-separated pairs of \(\text{Name, Value}\) arguments. \(\text{Name}\) is the argument name and \(\text{Value}\) is the corresponding value. \(\text{Name}\) must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as \(\text{Name1, Value1, \ldots, NameN, ValueN}\).

'File' — Path to file containing generated code
string

Path to the file containing generated code, specified as a string. The generated file accepts arguments of type \text{double}, and can be used without Symbolic Math Toolbox. If the value is an empty string, \(\text{odeFunction}\) generates an anonymous function. If the string does not end in \.m, the function appends \.m.

By default, \(\text{daeFunction}\) with the \text{File} argument generates a file containing optimized code. Optimized means intermediate variables are automatically generated to simplify or speed up the code. MATLAB generates intermediate variables as a lowercase letter \(t\) followed by an automatically generated number, for example \(t32\). To disable code optimization, use the \text{Optimize} argument.

'Optimize' — Flag preventing optimization of code written to function file
\text{true} (default) | \text{false}

Flag preventing optimization of code written to a function file, specified as \text{false} or \text{true}. 

4 Functions — Alphabetical List
By default, `daeFunction` with the `File` argument generates a file containing optimized code. Optimized means intermediate variables are automatically generated to simplify or speed up the code. MATLAB generates intermediate variables as a lowercase letter `t` followed by an automatically generated number, for example `t32`.

`daeFunction` without the `File` argument (or with a file path specified by an empty string) creates a function handle. In this case, the code is not optimized. If you try to enforce code optimization by setting `Optimize` to `true`, then `daeFunction` throws an error.

`'Sparse'` — Flag that switches between sparse and dense matrix generation

false (default) | true

Flag that switches between sparse and dense matrix generation, specified as `true` or `false`. When you specify `'Sparse',true`, the generated function represents symbolic matrices by sparse numeric matrices. Use `'Sparse',true` when you convert symbolic matrices containing many zero elements. Often, operations on sparse matrices are more efficient than the same operations on dense matrices.

**Output Arguments**

`f` — Function handle that can serve as input argument to `ode15i`  
MATLAB function handle

Function handle that can serve as input argument to `ode15i`, returned as a MATLAB function handle.

**See Also**

decic | `findDecoupledBlocks` | `incidenceMatrix` | `isLowIndexDAE` | `massMatrixForm` | `matlabFunction` | `ode15i` | `odeFunction` | `reduceDAEIndex` | `reduceDAEToODE` | `reduceDifferentialOrder` | `reduceRedundancies`

Introduced in R2014b
**dawson**

Dawson integral

**Syntax**

dawson(X)

**Description**

dawson(X) represents the Dawson integral.

**Examples**

**Dawson Integral for Numeric and Symbolic Arguments**

Depending on its arguments, dawson returns floating-point or exact symbolic results.

Compute the Dawson integrals for these numbers. Because these numbers are not symbolic objects, dawson returns floating-point results.

\[
A = \text{dawson}([-\infty, -3/2, -1, 0, 2, \infty])
\]

\[
A =
\begin{array}{cccccc}
0 & -0.4282 & -0.5381 & 0 & 0.3013 & 0
\end{array}
\]

Compute the Dawson integrals for the numbers converted to symbolic objects. For many symbolic (exact) numbers, dawson returns unresolved symbolic calls.

\[
symA = \text{dawson}(	ext{sym}([-\infty, -3/2, -1, 0, 2, \infty]))
\]

\[
symA =
\begin{array}{cccccc}
0 & -\text{dawson}(3/2) & -\text{dawson}(1) & 0 & \text{dawson}(2) & 0
\end{array}
\]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ 0,...
-0.42824907108539862547719010515175,...
-0.53807950691276841913638742040756,...
0,...
0.30134038892379196603466443928642,...
0]

**Plot the Dawson Integral**

Plot the Dawson integral on the interval from -10 to 10.

```matlab
syms x
ezplot(dawson(x), [-10, 10])
grid on
```
Handle Expressions Containing Dawson Integral

Many functions, such as `diff` and `limit`, can handle expressions containing `dawson`.

Find the first and second derivatives of the Dawson integral:

```plaintext
syms x
diff(dawson(x), x)
diff(dawson(x), x, x)
```

```
ans =
1 - 2*x*dawson(x)
```
ans = 
2*x*(2*x*dawson(x) - 1) - 2*dawson(x)

Find the limit of this expression involving dawson:

limit(x*dawson(x), Inf)

ans =
1/2

**Input Arguments**

**X — Input**
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

**More About**

**Dawson Integral**

The Dawson integral, also called the Dawson function, is defined as follows:

\[
dawson(x) = D(x) = e^{-x^2} \int_0^x e^{t^2} dt
\]

Symbolic Math Toolbox uses this definition to implement dawson.

The alternative definition of the Dawson integral is

\[
D(x) = e^{x^2} \int_0^x e^{-t^2} dt
\]

**Tips**

- dawson(0) returns 0.
• \texttt{dawson(Inf)} returns 0.
• \texttt{dawson(-Inf)} returns 0.

\textbf{See Also}
\texttt{erf} | \texttt{erfc}

\textit{Introduced in R2014a}
decic

Find consistent initial conditions for first-order implicit ODE system with algebraic constraints

Syntax

[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,options)

Description

[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,options) finds consistent initial conditions for the system of first-order implicit ordinary differential equations with algebraic constraints returned by the reduceDAEToODE function.

The call [eqs,constraintEqs] = reduceDAEToODE(DA_eqs,vars) reduces the system of differential algebraic equations DA_eqs to the system of implicit ODEs eqs. It also returns constraint equations encountered during system reduction. For the variables of this ODE system and their derivatives, decic finds consistent initial conditions y0, yp at the time t0.

Substituting the numerical values y0, yp into the differential equations subs(eqs, [t; vars(t); diff(vars(t))], [t0; y0; yp]) and the constraint equations subs(constr, [t; vars(t); diff(vars(t))], [t0; y0; yp]) produces zero vectors. Here, vars must be a column vector.

y0_est specifies numerical estimates for the values of the variables vars at the time t0, and fixedVars indicates the values in y0_est that must not change during the numerical search. The optional argument yp0_est lets you specify numerical estimates for the values of the derivatives of the variables vars at the time t0.
Examples

Find Consistent Initial Conditions for ODE System

Reduce the DAE system to a system of implicit ODEs. Then, find consistent initial conditions for the variables of the resulting ODE system and their first derivatives.

Create the following differential algebraic system.

```matlab
syms x(t) y(t)
DA_eqs = [diff(x(t),t) == cos(t) + y(t),
 x(t)^2 + y(t)^2 == 1];
vars = [x(t); y(t)];
```

Use `reduceDAEToODE` to convert this system to a system of implicit ODEs.

```matlab
[eqs, constraintEqs] = reduceDAEToODE(DA_eqs, vars)
eqs =
 diff(x(t), t) - y(t) - cos(t)
 - 2*x(t)*diff(x(t), t) - 2*y(t)*diff(y(t), t)
constraintEqs =
 1 - y(t)^2 - x(t)^2
```

Create an option set that specifies numerical tolerances for the numerical search.

```matlab
options = odeset('RelTol', 10.0^(-7), 'AbsTol', 10.0^(-7));
```

Fix values `t0 = 0` for the time and numerical estimates for consistent values of the variables and their derivatives.

```matlab
t0 = 0;
y0_est = [0.1, 0.9];
yp0_est = [0.0, 0.0];
```

You can treat the constraint as an algebraic equation for the variable `x` with the fixed parameter `y`. For this, set `fixedVars = [0 1]`. Alternatively, you can treat it as an algebraic equation for the variable `y` with the fixed parameter `x`. For this, set `fixedVars = [1 0].`

First, set the initial value `x(t0) = y0_est(1) = 0.1`.

```matlab
fixedVars = [1 0];
```
[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,options)

y0 =
    0.1000
    0.9950

yp0 =
    1.9950
    -0.2005

Now, change fixedVars to [0 1]. This fixes y(t0) = y0_est(2) = 0.9.

fixedVars = [0 1];
[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,options)

y0 =
    -0.4359
    0.9000

yp0 =
    1.9000
    0.9202

Verify that these initial values are consistent initial values satisfying the equations and the constraints.

subs(eqs, [t; vars; diff(vars,t)], [t0; y0; yp0])

ans =
    0
    0

subs(constraintEqs, [t; vars; diff(vars,t)], [t0; y0; yp0])

ans =
    0

**Input Arguments**

**eqs** — System of implicit ordinary differential equations
vector of symbolic equations | vector of symbolic expressions

System of implicit ordinary differential equations, specified as a vector of symbolic equations or expressions. Here, expressions represent equations with zero right side.
Typically, you use expressions returned by `reduceDAEToODE`.

**vars** — State variables of original DAE system

vector of symbolic functions | vector of symbolic function calls

State variables of original DAE system, specified as a vector of symbolic functions or function calls, such as \( x(t) \).

Example: \([x(t), y(t)]\) or \([x(t); y(t)]\)

**constraintEqs** — Constraint equations found by `reduceDAEToODE` during system reduction

vector of symbolic equations | vector of symbolic expressions

Constraint equations encountered during system reduction, specified as a vector of symbolic equations or expressions. These expressions or equations depend on the variables **vars**, but not on their derivatives.

Typically, you use constraint equations returned by `reduceDAEToODE`.

**t0** — Initial time

number

Initial time, specified as a number.

**y0_est** — Estimates for values of variables **vars** at initial time **t0**

numeric vector

Estimates for the values of the variables **vars** at the initial time **t0**, specified as a numeric vector.

**fixedVars** — Input vector indicating which elements of **y0_est** are fixed values

vector with elements 0 or 1

Input vector indicating which elements of **y0_est** are fixed values, specified as a vector with 0s or 1s. Fixed values of **y0_est** correspond to values 1 in **fixedVars**. These values are not modified during the numerical search. The zero entries in **fixedVars** correspond to those variables in **y0_est** for which **decic** solves the constraint equations. The number of 0s must coincide with the number of constraint equations. The Jacobian matrix of the constraints with respect to the variables **vars**(\( fixedVars == 0 \)) must be invertible.

**yp0_est** — Estimates for values of first derivatives of variables **vars** at initial time **t0**

numeric vector
Estimates for the values of the first derivatives of the variables `vars` at the initial time `t0`, specified as a numeric vector.

`options — Options for numerical search`  
options structure, returned by `odeset`  
Options for numerical search, specified as an options structure, returned by `odeset`. For example, you can specify tolerances for the numerical search here.

**Output Arguments**

`y0 — Consistent initial values for variables`  
numeric column vector  
Consistent initial values for variables, returned as a numeric column vector.

`yp0 — Consistent initial values for first derivatives of variables`  
numeric column vector  
Consistent initial values for first derivatives of variables, returned as a numeric column vector.

**See Also**

`daeFunction` | `findDecoupledBlocks` | `incidenceMatrix` | `isLowIndexDAE`  
| `massMatrixForm` | `odeFunction` | `reduceDAEIndex` | `reduceDAEToODE`  
| `reduceDifferentialOrder` | `reduceRedundancies`  

`Introduced in R2014b`
\textbf{det}

Compute determinant of symbolic matrix

\textbf{Syntax}

\[ r = \text{det}(A) \]

\textbf{Description}

\( r = \text{det}(A) \) computes the determinant of \( A \), where \( A \) is a symbolic or numeric matrix. \( \text{det}(A) \) returns a symbolic expression for a symbolic \( A \) and a numeric value for a numeric \( A \).

\textbf{Examples}

Compute the determinant of the following symbolic matrix:

\begin{verbatim}
syms a b c d
det([a, b; c, d])
\end{verbatim}

\begin{verbatim}
ans =
a*d - b*c
\end{verbatim}

Compute the determinant of the following matrix containing the symbolic numbers:

\begin{verbatim}
A = sym([2/3 1/3; 1 1])
r = det(A)
\end{verbatim}

\begin{verbatim}
A =
[ 2/3, 1/3]
[ 1, 1]

r =
1/3
\end{verbatim}

\textbf{See Also}

\texttt{rank} | \texttt{eig}
Introduced before R2006a
**diag**

Create or extract diagonals of symbolic matrices

**Syntax**

diag(A, k)
diag(A)

diag(A, k) returns a square symbolic matrix of order $n + \text{abs}(k)$, with the elements of A on the $k$-th diagonal. A must present a row or column vector with $n$ components. The value $k = 0$ signifies the main diagonal. The value $k > 0$ signifies the $k$-th diagonal above the main diagonal. The value $k < 0$ signifies the $k$-th diagonal below the main diagonal. If A is a square symbolic matrix, diag(A, k) returns a column vector formed from the elements of the $k$-th diagonal of A.

diag(A), where A is a vector with $n$ components, returns an $n$-by-$n$ diagonal matrix having A as its main diagonal. If A is a square symbolic matrix, diag(A) returns the main diagonal of A.

**Examples**

Create a symbolic matrix with the main diagonal presented by the elements of the vector v:

```matlab
syms a b c
v = [a b c];
diag(v)
```

```
ans =
[a, 0, 0]
[0, b, 0]
[0, 0, c]
```

Create a symbolic matrix with the second diagonal below the main one presented by the elements of the vector v:
syms a b c
v = [a b c];
diag(v, -2)

ans =
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ a, 0, 0, 0, 0]
[ 0, b, 0, 0, 0]
[ 0, 0, c, 0, 0]

Extract the main diagonal from a square matrix:

syms a b c x y z
A = [a, b, c; 1, 2, 3; x, y, z];
diag(A)

ans =
a
2
z

Extract the first diagonal above the main one:

syms a b c x y z
A = [a, b, c; 1, 2, 3; x, y, z];
diag(A, 1)

ans =
b
3

See Also
tril | triu

Introduced before R2006a


**diff**

Differentiate symbolic expression or function

**Syntax**

- `diff(F)`
- `diff(F, var)`
- `diff(F, n)`
- `diff(F, var, n)`
- `diff(F, n, var)`
- `diff(F, var1, ..., varN)`

**Description**

- `diff(F)` differentiates F with respect to the variable determined by `symvar(F, 1)`.
- `diff(F, var)` differentiates F with respect to the variable var.
- `diff(F, n)` computes the nth derivative of F with respect to the variable determined by `symvar`.
- `diff(F, var, n)` computes the nth derivative of F with respect to the variable var. This syntax is equivalent to `diff(F, n, var)`.
- `diff(F, var1, ..., varN)` differentiates F with respect to the variables var1, ..., varN.

**Examples**

**Differentiation of Univariate Function**

Find the first derivative of this univariate function:

```matlab
syms x
f(x) = sin(x^2);
```
df = diff(f,x)
df(x) =
2*x*cos(x^2)

**Differentiation with Respect to Particular Variable**

Find the first derivative of this expression:

syms x t
diff(sin(x*t^2))

```
ans =
t^2*cos(t^2*x)
```

Because you did not specify the differentiation variable, `diff` uses the default variable defined by `symvar`. For this expression, the default variable is `x`:

```
symvar(sin(x*t^2),1)
```

```
ans =
x
```

Now, find the derivative of this expression with respect to the variable `t`:

```
diff(sin(x*t^2),t)
```

```
ans =
2*t*x*cos(t^2*x)
```

**Higher-Order Derivatives of Univariate Expression**

Find the 4th, 5th, and 6th derivatives of this expression:

```
syms t
d4 = diff(t^6,4)
d5 = diff(t^6,5)
d6 = diff(t^6,6)
```

```
d4 =
360*t^2

d5 =
720*t
```
Higher-Order Derivatives of Multivariate Expression with Respect to Particular Variable

Find the second derivative of this expression with respect to the variable \( y \):

```matlab
syms x y
diff(x*cos(x*y), y, 2)
```

```
ans =
-x^3*cos(x*y)
```

Higher-Order Derivatives of Multivariate Expression with Respect to Default Variable

Compute the second derivative of the expression \( x*y \). If you do not specify the differentiation variable, `diff` uses the variable determined by `symvar`. For this expression, `symvar(x*y,1)` returns \( x \). Therefore, `diff` computes the second derivative of \( x*y \) with respect to \( x \).

```matlab
syms x y
diff(x*y, 2)
```

```
ans =
0
```

If you use nested `diff` calls and do not specify the differentiation variable, `diff` determines the differentiation variable for each call. For example, differentiate the expression \( x*y \) by calling the `diff` function twice:

```matlab
diff(diff(x*y))
```

```
ans =
1
```

In the first call, `diff` differentiates \( x*y \) with respect to \( x \), and returns \( y \). In the second call, `diff` differentiates \( y \) with respect to \( y \), and returns \( 1 \).

Thus, `diff(x*y, 2)` is equivalent to `diff(x*y, x, x)`, and `diff(diff(x*y))` is equivalent to `diff(x*y, x, y)`. 
**Mixed Derivatives**

Differentiate this expression with respect to the variables \( x \) and \( y \):

```matlab
syms x y
diff(x*sin(x*y), x, y)
```

```matlab
ans =
2*x*cos(x*y) - x^2*y*sin(x*y)
```

You also can compute mixed higher-order derivatives by providing all differentiation variables:

```matlab
syms x y
diff(x*sin(x*y), x, x, x, y)
```

```matlab
ans =
x^2*y^3*sin(x*y) - 6*x*y^2*cos(x*y) - 6*y*sin(x*y)
```

**Input Arguments**

- **F** — Expression or function to differentiate
  
symbolic expression | symbolic function | symbolic vector | symbolic matrix

  Expression or function to differentiate, specified as a symbolic expression or function or as a vector or matrix of symbolic expressions or functions. If \( F \) is a vector or a matrix, `diff` differentiates each element of \( F \) and returns a vector or a matrix of the same size as \( F \).

- **var** — Differentiation variable
  
symbolic variable | string

  Differentiation variable, specified as a symbolic variable or a string.

- **var1,...,varN** — Differentiation variables
  
symbolic variables | strings

  Differentiation variables, specified as symbolic variables or strings.

- **n** — Differentiation order
  
  nonnegative integer
Differentiation order, specified as a nonnegative integer.

More About

Tips
- When computing mixed higher-order derivatives, do not use \( n \) to specify the differentiation order. Instead, specify all differentiation variables explicitly.
- To improve performance, \texttt{diff} assumes that all mixed derivatives commute. For example,

\[
\frac{\partial}{\partial x} \frac{\partial}{\partial y} f(x,y) = \frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x,y)
\]

This assumption suffices for most engineering and scientific problems.
- If you differentiate a multivariate expression or function \( F \) without specifying the differentiation variable, then a nested call to \texttt{diff} and \texttt{diff}(F,n) can return different results. This is because in a nested call, each differentiation step determines and uses its own differentiation variable. In calls like \texttt{diff}(F,n), the differentiation variable is determined once by \texttt{symvar}(F,1) and used for all differentiation steps.
- If you differentiate an expression or function containing \texttt{abs} or \texttt{sign}, ensure that the arguments are real values. For complex arguments of \texttt{abs} and \texttt{sign}, the \texttt{diff} function formally computes the derivative, but this result is not generally valid because \texttt{abs} and \texttt{sign} are not differentiable over complex numbers.

See Also
\texttt{curl} | \texttt{divergence} | \texttt{functionalDerivative} | \texttt{gradient} | \texttt{hessian} | \texttt{int} | \texttt{jacobian} | \texttt{laplacian} | \texttt{symvar}

Introduced before R2006a
digits

Variable-precision accuracy

Syntax

digits
digits(d)
d1 = digits
d1 = digits(d)

Description

digits shows the number of significant decimal digits that MuPAD software uses to do variable-precision arithmetic (VPA). The default value is 32 digits.

digits(d) sets the current VPA accuracy to $d$ significant decimal digits. The value $d$ must be a positive integer greater than 1 and less than $2^{29} + 1$.

d1 = digits assigns the current setting of digits to variable d1.

d1 = digits(d) assigns the current setting of digits to variable d1 and sets VPA accuracy to $d$.

Examples

Default Accuracy of Variable-Precision Computations

By default, the minimum number of significant (nonzero) decimal digits is 32.

To obtain the current number of digits, use digits without input arguments:

digits

Digits = 32

To save the current setting, assign the result returned by digits to a variable:
Control Accuracy of Variable-Precision Computations

digits lets you specify any number of significant decimal digits from 1 to \(2^{39} + 1\).

Compute the ratio 1/3 and the ratio 1/3000 with four-digit accuracy:

```matlab
old = digits(4);
vpa(1/3)
vpa(1/3000)
```

```
ans =
0.3333
```

```
ans =
0.0003333
```

Restore the default accuracy setting for further computations:

```matlab
digits(old)
```

“Guard” Digits

The number of digits that you specify using the vpa function or the digits function is the guaranteed number of digits. Internally, the toolbox can use a few more digits than you specify. These additional digits are called guard digits. For example, set the number of digits to 4, and then display the floating-point approximation of 1/3 using four digits:

```matlab
old = digits(4);
a = vpa(1/3)
```

```
a =
0.3333
```

Now, display a using 20 digits. The result shows that the toolbox internally used more than four digits when computing a. The last digits in the following result are incorrect because of the round-off error:

```matlab
digits(20)
vpa(a)
```
Hidden Round-Off Errors

Hidden round-off errors can cause unexpected results. For example, compute the number 1/10 with the default 32-digit accuracy and with 10-digit accuracy:

```matlab
digits(old)
an = 0.333333333333303016843
```

```
Hidden Round-Off Errors

Hidden round-off errors can cause unexpected results. For example, compute the number 1/10 with the default 32-digit accuracy and with 10-digit accuracy:

```matlab
a = vpa(1/10)
old = digits(10);
b = vpa(1/10)
digits(old)
a = 0.1
b = 0.1
```

Now, compute the difference `a - b`. The result is not 0:

```matlab
a - b
ans = 0.000000000000000000086736173798840354720600815844403
```

The difference `a - b` is not equal to zero because the toolbox internally boosts the 10-digit number `b = 0.1` to 32-digit accuracy. This process implies round-off errors. The toolbox actually computes the difference `a - b` as follows:

```matlab
b = vpa(b)
a - b
```

```matlab
b = 0.09999999999999991326382620116
ans = 0.000000000000000000086736173798840354720600815844403
```

Techniques Used to Convert Floating-Point Numbers to Symbolic Objects

Suppose you convert a double number to a symbolic object, and then perform VPA operations on that object. The results can depend on the conversion technique that you
used to convert a floating-point number to a symbolic object. The \texttt{sym} function lets you choose the conversion technique by specifying the optional second argument, which can be \texttt{'r'}, \texttt{'f'}, \texttt{'d'}, or \texttt{'e'}. The default is \texttt{'r'}. For example, convert the constant \(\pi = 3.141592653589793\ldots \) to a symbolic object:

\begin{verbatim}
r = sym(pi)
f = sym(pi,'f')
d = sym(pi,'d')
e = sym(pi,'e')
\end{verbatim}

\begin{verbatim}
r =
pi

f =
884279719003555/281474976710656

d =
3.1415926535897931159979634685442

e =
pi - (198*eps)/359
\end{verbatim}

Although the toolbox displays these numbers differently on the screen, they are rational approximations of \(\pi \). Use \texttt{vpa} to convert these rational approximations of \(\pi \) back to floating-point values.

Set the number of digits to 4. Three of the four approximations give the same result.

\begin{verbatim}
digits(4)
vpa(r)
vpa(f)
vpa(d)
vpa(e)
\end{verbatim}

\begin{verbatim}
ans =
3.142

ans =
3.142

ans =
3.142

ans =
3.142
\end{verbatim}
3.142 - 0.5515*eps

Now, set the number of digits to 40. The differences between the symbolic approximations of \texttt{pi} become more visible.

\begin{verbatim}
digits(40)
vpa(r)
vpa(f)
vpa(d)
vpa(e)
ans =
3.141592653589793238462643383279502884197

ans =
3.141592653589793115997963468544185161591

ans =
3.1415926535897931159979634685442

ans =
3.141592653589793238462643383279502884197 -...
0.5515320334261838440111420612813370473538*eps
\end{verbatim}

\section*{Input Arguments}
\begin{itemize}
\item \texttt{d} — \textbf{New accuracy setting}
\item number | symbolic number
\end{itemize}

New accuracy setting, specified as a number or symbolic number. The setting specifies the number of significant decimal digits to be used for variable-precision calculations. If the value \texttt{d} is not an integer, \texttt{digits} rounds it to the nearest integer.

\section*{Output Arguments}
\begin{itemize}
\item \texttt{d1} — \textbf{Current accuracy setting}
\item double-precision number
\end{itemize}

Current accuracy setting, returned as a double-precision number. The setting specifies the number of significant decimal digits currently used for variable-precision calculations.
See Also
double | vpa

Introduced before R2006a
dilog

Dilogarithm function

Syntax

dilog(X)

Description

dilog(X) returns the dilogarithm function.

Examples

Dilogarithm Function for Numeric and Symbolic Arguments

Depending on its arguments, dilog returns floating-point or exact symbolic results.

Compute the dilogarithm function for these numbers. Because these numbers are not symbolic objects, dilog returns floating-point results.

```matlab
A = dilog([-1, 0, 1/4, 1/2, 1, 2])
```

```
A =
 2.4674 - 2.1776i  1.6449 + 0.0000i  0.9785 + 0.0000i...
 0.5822 + 0.0000i  0.0000 + 0.0000i -0.8225 + 0.0000i
```

Compute the dilogarithm function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, dilog returns unresolved symbolic calls.

```matlab
symA = dilog(sym([-1, 0, 1/4, 1/2, 1, 2]))
```

```
symA =
  [ pi^2/4 - pi*log(2)*1i, pi^2/6, dilog(1/4), pi^2/12 - log(2)^2/2, 0, -pi^2/12]
```

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[2.467401100272339654708622749969 - 2.17758609030360213050068889823761,...
 1.644934066848226436472415166646,...
 0.9784693929303061037430666652456,...
 0.58224052646501250590265632015968,...
 0,...
 -0.82246703342411321823620758332301]

Plot Dilogarithm Function

Plot the dilogarithm function on the interval from 0 to 10.

```matlab
syms x
ezplot(dilog(x), [0, 10])
grid on
```
Handle Expressions Containing Dilogarithm Function

Many functions, such as `diff`, `int`, and `limit`, can handle expressions containing `dilog`.

Find the first and second derivatives of the dilogarithm function:

```matlab
syms x
diff(dilog(x), x)
diff(dilog(x), x, x)
```

```
ans =
-log(x)/(x - 1)
```
ans =
\log(x)/((x - 1)^2 - 1/(x*(x - 1))

Find the indefinite integral of the dilogarithm function:
\[\text{int}(\text{dilog}(x), x) \]
ans =
x*(\text{dilog}(x) + \log(x) - 1) - \text{dilog}(x)

Find the limit of this expression involving \text{dilog}:
\[\text{limit}(\text{dilog}(x)/x, \text{Inf}) \]
ans =
0

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Dilogarithm Function

There are two common definitions of the dilogarithm function.

The implementation of the \text{dilog} function uses the following definition:

\[\text{dilog}(x) = \int_{1}^{x} \frac{\ln(t)}{1-t} dt \]

Another common definition of the dilogarithm function is
\[\text{Li}_2(x) = \int_{x}^{0} \frac{\ln(1-t)}{t} \, dt \]

Thus, \(\text{dilog}(x) = \text{Li}_2(1 - x) \).

Tips

- \(\text{dilog}(\text{sym}(-1)) \) returns \(\pi^2/4 - \pi \log(2) \cdot i \).
- \(\text{dilog}(\text{sym}(0)) \) returns \(\pi^2/6 \).
- \(\text{dilog}(\text{sym}(1/2)) \) returns \(\pi^2/12 - \log(2)^2/2 \).
- \(\text{dilog}(\text{sym}(1)) \) returns 0.
- \(\text{dilog}(\text{sym}(2)) \) returns \(-\pi^2/12 \).
- \(\text{dilog}(\text{sym}(i)) \) returns \(\pi^2/16 - (\pi \log(2) \cdot i)/4 - \text{catalan} \cdot i \).
- \(\text{dilog}(\text{sym}(-i)) \) returns \(\text{catalan} \cdot i + (\pi \log(2) \cdot i)/4 + \pi^2/16 \).
- \(\text{dilog}(\text{sym}(1 + i)) \) returns \(-\text{catalan} \cdot i - \pi^2/48 \).
- \(\text{dilog}(\text{sym}(1 - i)) \) returns \(\text{catalan} \cdot i - \pi^2/48 \).
- \(\text{dilog}(\text{sym}(\text{Inf})) \) returns \(-\text{Inf} \).

References

See Also

log | zeta

Introduced in R2014a
dirac

Dirac delta function

Syntax

\[
\text{dirac}(x) \\
\text{dirac}(n,x)
\]

Description

\text{dirac}(x) \text{ represents the Dirac delta function of } x.

\text{dirac}(n,x) \text{ represents the } n\text{th derivative of the Dirac delta function at } x.

Examples

Handle Expressions Involving Dirac and Heaviside Functions

Compute derivatives and integrals of expressions involving the Dirac delta and Heaviside functions.

Find the first and second derivatives of the Heaviside function. The result is the Dirac delta function and its first derivative.

\begin{verbatim}
syms x
diff(heaviside(x), x)
diff(heaviside(x), x, x)
\end{verbatim}

\begin{verbatim}
ans =
dirac(x)
\end{verbatim}

\begin{verbatim}
ans =
dirac(1, x)
\end{verbatim}

Find the indefinite integral of the Dirac delta function. The results returned by \text{int} do not include integration constants.
int(dirac(x), x)
ans =
sign(x)/2

Find the integral of this expression involving the Dirac delta function.

syms a
int(dirac(x - a)*sin(x), x, -Inf, Inf)
ans =
sin(a)

Use Assumptions on Variables

dirac takes into account assumptions on variables.

syms x real
assumeAlso(x ~= 0)
dirac(x)
ans =
0

For further computations, clear the assumptions.

syms x clear

Evaluate Dirac delta Function for Symbolic Matrix

Compute the Dirac delta function of x and its first three derivatives.

Use a vector $n = [0, 1, 2, 3]$ to specify the order of derivatives. The dirac function expands the scalar into a vector of the same size as n and computes the result.

n = [0, 1, 2, 3];
d = dirac(n, x)
d =
[dirac(x), dirac(1, x), dirac(2, x), dirac(3, x)]

Substitute x with 0.

subs(d, x, 0)
ans =
[Inf, -Inf, Inf, -Inf]

Input Arguments

x — Input

class: number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix | multidimensional array

Input, specified as a number, symbolic number, variable, expression, or function, representing a real number. This input can also be a vector, matrix, or multidimensional array of numbers, symbolic numbers, variables, expressions, or functions.

n — Order of derivative

class: nonnegative number | symbolic variable | symbolic expression | symbolic function | vector | matrix | multidimensional array

Order of derivative, specified as a nonnegative number, or symbolic variable, expression, or function representing a nonnegative number. This input can also be a vector, matrix, or multidimensional array of nonnegative numbers, symbolic numbers, variables, expressions, or functions.

More About

Dirac delta Function

The Dirac delta function, δ(x), has the value 0 for all \(x \neq 0 \), and \(\infty \) for \(x = 0 \).

For any smooth function \(f \) and a real number \(a \),

\[
\int_{-\infty}^{\infty} \text{dirac}(x-a)f(x) = f(a)
\]

Tips

- For complex values \(x \) with nonzero imaginary parts, \texttt{dirac} returns \texttt{NaN}.
- \texttt{dirac} returns floating-point results for numeric arguments that are not symbolic objects.
• `dirac` acts element-wise on nonscalar inputs.
• At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then `dirac` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

See Also
`heaviside` | `kroneckerDelta`

Introduced before R2006a
disp

Display symbolic input

Syntax

disp(X)

Description

disp(X) displays the symbolic input X. disp does not display the argument's name.

Examples

Display Symbolic Scalar

syms x
y = x^3 - exp(x);
disp(y)

x^3 - exp(x)

Display Symbolic Matrix

A = sym('a%d%d',[3 3]);
disp(A)

[a11, a12, a13]
[a21, a22, a23]
[a31, a32, a33]

Display Symbolic Function

syms f(x)
f(x) = x+1;
disp(f)
Display Sentence with Text and Symbolic Expressions

Display the sentence “Euler’s formula is $e^{ix} = \cos(x) + i\sin(x)$”.

To concatenate strings with symbolic expressions, convert the symbolic expressions to strings using `char`.

```matlab
syms x
disp(['Euler''s formula is ',char(exp(i*x)),' = ',char(cos(x)+i*sin(x)),'.'])
```

Euler’s formula is $\exp(x\cdot1i) = \cos(x) + \sin(x)\cdot1i$.

Because ' terminates the string, repeat it in Euler''s for MATLAB to interpret it as an apostrophe and not a string terminator.

Input Arguments

X — Symbolic input to display
symbolic variable | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array | symbolic expression

Symbolic input to display, specified as a symbolic variable, vector, matrix, function, multidimensional array, or expression.

See Also
char | disp | display | pretty

Introduced before R2006a
display

Display symbolic input

Syntax

display(X)

Description

display(X) displays the symbolic input X.

Examples

Display Symbolic Scalar

syms x
y = x^3 - exp(x);
display(y)

y =
x^3 - exp(x)

Display Symbolic Matrix

A = sym('a%d%d',[3 3]);
display(A)

A =
[a11, a12, a13]
[a21, a22, a23]
[a31, a32, a33]

Display Symbolic Function

syms f(x)
\[f(x) = x + 1; \]
\[\text{display}(f) \]
\[f(x) = x + 1 \]

Display Sentence with Text and Symbolic Expressions

Display the sentence “Euler’s formula is \(e^{ix} = \cos(x) + i\sin(x) \).”

To concatenate strings with symbolic expressions, convert the symbolic expressions to strings using `char`.

```matlab
syms x
display(['Euler''s formula is ',char(exp(i*x)),' = ',char(cos(x)+i*sin(x)),'.'])
```

Euler's formula is \(\exp(x\cdot1i) = \cos(x) + \sin(x)\cdot1i \).

Because ‘ terminates the string, you need to repeat it in Euler's for MATLAB to interpret it as an apostrophe and not a string terminator.

Input Arguments

- **X** — Symbolic input to display
 - symbolic variable | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array | symbolic expression

Symbolic input to display, specified as a symbolic variable, vector, matrix, function, multidimensional array, or expression.

See Also

- `char` | `disp` | `display` | `pretty`

Introduced before R2006a
divergence
Divergence of vector field

Syntax

divergence(V,X)

Description

divergence(V,X) returns the divergence of vector field V with respect to the vector X in Cartesian coordinates. Vectors V and X must have the same length.

Examples

Find Divergence of Vector Field

Find the divergence of the vector field $V(x,y,z) = (x, 2y^2, 3z^3)$ with respect to vector $X = (x,y,z)$ in Cartesian coordinates.

```matlab
syms x y z
divergence([x, 2*y^2, 3*z^3], [x, y, z])
```

ans =

$$9z^2 + 4y + 1$$

Find the divergence of the curl of this vector field. The divergence of the curl of any vector field is 0.

```matlab
syms x y z
divergence(curl([x, 2*y^2, 3*z^3], [x, y, z]), [x, y, z])
```

ans =

0

Find the divergence of the gradient of this scalar function. The result is the Laplacian of the scalar function.

```matlab
syms x y z
```
\[
f = x^2 + y^2 + z^2;
\]
\[
divergence(gradient(f, [x, y, z]), [x, y, z])
\]
\[
ans = 6
\]

Find Electric Charge Density from Electric Field

Gauss' Law in differential form states that the divergence of electric field is proportional to the electric charge density as

\[
\vec{\nabla} \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\epsilon_0}.
\]

Find the electric charge density for the electric field \(\vec{E} = x^2 \hat{i} + y^2 \hat{j} \).

syms x y ep0
e = [x^2 y^2];
rho = divergence(e,[x y])*ep0
rho = ep0*(2*x + 2*y)

Visualize the electric field and electric charge density for \(-2 < x < 2 \) and \(-2 < y < 2\) with \(ep0 = 1\). Create a grid of values of \(x\) and \(y\) using \texttt{meshgrid}. Find the values of electric field and charge density by substituting grid values using \texttt{subs}. To simultaneously substitute the grid values \texttt{xPlot} and \texttt{yPlot} into the charge density \texttt{rho}, use cells arrays as inputs to \texttt{subs}.

rho = subs(rho,ep0,1);
v = -2:0.1:2;
[xPlot,yPlot] = meshgrid(v);
Ex = subs(e(1),x,xPlot);
Ey = subs(e(2),y,yPlot);
rhoPlot = double(subs(rho,{x,y},{xPlot,yPlot}));

Plot the electric field using \texttt{quiver}. Overlay the charge density using \texttt{contour}. The contour lines indicate the values of the charge density.

\texttt{quiver(xPlot,yPlot,Ex,Ey)}
\texttt{hold on}
\texttt{contour(xPlot,yPlot,rhoPlot,'ShowText','on')}
title('Contour Plot of Charge Density Over Electric Field')
xlabel('x')
ylabel('y')

Input Arguments

V — Vector field

- symbolic expression | symbolic function | vector of symbolic expressions | vector of symbolic functions

Vector field to find divergence of, specified as a symbolic expression or function, or as a vector of symbolic expressions or functions. V must be the same length as X.
Variables with respect to which you find the divergence, specified as a symbolic variable or a vector of symbolic variables. X must be the same length as V.

More About

Divergence of Vector Field

The divergence of the vector field $V = (V_1, \ldots, V_n)$ with respect to the vector $X = (X_1, \ldots, X_n)$ in Cartesian coordinates is the sum of partial derivatives of V with respect to X_1, \ldots, X_n

$$\text{div}(\vec{V}) = \nabla \cdot \vec{V} = \sum_{i=1}^{n} \frac{\partial V_i}{\partial x_i}.$$

See Also

- curl
- diff
- gradient
- hessian
- jacobian
- laplacian
- potential
- vectorPotential

Introduced in R2012a
divisors

Divisors of integer or expression

Syntax

divisors(n)
divisors(expr,vars)

Description

divisors(n) finds all nonnegative divisors of an integer n.

divisors(expr,vars) finds the divisors of a polynomial expression expr. Here, vars are polynomial variables.

Examples

Divisors of Integers

Find all nonnegative divisors of these integers.

Find the divisors of integers. You can use double precision numbers or numbers converted to symbolic objects. If you call divisors for a double-precision number, then it returns a vector of double-precision numbers.

divisors(42)
ans =
 1 2 3 6 7 14 21 42

Find the divisors of negative integers. divisors returns nonnegative divisors for negative integers.

divisors(-42)
ans =
If you call `divisors` for a symbolic number, it returns a symbolic vector.

```matlab
divisors(sym(42))
```

ans =
[1, 2, 3, 6, 7, 14, 21, 42]

The only divisor of 0 is 0.

```matlab
divisors(0)
```

ans =
0

Divisors of Univariate Polynomials

Find the divisors of univariate polynomial expressions.

Find the divisors of this univariate polynomial. You can specify the polynomial as a symbolic expression.

```matlab
syms x
divisors(x^4 - 1, x)
```

ans =
[1, x - 1, x + 1, (x - 1)*(x + 1), x^2 + 1, (x^2 + 1)*(x - 1),...
(x^2 + 1)*(x + 1), (x^2 + 1)*(x - 1)*(x + 1)]

You also can use a symbolic function to specify the polynomial.

```matlab
syms f(t)
f(t) = t^5;
divisors(f, t)
```

ans(t) =
[1, t, t^2, t^3, t^4, t^5]

When finding the divisors of a polynomial, `divisors` does not return the divisors of the constant factor.

```matlab
f(t) = 9*t^5;
divisors(f, t)
```
Divisors of Multivariate Polynomials

Find the divisors of multivariate polynomial expressions.

Find the divisors of the multivariate polynomial expression. Suppose that \(u \) and \(v \) are variables, and \(a \) is a symbolic parameter. Specify the variables as a symbolic vector.

```matlab
syms a u v
divisors(a*u^2*v^3, [u,v])
```

```
ans =
[ 1, u, u^2, v, u*v, u^2*v, v^2, u*v^2, u^2*v^2, v^3, u*v^3, u^2*v^3]
```

Now, suppose that this expression contains only one variable (for example, \(v \)), while \(a \) and \(u \) are symbolic parameters. Here, `divisors` treats the expression \(a*u^2 \) as a constant and ignores it, returning only the divisors of \(v^3 \).

```matlab
divisors(a*u^2*v^3, v)
```

```
ans =
[ 1, v, v^2, v^3]
```

Input Arguments

- **n** — Number for which to find divisors

 Number for which to find the divisors, specified as a number or symbolic number.

- **expr** — Polynomial expression for which to find divisors

 Polynomial expression for which to find divisors, specified as a symbolic expression or symbolic function.

- **vars** — Polynomial variables

 Polynomial variables, specified as a symbolic variable or a vector of symbolic variables.
More About

Tips

- \texttt{divisors(0)} returns 0.
- \texttt{divisors(expr,vars)} does not return the divisors of the constant factor when finding the divisors of a polynomial.
- If you do not specify polynomial variables, \texttt{divisors} returns as many divisors as it can find, including the divisors of constant symbolic expressions. For example, \texttt{divisors(sym(pi)^2*x^2)} returns \([1, \pi, \pi^2, x, \pi x, \pi^2 x, x^2, \pi x^2, \pi^2 x^2]\) while \texttt{divisors(sym(pi)^2*x^2, x)} returns \([1, x, x^2]\).
- For rational numbers, \texttt{divisors} returns all divisors of the numerator divided by all divisors of the denominator. For example, \texttt{divisors(sym(9/8))} returns \([1, 3, 9, 1/2, 3/2, 9/2, 1/4, 3/4, 9/4, 1/8, 3/8, 9/8]\).

See Also

\texttt{coeffs} | \texttt{factor} | \texttt{numden}

Introduced in R2014b
doc

Get help for MuPAD functions

Syntax

```
doc(symengine)
doc(symengine,'MuPAD_function_name')
```

Description

`doc(symengine)` opens “Getting Started with MuPAD”.

`doc(symengine,'MuPAD_function_name')` opens the documentation page for `MuPAD_function_name`.

Examples

`doc(symengine,'simplify')` opens the documentation page for the MuPAD `simplify` function.

Introduced in R2008b
double

Convert symbolic matrix to MATLAB numeric form

Syntax

```matlab
r = double(S)
```

Description

```matlab
r = double(S)
```

converts the symbolic object `S` to a numeric object `r`.

Input Arguments

`S`

Symbolic constant, constant expression, or symbolic matrix whose entries are constants or constant expressions.

Output Arguments

`r`

If `S` is a symbolic constant or constant expression, `r` is a double-precision floating-point number representing the value of `S`. If `S` is a symbolic matrix whose entries are constants or constant expressions, `r` is a matrix of double precision floating-point numbers representing the values of the entries of `S`.

Examples

Find the numeric value for the expression \(\frac{1 + \sqrt{5}}{2} \):
double(sym('(1+sqrt(5))/2'))
1.6180

Find the numeric value for the entries of this matrix T:

\[
a = \text{sym}(2*\sqrt{2}); \\
b = \text{sym}((1-\sqrt{3})^2); \\
T = [a, b; a*b, b/a]; \\
double(T)
\]

\[
\begin{array}{cc}
2.8284 & 0.5359 \\
1.5157 & 0.1895 \\
\end{array}
\]

Find the numeric value for this expression. By default, double uses a new upper limit of 664 digits for the working precision and returns the value 0:

\[
x = \text{sym}('((\exp(200) + 1)/(\exp(200) - 1)) - 1'); \\
double(x)
\]

\[
\begin{array}{c}
0 \\
\end{array}
\]

To get a more accurate result, increase the precision of computations:

digits(1000) \\
double(x)

\[
\begin{array}{c}
2.7678e-87 \\
\end{array}
\]

More About

Tips

- The working precision for `double` depends on the input argument. It is also ultimately limited by 664 digits. If your computation requires a larger working precision, specify the number of digits explicitly using the `digits` function.

See Also

`sym` | `vpa`
Introduced before R2006a
dsolve

Ordinary differential equation and system solver

Syntax

S = dsolve(eqn)
S = dsolve(eqn,cond)
S = dsolve(eqn,cond,Name,Value)
Y = dsolve(eqns)
Y = dsolve(eqns,conds)
Y = dsolve(eqns,conds,Name,Value)
[y1,...,yN] = dsolve(eqns)
[y1,...,yN] = dsolve(eqns,conds)
[y1,...,yN] = dsolve(eqns,conds,Name,Value)

Description

S = dsolve(eqn) solves the ordinary differential equation eqn. Here eqn is a symbolic equation containing diff to indicate derivatives. Alternatively, you can use a string with the letter D indicating derivatives. For example, syms y(x); dsolve(diff(y) == y + 1) and dsolve('Dy = y + 1','x') both solve the equation dy/dx = y + 1 with respect to the variable x. Also, eqn can be an array of such equations or strings.

S = dsolve(eqn,cond) solves the ordinary differential equation eqn with the initial or boundary condition cond.

S = dsolve(eqn,cond,Name,Value) uses additional options specified by one or more Name,Value pair arguments.

Y = dsolve(eqns) solves the system of ordinary differential equations eqns and returns a structure array that contains the solutions. The number of fields in the structure array corresponds to the number of independent variables in the system.

Y = dsolve(eqns,conds) solves the system of ordinary differential equations eqns with the initial or boundary conditions conds.

Y = dsolve(eqns,conds,Name,Value) uses additional options specified by one or more Name,Value pair arguments.
[\text{eqn}]

Symbolic equation, string representing an ordinary differential equation, or array of symbolic equations or strings.

When representing \text{eqn} as a symbolic equation, you must create a symbolic function, for example \text{y(x)}. Here \text{x} is an independent variable for which you solve an ordinary differential equation. Use the \text{==} operator to create an equation. Use the \text{diff} function to indicate differentiation. For example, to solve \(d^2y(x)/dx^2 = x*y(x)\), enter:

\begin{verbatim}
syms y(x)
dsolve(diff(y, 2) == x*y)
\end{verbatim}

When representing \text{eqn} as a string, use the letter \text{D} to indicate differentiation. By default, \text{dsolve} assumes that the independent variable is \text{t}. Thus, \text{Dy} means \(dy/dt\). You can specify the independent variable. The letter \text{D} followed by a digit indicates repeated differentiation. Any character immediately following a differentiation operator is a dependent variable. For example, to solve \(y''(x) = x*y(x)\), enter:

\begin{verbatim}
dsolve('D2y = x*y','x')
\end{verbatim}
or
\begin{verbatim}
dsolve('D2y == x*y','x')
\end{verbatim}

\text{cond}

Equation or string representing an initial or boundary condition. If you use equations, assign expressions with \text{diff} to some intermediate variables. For example, use \text{Dy}, \text{D2y}, and so on as intermediate variables:
Dy = diff(y);
D2y = diff(y, 2);

Then define initial conditions using symbolic equations, such as \(y(a) = b \) and \(\text{Dy}(a) = b \). Here \(a \) and \(b \) are constants.

If you represent initial and boundary conditions as strings, you do not need to create intermediate variables. In this case, follow the same rules as you do when creating an equation eqn as a string. For example, specify ‘\(y(a) = b \)’ and ‘\(\text{Dy}(a) = b \)’. When using strings, you can use = or == in equations.

eqns

Symbolic equations or strings separated by commas and representing a system of ordinary differential equations. Each equation or string represents an ordinary differential equation.

conds

Symbolic equations or strings separated by commas and representing initial or boundary conditions or both types of conditions. Each equation or string represents an initial or boundary condition. If the number of the specified conditions is less than the number of dependent variables, the resulting solutions contain arbitrary constants \(C1, C2, \ldots \).
Default: true

'MaxDegree'

Do not use explicit formulas that involve radicals when solving polynomial equations of degrees larger than the specified value. This value must be a positive integer smaller than 5.

Default: 2

Output Arguments

s

Symbolic array that contains solutions of an equation. The size of a symbolic array corresponds to the number of the solutions.

Y

Structure array that contains solutions of a system of equations. The number of fields in the structure array corresponds to the number of independent variables in a system.

y1,...,yN

Variables to which the solver assigns the solutions of a system of equations. The number of output variables or symbolic arrays must equal the number of independent variables in a system. The toolbox sorts independent variables alphabetically, and then assigns the solutions for these variables to output variables or symbolic arrays.

Examples

Solve these ordinary differential equations. Use == to create an equation, and diff to indicate differentiation:

```matlab
syms a x(t)
dsolve(diff(x) == -a*x)
an =
C2*exp(-a*t)
syms f(t)
```
dsolve(diff(f) == f + sin(t))

ans =
C5*exp(t) - (2^(1/2)*cos(t - pi/4))/2

Solve this ordinary differential equation with the initial condition \(y(0) = b \):

syms a b y(t)

dsolve(diff(y) == a*y, y(0) == b)

Specifying the initial condition lets you eliminate arbitrary constants, such as \(C1 \), \(C2 \), ...:

ans =
b*exp(a*t)

Solve this ordinary differential equation with the initial and boundary conditions. To specify a condition that contains a derivative, assign the derivative to a variable:

syms a y(t)
Dy = diff(y);
dsolve(diff(y, 2) == -a^2*y, y(0) == 1, Dy(pi/a) == 0)

Because the equation contains the second-order derivative \(d^2y/dt^2 \), specifying two conditions lets you eliminate arbitrary constants in the solution:

ans =
exp(-a*t*1i)/2 + exp(a*t*1i)/2

Solve this system of ordinary differential equations:

syms x(t) y(t)
z = dsolve(diff(x) == y, diff(y) == -x)

When you assign the solution of a system of equations to a single output, \texttt{dsolve} returns a structure containing the solutions:

z =
 y: [1x1 sym]
 x: [1x1 sym]

To see the results, enter \texttt{z.x} and \texttt{z.y}:

z.x

ans =
C12*cos(t) + C11*sin(t)
By default, the solver applies a set of purely algebraic simplifications that are not correct in general, but that can produce simple and practical solutions:

```matlab
syms a y(t)
dsolve(diff(y) == a/sqrt(y) + y, y(a) == 1)
```

To obtain complete and generally correct solutions, set the value of `IgnoreAnalyticConstraints` to `false`:

```matlab
dsolve(diff(y) == a/sqrt(y) + y, y(a) == 1, 'IgnoreAnalyticConstraints', false)
```

If you apply algebraic simplifications, you can get explicit solutions for some equations for which the solver cannot compute them using strict mathematical rules:

```matlab
dsolve(sqrt(diff(y)) == sqrt(y) + log(y^2))
```

versus

```matlab
dsolve(sqrt(diff(y)) == sqrt(y) + log(y^2), 'IgnoreAnalyticConstraints', false)
```

By default, the solver applies a set of purely algebraic simplifications that are not correct in general, but that can produce simple and practical solutions:
When you solve a higher-order polynomial equation, the solver sometimes uses `RootOf` to return the results:

```matlab
syms a y(x)
dsolve(diff(y) == a/(y^2 + 1))
```

Warning: Explicit solution could not be found; implicit solution returned.

```matlab
ans =
root(z^3 + 3*z - 3*a*x - 3*C26, z)
```

To get an explicit solution for such equations, try calling the solver with `MaxDegree`. The option specifies the maximum degree of polynomials for which the solver tries to return explicit solutions. The default value is 2. By increasing this value, you can get explicit solutions for higher-order polynomials. For example, increase the value of `MaxDegree` to 4 and get explicit solutions instead of `RootOf` for this equation:

```matlab
s = dsolve(diff(y) == a/(y^2 + 1), 'MaxDegree', 4);
pretty(s)
```

where

```matlab
#1 == 
\[ \frac{3 C29 + 3 a x}{2} + \frac{9 (C29 + a x)}{4} \]^{1/3}
```
If `dsolve` can find neither an explicit nor an implicit solution, then it issues a warning and returns the empty `sym`:

```matlab
syms y(x)
dsolve(exp(diff(y)) == 0)
```

Warning: Explicit solution could not be found.

```
ans =
[ empty sym ]
```

Returning the empty symbolic object does not prove that there are no solutions.

Solve this equation specifying it as a string. By default, `dsolve` assumes that the independent variable is `t`:

```matlab
dsolve('Dy^2 + y^2 == 1')
```

```
ans =
1
-1
cosh(C49 + t*1i)
cosh(C45 - t*1i)
```

Now solve this equation with respect to the variable `s`:

```matlab
dsolve('Dy^2 + y^2 == 1','s')
```

```
ans =
1
-1
cosh(C57 + s*1i)
cosh(C53 - s*1i)
```

More About

Tips

- The names of symbolic variables used in differential equations should not contain the letter `D` because `dsolve` assumes that `D` is a differential operator and any character immediately following `D` is a dependent variable.

- If `dsolve` cannot find a closed-form (explicit) solution, it attempts to find an implicit solution. When `dsolve` returns an implicit solution, it issues this warning:
Warning: Explicit solution could not be found; implicit solution returned.

- If `dsolve` can find neither an explicit nor an implicit solution, then it issues a warning and returns the empty `sym`. In this case, try to find a numeric solution using the MATLAB `ode23` or `ode45` function. In some cases, the output is an equivalent lower-order differential equation or an integral.

Algorithms

If you do not set the value of `IgnoreAnalyticConstraints` to `false`, the solver applies these rules to the expressions on both sides of an equation:

- \(\log(a) + \log(b) = \log(ab)\) for all values of \(a\) and \(b\). In particular, the following equality is valid for all values of \(a\), \(b\), and \(c\):
 \[(ab)^c = a^c \cdot b^c.\]
- \(\log(a^b) = b \cdot \log(a)\) for all values of \(a\) and \(b\). In particular, the following equality is valid for all values of \(a\), \(b\), and \(c\):
 \[(a^b)^c = a^{bc}.\]
- If \(f\) and \(g\) are standard mathematical functions and \(f(g(x)) = x\) for all small positive numbers, \(f(g(x)) = x\) is assumed to be valid for all complex \(x\). In particular:
 - \(\log(e^x) = x\)
 - \(\text{asinh}(\sinh(x)) = x\), \(\text{acosh}(\cosh(x)) = x\), \(\text{atanh}(\tanh(x)) = x\)
 - \(W_k(x e^x) = x\) for all values of \(k\)
- The solver can multiply both sides of an equation by any expression except 0.
- The solutions of polynomial equations must be complete.
- “Solve a Single Differential Equation” on page 2-153
- “Solve a System of Differential Equations” on page 2-157

See Also

`functionalDerivative` | `linsolve` | `ode23` | `ode45` | `odeToVectorField` | `solve` | `syms` | `vpasolve`
Introduced before R2006a
ei
One-argument exponential integral function

Syntax

\textbf{ei(x)}

Description

\textit{ei(x)} returns the one-argument exponential integral defined as

\[\text{ei}(x) = \int_{-\infty}^{x} \frac{e^t}{t} dt.\]

Examples

\textbf{Exponential Integral for Floating-Point and Symbolic Numbers}

Compute exponential integrals for numeric inputs. Because these numbers are not symbolic objects, you get floating-point results.

\[s = [\text{ei}(-2), \text{ei}(-1/2), \text{ei}(1), \text{ei}(\text{sqrt}(2))]\]

\[s = [-0.0489, -0.5598, 1.8951, 3.0485]\]

Compute exponential integrals for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, \textit{ei} returns unresolved symbolic calls.

\[s = [\text{ei}(\text{sym}(-2)), \text{ei}(\text{sym}(-1/2)), \text{ei}(\text{sym}(1)), \text{ei}(\text{sqrt}(ext{sym}(2)))]\]

\[s = [\text{ei}(-2), \text{ei}(-1/2), \text{ei}(1), \text{ei}(2^{(1/2)})]\]

Use \texttt{vpa} to approximate this result with 10-digit accuracy.
vpa(s, 10)
ans =
[-0.04890051071, -0.5597735948, 1.895117816, 3.048462479]

Branch Cut at Negative Real Axis

The negative real axis is a branch cut. The exponential integral has a jump of height $2\pi i$ when crossing this cut. Compute the exponential integrals at -1, above -1, and below -1 to demonstrate this.

\([\text{ei}(-1), \text{ei}(-1 + 10^{(-10)}*i), \text{ei}(-1 - 10^{(-10)}*i)]\)

ans =
-0.2194 + 0.0000i -0.2194 + 3.1416i -0.2194 - 3.1416i

Derivatives of Exponential Integral

Compute the first, second, and third derivatives of a one-argument exponential integral.

```matlab
syms x
diff(ei(x), x)
diff(ei(x), x, 2)
diff(ei(x), x, 3)
```

ans =
\(\frac{\exp(x)}{x}\)

ans =
\(\frac{\exp(x)}{x} - \frac{\exp(x)}{x^2}\)

ans =
\(\frac{\exp(x)}{x} - \frac{2\exp(x)}{x^2} + \frac{2\exp(x)}{x^3}\)

Limits of Exponential Integral

Compute the limits of a one-argument exponential integral.

```matlab
syms x
limit(ei(2*x^2/(1+x)), x, -Inf)
limit(ei(2*x^2/(1+x)), x, 0)
limit(ei(2*x^2/(1+x)), x, Inf)
```
\[\text{ans} = 0 \]
\[\text{ans} = -\infty \]
\[\text{ans} = \infty \]

Input Arguments

x — Input

floating-point number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input specified as a floating-point number or symbolic number, variable, expression, function, vector, or matrix.

More About

Tips

- The one-argument exponential integral is singular at \(x = 0 \). The toolbox uses this special value: \(\text{ei}(0) = -\infty \).

Algorithms

The relation between \(\text{ei} \) and \(\text{expint} \) is

\[\text{ei}(x) = -\text{expint}(1,-x) + \frac{\ln(x) - \ln(1/x)}{2} - \ln(-x) \]

Both functions \(\text{ei}(x) \) and \(\text{expint}(1,x) \) have a logarithmic singularity at the origin and a branch cut along the negative real axis. The \(\text{ei} \) function is not continuous when approached from above or below this branch cut.

References

See Also
expint | expint | int | vpa

Introduced in R2013a
eig

Eigenvalues and eigenvectors of symbolic matrix

Syntax

```plaintext
lambda = eig(A)  
[V,D] = eig(A)  
[V,D,P] = eig(A)  
lambda = eig(vpa(A))  
[V,D] = eig(vpa(A))
```

Description

`lambda = eig(A)` returns a symbolic vector containing the eigenvalues of the square symbolic matrix `A`.

`[V,D] = eig(A)` returns matrices `V` and `D`. The columns of `V` present eigenvectors of `A`. The diagonal matrix `D` contains eigenvalues. If the resulting `V` has the same size as `A`, the matrix `A` has a full set of linearly independent eigenvectors that satisfy $A*V = V*D$.

`[V,D,P] = eig(A)` returns a vector of indices `P`. The length of `P` equals to the total number of linearly independent eigenvectors, so that $A*V = V*D(P,P)$.

`lambda = eig(vpa(A))` returns numeric eigenvalues using variable-precision arithmetic.

`[V,D] = eig(vpa(A))` returns numeric eigenvectors using variable-precision arithmetic. If `A` does not have a full set of eigenvectors, the columns of `V` are not linearly independent.

Examples

Compute the eigenvalues for the magic square of order 5:

```plaintext
M = sym(magic(5));  
eig(M)
```
Compute the eigenvalues for the magic square of order 5 using variable-precision arithmetic:

\[
\text{M} = \text{sym(magic(5))};
\text{eig(vpa(M))}
\]

\[
\text{ans} = \\
\begin{array}{c}
65 \\
\frac{1}{2} + \frac{\sqrt{3145}}{5} \\
\frac{1}{2} - \frac{\sqrt{3145}}{5} \\
\end{array}
\]

Compute the eigenvalues and eigenvectors for one of the MATLAB test matrices:

\[
\text{A} = \text{sym(gallery(5))};
\text{[v, lambda] = eig(A)}
\]

\[
\text{A} = \\
\begin{bmatrix}
-9 & 11 & -21 & 63 & -252 \\
70 & -69 & 141 & -421 & 1684 \\
-575 & 575 & -1149 & 3451 & -13801 \\
3891 & -3891 & 7782 & -23345 & 93365 \\
1024 & -1024 & 2048 & -6144 & 24572 \\
\end{bmatrix}
\]

\[
\text{v} = \\
\begin{bmatrix}
0 \\
\frac{21}{256} \\
-\frac{71}{128} \\
\frac{973}{256} \\
1 \\
\end{bmatrix}
\]

\[
\text{lambda} = \\
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
More About

- “Eigenvalues” on page 2-107

See Also
charpoly | svd | vpa | jordan

Introduced before R2006a
ellipke

Complete elliptic integrals of the first and second kinds

Syntax

\[[K, E] = \text{ellipke}(m) \]

Description

\[[K, E] = \text{ellipke}(m) \] returns the complete elliptic integrals of the first and second kinds.

Input Arguments

\textbf{m}

Symbolic number, variable, expression, or function. This argument also can be a vector or matrix of symbolic numbers, variables, expressions, or functions.

Output Arguments

\textbf{K}

Complete elliptic integral of the first kind.

\textbf{E}

Complete elliptic integral of the second kind.

Examples

Compute the complete elliptic integrals of the first and second kinds for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
[K0, E0] = ellipke(0)
[K05, E05] = ellipke(1/2)

K0 =
 1.5708

E0 =
 1.5708

K05 =
 1.8541

E05 =
 1.3506

Compute the complete elliptic integrals for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipke returns results using the ellipticK and ellipticE functions.

[K0, E0] = ellipke(sym(0))
[K05, E05] = ellipke(sym(1/2))

K0 =
 pi/2

E0 =
 pi/2

K05 =
 ellipticK(1/2)

E05 =
 ellipticE(1/2)

Use vpa to approximate K05 and E05 with floating-point numbers:

vpa([K05, E05], 10)

ans =
 [1.854074677, 1.350643881]

If the argument does not belong to the range from 0 to 1, then convert that argument to a symbolic object before using ellipke:

[K, E] = ellipke(sym(pi/2))
ellipke

K =
ellipticK(pi/2)

E =
ellipticE(pi/2)

Alternatively, use ellipticK and ellipticE to compute the integrals of the first and the second kinds separately:

K = ellipticK(sym(pi/2))
E = ellipticE(sym(pi/2))

K =
ellipticK(pi/2)

E =
ellipticE(pi/2)

Call ellipke for this symbolic matrix. When the input argument is a matrix, ellipke computes the complete elliptic integrals of the first and second kinds for each element.

[K, E] = ellipke(sym([-1 0; 1/2 1]))

K =
[ellipticK(-1), pi/2]
[ellipticK(1/2), Inf]

E =
[ellipticE(-1), pi/2]
[ellipticE(1/2), 1]

Alternatives

You can use ellipticK and ellipticE to compute elliptic integrals of the first and second kinds separately.

More About

Complete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:
$$K(m) = F\left(\frac{\pi}{2} \mid m\right) = \int_{0}^{\pi/2} \frac{1}{\sqrt{1 - m \sin^2 \theta}} \, d\theta$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m = k^2 = \sin^2 \alpha$.

Complete Elliptic Integral of the Second Kind

The complete elliptic integral of the second kind is defined as follows:

$$E(m) = E\left(\frac{\pi}{2} \mid m\right) = \int_{0}^{\pi/2} \sqrt{1 - m \sin^2 \theta} \, d\theta$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m = k^2 = \sin^2 \alpha$.

Tips

- Calling `ellipke` for numbers that are not symbolic objects invokes the MATLAB `ellipke` function. This function accepts only $0 \leq x \leq 1$. To compute the complete elliptic integrals of the first and second kinds for the values out of this range, use `sym` to convert the numbers to symbolic objects, and then call `ellipke` for those symbolic objects. Alternatively, use the `ellipticK` and `ellipticE` functions to compute the integrals separately.

- For most symbolic (exact) numbers, `ellipke` returns results using the `ellipticK` and `ellipticE` functions. You can approximate such results with floating-point numbers using `vpa`.

- If m is a vector or a matrix, then $[K, E] = \text{ellipke}(m)$ returns the complete elliptic integrals of the first and second kinds, evaluated for each element of m.

References

See Also
ellipke | ellipticE | ellipticK | vpa

Introduced in R2013a
ellipticCE

Complementary complete elliptic integral of the second kind

Syntax

ellipticCE(m)

Description

ellipticCE(m) returns the complementary complete elliptic integral of the second kind.

Input Arguments

m

Number, symbolic number, variable, expression, or function. This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Examples

Compute the complementary complete elliptic integrals of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

s = [ellipticCE(0), ellipticCE(pi/4),...
 ellipticCE(1), ellipticCE(pi/2)]

s =
 1.0000 1.4828 1.5708 1.7753

Compute the complementary complete elliptic integrals of the second kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticCE returns unresolved symbolic calls.
s = [ellipticCE(sym(0)), ellipticCE(sym(pi/4)),...
 ellipticCE(sym(1)), ellipticCE(sym(pi/2))]

s =
[1, ellipticCE(pi/4), pi/2, ellipticCE(pi/2)]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[1.0, 1.482786927, 1.570796327, 1.775344699]

Differentiate these expressions involving the complementary complete elliptic integral of
the second kind:

syms m
diff(ellipticCE(m))
diff(ellipticCE(m^2), m, 2)

ans =
ellipticCE(m)/(2*m - 2) - ellipticCK(m)/(2*m - 2)

ans =
(2*ellipticCE(m^2))/(2*m^2 - 2) - ...
(2*ellipticCK(m^2))/(2*m^2 - 2) + ...
2*m*((2*m*ellipticCK(m^2))/(2*m^2 - 2) - ...
ellipticCE(m^2)/(m*(m^2 - 1))/(2*m^2 - 2) + ...
(2*m*(ellipticCE(m^2))/(2*m^2 - 2) - ...
(2*m*(ellipticCK(m^2))/(2*m^2 - 2) - ...
ellipticCK(m^2))/(2*m^2 - 2)))/(2*m^2 - 2) - ...
(4*m*(2*m^2 - 2)))/(2*m^2 - 2) + ...
(4*m*(ellipticCE(m^2))/(2*m^2 - 2)*2 + ...
(4*m*(ellipticCK(m^2))/(2*m^2 - 2)*2

Here, ellipticCK represents the complementary complete elliptic integral of the first
kind.

Plot the complementary complete elliptic integral of the second kind:

syms m
ezplot(ellipticCE(m))
title('Complementary complete elliptic integral of the second kind')
ylabel('ellipticCE(m)')
grid on
Call `ellipticCE` for this symbolic matrix. When the input argument is a matrix, `ellipticCE` computes the complementary complete elliptic integral of the second kind for each element.

```matlab
ellipticCE(sym([pi/6 pi/4; pi/3 pi/2]))
```

```matlab
ans =
[ ellipticCE(pi/6), ellipticCE(pi/4)]
[ ellipticCE(pi/3), ellipticCE(pi/2)]
```
More About

Complementary Complete Elliptic Integral of the Second Kind

The complementary complete elliptic integral of the second kind is defined as $E'(m) = E(1-m)$, where $E(m)$ is the complete elliptic integral of the second kind:

$$E(m) = E\left(\frac{\pi}{2} \mid m\right) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1-m\sin^2 \theta}}$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m = k^2 = \sin^2 \alpha$.

Tips

- `ellipticCE` returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, `ellipticCE` returns unresolved symbolic calls. You can approximate such results with floating-point numbers using `vpa`.
- If m is a vector or a matrix, then `ellipticCE(m)` returns the complementary complete elliptic integral of the second kind, evaluated for each element of m.

References

See Also

`ellipke` | `ellipticCK` | `ellipticCPI` | `ellipticCE` | `ellipticF` | `ellipticK` | `ellipticPi` | `vpa`

Introduced in R2013a
ellipticCK

Complementary complete elliptic integral of the first kind

Syntax

ellipticCK(m)

Description

ellipticCK(m) returns the complementary complete elliptic integral of the first kind.

Input Arguments

m

Number, symbolic number, variable, expression, or function. This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Examples

Compute the complementary complete elliptic integrals of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

s = [ellipticCK(1/2), ellipticCK(pi/4), ellipticCK(1), ellipticCK(inf)]

s =
 1.8541 1.6671 1.5708 NaN

Compute the complete elliptic integrals of the first kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticCK returns unresolved symbolic calls.

s = [ellipticCK(sym(1/2)), ellipticCK(sym(pi/4)),...
ellipticCK(sym(1)), ellipticCK(sym(inf))

s =
[ellipticCK(1/2), ellipticCK(pi/4), pi/2, ellipticCK(Inf)]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[1.854074677, 1.667061338, 1.570796327, NaN]

Differentiate these expressions involving the complementary complete elliptic integral of the first kind:

syms m
diff(ellipticCK(m))
diff(ellipticCK(m^2), m, 2)

ans =
ellipticCE(m)/(2*m*(m - 1)) - ellipticCK(m)/(2*m - 2)

ans =
(2*(ellipticCE(m^2)/(2*m^2 - 2) -...
ellipticCK(m^2)/(2*m^2 - 2))/(m^2 - 1) -...
(2*ellipticCE(m^2))/(m^2 - 1)^2 -...
(2*ellipticCK(m^2))/(2*m^2 - 2) +...
(8*m^2*2*ellipticCK(m^2))/(2*m^2 - 2)^2 +...
(2*m*((2*m*ellipticCE(m^2))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m*(m^2 - 1))))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m^2*(m^2 - 1))

Here, ellipticCE represents the complementary complete elliptic integral of the second kind.

Plot the complementary complete elliptic integral of the first kind:

syms m
ezplot(ellipticCK(m), [0.1, 5])
title('Complementary complete elliptic integral of the first kind')
ylabel('ellipticCK(m)')
grid on
hold off
Call `ellipticCK` for this symbolic matrix. When the input argument is a matrix, `ellipticCK` computes the complementary complete elliptic integral of the first kind for each element.

```matlab
ellipticCK(sym([pi/6 pi/4; pi/3 pi/2]))
```

```matlab
ans =
[ ellipticCK(pi/6), ellipticCK(pi/4)]
[ ellipticCK(pi/3), ellipticCK(pi/2)]
```
More About

Complementary Complete Elliptic Integral of the First Kind

The complementary complete elliptic integral of the first kind is defined as \(K'(m) = K(1-m) \), where \(K(m) \) is the complete elliptic integral of the first kind:

\[
K(m) = F\left(\frac{\pi}{2} \mid m\right) = \int_{0}^{\pi/2} \frac{1}{\sqrt{1 - m \sin^2 \theta}} \, d\theta
\]

Note that some definitions use the elliptical modulus \(k \) or the modular angle \(\alpha \) instead of the parameter \(m \). They are related as \(m = k^2 = \sin^2 \alpha \).

Tips

- \texttt{ellipticK} returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, \texttt{ellipticCK} returns unresolved symbolic calls. You can approximate such results with floating-point numbers using the \texttt{vpa} function.
- If \(m \) is a vector or a matrix, then \texttt{ellipticCK}(m) returns the complementary complete elliptic integral of the first kind, evaluated for each element of \(m \).

References

See Also

\texttt{ellipke} | \texttt{ellipticCE} | \texttt{ellipticCPi} | \texttt{ellipticE} | \texttt{ellipticF} | \texttt{ellipticK} | \texttt{ellipticPi} | \texttt{vpa}

Introduced in R2013a
ellipticCPi

Complementary complete elliptic integral of the third kind

Syntax

`ellipticCPi(n,m)`

Description

`ellipticCPi(n,m)` returns the complementary complete elliptic integral of the third kind.

Input Arguments

- **n**
 Number, symbolic number, variable, expression, or function specifying the characteristic. This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

- **m**
 Number, symbolic number, variable, expression, or function specifying the parameter. This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Examples

Compute the complementary complete elliptic integrals of the third kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```plaintext
s = [ellipticCPi(-1, 1/3), ellipticCPi(0, 1/2),
     ellipticCPi(9/10, 1), ellipticCPi(-1, 0)]
```

```plaintext
s =
  1.3703  1.8541  4.9673  Inf
```
Compute the complementary complete elliptic integrals of the third kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, \texttt{ellipticCPI} returns unresolved symbolic calls.

\[
s = \text{[ellipticCPI(-1, sym(1/3)), ellipticCPI(sym(0), 1/2),...}
\[
\text{ ellipticCPI(sym(9/10), 1), ellipticCPI(-1, sym(0))]}
\]

\[
s = \text{[ellipticCPI(-1, 1/3), ellipticCK(1/2), (pi*10^(1/2))/2, Inf]}
\]

Here, \texttt{ellipticCK} represents the complementary complete elliptic integrals of the first kind.

Use \texttt{vpa} to approximate this result with floating-point numbers:

\[
vpa(s, 10)
\]

\[
\text{ans = }
\]

\[
\text{[1.370337322, 1.854074677, 4.967294133, Inf]}
\]

Differentiate these expressions involving the complementary complete elliptic integral of the third kind:

\[
syms n m
\]

\[
diff(ellipticCPI(n, m), n)
\]

\[
diff(ellipticCPI(n, m), m)
\]

\[
\text{ans = }
\]

\[
\text{ ellipticCK(m)/(2*n*(n - 1)) -...}
\]

\[
\text{ ellipticCE(m)/(2*(n - 1)*(m + n - 1)) -...}
\]

\[
(ellipticCPI(n, m)*(n^2 + m - 1))/(2*n*(n - 1)*(m + n - 1))
\]

\[
\text{ans = }
\]

\[
\text{ ellipticCE(m)/(2*m*(m + n - 1)) - ellipticCPI(n, m)/(2*(m + n - 1))}
\]

Here, \texttt{ellipticCK} and \texttt{ellipticCE} represent the complementary complete elliptic integrals of the first and second kinds.

\section*{More About}

\subsection*{Complementary Complete Elliptic Integral of the Third Kind}

The complementary complete elliptic integral of the third kind is defined as \(\Pi'(m) = \Pi(n, 1-m)\), where \(\Pi(n,m)\) is the complete elliptic integral of the third kind:
\[\Pi(n,m) = \Pi\left(n; \frac{\pi}{2}, m \right) = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{1}{(1 - n \sin^2 \theta) \sqrt{1 - m \sin^2 \theta}} d\theta \]

Note that some definitions use the elliptical modulus \(k \) or the modular angle \(\alpha \) instead of the parameter \(m \). They are related as \(m = k^2 = \sin^2 \alpha \).

Tips

- `ellipticCPi` returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, `ellipticCPi` returns unresolved symbolic calls. You can approximate such results with floating-point numbers using `vpa`.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then `ellipticCPi` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

See Also

`ellipke` | `ellipticCE` | `ellipticCK` | `ellipticE` | `ellipticF` | `ellipticK` | `ellipticPi` | `vpa`

Introduced in R2013a
ellipticE

Complete and incomplete elliptic integrals of the second kind

Syntax

```latex
ellipticE(m)
ellipticE(phi,m)
```

Description

`ellipticE(m)` returns the complete elliptic integral of the second kind.

`ellipticE(phi,m)` returns the incomplete elliptic integral of the second kind.

Input Arguments

`m`

Number, symbolic number, variable, expression, or function specifying the parameter. This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

`phi`

Number, symbolic number, variable, expression, or function specifying the amplitude. This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Examples

Compute the complete elliptic integrals of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```latex
s = [ellipticE(-10.5), ellipticE(-pi/4),
     ellipticE(0), ellipticE(1)]
```
Compute the complete elliptic integral of the second kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, \texttt{ellipticE} returns unresolved symbolic calls.

\begin{verbatim}
s = [ellipticE(sym(-10.5)), ellipticE(sym(-pi/4)),...
ellipticE(sym(0)), ellipticE(sym(1))]
s = [ellipticE(-21/2), ellipticE(-pi/4), pi/2, 1]
\end{verbatim}

Use \texttt{vpa} to approximate this result with floating-point numbers:

\begin{verbatim}
vpa(s, 10)
ans =
[3.70961391, 1.844349247, 1.570796327, 1.0]
\end{verbatim}

Differentiate these expressions involving elliptic integrals of the second kind:

\begin{verbatim}
syms m
diff(ellipticE(pi/3, m))
diff(ellipticE(m^2), m, 2)
ans =
ellipticE(pi/3, m)/(2*m) - ellipticF(pi/3, m)/(2*m)
ans =
2*m*((ellipticE(m^2)/(2*m^2) -...
ellipticK(m^2)/(2*m^2))/m - ellipticE(m^2)/m^3 +...
ellipticK(m^2)/m^3 + (ellipticK(m^2)/m +...
ellipticE(m^2)/(m*(m^2 - 1))/(2*m^2)) +...
ellipticE(m^2)/m^2 - ellipticK(m^2)/m^2
\end{verbatim}

Here, \texttt{ellipticK} and \texttt{ellipticF} represent the complete and incomplete elliptic integrals of the first kind, respectively.

Plot the incomplete elliptic integrals \texttt{ellipticE(phi,m)} for \(\phi = \pi/4 \) and \(\phi = \pi/3 \). Also plot the complete elliptic integral \texttt{ellipticE(m)}:

\begin{verbatim}
syms m
ezplot(ellipticE(pi/4, m))
\end{verbatim}
Call \texttt{ellipticE} for this symbolic matrix. When the input argument is a matrix, \texttt{ellipticE} computes the complete elliptic integral of the second kind for each element.

\begin{verbatim}
ellipticE(sym([1/3 1; 1/2 0]))
\end{verbatim}
ans =
[ellipticE(1/3), 1]
[ellipticE(1/2), pi/2]

Alternatives

You can use `ellipke` to compute elliptic integrals of the first and second kinds in one function call.

More About

Incomplete Elliptic Integral of the Second Kind

The incomplete elliptic integral of the second kind is defined as follows:

\[E(\varphi | m) = \int_{0}^{\varphi} \sqrt{1 - m \sin^2 \theta} \, d\theta \]

Note that some definitions use the elliptical modulus \(k \) or the modular angle \(\alpha \) instead of the parameter \(m \). They are related as \(m = k^2 = \sin^2 \alpha \).

Complete Elliptic Integral of the Second Kind

The complete elliptic integral of the second kind is defined as follows:

\[E(m) = E\left(\frac{\pi}{2} | m\right) = \int_{0}^{\pi/2} \sqrt{1 - m \sin^2 \theta} \, d\theta \]

Note that some definitions use the elliptical modulus \(k \) or the modular angle \(\alpha \) instead of the parameter \(m \). They are related as \(m = k^2 = \sin^2 \alpha \).

Tips

- `ellipticE` returns floating-point results for numeric arguments that are not symbolic objects.
• For most symbolic (exact) numbers, \texttt{ellipticE} returns unresolved symbolic calls. You can approximate such results with floating-point numbers using \texttt{vpa}.

• If \(m\) is a vector or a matrix, then \texttt{ellipticE(m)} returns the complete elliptic integral of the second kind, evaluated for each element of \(m\).

• At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then \texttt{ellipticE} expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

• \texttt{ellipticE(pi/2, m) = ellipticE(m)}.

References

See Also

\texttt{ellipke} | \texttt{ellipticCE} | \texttt{ellipticCK} | \texttt{ellipticCPi} | \texttt{ellipticF} | \texttt{ellipticK} | \texttt{ellipticPi} | \texttt{vpa}

Introduced in R2013a
ellipticF

Incomplete elliptic integral of the first kind

Syntax

ellipticF(phi,m)

Description

ellipticF(phi,m) returns the incomplete elliptic integral of the first kind.

Input Arguments

m

Number, symbolic number, variable, expression, or function specifying the parameter. This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

phi

Number, symbolic number, variable, expression, or function specifying the amplitude. This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Examples

Compute the incomplete elliptic integrals of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

\[s = [\text{ellipticF}(\pi/3, -10.5), \text{ellipticF}(\pi/4, -\pi),... \text{ellipticF}(1, -1), \text{ellipticF}(\pi/2, 0)] \]

s =
Compute the incomplete elliptic integrals of the first kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, \texttt{ellipticF} returns unresolved symbolic calls.

```
s = [ellipticF(sym(pi/3), -10.5), ellipticF(sym(pi/4), -pi),
     ellipticF(sym(1), -1), ellipticF(pi/6, sym(0))]
```

```
s =
[ ellipticF(pi/3, -21/2), ellipticF(pi/4, -pi), ellipticF(1, -1), pi/6]
```

Use \texttt{vpa} to approximate this result with floating-point numbers:

```
vpa(s, 10)
```

```
ans =
[ 0.6184459461, 0.6485970495, 0.8963937895, 0.5235987756]
```

Differentiate this expression involving the incomplete elliptic integral of the first kind:

```
syms m
diff(ellipticF(pi/4, m))
```

```
ans =
1/(4*(1 - m/2)^(1/2)*(m - 1)) - ellipticF(pi/4, m)/(2*m) -
ellipticE(pi/4, m)/(2*m*(m - 1))
```

Here, \texttt{ellipticE} represents the incomplete elliptic integral of the second kind.

Plot the incomplete elliptic integrals \texttt{ellipticF(phi, m)} for \texttt{phi} = \texttt{pi/4} and \texttt{phi} = \texttt{pi/3}. Also plot the complete elliptic integral \texttt{ellipticK(m)}:

```
syms m
ezplot(ellipticF(pi/4, m))
hold on
ezplot(ellipticF(pi/3, m))
ezplot(ellipticK(m))
```

```
title('Elliptic integrals of the first kind')
ylabel('ellipticF(m)')
legend(['F(pi/4|m', 'F(pi/3|m', 'K(m)', 'Location', 'Best')
grid on
```
Incomplete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

\[
F(\phi \mid m) = \int_{0}^{\phi} \frac{1}{\sqrt{1 - m \sin^2 \theta}} \, d\theta
\]
Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m = k^2 = \sin^2\alpha$.

Tips

- `ellipticF` returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, `ellipticF` returns unresolved symbolic calls. You can approximate such results with floating-point numbers using `vpa`.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, `ellipticF` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
- `ellipticF(pi/2, m) = ellipticK(m)`.

References

See Also

- `ellipke`
- `ellipticCE`
- `ellipticCK`
- `ellipticCPi`
- `ellipticE`
- `ellipticK`
- `ellipticPi`
- `vpa`

Introduced in R2013a
ellipticK

Complete elliptic integral of the first kind

Syntax

ellipticK(m)

Description

ellipticK(m) returns the complete elliptic integral of the first kind.

Input Arguments

m

Number, symbolic number, variable, expression, or function. This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Examples

Compute the complete elliptic integrals of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

s = [ellipticK(1/2), ellipticK(pi/4), ellipticK(1), ellipticK(-5.5)]

s =

1.8541 2.2253 Inf 0.9325

Compute the complete elliptic integrals of the first kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticK returns unresolved symbolic calls.

s = [ellipticK(sym(1/2)), ellipticK(sym(pi/4)),...]
ellipticK(sym(1)), ellipticK(sym(-5.5))]

s =
[ellipticK(1/2), ellipticK(pi/4), Inf, ellipticK(-11/2)]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[1.854074677, 2.225253684, Inf, 0.9324665884]

Differentiate these expressions involving the complete elliptic integral of the first kind:

syms m
diff(ellipticK(m))
diff(ellipticK(m^2), m, 2)

ans =
- ellipticK(m)/(2*m) - ellipticE(m)/(2*m*(m - 1))

ans =
(2*ellipticE(m^2))/(m^2 - 1)^2 - (2*(ellipticE(m^2)/(2*m^2) -... ellipticK(m^2)/(2*m^2)))/(m^2 - 1) + ellipticK(m^2)/m^2 +...
(ellipticK(m^2)/m + ellipticE(m^2)/(m*(m^2 - 1)))/m +...
ellipticE(m^2)/(m^2*(m^2 - 1))

Here, ellipticE represents the complete elliptic integral of the second kind.

Plot the complete elliptic integral of the first kind:

syms m
ezplot(ellipticK(m))
title('Complete elliptic integral of the first kind')
ylabel('ellipticK(m)')
grid on
Call `ellipticK` for this symbolic matrix. When the input argument is a matrix, `ellipticK` computes the complete elliptic integral of the first kind for each element.

```matlab
ellipticK(sym([-2*pi -4; 0 1]))
```

```matlab
ans =
[ ellipticK(-2*pi), ellipticK(-4)]
[       pi/2,         Inf]
```

Alternatives

You can use `ellipke` to compute elliptic integrals of the first and second kinds in one function call.
More About

Complete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

\[K(m) = F\left(\frac{\pi}{2} \mid m\right) = \int_{0}^{\pi/2} \frac{1}{\sqrt{1 - m \sin^2 \theta}} d\theta \]

Note that some definitions use the elliptical modulus \(k \) or the modular angle \(\alpha \) instead of the parameter \(m \). They are related as \(m = k^2 = \sin^2 \alpha \).

Tips

- `ellipticK` returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, `ellipticK` returns unresolved symbolic calls. You can approximate such results with floating-point numbers using `vpa`.
- If \(m \) is a vector or a matrix, then `ellipticK(m)` returns the complete elliptic integral of the first kind, evaluated for each element of \(m \).

References

See Also

`ellipke` | `ellipticCE` | `ellipticCK` | `ellipticCPi` | `ellipticE` | `ellipticF` | `ellipticPi` | `vpa`

Introduced in R2013a
ellipticPi

Complete and incomplete elliptic integrals of the third kind

Syntax

```matlab
ellipticPi(n,m)
ellipticPi(n,phi,m)
```

Description

`ellipticPi(n,m)` returns the complete elliptic integral of the third kind.

`ellipticPi(n,phi,m)` returns the incomplete elliptic integral of the third kind.

Input Arguments

`n`

Number, symbolic number, variable, expression, or function specifying the characteristic.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

`m`

Number, symbolic number, variable, expression, or function specifying the parameter.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

`phi`

Number, symbolic number, variable, expression, or function specifying the amplitude.
This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.
Examples

Compute the incomplete elliptic integrals of the third kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

\[s = \{\text{ellipticPi}(-2.3, \pi/4, 0), \text{ellipticPi}(1/3, \pi/3, 1/2), \ldots \} \]

\[s = \\
0.5877 \quad 1.2850 \quad 0 \quad 0.7507 \]

Compute the incomplete elliptic integrals of the third kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, \text{ellipticPi} returns unresolved symbolic calls.

\[s = \{\text{ellipticPi}(-2.3, \text{sym}(\pi/4), 0), \text{ellipticPi}(\text{sym}(1/3), \pi/3, 1/2), \ldots \} \]

\[s = \\
[\text{ellipticPi}(-23/10, \pi/4, 0), \text{ellipticPi}(\text{sym}(1/3), \pi/3, 1/2), \ldots \]
0, \((2^{1/2} \cdot 3^{1/2})/2 - \text{ellipticE}(\pi/6, 2)) \]

Here, \text{ellipticE} represents the incomplete elliptic integral of the second kind.

Use \text{vpa} to approximate this result with floating-point numbers:

\[\text{vpa}(s, 10) \]

\[\text{ans} = \\
[0.5876852228, 1.285032276, 0, 0.7507322117] \]

Differentiate these expressions involving the complete elliptic integral of the third kind:

\[\text{syms} \quad n \quad m \]
\[\text{diff} (\text{ellipticPi}(n, m), n) \]
\[\text{diff} (\text{ellipticPi}(n, m), m) \]

\[\text{ans} = \\
\frac{\text{ellipticK}(m)}{2n(n - 1)} + \frac{\text{ellipticE}(m)}{2(m - n)(n - 1)} - \ldots \\
(\text{ellipticPi}(n, m)*(- n^2 + m))/(2*n*(m - n)*(n - 1)) \]

\[\text{ans} = \\
- \text{ellipticPi}(n, m)/(2*(m - n)) - \text{ellipticE}(m)/(2*(m - n)*(m - 1)) \]

Here, \text{ellipticK} and \text{ellipticE} represent the complete elliptic integrals of the first and second kinds.
Call `ellipticPi` for the scalar and the matrix. When one input argument is a matrix, `ellipticPi` expands the scalar argument to a matrix of the same size with all its elements equal to the scalar.

`ellipticPi(sym(0), sym([1/3 1; 1/2 0]))`

```
ans =
[ ellipticK(1/3),  Inf]
[ ellipticK(1/2), pi/2]
```

Here, `ellipticK` represents the complete elliptic integral of the first kind.

More About

Incomplete Elliptic Integral of the Third Kind

The incomplete elliptic integral of the third kind is defined as follows:

\[
\Pi(n; \varphi \mid m) = \int_{0}^{\varphi} \frac{1}{(1-n \sin^2 \theta)\sqrt{1-m \sin^2 \theta}} d\theta
\]

Note that some definitions use the elliptical modulus \(k \) or the modular angle \(\alpha \) instead of the parameter \(m \). They are related as \(m = k^2 = \sin^2 \alpha \).

Complete Elliptic Integral of the Third Kind

The complete elliptic integral of the third kind is defined as follows:

\[
\Pi(n,m) = \Pi\left(n; \frac{\pi}{2} \mid m\right) = \int_{0}^{\pi/2} \frac{1}{(1-n \sin^2 \theta)\sqrt{1-m \sin^2 \theta}} d\theta
\]

Note that some definitions use the elliptical modulus \(k \) or the modular angle \(\alpha \) instead of the parameter \(m \). They are related as \(m = k^2 = \sin^2 \alpha \).

Tips

- `ellipticPi` returns floating-point results for numeric arguments that are not symbolic objects.
• For most symbolic (exact) numbers, \texttt{ellipticPi} returns unresolved symbolic calls. You can approximate such results with floating-point numbers using \texttt{vpa}.

• All non-scalar arguments must have the same size. If one or two input arguments are non-scalar, then \texttt{ellipticPi} expands the scalars into vectors or matrices of the same size as the non-scalar arguments, with all elements equal to the corresponding scalar.

• \texttt{ellipticPi(n, pi/2, m)} = \texttt{ellipticPi(n, m)}.

References

See Also

\texttt{ellipke} | \texttt{ellipticCE} | \texttt{ellipticCK} | \texttt{ellipticCPi} | \texttt{ellipticE} | \texttt{ellipticF} | \texttt{ellipticK} | \texttt{vpa}

Introduced in R2013a
eq

Define equation

Compatibility

In previous releases, `eq` in some cases evaluated equations involving only symbolic numbers and returned logical 1 or 0. To obtain the same results as in previous releases, wrap equations in `isAlways`. For example, use `isAlways(A == B)`.

Syntax

\[
A == B \\
eq(A,B)
\]

Description

`A == B` creates a symbolic equation. You can use that equation as an argument for such functions as `solve`, `assume`, `ezplot`, and `subs`.

`eq(A,B)` is equivalent to `A == B`.

Input Arguments

A

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or expression, or array of numbers, symbolic variables or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or expression, or array of numbers, symbolic variables or expressions.
Examples

Solve this trigonometric equation. To define the equation, use the relational operator ==.

\begin{verbatim}
syms x
solve(sin(x) == cos(x), x)
\end{verbatim}

\texttt{ans =}

\texttt{pi/4}

Plot this trigonometric equation. To define the equation, use the relational operator ==.

\begin{verbatim}
syms x y
ezplot(sin(x^2) == sin(y^2))
\end{verbatim}
Test the equality of two symbolic expressions by using `isAlways`.

```matlab
syms x
isAlways(x + 1 == x + 1)
ans =
    1

isAlways(sin(x)/cos(x) == tan(x))
as =
    1
```

Check the equality of two symbolic matrices.

```matlab
A = sym(hilb(3));
B = sym([1, 1/2, 5; 1/2, 2, 1/4; 1/3, 1/8, 1/5]);
isAlways(A == B)
ans =
    1   1   0
    1   0   1
    1   0   1
```

If you compare a matrix and a scalar, then `==` expands the scalar into a matrix of the same dimensions as the input matrix.

```matlab
A = sym(hilb(3));
B = sym(1/2);
isAlways(A == B)
ans =
    0   1   0
    1   0   0
    0   0   0
```

More About

Tips

- Calling `==` or `eq` for non-symbolic `A` and `B` invokes the MATLAB `eq` function. This function returns a logical array with elements set to logical `1` (`true`) where `A` and `B` are equal; otherwise, it returns logical `0` (`false`).
• If both A and B are arrays, then these arrays must have the same dimensions. A == B returns an array of equations A(i,j,...) == B(i,j,...)

• If one input is scalar and the other is an array, then == expands the scalar into an array of the same dimensions as the input array. In other words, if A is a variable (for example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of elements, each set to x.

See Also
ge | gt | isAlways | le | lt | ne | solve

Introduced in R2012a
functionsToMatrix

Convert set of linear equations to matrix form

Syntax

\[[A,b] = \text{equationsToMatrix}(\text{eqns},\text{vars}) \]
\[[A,b] = \text{equationsToMatrix}(\text{eqns}) \]
\[A = \text{equationsToMatrix}(\text{eqns},\text{vars}) \]
\[A = \text{equationsToMatrix}(\text{eqns}) \]

Description

\[[A,b] = \text{equationsToMatrix}(\text{eqns},\text{vars}) \] converts eqns to the matrix form. Here eqns must be linear equations in vars.

\[[A,b] = \text{equationsToMatrix}(\text{eqns}) \] converts eqns to the matrix form. Here eqns must be a linear system of equations in all variables that \text{symvar} finds in these equations.

\[A = \text{equationsToMatrix}(\text{eqns},\text{vars}) \] converts eqns to the matrix form and returns only the coefficient matrix. Here eqns must be linear equations in vars.

\[A = \text{equationsToMatrix}(\text{eqns}) \] converts eqns to the matrix form and returns only the coefficient matrix. Here eqns must be a linear system of equations in all variables that \text{symvar} finds in these equations.

Input Arguments

eqns

Vector of equations or equations separated by commas. Each equation is either a symbolic equation defined by the relation operator == or a symbolic expression. If you specify a symbolic expression (without the right side), \text{equationsToMatrix} assumes that the right side is 0.

Equations must be linear in terms of vars.
vars

Independent variables of eqns. You can specify vars as a vector. Alternatively, you can list variables separating them by commas.

Default: Variables determined by symvar

Output Arguments

A

Coefficient matrix of the system of linear equations.

b

Vector containing the right sides of equations.

Examples

Convert this system of linear equations to the matrix form. To get the coefficient matrix and the vector of the right sides of equations, assign the result to a vector of two output arguments:

```matlab
syms x y z
[A, b] = equationsToMatrix([x + y - 2*z == 0, x + y + z == 1,... 2*y - z + 5 == 0], [x, y, z])
```

```
A =
[ 1, 1, -2]
[ 1, 1,  1]
[ 0, 2, -1]
```

```
b =
 0
 1
-5
```

Convert this system of linear equations to the matrix form. Assigning the result of the equationsToMatrix call to a single output argument, you get the coefficient matrix. In this case, equationsToMatrix does not return the vector containing the right sides of equations:
syms x y z
A = equationsToMatrix([x + y - 2*z == 0, x + y + z == 1,...
 2*y - z + 5 == 0], [x, y, z])

A =
[1, 1, -2]
[1, 1, 1]
[0, 2, -1]

Convert this linear system of equations to the matrix form without specifying
independent variables. The toolbox uses \texttt{symvar} to identify variables:

syms s t
[A, b] = equationsToMatrix([s - 2*t + 1 == 0, 3*s - t == 10])

A =
[1, -2]
[3, -1]

b =
-1
10

Find the vector of variables determined for this system by \texttt{symvar}:

X = symvar([s - 2*t + 1 == 0, 3*s - t == 10])

X =
[s, t]

Convert \(X\) to a column vector:

\(X = X.'\)

\(X =\)
s t

Verify that \(A, b,\) and \(X\) form the original equations:

\(A*X == b\)

\(\text{ans =}\)

\(s - 2*t == -1\)
\(3*s - t == 10\)
If the system is only linear in some variables, specify those variables explicitly:

```matlab
syms a s t
[A, b] = equationsToMatrix([s - 2*t + a == 0, 3*s - a*t == 10], [t, s])
```

\[
A = \\
[-2, 1] \\
[-a, 3]
\]

\[
b = \\
- a \\
10
\]

You also can specify equations and variables all together, without using vectors and simply separating each equation or variable by a comma. Specify all equations first, and then specify variables:

```matlab
syms x y
[A, b] = equationsToMatrix(x + y == 1, x - y + 1, x, y)
```

\[
A = \\
[1, 1] \\
[1, -1]
\]

\[
b = \\
 1 \\
-1
\]

Now change the order of the input arguments as follows. `equationsToMatrix` finds the variable `y`, then it finds the expression `x - y + 1`. After that, it assumes that all remaining arguments are equations, and stops looking for variables. Thus, `equationsToMatrix` finds the variable `y` and the system of equations `x + y = 1, x = 0, x - y + 1 = 0`:

```matlab
[A, b] = equationsToMatrix(x + y == 1, x, x - y + 1, y)
```

\[
A = \\
 1 \\
 0 \\
-1
\]

\[
b = \\
 1 - x \\
 -x \\
-x - 1
\]
If you try to convert a nonlinear system of equations, `equationsToMatrix` throws an error:

```matlab
syms x y
[A, b] = equationsToMatrix(x^2 + y^2 == 1, x - y + 1, x, y)
```

Error using `symengine` (line 56)
Cannot convert to matrix form because
the system does not seem to be linear.

More About

Matrix Representation of a System of Linear Equations

A system of linear equations

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &= b_m
\end{align*}
\]

can be represented as the matrix equation \(A \cdot \vec{x} = \vec{b} \), where \(A \) is the coefficient matrix:

\[
A = \begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
\end{pmatrix}
\]

and \(\vec{b} \) is the vector containing the right sides of equations:

\[
\vec{b} = \begin{pmatrix}
 b_1 \\
 \vdots \\
 b_m
\end{pmatrix}
\]

Tips

- If you specify equations and variables all together, without dividing them into two vectors, specify all equations first, and then specify variables. If input arguments are
not vectors, `equationsToMatrix` searches for variables starting from the last input argument. When it finds the first argument that is not a single variable, it assumes that all remaining arguments are equations, and therefore stops looking for variables.

See Also
`linsolve` | `odeToVectorField` | `solve` | `symvar`

Introduced in R2012b
erf

Error function

Syntax

erf(X)

Description

erf(X) represents the error function of X. If X is a vector or a matrix, erf(X) computes the error function of each element of X.

Examples

Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erf can return floating-point or exact symbolic results.

Compute the error function for these numbers. Because these numbers are not symbolic objects, you get the floating-point results:

A = [erf(1/2), erf(1.41), erf(sqrt(2))]

A =
 0.5205 0.9539 0.9545

Compute the error function for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, erf returns unresolved symbolic calls:

symA = [erf(sym(1/2)), erf(sym(1.41)), erf(sqrt(sym(2)))]

symA =
[erf(1/2), erf(141/100), erf(2^(1/2))]

Use vpa to approximate symbolic results with the required number of digits:
d = digits(10);
vpa(symA)
digits(d)

ans =
[0.5204998778, 0.9538524394, 0.9544997361]

Error Function for Variables and Expressions

For most symbolic variables and expressions, `erf` returns unresolved symbolic calls.

Compute the error function for `x` and `sin(x) + x*exp(x)`:
```matlab
syms x
f = sin(x) + x*exp(x);
erf(x)
erf(f)
```

ans =
`erf(x)`

ans =
`erf(sin(x) + x*exp(x))`

Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, `erf` returns the error function for each element of that vector or matrix.

Compute the error function for elements of matrix `M` and vector `V`:
```matlab
M = sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erf(M)
erf(V)
```

ans =
```
[ 0, 1]
[ erf(1/3), -1]
```

ans =
erf(1)
`-Inf*1i`
Special Values of Error Function

`erf` returns special values for particular parameters.

Compute the error function for \(x = 0, x = \infty, \) and \(x = -\infty \). Use `sym` to convert 0 and infinities to symbolic objects. The error function has special values for these parameters:

\[
[\text{erf}(\text{sym}(0)), \text{erf}(\text{sym}(\text{Inf})), \text{erf}(\text{sym}(-\text{Inf}))]
\]

\[
\text{ans} = [0, 1, -1]
\]

Compute the error function for complex infinities. Use `sym` to convert complex infinities to symbolic objects:

\[
[\text{erf}(\text{sym}(i\text{Inf})), \text{erf}(\text{sym}(-i\text{Inf}))]
\]

\[
\text{ans} = [\text{Inf}i, -\text{Inf}i]
\]

Handling Expressions That Contain Error Function

Many functions, such as `diff` and `int`, can handle expressions containing `erf`.

Compute the first and second derivatives of the error function:

```plaintext
syms x
diff(erf(x), x)
diff(erf(x), x, 2)
```

\[
\text{ans} = (2\exp(-x^2))/\pi^{(1/2)}
\]

\[
\text{ans} = -(4x\exp(-x^2))/\pi^{(1/2)}
\]

Compute the integrals of these expressions:

```plaintext
int(erf(x), x)
int(erf(log(x)), x)
```

\[
\text{ans} = \exp(-x^2)/\pi^{(1/2)} + x\text{erf}(x)
\]

\[
\text{ans} = x\text{erf}(\log(x)) - \text{int}((2\exp(-\log(x)^2))/\pi^{(1/2)}, x)
\]
Plot Error Function

Plot the error function on the interval from -5 to 5.

```matlab
syms x
ezplot(erf(x), [-5, 5])
grid on
```

Input Arguments

- **X** — Input
 - symbolic number
 - symbolic variable
 - symbolic expression
 - symbolic function
 - symbolic vector
 - symbolic matrix
Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Error Function

The following integral defines the error function:

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt
\]

Tips

- Calling `erf` for a number that is not a symbolic object invokes the MATLAB `erf` function. This function accepts real arguments only. If you want to compute the error function for a complex number, use `sym` to convert that number to a symbolic object, and then call `erf` for that symbolic object.
- For most symbolic (exact) numbers, `erf` returns unresolved symbolic calls. You can approximate such results with floating-point numbers using `vpa`.

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For real values \(x\), the toolbox applies these simplification rules:

- \(\text{erfinv}(\text{erf}(x)) = \text{erfinv}(1 - \text{erfc}(x)) = \text{erfcinv}(1 - \text{erf}(x)) = \text{erfcinv}(\text{erfc}(x)) = x\)
- \(\text{erfinv}(-\text{erf}(x)) = \text{erfinv}(\text{erfc}(x) - 1) = \text{erfcinv}(1 + \text{erf}(x)) = \text{erfcinv}(2 - \text{erfc}(x)) = -x\)

For any value \(x\), the system applies these simplification rules:

- \(\text{erfcinv}(x) = \text{erfinv}(1 - x)\)
- \(\text{erfinv}(-x) = -\text{erfinv}(x)\)
- \(\text{erfcinv}(2 - x) = -\text{erfcinv}(x)\)
- \(\text{erf}(\text{erfinv}(x)) = \text{erfc}(\text{erfcinv}(x)) = x\)
\[\text{erf}(\text{erfcinv}(x)) = \text{erfc}(\text{erfinv}(x)) = 1 - x \]

References

See Also
erfc | erfcinv | erfi | erfinv

Introduced before R2006a
erfc

Complementary error function

Syntax

```
erfc(X)
erfc(K,X)
```

Description

`erfc(X)` represents the complementary error function of `X`, that is, `erfc(X) = 1 - erf(X)`.

`erfc(K,X)` represents the iterated integral of the complementary error function of `X`, that is, `erfc(K, X) = int(erfc(K - 1, y), y, X, inf)`.

Examples

Complementary Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, `erfc` can return floating-point or exact symbolic results.

Compute the complementary error function for these numbers. Because these numbers are not symbolic objects, you get the floating-point results:

```
A = [erfc(1/2), erfc(1.41), erfc(sqrt(2))]
```

```
A =
 0.4795   0.0461   0.0455
```

Compute the complementary error function for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, `erfc` returns unresolved symbolic calls:

```
symA = [erfc(sym(1/2)), erfc(sym(1.41)), erfc(sqrt(sym(2)))]
symA =
```

```
Use `vpa` to approximate symbolic results with the required number of digits:

```matlab
d = digits(10);
vpa(symA)
digits(d)
```

```matlab
ans =
[0.4795001222, 0.04614756064, 0.0455002639]
```

### Error Function for Variables and Expressions

For most symbolic variables and expressions, `erfc` returns unresolved symbolic calls.

Compute the complementary error function for `x` and `sin(x) + x*exp(x)`:

```matlab
syms x
f = sin(x) + x*exp(x);
erfc(x)
erfc(f)
ans =
erfc(x)
an
```

```matlab
ans =
erfc(sin(x) + x*exp(x))
```

### Complementary Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, `erfc` returns the complementary error function for each element of that vector or matrix.

Compute the complementary error function for elements of matrix `M` and vector `V`:

```matlab
M = sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erfc(M)
erfc(V)
ans =
[1, 0]
[erfc(1/3), 2]
```
Compute the iterated integral of the complementary error function for the elements of \( V \) and \( M \), and the integer \(-1\):

\[
\text{erfc}(-1, M) \\
\text{erfc}(-1, V)
\]

\[
\begin{align*}
\text{ans} &= [2/\pi^{(1/2)}, 0] \\
&\quad [2/\pi^{(1/2)}] \\
&\quad \text{Inf}
\end{align*}
\]

**Special Values of Complementary Error Function**

\texttt{erfc} returns special values for particular parameters.

Compute the complementary error function for \( x = 0, x = \infty, \) and \( x = -\infty \). The complementary error function has special values for these parameters:

\[
\begin{align*}
\text{[erfc}(0), \text{erfc}(\infty), \text{erfc}(\text{-}\infty)]
\end{align*}
\]

\[
\begin{align*}
\text{ans} &= 1 0 2
\end{align*}
\]

Compute the complementary error function for complex infinities. Use \texttt{sym} to convert complex infinities to symbolic objects:

\[
\begin{align*}
\text{[erfc}(\text{sym}(i\infty)), \text{erfc}(\text{sym}(\text{-}i\infty))]
\end{align*}
\]

\[
\begin{align*}
\text{ans} &= [1 - \text{Inf}1i, 1 + \text{Inf}1i]
\end{align*}
\]

**Handling Expressions That Contain Complementary Error Function**

Many functions, such as \texttt{diff} and \texttt{int}, can handle expressions containing \texttt{erfc}. 
Compute the first and second derivatives of the complementary error function:

```matlab
syms x
diff(erfc(x), x)
diff(erfc(x), x, 2)
```

```matlab
ans =
-(2*exp(-x^2))/pi^(1/2)
ans =
(4*x*exp(-x^2))/pi^(1/2)
```

Compute the integrals of these expressions:

```matlab
syms x
int(erfc(-1, x), x)
```

```matlab
ans =
erf(x)
```

```matlab
int(erfc(x), x)
```

```matlab
ans =
x*erfc(x) - exp(-x^2)/pi^(1/2)
```

```matlab
int(erfc(2, x), x)
```

```matlab
ans =
(x^3*erfc(x))/6 - exp(-x^2)/(6*pi^(1/2)) +...
(x*erfc(x))/4 - (x^2*exp(-x^2))/(6*pi^(1/2))
```

**Plot Complementary Error Function**

Plot the complementary error function on the interval from -5 to 5.

```matlab
syms x
ezplot(erfc(x),[-5,5])
grid on
```
Input Arguments

**X — Input**

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

**K — Input representing an integer larger than -2**

number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix
Input representing an integer larger than -2, specified as a number, symbolic number, variable, expression, or function. This arguments can also be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

**More About**

**Complementary Error Function**

The following integral defines the complementary error function:

\[
\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt = 1 - \text{erf}(x)
\]

Here \(\text{erf}(x)\) is the error function.

**Iterated Integral of Complementary Error Function**

The following integral is the iterated integral of the complementary error function:

\[
\text{erfc}(k, x) = \int \text{erfc}(k - 1, y) dy
\]

Here, \(\text{erfc}(0, x) = \text{erfc}(x)\).

**Tips**

- Calling \texttt{erfc} for a number that is not a symbolic object invokes the MATLAB \texttt{erfc} function. This function accepts real arguments only. If you want to compute the complementary error function for a complex number, use \texttt{sym} to convert that number to a symbolic object, and then call \texttt{erfc} for that symbolic object.

- For most symbolic (exact) numbers, \texttt{erfc} returns unresolved symbolic calls. You can approximate such results with floating-point numbers using \texttt{vpa}.

- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then \texttt{erfc} expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For real values \( x \), the toolbox applies these simplification rules:

- \( \text{erfinv}(\text{erf}(x)) = \text{erfinv}(1 - \text{erfc}(x)) = \text{erfcinv}(1 - \text{erf}(x)) = \text{erfcinv}(\text{erfc}(x)) = x \)
- \( \text{erfinv}(-\text{erf}(x)) = \text{erfinv}((\text{erfc}(x) - 1) = \text{erfcinv}(1 + \text{erf}(x)) = \text{erfcinv}(2 - \text{erfc}(x)) = -x \)

For any value \( x \), the system applies these simplification rules:

- \( \text{erfcinv}(x) = \text{erfinv}(1 - x) \)
- \( \text{erfinv}(-x) = -\text{erfinv}(x) \)
- \( \text{erfcinv}(2 - x) = -\text{erfcinv}(x) \)
- \( \text{erf}(\text{erfinv}(x)) = \text{erfc}(\text{erfcinv}(x)) = x \)
- \( \text{erf}(\text{erfcinv}(x)) = \text{erfc}(\text{erfinv}(x)) = 1 - x \)

References


See Also

erf | erfcinv | erfi | erfinv

Introduced in R2011b
erfcinv

Inverse complementary error function

Syntax

erfcinv(X)

Description

`erfcinv(X)` computes the inverse complementary error function of `X`. If `X` is a vector or a matrix, `erfcinv(X)` computes the inverse complementary error function of each element of `X`.

Examples

Inverse Complementary Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, `erfcinv` can return floating-point or exact symbolic results.

Compute the inverse complementary error function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:

```plaintext
A = [erfcinv(1/2), erfcinv(1.33), erfcinv(3/2)]
```

```plaintext
A =
 0.4769 -0.3013 -0.4769
```

Compute the inverse complementary error function for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, `erfcinv` returns unresolved symbolic calls:

```plaintext
symA = [erfcinv(sym(1/2)), erfcinv(sym(1.33)), erfcinv(sym(3/2))]
```
symA =
[ -erfcinv(3/2), erfcinv(133/100), erfcinv(3/2)]

Use vpa to approximate symbolic results with the required number of digits:

d = digits(10);
vpa(symA)
digits(d)

ans =
[ 0.4769362762, -0.3013321461, -0.4769362762]

Inverse Complementary Error Function for Complex Numbers

To compute the inverse complementary error function for complex numbers, first convert them to symbolic numbers.

Compute the inverse complementary error function for complex numbers. Use sym to convert complex numbers to symbolic objects:

[erfcinv(sym(2 + 3*i)), erfcinv(sym(1 - i))]

ans =
[ erfcinv(2 + 3i), -erfcinv(1 + 1i)]

Inverse Complementary Error Function for Variables and Expressions

For most symbolic variables and expressions, erfcinv returns unresolved symbolic calls.

Compute the inverse complementary error function for x and sin(x) + x*exp(x). For most symbolic variables and expressions, erfcinv returns unresolved symbolic calls:

syms x
f = sin(x) + x*exp(x);
erfcinv(x)
erfcinv(f)

ans =
erfcinv(x)

ans =
erfcinv(sin(x) + x*exp(x))

**Inverse Complementary Error Function for Vectors and Matrices**

If the input argument is a vector or a matrix, `erfcinv` returns the inverse complementary error function for each element of that vector or matrix.

Compute the inverse complementary error function for elements of matrix M and vector V:

```matlab
M = sym([0 1 + i; 1/3 1]);
V = sym([2; inf]);
erfcinv(M)
erfcinv(V)
```

```
an =
[Inf, erfcinv(1 + 1i)]
[-erfcinv(5/3), 0]
an =
 -Inf
-erfcinv(-Inf)
```

**Special Values of Inverse Complementary Error Function**

`erfcinv` returns special values for particular parameters.

Compute the inverse complementary error function for \(x = 0\), \(x = 1\), and \(x = 2\). The inverse complementary error function has special values for these parameters:

```
[erfcinv(0), erfcinv(1), erfcinv(2)]
an =
 Inf 0 -Inf
```

**Handling Expressions That Contain Inverse Complementary Error Function**

Many functions, such as `diff` and `int`, can handle expressions containing `erfcinv`.

Compute the first and second derivatives of the inverse complementary error function:

```matlab
syms x
```
Functions — Alphabetical List

diff(erfcinv(x), x)
diff(erfcinv(x), x, 2)

ans =
-(pi^(1/2)*exp(erfcinv(x)^2))/2

ans =
(pi*exp(2*erfcinv(x)^2)*erfcinv(x))/2

Compute the integral of the inverse complementary error function:

int(erfcinv(x), x)

ans =
exp(-erfcinv(x)^2)/pi^(1/2)

**Plot Inverse Complementary Error Function**

Plot the inverse complementary error function on the interval from 0 to 2.

syms x
ezplot(erfcinv(x),[0,2])
grid on
Input Arguments

\(X \rightarrow \text{Input}\)

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.
More About

Inverse Complementary Error Function

The inverse complementary error function is defined as $\text{erfc}^{-1}(x)$, such that $\text{erfc}(\text{erfc}^{-1}(x)) = x$. Here

$$\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt = 1 - \text{erf} (x)$$

is the complementary error function.

Tips

- Calling $\text{erfcinv}$ for a number that is not a symbolic object invokes the MATLAB $\text{erfcinv}$ function. This function accepts real arguments only. If you want to compute the inverse complementary error function for a complex number, use `sym` to convert that number to a symbolic object, and then call $\text{erfcinv}$ for that symbolic object.
- If $x < 0$ or $x > 2$, the MATLAB $\text{erfcinv}$ function returns NaN. The symbolic $\text{erfcinv}$ function returns unresolved symbolic calls for such numbers. To call the symbolic $\text{erfcinv}$ function, convert its argument to a symbolic object using `sym`.

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For real values $x$, the toolbox applies these simplification rules:

- $\text{erfinv}(\text{erf}(x)) = \text{erfinv}(1 - \text{erfc}(x)) = \text{erfcinv}(1 - \text{erf}(x)) = \text{erfcinv}(\text{erfc}(x)) = x$
- $\text{erfinv}(-\text{erf}(x)) = \text{erfinv}(\text{erfc}(x) - 1) = \text{erfcinv}(1 + \text{erf}(x)) = \text{erfcinv}(2 - \text{erfc}(x)) = -x$

For any value $x$, the toolbox applies these simplification rules:

- $\text{erfcinv}(x) = \text{erfinv}(1 - x)$
- $\text{erfinv}(-x) = -\text{erfinv}(x)$
- $\text{erfcinv}(2 - x) = -\text{erfcinv}(x)$
- $\text{erf}(\text{erfinv}(x)) = \text{erfc}(\text{erfcinv}(x)) = x$
\[ \text{erf(\text{erfcinv}(x))) = erfc(\text{erfinv}(x))) = 1 - x} \]

References


See Also

erf | erfc | erfi | erfinv

Introduced in R2012a
erfi

Imaginary error function

Syntax

erfi(x)

Description

erfi(x) returns the imaginary error function of x. If x is a vector or a matrix, erfi(x) returns the imaginary error function of each element of x.

Examples

Imaginary Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erfi can return floating-point or exact symbolic results.

Compute the imaginary error function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

\[ s = [\text{erfi}(1/2), \text{erfi}(1.41), \text{erfi}(\sqrt{2})] \]

\[
\begin{align*}
0.6150 & \quad 3.7382 & \quad 3.7731 \\
\end{align*}
\]

Compute the imaginary error function for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, erfi returns unresolved symbolic calls.

\[ s = [\text{erfi}(\text{sym}(1/2)), \text{erfi}(\text{sym}(1.41)), \text{erfi}(\text{sqrt}(\text{sym}(2)))] \]

\[
\begin{align*}
[ \text{erfi}(1/2), \text{erfi}(141/100), \text{erfi}(2^{1/2})] \\
\end{align*}
\]

Use vpa to approximate this result with the 10-digit accuracy:

\[ \text{vpa}(s, 10) \]

\[
\begin{align*}
\text{ans} & \quad = \text{} \\
\end{align*}
\]
Imaginary Error Function for Variables and Expressions

Compute the imaginary error function for \( x \) and \( \sin(x) + x\exp(x) \). For most symbolic variables and expressions, \( \text{erfi} \) returns unresolved symbolic calls.

```matlab
syms x
f = sin(x) + x*exp(x);
erfi(x)
erfi(f)
```

```matlab
ans =
erfi(x)
ans =
erfi(sin(x) + x*exp(x))
```

Imaginary Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, \( \text{erfi} \) returns the imaginary error function for each element of that vector or matrix.

Compute the imaginary error function for elements of matrix \( M \) and vector \( V \):

```matlab
M = sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erfi(M)
erfi(V)
```

```matlab
ans =
[0, Inf]
[erfi(1/3), -Inf]
ans =
erfi(1)
 -1i
```

Special Values of Imaginary Error Function

Compute the imaginary error function for \( x = 0 \), \( x = \infty \), and \( x = -\infty \). Use \text{sym} to convert 0 and infinities to symbolic objects. The imaginary error function has special values for these parameters:
[erfi(sym(0)), erfi(sym(inf)), erfi(sym(-inf))]

ans =
[ 0, Inf, -Inf]

Compute the imaginary error function for complex infinities. Use sym to convert complex infinities to symbolic objects:

[erfi(sym(i*inf)), erfi(sym(-i*inf))]

ans =
[ i, -i]

**Handling Expressions That Contain Imaginary Error Function**

Many functions, such as diff and int, can handle expressions containing erfi.

Compute the first and second derivatives of the imaginary error function:

```matlab
syms x
diff(erfi(x), x)
diff(erfi(x), x, 2)
```

ans =
(2*exp(x^2))/pi^(1/2)

ans =
(4*x*exp(x^2))/pi^(1/2)

Compute the integrals of these expressions:

```matlab
int(erfi(x), x)
int(erfi(log(x)), x)
```

ans =
x*erfi(x) - exp(x^2)/pi^(1/2)

ans =
x*erfi(log(x)) - int((2*exp(log(x)^2))/pi^(1/2), x)

**Plot Imaginary Error Function**

Plot the imaginary error function on the interval from -2 to 2.
syms x
ezplot(erfi(x),[-2,2])
grid on

Input Arguments

x — Input
floating-point number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a floating-point or symbolic number, variable, expression, function, vector, or matrix.
More About

Imaginary Error Function

The imaginary error function is defined as:

\[
erfi(x) = -i\text{erf}(ix) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} dt
\]

Tips

- \text{erfi} returns special values for these parameters:
  - \text{erfi}(0) = 0
  - \text{erfi}(\text{inf}) = \text{inf}
  - \text{erfi}(-\text{inf}) = -\text{inf}
  - \text{erfi}(i\text{inf}) = i
  - \text{erfi}(-i\text{inf}) = -i

See Also

\text{erf} | \text{erfc} | \text{erfcinv} | \text{erfinv} | \text{vpa}

Introduced in R2013a
erfinv
Inverse error function

Syntax
erfinv(X)

Description
erfinv(X) computes the inverse error function of X. If X is a vector or a matrix, erfinv(X) computes the inverse error function of each element of X.

Examples
Inverse Error Function for Floating-Point and Symbolic Numbers
Depending on its arguments, erfinv can return floating-point or exact symbolic results.

Compute the inverse error function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:

A = [erfinv(1/2), erfinv(0.33), erfinv(-1/3)]
A =
  0.4769    0.3013   -0.3046

Compute the inverse error function for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, erfinv returns unresolved symbolic calls:

symA = [erfinv(sym(1)/2), erfinv(sym(0.33)), erfinv(sym(-1)/3)]
symA =
[ erfinv(1/2), erfinv(33/100), -erfinv(1/3)]

Use vpa to approximate symbolic results with the required number of digits:

d = digits(10);
vpa(symA)
digits(d)
Inverse Error Function for Complex Numbers

To compute the inverse error function for complex numbers, first convert them to symbolic numbers.

Compute the inverse error function for complex numbers. Use `sym` to convert complex numbers to symbolic objects:

```
[erfinv(sym(2 + 3*i)), erfinv(sym(1 - i))]
```

Inverse Error Function for Variables and Expressions

For most symbolic variables and expressions, `erfinv` returns unresolved symbolic calls.

Compute the inverse error function for `x` and `sin(x) + x*exp(x)`. For most symbolic variables and expressions, `erfinv` returns unresolved symbolic calls:

```
syms x
f = sin(x) + x*exp(x);
erfinv(x)
erfinv(f)
```

Inverse Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, `erfinv` returns the inverse error function for each element of that vector or matrix.

Compute the inverse error function for elements of matrix `M` and vector `V`:

```
M = sym([[0 1 + i; 1/3 1]]);
V = sym([-1; inf]);
```
erfinv(M)
erfinv(V)

ans =
[ 0, erfinv(1 + 1i)]
[ erfinv(1/3), Inf]

ans =
   -Inf
erfinv(Inf)

**Special Values of Inverse Complementary Error Function**
erfinv returns special values for particular parameters.

Compute the inverse error function for \( x = -1 \), \( x = 0 \), and \( x = 1 \). The inverse error function has special values for these parameters:

\[ \text{[erfinv(-1), erfinv(0), erfinv(1)]} \]

ans =
   -Inf    0   Inf

**Handling Expressions That Contain Inverse Complementary Error Function**

Many functions, such as diff and int, can handle expressions containing erfinv.

Compute the first and second derivatives of the inverse error function:

```matlab
syms x
diff(erfinv(x), x)
diff(erfinv(x), x, 2)
```

ans =
\( (\pi^{(1/2)}*\exp(\text{erfinv}(x)^2))/2 \)

ans =
\( (\pi*\exp(2*\text{erfinv}(x)^2)*\text{erfinv}(x))/2 \)

Compute the integral of the inverse error function:

```matlab
int(erfinv(x), x)
```

ans =
\( -\exp(-\text{erfinv}(x)^2)/\pi^{(1/2)} \)
**Plot Inverse Error Function**

Plot the inverse error function on the interval from -1 to 1.

```matlab
syms x
ezplot(erfinv(x),[-1,1])
grid on
```

**Input Arguments**

**X — Input**  
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix
Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Inverse Error Function

The inverse error function is defined as erf\(^{-1}(x)\), such that erf(errof\(^{-1}(x)) = erf\(^{-1}(erf(x)) = x\). Here

\[
erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt
\]

is the error function.

Tips

- Calling erfinv for a number that is not a symbolic object invokes the MATLAB erfinv function. This function accepts real arguments only. If you want to compute the inverse error function for a complex number, use sym to convert that number to a symbolic object, and then call erfinv for that symbolic object.
- If \(x < -1\) or \(x > 1\), the MATLAB erfinv function returns NaN. The symbolic erfinv function returns unresolved symbolic calls for such numbers. To call the symbolic erfinv function, convert its argument to a symbolic object using sym.

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For real values \(x\), the toolbox applies these simplification rules:

- \(\text{erfinv}(\text{erf}(x)) = \text{erfinv}(1 - \text{erfc}(x)) = \text{erfcinv}(1 - \text{erf}(x)) = \text{erfcinv}(\text{erfc}(x)) = x\)

- \(\text{erfinv}(-\text{erf}(x)) = \text{erfinv}((\text{erfc}(x) - 1) = \text{erfcinv}(1 + \text{erf}(x)) = \text{erfcinv}(2 - \text{erfc}(x)) = -x\)

For any value \(x\), the toolbox applies these simplification rules:

- \(\text{erfcinv}(x) = \text{erfinv}(1 - x)\)
• \( \text{erfinv}(-x) = -\text{erfinv}(x) \)
• \( \text{erfcinv}(2 - x) = -\text{erfcinv}(x) \)
• \( \text{erf}(\text{erfinv}(x)) = \text{erfc}(\text{erfcinv}(x)) = x \)
• \( \text{erf}(\text{erfcinv}(x)) = \text{erfc}(\text{erfinv}(x)) = 1 - x \)

References


See Also
erf | erfc | erfcinv | erfi

Introduced in R2012a
euler

Euler numbers and polynomials

Syntax

euler(n)
euler(n, x)

Description

euler(n) returns the nth Euler number.
euler(n, x) returns the nth Euler polynomial.

Examples

Euler Numbers with Odd and Even Indices

The Euler numbers with even indices alternate the signs. Any Euler number with an odd index is 0.

Compute the even-indexed Euler numbers with the indices from 0 to 10:
euler(0:2:10)
ans =
     1    -1     5   -61... 
     1385 -50521

Compute the odd-indexed Euler numbers with the indices from 1 to 11:
euler(1:2:11)
ans =
     0     0     0     0     0     0     0
Euler Polynomials

For the Euler polynomials, use `euler` with two input arguments.

Compute the first, second, and third Euler polynomials in variables `x`, `y`, and `z`, respectively:

```matlab
syms x y z
euler(1, x)
euler(2, y)
euler(3, z)
```

```matlab
ans = x - 1/2
ans = y^2 - y
ans = z^3 - (3*z^2)/2 + 1/4
```

If the second argument is a number, `euler` evaluates the polynomial at that number. Here, the result is a floating-point number because the input arguments are not symbolic numbers:

```matlab
euler(2, 1/3)
```

```matlab
ans = -0.2222
```

To get the exact symbolic result, convert at least one number to a symbolic object:

```matlab
euler(2, sym(1/3))
```

```matlab
ans = -2/9
```

Plot Euler Polynomials

Plot the first six Euler polynomials.

```matlab
syms x
for n = 0:5
```
Handle Expressions Containing Euler Polynomials

Many functions, such as `diff` and `expand`, can handle expressions containing `euler`.

Find the first and second derivatives of the Euler polynomial:
syms n x
diff(euler(n,x^2), x)
ans =
 2*n*x*euler(n - 1, x^2)
diff(euler(n,x^2), x, x)
ans =
 2*n*euler(n - 1, x^2) + 4*n*x^2*euler(n - 2, x^2)*(n - 1)

Expand these expressions containing the Euler polynomials:
expand(euler(n, 2 - x))
ans =
 2*(1 - x)^n - (-1)^n*euler(n, x)
expand(euler(n, 2*x))
ans =
 (2*2^n*bernoulli(n + 1, x + 1/2))/(n + 1) - ...
 (2*2^n*bernoulli(n + 1, x))/(n + 1)

Input Arguments

n — Index of the Euler number or polynomial
nonnegative integer | symbolic nonnegative integer | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Index of the Euler number or polynomial, specified as a nonnegative integer, symbolic nonnegative integer, variable, expression, function, vector, or matrix. If n is a vector or matrix, euler returns Euler numbers or polynomials for each element of n. If one input argument is a scalar and the other one is a vector or a matrix, euler(n, x) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

x — Polynomial variable
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Polynomial variable, specified as a symbolic variable, expression, function, vector, or matrix. If x is a vector or matrix, euler returns Euler numbers or polynomials for
each element of \( x \). When you use the `euler` function to find Euler polynomials, at least one argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, `euler(n, x)` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

**More About**

**Euler Polynomials**

The Euler polynomials are defined as follows:

\[
\frac{2e^{xt}}{e^t + 1} = \sum_{n=0}^{\infty} \frac{\text{euler}(n, x)t^n}{n!}
\]

**Euler Numbers**

The Euler numbers are defined in terms of Euler polynomials as follows:

\[
\text{euler}(n) = 2^n \text{euler}\left(n, \frac{1}{2}\right)
\]

**Tips**

- For the other meaning of Euler’s number, \( e = 2.71828... \), call `exp(1)` to return the double-precision representation. For the exact representation of Euler’s number \( e \), call `exp(sym(1))`.
- For the Euler-Mascheroni constant, see `eulergamma`.

**See Also**

`beroulli` | `eulergamma`

**Introduced in R2014a**
**eulergamma**

Euler-Mascheroni constant

**Syntax**

eulergamma

**Description**

eulergamma represents the Euler-Mascheroni constant. To get a floating-point approximation with the current precision set by digits, use vpa(eulergamma).

**Examples**

**Represent and Numerically Approximate the Euler-Mascheroni Constant**

Represent the Euler-Mascheroni constant using eulergamma, which returns the symbolic form eulergamma.

eulergamma

ans =
eulergamma

Use eulergamma in symbolic calculations. Numerically approximate your result with vpa.

a = eulergamma;
g = a^2 + log(a)
gVpa = vpa(g)

g =
log(eulergamma) + eulergamma^2
gVpa =
-0.21636138917392614801928563244766

Find the double-precision approximation of the Euler-Mascheroni constant using double.
Show Relation of Euler-Mascheroni Constant to Gamma Functions

Show the relations between the Euler-Mascheroni constant $\gamma$, digamma function $\Psi$, and gamma function $\Gamma$.

Show that $\gamma = -\Psi(1)$.

-psi(sym(1))

ans =
eulergamma

Show that $\gamma = -\Gamma'(x)|_{x=1}$.

syms x
-subs(diff(gamma(x)), x, 1)

ans =
eulergamma

More About

Euler-Mascheroni Constant

The Euler-Mascheroni constant is defined as follows:

$$\gamma = \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right)$$

Tips

- For the value $e = 2.71828...$, called Euler’s number, use \texttt{exp(1)} to return the double-precision representation. For the exact representation of Euler’s number $e$, call \texttt{exp(sym(1))}. 

• For the other meaning of Euler’s numbers and for Euler’s polynomials, see `euler`.

See Also

coshint | euler

Introduced in R2014a
**evalin**

Evaluate MuPAD expressions without specifying their arguments

**Syntax**

```
result = evalin(symengine,MuPAD_expression)
[result,status] = evalin(symengine,MuPAD_expression)
```

**Description**

`result = evalin(symengine,MuPAD_expression)` evaluates the MuPAD expression `MuPAD_expression`, and returns `result` as a symbolic object. If `MuPAD_expression` throws an error in MuPAD, then this syntax throws an error in MATLAB.

`[result,status] = evalin(symengine,MuPAD_expression)` lets you catch errors thrown by MuPAD. This syntax returns the error status in `status` and the error message in `result` if `status` is nonzero. If `status` is 0, `result` is a symbolic object; otherwise, it is a string.

**Input Arguments**

*MuPAD_expression*

String containing a MuPAD expression.

**Output Arguments**

*result*

Symbolic object or string containing a MuPAD error message.

*status*

Integer indicating the error status. If `MuPAD_expression` executes without errors, the error status is 0.
Examples

Compute the discriminant of the following polynomial:

\[
\text{evalin(symengine,}'\text{polylib::discrim}(a*x^2+b*x+c,x)'}
\]

\[
\text{ans} =
\]

\[
b^2 - 4*a*c
\]

Try using \texttt{polylib::discrim} to compute the discriminant of the following nonpolynomial expression:

\[
[\text{result, status}] = \text{evalin(symengine,}'\text{polylib::discrim}(a*x^2+b*x+c*ln(x),x)'}
\]

\[
\text{result} =
\]

An arithmetical expression is expected.

\[
\text{status} =
\]

2

Alternatives

\texttt{feval} lets you evaluate MuPAD expressions with arguments. When using \texttt{feval}, you must explicitly specify the arguments of the MuPAD expression.

More About

Tips

- Results returned by \texttt{evalin} can differ from the results that you get using a MuPAD notebook directly. The reason is that \texttt{evalin} sets a lower level of evaluation to achieve better performance.
- \texttt{evalin} does not open a MuPAD notebook, and therefore, you cannot use this function to access MuPAD graphics capabilities.

See Also

\texttt{feval} | \texttt{read} | \texttt{symengine}
Introduced in R2008b
evaluateMuPADNotebook

Evaluate MuPAD notebook

Syntax

evaluateMuPADNotebook(nb)
evaluateMuPADNotebook(nb,'IgnoreErrors',true)

Description

evaluateMuPADNotebook(nb) evaluates the MuPAD notebook with the handle nb and returns logical 1 (true) if evaluation runs without errors. If nb is a vector of notebook handles, then this syntax returns a vector of logical 1s.

evaluateMuPADNotebook(nb,'IgnoreErrors',true) does not stop evaluating the notebook when it encounters an error. This syntax skips any input region of a MuPAD notebook that causes errors, and proceeds to the next one. If the evaluation runs without errors, this syntax returns logical 1 (true). Otherwise, it returns logical 0 (false). The error messages appear in the MuPAD notebook only.

By default, evaluateMuPADNotebook uses 'IgnoreErrors',false, and therefore, evaluateMuPADNotebook stops when it encounters an error in a notebook. The error messages appear in the MATLAB Command Window and in the MuPAD notebook.

Examples

Evaluate Particular Notebook

Execute commands in all input regions of a MuPAD notebook. Results of the evaluation appear in the output regions of the notebook.

Suppose that your current folder contains a MuPAD notebook named myFile1.mn. Open this notebook keeping its handle in the variable nb1:

nb1 = mupad('myFile1.mn');
Evaluate all input regions in this notebook. If all calculations run without an error, then `evaluateMuPADNotebook` returns logical 1 (true):

```matlab
evaluateMuPADNotebook(nb1)
ans =
 1
```

**Evaluate Several Notebooks**

Use a vector of notebook handles to evaluate several notebooks.

Suppose that your current folder contains MuPAD notebooks named `myFile1.mn` and `myFile2.mn`. Open them keeping their handles in variables `nb1` and `nb2`, respectively. Also create a new notebook with the handle `nb3`:

```matlab
nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 = myFile1
nb2 = myFile2
nb3 = Notebook1
```

Evaluate `myFile1.mn` and `myFile2.mn`:

```matlab
evaluateMuPADNotebook([nb1, nb2])
ans =
 1
```

**Evaluate All Open Notebooks**

Identify and evaluate all open MuPAD notebooks.

Suppose that your current folder contains MuPAD notebooks named `myFile1.mn` and `myFile2.mn`. Open them keeping their handles in variables `nb1` and `nb2`, respectively. Also create a new notebook with the handle `nb3`:

```matlab
nb1 = mupad('myFile1.mn')
```
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 =
myFile1

nb2 =
myFile2

nb3 =
Notebook1

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Evaluate all notebooks. If all calculations run without an error, then `evaluateMuPADNotebook` returns an array of logical 1s (true):

evaluateMuPADNotebook(allNBs)

ans =
 1
 1
 1

Evaluate All Open Notebooks Ignoring Errors

Identify and evaluate all open MuPAD notebooks skipping evaluations that cause errors.

Suppose that your current folder contains MuPAD notebooks named `myFile1.mn` and `myFile2.mn`. Open them keeping their handles in variables `nb1` and `nb2`, respectively. Also create a new notebook with the handle `nb3`:

nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 =
myFile1

nb2 =
myFile2

nb3 =
Notebook1
Get a list of all currently open notebooks:

```
allNBs = allMuPADNotebooks;
```

Evaluate all notebooks using `'IgnoreErrors',true` to skip any calculations that cause errors. If all calculations run without an error, then `evaluateMuPADNotebook` returns an array of logical 1s (true):

```
evaluateMuPADNotebook(allNBs,'IgnoreErrors',true)
```

```
ans =
 1
 1
 1
```

Otherwise, it returns logical 0s for notebooks that cause errors (false):

```
evaluateMuPADNotebook(allNBs,'IgnoreErrors',false)
```

```
ans =
 0
 1
 1
```

- “Create MuPAD Notebooks” on page 3-3
- “Open MuPAD Notebooks” on page 3-6
- “Save MuPAD Notebooks” on page 3-12
- “Evaluate MuPAD Notebooks from MATLAB” on page 3-13
- “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25
- “Close MuPAD Notebooks from MATLAB” on page 3-16

**Input Arguments**

`nb` — Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

Pointer to MuPAD notebook, specified as a MuPAD notebook handle or a vector of handles. You create the notebook handle when opening a notebook with the `mupad` or `openmn` function.

You can get the list of all open notebooks using the `allMuPADNotebooks` function. `evaluateMuPADNotebook` accepts a vector of handles returned by `allMuPADNotebooks`.
See Also
allMuPADNotebooks | close | getVar | mupad | mupadNotebookTitle | openmn | setVar

Introduced in R2013b
expand

Symbolic expansion of polynomials and elementary functions

Syntax

expand(S)
expand(S,Name,Value)

Description

expand(S) expands the symbolic expression S. expand is often used with polynomials. It also expands trigonometric, exponential, and logarithmic functions.

expand(S,Name,Value) expands S using additional options specified by one or more Name,Value pair arguments.

Input Arguments

S
Symbolic expression or symbolic matrix.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes ('). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

'ArithmeticOnly'

If the value is true, expand the arithmetic part of an expression without expanding trigonometric, hyperbolic, logarithmic, and special functions. This option does not prevent expansion of powers and roots.

Default: false
'IgnoreAnalyticConstraints'

If the value is true, apply purely algebraic simplifications to an expression. With IgnoreAnalyticConstraints, expand can return simpler results for the expressions for which it would return more complicated results otherwise. Using IgnoreAnalyticConstraints also can lead to results that are not equivalent to the initial expression.

Default: false

Examples

Expand the expression:

```matlab
syms x
expand((x - 2)*(x - 4))
```

```matlab
ans =
x^2 - 6*x + 8
```

Expand the trigonometric expression:

```matlab
syms x y
expand(cos(x + y))
```

```matlab
ans =
cos(x)*cos(y) - sin(x)*sin(y)
```

Expand the exponent:

```matlab
syms a b
expand(exp((a + b)^2))
```

```matlab
ans =
exp(a^2)*exp(b^2)*exp(2*a*b)
```

Expand the expressions that form a vector:

```matlab
syms t
expand([sin(2*t), cos(2*t)])
```

```matlab
ans =
[2*cos(t)*sin(t), 2*cos(t)^2 - 1]
```
Expand this expression. By default, `expand` works on all subexpressions including trigonometric subexpressions:

```matlab
syms x
expand((sin(3*x) - 1)^2)
```

```matlab
ans =
2*sin(x) + sin(x)^2 - 8*cos(x)^2*sin(x) - 8*cos(x)^2*sin(x)^2 + 16*cos(x)^4*sin(x)^2 + 1
```

To prevent expansion of trigonometric, hyperbolic, and logarithmic subexpressions and subexpressions involving special functions, use `ArithmeticOnly`:

```matlab
expand((sin(3*x) - 1)^2, 'ArithmeticOnly', true)
```

```matlab
ans =
sin(3*x)^2 - 2*sin(3*x) + 1
```

Expand this logarithm. By default, the `expand` function does not expand logarithms because expanding logarithms is not valid for generic complex values:

```matlab
syms a b c
expand(log((a*b/c)^2))
```

```matlab
ans =
log((a^2*b^2)/c^2)
```

To apply the simplification rules that let the `expand` function expand logarithms, use `IgnoreAnalyticConstraints`:

```matlab
expand(log((a*b/c)^2), 'IgnoreAnalyticConstraints', true)
```

```matlab
ans =
2*log(a) + 2*log(b) - 2*log(c)
```

**More About**

**Algorithms**

When you use `IgnoreAnalyticConstraints`, `expand` applies these rules:

- \( \log(a) + \log(b) = \log(a \cdot b) \) for all values of \( a \) and \( b \). In particular, the following equality is valid for all values of \( a, b, \) and \( c \):
\[(a \cdot b)^c = a^c \cdot b^c.\]

- \[\log(a^b) = b \log(a)\] for all values of \(a\) and \(b\). In particular, the following equality is valid for all values of \(a\), \(b\), and \(c\):

\[(a^b)^c = a^{bc}.\]

- If \(f\) and \(g\) are standard mathematical functions and \(f(g(x)) = x\) for all small positive numbers, \(f(g(x)) = x\) is assumed to be valid for all complex \(x\). In particular:

  - \[\log(e^x) = x\]
  - \[\text{asin}(\sin(x)) = x, \text{acos}(\cos(x)) = x, \text{atan}(\tan(x)) = x\]
  - \[\text{asinh}(\sinh(x)) = x, \text{acosh}(\cosh(x)) = x, \text{atanh}(\tanh(x)) = x\]
  - \[W_k(x \cdot e^x) = x\] for all values of \(k\)

- “Choose Function to Rearrange Expression” on page 2-61

See Also

- collect | combine | factor | horner | numden | rewrite | simplify | simplifyFraction

Introduced before R2006a
expint

Exponential integral function

Syntax

expint(x)
expint(n,x)

Description

expint(x) returns the one-argument exponential integral function defined as

\[ \text{expint}(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} \, dt. \]

expint(n,x) returns the two-argument exponential integral function defined as

\[ \text{expint}(n,x) = \int_{1}^{\infty} \frac{e^{-xt}}{t^n} \, dt. \]

Examples

One-Argument Exponential Integral for Floating-Point and Symbolic Numbers

Compute the exponential integrals for floating-point numbers. Because these numbers are not symbolic objects, you get floating-point results.

s = [expint(1/3), expint(1), expint(-2)]

s =
Compute the exponential integrals for the same numbers converted to symbolic objects. For positive values \( x \), \( \text{expint}(x) \) returns \(-\text{ei}(-x)\). For negative values \( x \), it returns \(-\pi i - \text{ei}(-x)\).

\[
s = [\text{expint}(\text{sym}(1)/3), \text{expint}(\text{sym}(1)), \text{expint}(\text{sym}(-2))]
\]

\[
s = [-\text{ei}(-1/3), -\text{ei}(-1), -\pi i - \text{ei}(2)]
\]

Use \text{vpa} to approximate this result with 10-digit accuracy.

\[
\text{vpa}(s, 10)
\]

\[
\text{ans} = [0.8288877453, 0.2193839344, -4.954234356 - 3.141592654i]
\]

**Two-Argument Exponential Integral for Floating-Point and Symbolic Numbers**

When computing two-argument exponential integrals, convert the numbers to symbolic objects.

\[
s = [\text{expint}(2, \text{sym}(1)/3), \text{expint}(\text{sym}(1), \text{Inf}), \text{expint}(-1, \text{sym}(-2))]
\]

\[
s = [\text{expint}(2, 1/3), 0, -\text{exp}(2)/4]
\]

Use \text{vpa} to approximate this result with 25-digit accuracy.

\[
\text{vpa}(s, 25)
\]

\[
\text{ans} = [0.4402353954575937050522018, 0, -1.847264024732662556807607]
\]

**Two-Argument Exponential Integral with Nonpositive First Argument**

Compute two-argument exponential integrals. If \( n \) is a nonpositive integer, then \( \text{expint}(n, x) \) returns an explicit expression in the form \( \text{exp}(-x) \cdot p(1/x) \), where \( p \) is a polynomial of degree \( 1 - n \).

\[
sym x
\]
expint(0, x)
expint(-1, x)
expint(-2, x)

ans =
exp(-x)/x

ans =
exp(-x)*(1/x + 1/x^2)

ans =
exp(-x)*(1/x + 2/x^2 + 2/x^3)

**Derivatives of Exponential Integral**

Compute the first, second, and third derivatives of a one-argument exponential integral.

```matlab
syms x
diff(expint(x), x)
diff(expint(x), x, 2)
diff(expint(x), x, 3)
```

ans =
-exp(-x)/x

ans =
exp(-x)/x + exp(-x)/x^2

ans =
- exp(-x)/x - (2*exp(-x))/x^2 - (2*exp(-x))/x^3

Compute the first derivatives of a two-argument exponential integral.

```matlab
syms n x
diff(expint(n, x), x)
diff(expint(n, x), n)
```

ans =
-expint(n - 1, x)

ans =
- hypergeom([1 - n, 1 - n], [2 - n, 2 - n], ...
-x)/(n - 1)^2 - (x^(n - 1)*pi*(psi(n) - ...
log(x) + pi*cot(pi*n)))/(sin(pi*n)*gamma(n))
Input Arguments

\( x \) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix.

\( n \) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix. When you compute the two-argument exponential integral function, at least one argument must be a scalar.

More About

Tips

• Calling \texttt{expint} for numbers that are not symbolic objects invokes the MATLAB \texttt{expint} function. This function accepts one argument only. To compute the two-argument exponential integral, use \texttt{sym} to convert the numbers to symbolic objects, and then call \texttt{expint} for those symbolic objects. You can approximate the results with floating-point numbers using \texttt{vpa}.
• The following values of the exponential integral differ from those returned by the MATLAB \texttt{expint} function: \texttt{expint(sym(Inf)) = 0, expint(-sym(Inf)) = -Inf, expint(sym(NaN)) = NaN}.
• For positive \( x \), \texttt{expint(x) = -ei(-x)}. For negative \( x \), \texttt{expint(x) = -pi*i - ei(-x)}.
• If one input argument is a scalar and the other argument is a vector or a matrix, then \texttt{expint(n,x)} expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

Algorithms

The relation between \texttt{expint} and \texttt{ei} is

\[ \texttt{expint}(1,-x) = \texttt{ei}(x) + (\ln(x) - \ln(1/x))/2 - \ln(-x) \]
Both functions $\text{ei}(x)$ and $\text{expint}(1,x)$ have a logarithmic singularity at the origin and a branch cut along the negative real axis. The $\text{ei}$ function is not continuous when approached from above or below this branch cut.

The $\text{expint}$ function is related to the upper incomplete gamma function $\text{igamma}$ as

$$\text{expint}(n,x) = (x^{n-1}) \times \text{igamma}(1-n,x)$$

**See Also**

$\text{ei}$ | $\text{expint}$ | $\text{vpa}$

**Introduced in R2013a**
expm

Matrix exponential

Syntax

R = expm(A)

Description

R = expm(A) computes the matrix exponential of the square matrix A.

Examples

Matrix Exponential

Compute the matrix exponential for the 2-by-2 matrix and simplify the result.

```matlab
syms x
A = [0 x; -x 0];
simplify(expm(A))
```

ans =
```
[cos(x), sin(x)]
[-sin(x), cos(x)]
```

Input Arguments

A — Input matrix
square matrix

Input matrix, specified as a square symbolic matrix.
Output Arguments

R — Resulting matrix
symbolic matrix

Resulting function, returned as a symbolic matrix.

More About

Matrix Exponential

The matrix exponential $e_A$ of matrix $A$ is

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k = 1 + A + \frac{A^2}{2} + ...$$

See Also

eig | funm | jordan | logm | sqrtm

Introduced before R2006a
ezcontour

Contour plotter

Syntax

ezcontour(f)
ezcontour(f,domain)
ezcontour(...,n)

Description

ezcontour (f) plots the contour lines of f(x,y), where f is a symbolic expression that represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain $-2\pi < x < 2\pi, -2\pi < y < 2\pi$. MATLAB software chooses the computational grid according to the amount of variation that occurs; if the function f is not defined (singular) for points on the grid, then these points are not plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can be either a 4-by-1 vector $[xmin, xmax, ymin, ymax]$ or a 2-by-1 vector $[min, max]$ (where, $min < x < max, min < y < max$).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezcontour($u^2 - v^3$, [0,1],[3,6]) plots the contour lines for $u^2 - v^3$ over $0 < u < 1, 3 < v < 6$.

ezcontour(...,n) plots f over the default domain using an n-by-n grid. The default value for n is 60.

ezcontour automatically adds a title and axis labels.

Examples

Plot Contour Lines of Symbolic Expression

The following mathematical expression defines a function of two variables, x and y.
\[ f(x,y) = 3(1-x)^2 e^{-x^2-(y+1)^2} - 10\left(\frac{x}{5} - x^3 - y^5\right)e^{-x^2-y^2} - \frac{1}{3} e^{-(x+1)^2-y^2}. \]

**ezcontour** requires a **sym** argument that expresses this function using MATLAB syntax to represent exponents, natural logs, etc. This function is represented by the symbolic expression

```matlab
syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...
- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...
- 1/3*exp(-(x+1)^2 - y^2);
```

For convenience, this expression is written on three lines.

Pass the **sym** \( f \) to **ezcontour** along with a domain ranging from -3 to 3 and specify a computational grid of 49-by-49.

```matlab
ezcontour(f,[-3,3],49)
```
In this particular case, the title is too long to fit at the top of the graph so MATLAB abbreviates the string.

**See Also**
contour | ezcontourf | ezmesh | ezmeshc | ezplot | ezplot3 | ezpolar |ezsurf | ezsurfc

*Introduced before R2006a*
ezcontourf

Filled contour plotter

Syntax

ezcontourf(f)
ezcontourf(f,domain)
ezcontourf(...,n)

Description

ezcontourf(f) plots the contour lines of $f(x,y)$, where $f$ is a sym that represents a mathematical function of two variables, such as $x$ and $y$.

The function $f$ is plotted over the default domain $-2\pi < x < 2\pi$, $-2\pi < y < 2\pi$. MATLAB software chooses the computational grid according to the amount of variation that occurs; if the function $f$ is not defined (singular) for points on the grid, then these points are not plotted.

ezcontourf(f,domain) plots $f(x,y)$ over the specified domain. domain can be either a 4-by-1 vector $[xmin, xmax, ymin, ymax]$ or a 2-by-1 vector $[min, max]$ (where, $min < x < max$, $min < y < max$).

If $f$ is a function of the variables $u$ and $v$ (rather than $x$ and $y$), then the domain endpoints $umin$, $umax$, $vmin$, and $vmax$ are sorted alphabetically. Thus, ezcontourf($u^2 - v^3$, $[0,1],[3,6]$) plots the contour lines for $u^2 - v^3$ over $0 < u < 1$, $3 < v < 6$.

ezcontourf(...,n) plots $f$ over the default domain using an $n$-by-$n$ grid. The default value for $n$ is 60.

ezcontourf automatically adds a title and axis labels.

Examples

The following mathematical expression defines a function of two variables, $x$ and $y$. 
\[ f(x,y) = 3(1-x)^2 e^{-x^2-(y+1)^2} - 10 \left( \frac{x}{5} - x^3 - y^5 \right) e^{-x^2-y^2} - \frac{1}{3} e^{-(x+1)^2-y^2}. \]

*ezcontourf* requires a *sym* argument that expresses this function using MATLAB syntax to represent exponents, natural logs, etc. This function is represented by the symbolic expression

```
syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...
 - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...
 - 1/3*exp(-(x+1)^2 - y^2);
```

For convenience, this expression is written on three lines.

Pass the *sym f* to *ezcontourf* along with a domain ranging from -3 to 3 and specify a grid of 49-by-49.

*ezcontourf*(f,[-3,3],49)
In this particular case, the title is too long to fit at the top of the graph so MATLAB abbreviates the string.

**See Also**

contourf | ezcontour | ezmesh | ezmeshc | ezplot | ezplot3 | ezpolar | ezsurf | ezsurfc

**Introduced before R2006a**
ezmesh

3-D mesh plotter

Syntax

ezmesh(f)
ezmesh(f, domain)
ezmesh(x,y,z)
ezmesh(x,y,z,[smin,smax,tmin,tmax])
ezmesh(x,y,z,[min,max])
ezmesh(...,n)
ezmesh(...,'circ')

Description

ezmesh(f) creates a graph of \( f(x,y) \), where \( f \) is a symbolic expression that represents a mathematical function of two variables, such as \( x \) and \( y \).

The function \( f \) is plotted over the default domain \(-2\pi < x < 2\pi, -2\pi < y < 2\pi\). MATLAB software chooses the computational grid according to the amount of variation that occurs; if the function \( f \) is not defined (singular) for points on the grid, then these points are not plotted.

ezmesh(f, domain) plots \( f \) over the specified domain. domain can be either a 4-by-1 vector \([x_{min}, x_{max}, y_{min}, y_{max}]\) or a 2-by-1 vector \([min, max]\) (where, \( min < x < max \), \( min < y < max \)).

If \( f \) is a function of the variables \( u \) and \( v \) (rather than \( x \) and \( y \)), then the domain endpoints \( u_{min}, u_{max}, v_{min} \), and \( v_{max} \) are sorted alphabetically. Thus, \( \text{ezmesh}(u^2 - v^3, [0,1],[3,6]) \) plots \( u^2 - v^3 \) over \( 0 < u < 1, 3 < v < 6 \).

ezmesh(x,y,z) plots the parametric surface \( x = x(s,t), y = y(s,t), \) and \( z = z(s,t) \) over the square \(-2\pi < s < 2\pi, -2\pi < t < 2\pi\).

ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max]) plots the parametric surface using the specified domain.
ezmesh(...,n) plots $f$ over the default domain using an $n$-by-$n$ grid. The default value for $n$ is 60.

ezmesh(...,'circ') plots $f$ over a disk centered on the domain.

**Examples**

This example visualizes the function,

$$f(x,y) = xe^{-x^2-y^2},$$

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform blue color by setting the colormap to a single color.

```matlab
syms x y
ezmesh(x*exp(-x^2-y^2),[-2.5,2.5],40)
colormap([0 0 1])
```
See Also

ezcontour | ezcontourf | ezmeshc | ezplot | ezplot3 | ezpolar | ezsurf | ezsurfc | mesh

Introduced before R2006a
ezmeshc

Combined mesh and contour plotter

Syntax

ezmeshc(f)
ezmeshc(f,domain)
ezmeshc(x,y,z)
ezmeshc(x,y,z,[smin,smax,tmin,tmax])
ezmeshc(x,y,z,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')

Description

ezmeshc(f) creates a graph of \( f(x,y) \), where \( f \) is a symbolic expression that represents a mathematical function of two variables, such as \( x \) and \( y \).

The function \( f \) is plotted over the default domain \(-2\pi < x < 2\pi, -2\pi < y < 2\pi\). MATLAB software chooses the computational grid according to the amount of variation that occurs; if the function \( f \) is not defined (singular) for points on the grid, then these points are not plotted.

ezmeshc(f,domain) plots \( f \) over the specified domain. domain can be either a 4-by-1 vector \( [xmin, xmax, ymin, ymax] \) or a 2-by-1 vector \( [min, max] \) (where, \( min < x < max \), \( min < y < max \)).

If \( f \) is a function of the variables \( u \) and \( v \) (rather than \( x \) and \( y \)), then the domain endpoints \( umin, umax, vmin, \) and \( vmax \) are sorted alphabetically. Thus, \( \text{ezmeshc}(u^2 - v^3, [0,1],[3,6]) \) plots \( u^2 - v^3 \) over \( 0 < u < 1, 3 < v < 6 \).

ezmeshc(x,y,z) plots the parametric surface \( x = x(s,t), y = y(s,t), \) and \( z = z(s,t) \) over the square \(-2\pi < s < 2\pi, -2\pi < t < 2\pi\).

\( \text{ezmeshc}(x,y,z,[smin,smax,tmin,tmax]) \) or \( \text{ezmeshc}(x,y,z,[min,max]) \) plots the parametric surface using the specified domain.
ezmeshc(...,n) plots $f$ over the default domain using an $n$-by-$n$ grid. The default value for $n$ is 60.

ezmeshc(...,'circ') plots $f$ over a disk centered on the domain.

**Examples**

Create a mesh/contour graph of the expression,

$$f(x,y) = \frac{y}{1+x^2+y^2},$$

over the domain $-5 < x < 5$, $-2\pi < y < 2\pi$. Use the mouse to rotate the axes to better observe the contour lines (this picture uses a view of azimuth = –65 and elevation = 26).

```matlab
syms x y
ezmeshc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi])
```
See Also

ezcontour | ezcontourf | ezmesh | ezplot | ezplot3 | ezpolar | ezsurf | ezsurfc | meshc

Introduced before R2006a
ezplot

Plot symbolic expression, equation, or function

Syntax

ezplot(f)
ezplot(f,[min,max])
ezplot(f,[xmin,xmax,ymin,ymax])

ezplot(x,y)
ezplot(x,y,[tmin,tmax])

ezplot(f,[min,max],fig)
ezplot(f,[xmin,xmax,ymin,ymax],fig)
ezplot(x,y,[tmin,tmax],fig)

h = ezplot(____)

Description

ezplot(f) plots a symbolic expression, equation, or function f. By default, ezplot plots a univariate expression or function over the range \([-2\pi 2\pi]\) or over a subinterval of this range. If f is an equation or function of two variables, the default range for both variables is \([-2\pi 2\pi]\) or over a subinterval of this range.

ezplot(f,[min,max]) plots f over the specified range. If f is a univariate expression or function, then [min,max] specifies the range for that variable. This is the range along the abscissa (horizontal axis). If f is an equation or function of two variables, then [min,max] specifies the range for both variables, that is the ranges along both the abscissa and the ordinate.

ezplot(f,[xmin,xmax,ymin,ymax]) plots f over the specified ranges along the abscissa and the ordinate.

ezplot(x,y) plots the parametrically defined planar curve \(x = x(t)\) and \(y = y(t)\) over the default range \(0 <= t <= 2\pi\) or over a subinterval of this range.
ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over the specified range tmin <= t <= tmax.

ezplot(f,[min,max],fig) plots f over the specified range in the figure with the figure number or figure handle fig. The title of each plot window contains the word Figure and the number, for example, Figure 1, Figure 2, and so on. If fig is already open, ezplot overwrites the content of that figure with the new plot.

ezplot(f,[xmin,xmax,ymin,ymax],fig) plots f over the specified ranges along the abscissa and the ordinate in fig.

ezplot(x,y,[tmin,tmax],fig) plots x = x(t) and y = y(t) over the specified range in fig.

h = ezplot(___) returns the plot handle as either a chart line or contour object.

**Input Arguments**

f

Symbolic expression, equation, or function.

[min,max]

Numbers specifying the plotting range. For a univariate expression or function, the plotting range applies to that variable. For an equation or function of two variables, the plotting range applies to both variables. In this case, the range is the same for the abscissa and the ordinate.

Default: [-2*pi,2*pi] or its subinterval.

[xmin,xmax,ymin,ymax]

Numbers specifying the plotting range along the abscissa (first two numbers) and the ordinate (last two numbers).

Default: [-2*pi,2*pi,-2*pi,2*pi] or its subinterval.

fig

Figure handle or number of the figure window where you want to display a plot.
**Default:** For figure handle, the current figure handle returned by `gcf`. For figure number, if no plot windows are open, then 1. If one plot window is open, then the number in the title of that window. If more than one plot window is open, then the highest number in the titles of open windows.

\[ x, y \]

Symbolic expressions or functions defining a parametric curve \( x = x(t) \) and \( y = y(t) \).

\[ [t_{\text{min}}, t_{\text{max}}] \]

Numbers specifying the plotting range for a parametric curve.

**Default:** \([0, 2\pi]\) or its subinterval.

**Output Arguments**

\( h \) — Chart line or contour line object

scalar

Chart line or contour line object, returned as a scalar. For details, see Chart Line Properties and Contour Properties.

**Examples**

**Plot Over Particular Range**

Plot the expression \( \text{erf}(x) \times \sin(x) \) over the range \([-\pi, \pi]\):

```matlab
syms x
ezplot(\text{erf}(x), [-\pi, \pi])
```
Plot Over Default Range

Plot this equation over the default range.

```matlab
syms x y
ezplot(x^2 == y^4)
```
Plot Symbolic Function

Create this symbolic function $f(x, y)$:

```matlab
syms x y
f(x, y) = sin(x + y)*sin(x*y);
```

Plot this function over the default range:

```matlab
ezplot(f)
```
Plot Parametric Curve

Plot this parametric curve:

```matlab
syms t
x = t*sin(5*t);
y = t*cos(5*t);
ezplot(x, y)
```
More About

Tips

- If you do not specify a plot range, `ezplot` uses the interval \([-2\pi 2\pi]\) as a starting point. Then it can choose to display a part of the plot over a subinterval of \([-2\pi 2\pi]\) where the plot has significant variation. Also, when selecting the plotting range, `ezplot` omits extreme values associated with singularities.

- `ezplot` open a plot window and displays a plot there. If any plot windows are already open, `ezplot` does not create a new window. Instead, it displays the new plot in the currently active window. (Typically, it is the window with the highest number.) To
display the new plot in a new plot window or in an existing window other than that with highest number, use fig.

• If \( f \) is an equation or function of two variables, then the alphabetically first variable defines the abscissa (horizontal axis) and the other variable defines the ordinate (vertical axis). Thus, \( \text{ezplot}(x^2 = a^2, [-3,3,-2,2]) \) creates the plot of the equation \( x^2 = a^2 \) with \(-3 \leq a \leq 3\) along the horizontal axis, and \(-2 \leq x \leq 2\) along the vertical axis.

• “Create Plots” on page 2-214

**See Also**

`ezcontour` | `ezcontourf` | `ezmesh` | `ezmeshc` | `ezplot3` | `ezpolar` | `ezsurf` | `ezsurfc` | `plot`

*Introduced before R2006a*
ezplot3

3-D parametric curve plotter

Syntax

ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(...,'animate')

Description

ezplot3(x,y,z) plots the spatial curve \( x = x(t), y = y(t), \) and \( z = z(t) \) over the default domain \( 0 < t < 2\pi \).

ezplot3(x,y,z,[tmin,tmax]) plots the curve \( x = x(t), y = y(t), \) and \( z = z(t) \) over the domain \( tmin < t < tmax \).

ezplot3(...,'animate') produces an animated trace of the spatial curve.

Examples

Plot the parametric curve \( x = \sin(t), y = \cos(t), z = t \) over the domain \([0, 6\pi]\).

```matlab
syms t
ezplot3(sin(t), cos(t), t,[0,6*pi])
```
See Also

ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar | ezsurf | ezsurfc | plot3

Introduced before R2006a
ezpolar

Polar coordinate plotter

Syntax

ezpolar(f)
ezpolar(f, [a, b])

Description

ezpolar(f) plots the polar curve $r = f(\theta)$ over the default domain $0 < \theta < 2\pi$.

ezpolar(f, [a, b]) plots $f$ for $a < \theta < b$.

Examples

This example creates a polar plot of the function, $1 + \cos(t)$, over the domain $[0, 2\pi]$.

syms t
ezpolar(1 + cos(t))
ezpolar

Introduced before R2006a

\[ r = \cos(t) + 1 \]
ezsurf

Plot 3-D surface

Syntax

ezsurf(f)
ezsurf(f,[xmin,xmax])
ezsurf(f,[xmin,xmax,ymin,ymax])

ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax])
ezsurf(x,y,z,[smin,smax,tmin,tmax])

ezsurf(___,n)
ezsurf(___,'circ')
h = ezsurf(___)

Description

ezsurf(f) plots a two-variable symbolic expression or function \( f(x,y) \) over the range \(-2\pi < x < 2\pi, -2\pi < y < 2\pi\).

ezsurf(f,[xmin,xmax]) plots \( f(x,y) \) over the specified range \( xmin < x < xmax \). This is the range along the abscissa (horizontal axis).

ezsurf(f,[xmin,xmax,ymin,ymax]) plots \( f(x,y) \) over the specified ranges along the abscissa, \( xmin < x < xmax \), and the ordinate, \( ymin < y < ymax \).

When determining the range values, ezsurf sorts variables alphabetically. For example, ezsurf(x^2 - a^3, [0,1,3,6]) plots \( x^2 - a^3 \) over \( 0 < a < 1, 3 < x < 6 \).

ezsurf(x,y,z) plots the parametric surface \( x = x(s,t), y = y(s,t), z = z(s,t) \) over the range \(-2\pi < s < 2\pi, -2\pi < t < 2\pi\).

ezsurf(x,y,z,[smin,smax]) plots the parametric surface \( x = x(s,t), y = y(s,t), z = z(s,t) \) over the specified range \( smin < s < smax \).
ezsurf(x,y,z,[smin,smax,tmin,tmax]) plots the parametric surface \( x = x(s,t), \)
\( y = y(s,t), z = z(s,t) \) over the specified ranges \( s_{\text{min}} < s < s_{\text{max}} \) and \( t_{\text{min}} < t < t_{\text{max}} \).

ezsurf(___,n) specifies the grid. You can specify \( n \) after the input arguments in any of the previous syntaxes. By default, \( n = 60 \).

ezsurf(___,'circ') creates the surface plot over a disk centered on the range. You can specify 'circ' after the input arguments in any of the previous syntaxes.

\[ h = \text{ezsurf}(\_\_\_, \_\_\_) \] returns a handle \( h \) to the surface plot object. You can use the output argument \( h \) with any of the previous syntaxes.

**Examples**

**Plot Function Over Default Range**

Plot the symbolic function \( f(x,y) = \text{real(atan}(x + i*y)) \) over the default range \(-2*\pi < x < 2*\pi, -2*\pi < y < 2*\pi\).

Create the symbolic function.

\[
\begin{align*}
\text{syms } & f(x,y) \\
f(x,y) & = \text{real(atan}(x + i*y));
\end{align*}
\]

Plot this function using \texttt{ezsurf}.

\[
\text{ezsurf}(f)
\]
Specify Plotting Ranges

Plot the symbolic expression $x^2 + y^2$ over the range $-1 < x < 1$. Because you do not specify the range for the $y$-axis, `ezsurf` chooses it automatically.

```matlab
syms x y
ezsurf(x^2 + y^2, [-1, 1])
```
Specify the range for both axes.

```markdown
ezsurf(x^2 + y^2, [-1, 1, -0.5, 1.5])
```
Plot Parameterized Surface

Define the parametric surface \( x(s,t), y(s,t), z(s,t) \) as follows.

```matlab
syms s t
r = 2 + sin(7*s + 5*t);
x = r*cos(s)*sin(t);
y = r*sin(s)*sin(t);
z = r*cos(t);
```

Plot the function using `ezsurf`.

```matlab
ezsurf(x, y, z, [0, 2*pi, 0, pi])
title('Parametric surface')
```
To create a smoother plot, increase the number of mesh points.

ezsurf(x, y, z, [0, 2*pi, 0, pi], 120)
title('Parametric surface with grid = 120')
Specify Disk Plotting Range

First, plot the expression \( \sin(x^2 + y^2) \) over the square range \(-\pi/2 < x < \pi/2, -\pi/2 < y < \pi/2\).

```matlab
syms x y
ezsurf(sin(x^2 + y^2), [-pi/2, pi/2, -pi/2, pi/2])
```
Now, plot the same expression over the disk range.

```matlab
ezsurf(sin(x^2 + y^2), [-pi/2, pi/2, -pi/2, pi/2], 'circ')
```
Use Handle to Surface Plot

Plot the symbolic expression $\sin(x)\cos(x)$, and assign the result to the handle $h$.

```matlab
syms x y
h = ezsurf(sin(x)*cos(y), [-pi, pi])
```

```
h =

Surface with properties:

 EdgeColor: [0 0 0]
 LineStyle: '-'
 FaceColor: 'flat'
```
You can use this handle to change properties of the plot. For example, change the color of the area outline.

```matlab
h.EdgeColor = 'red'
```
h =

Surface with properties:

    EdgeColor: [1 0 0]
    LineStyle: '-'
    FaceColor: 'flat'
    FaceLighting: 'flat'
    FaceAlpha: 1
    XData: [60x60 double]
    YData: [60x60 double]
    ZData: [60x60 double]
    CData: [60x60 double]

Use GET to show all properties
• “Create Plots” on page 2-214

**Input Arguments**

**f — Function to plot**
symbolic expression with two variables | symbolic function of two variables

Function to plot, specified as a symbolic expression or function of two variables.

Example: `ezsurf(f(x^2 + y^2))`

**x, y, z — Parametric function to plot**
three symbolic expressions with two variables | three symbolic functions of two variables
Parametric function to plot, specified as three symbolic expressions or functions of two variables.

Example: `ezsurf(s*\cos(t), s*\sin(t), t)`

\[ n \quad \text{— Grid value} \]
integer

Grid value, specified as an integer. The default grid value is 60.

**Output Arguments**

\[ h \quad \text{— Surface plot handle} \]
scalar

Surface plot handle, returned as a scalar. It is a unique identifier, which you can use to query and modify properties of the surface plot.

**More About**

**Tips**

- `ezsurf` chooses the computational grid according to the amount of variation that occurs. If \( f \) is singular for some points on the grid, then `ezsurf` omits these points. The value at these points is set to NaN.

**See Also**

`ezcontour` | `ezcontourf` | `ezmesh` | `ezmeshc` | `ezplot` | `ezpolar` | `ezsurfc` | `surf`

**Introduced before R2006a**
ezsurfc

Combined surface and contour plotter

Syntax

```matlab
ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(x,y,z)
ezsurfc(x,y,z,[smin,smax,tmin,tmax])
ezsurfc(x,y,z,[min,max])
ezsurfc(...,n)
ezsurfc(...,'circ')
```

Description

**ezsurfc(f)** creates a graph of \( f(x,y) \), where \( f \) is a symbolic expression that represents a mathematical function of two variables, such as \( x \) and \( y \).

The function \( f \) is plotted over the default domain \(-2\pi < x < 2\pi, -2\pi < y < 2\pi\). MATLAB software chooses the computational grid according to the amount of variation that occurs; if the function \( f \) is not defined (singular) for points on the grid, then these points are not plotted.

**ezsurfc(f,domain)** plots \( f \) over the specified domain. **domain** can be either a 4-by-1 vector \([xmin, xmax, ymin, ymax]\) or a 2-by-1 vector \([min, max]\) (where, \( min < x < max, \min < y < \max \)).

If \( f \) is a function of the variables \( u \) and \( v \) (rather than \( x \) and \( y \)), then the domain endpoints \( umin, umax, vmin, \) and \( vmax \) are sorted alphabetically. Thus, **ezsurfc(u^2 - v^3, [0,1],[3,6])** plots \( u^2 - v^3 \) over \( 0 < u < 1, 3 < v < 6 \).

**ezsurfc(x,y,z)** plots the parametric surface \( x = x(s,t), y = y(s,t), \) and \( z = z(s,t) \) over the square \(-2\pi < s < 2\pi, -2\pi < t < 2\pi\).

**ezsurfc(x,y,z,[smin,smax,tmin,tmax])** or **ezsurfc(x,y,z,[min,max])** plots the parametric surface using the specified domain.
ezsurf(...,n) plots \( f \) over the default domain using an \( n \)-by-\( n \) grid. The default value for \( n \) is 60.

\[
\text{ezsurf(...,'circ')} \quad \text{plots } f \text{ over a disk centered on the domain.}
\]

**Examples**

Create a surface/contour plot of the expression,

\[
f(x,y) = \frac{y}{1 + x^2 + y^2},
\]

over the domain \(-5 < x < 5, -2\pi < y < 2\pi\), with a computational grid of size 35-by-35. Use the mouse to rotate the axes to better observe the contour lines (this picture uses a view of azimuth = -65 and elevation = 26).

\[
\text{syms } x \ y \\
\text{ezsurf}(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi],35)
\]
See Also

ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar | ezsurf | surfc

Introduced before R2006a
factor

Factorization

Syntax

F = factor(x)
F = factor(x,vars)
F = factor(___,'Name','Value')

Description

F = factor(x) returns all irreducible factors of x in vector F. If x is an integer, factor returns the prime factorization of x. If x is a symbolic expression, factor returns the subexpressions that are factors of x.

F = factor(x,vars) returns an array of factors F, where vars specifies the variables of interest. All factors not containing a variable in vars are separated into the first entry F(1). The other entries are irreducible factors of x that contain one or more variables from vars.

F = factor(__,'Name','Value') uses additional options specified by one or more Name,Value pair arguments. This syntax can use any of the input arguments from the previous syntaxes.

Examples

Factor Integer Numbers

F = factor(823429252)
F =
     2     2    59    283  12329

To factor integers greater than flintmax, convert the integer to a symbolic object using sym. Then place the number in quotation marks to represent it accurately.
F = factor(sym('82342925225632328'))
F = 
[ 2, 2, 2, 251, 401, 18311, 5584781]

To factor a negative integer, convert it to a symbolic object using `sym`.

F = factor(sym(-92465))
F = 
[ -1, 5, 18493]

**Perform Prime Factorization of Large Numbers**

Perform prime factorization for 41758540882408627201. Since the integer is greater than `flintmax`, convert it to a symbolic object using `sym`, and place the number in quotation marks to represent it accurately.

n = sym('41758540882408627201');
factor(n)

ans = 
[ 479001599, 87178291199]

**Factor Symbolic Fractions**

Factor the fraction 112/81 by converting it into a symbolic object using `sym`.

F = factor(sym(112/81))
F = 
[ 2, 2, 2, 2, 7, 1/3, 1/3, 1/3, 1/3]

**Factor Polynomials**

Factor the polynomial $x^6-1$.

```matlab
syms x
F = factor(x^6-1)
F =
[x - 1, x + 1, x^2 + x + 1, x^2 - x + 1]```
Factor the polynomial $y^6 - x^6$.

```matlab
syms y
F = factor(y^6 - x^6)
F =
[ -1, x - y, x + y, x^2 + x*y + y^2, x^2 - x*y + y^2]
```

Separate Factors Containing Specified Variables

Factor y^2*x^2 for factors containing x.

```matlab
syms x y
F = factor(y^2*x^2, x)
F =
[ y^2, x, x]
```

`factor` combines all factors without x into the first element. The remaining elements of F contain irreducible factors that contain x.

Factor the polynomial y for factors containing symbolic variables b and c.

```matlab
syms a b c d
y = -a*b^5*c*d*(a^2 - 1)*(a*d - b*c);
F = factor(y, [b c])
F =
[ -a*d*(a - 1)*(a + 1), b, b, b, b, b, c, a*d - b*c]
```

`factor` combines all factors without b or c into the first element of F. The remaining elements of F contain irreducible factors of y that contain either b or c.

Choose Factorization Modes

Use the `FactorMode` argument to choose a particular factorization mode.

Factor an expression without specifying the factorization mode. By default, `factor` uses factorization over rational numbers. In this mode, `factor` keeps rational numbers in their exact symbolic form.

```matlab
syms x
```
factor(x^3 + 2, x)

ans =
x^3 + 2

Factor the same expression, but this time use numeric factorization over real numbers. This mode factors the expression into linear and quadratic irreducible polynomials with real coefficients and converts all numeric values to floating-point numbers.

factor(x^3 + 2, x, 'FactorMode', 'real')

ans =
[x + 1.2599210498948731647672106072782,
 x^2 - 1.2599210498948731647672106072782*x + 1.5874010519681994747517056392723]

Factor this expression using factorization over complex numbers. In this mode, factor reduces quadratic polynomials to linear expressions with complex coefficients. This mode converts all numeric values to floating-point numbers.

factor(x^3 + 2, x, 'FactorMode', 'complex')

ans =
[x + 1.2599210498948731647672106072782,
 x - 0.62996052494743658238360530363911 + 1.091123635196819947517056392723i,
 x - 0.62996052494743658238360530363911 - 1.091123635196819947517056392723i]

Factor this expression using the full factorization mode. This mode factors the expression into linear expressions, reducing quadratic polynomials to linear expressions with complex coefficients. This mode keeps rational numbers in their exact symbolic form.

factor(x^3 + 2, x, 'FactorMode', 'full')

ans =
[x + 2^(1/3),
 x - 2^(1/3)*((3^(1/2)*i)/2 + 1/2),
 x + 2^(1/3)*((3^(1/2)*i)/2 - 1/2)]

Approximate the result with floating-point numbers by using vpa. Because the expression does not contain any symbolic parameters besides the variable x, the result is the same as in complex factorization mode.

vpa(ans)

ans =
[x + 1.2599210498948731647672106072782]
Approximate Results Containing RootOf

In the full factorization mode, factor also can return results as a symbolic sums over polynomial roots expressed as RootOf.

Factor this expression.

```matlab
syms x
s = factor(x^3 + x - 3, x, 'FactorMode','full')
s =
 [ x - root(z^3 + z - 3, z, 1),...
   x - root(z^3 + z - 3, z, 2),...
   x - root(z^3 + z - 3, z, 3)]
```

Approximate the result with floating-point numbers by using vpa.

```matlab
vpa(s)
an =
 [ x - 1.2134116627622296341321313773815,...
   x + 0.6067058313811481706606568869074 + 1.4506122491884415265154422033951i,...
   x + 0.6067058313811481706606568869074 - 1.4506122491884415265154422033951i]
```

Input Arguments

- **x** — Input to factor
 number | symbolic number | symbolic expression | symbolic function

Input to factor, specified as a number, or a symbolic number, expression, or function.

- **vars** — Variables of interest
 symbolic variable | vector of symbolic variables

Variables of interest, specified as a symbolic variable or a vector of symbolic variables. Factors that do not contain a variable specified in vars are grouped into the first element of F. The remaining elements of F contain irreducible factors of x that contain a variable in vars.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: factor(x^3 - 2,x,'FactorMode','real')

'FactorMode' — Factorization mode
'real' (default) | 'complex' | 'rational' | 'full'

Factorization mode, specified as the comma-separated pair consisting of 'FactorMode' and one of these strings.

<table>
<thead>
<tr>
<th>'rational'</th>
<th>Factorization over rational numbers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'real'</td>
<td>Factorization over real numbers. A real numeric factorization is a factorization into linear and quadratic irreducible polynomials with real coefficients. This factorization mode requires the coefficients of the input to be convertible to real floating-point numbers. All other inputs (for example, those inputs containing symbolic or complex coefficients) are treated as irreducible.</td>
</tr>
<tr>
<td>'complex'</td>
<td>Factorization over complex numbers. A complex numeric factorization is a factorization into linear factors whose coefficients are floating-point numbers. Such factorization is only available if the coefficients of the input are convertible to floating-point numbers, that is, if the roots can be determined numerically. Symbolic inputs are treated as irreducible.</td>
</tr>
<tr>
<td>'full'</td>
<td>Full factorization. A full factorization is a symbolic factorization into linear factors. The result shows these factors using radicals or as a symsum ranging over a RootOf.</td>
</tr>
</tbody>
</table>

Output Arguments

F — Factors of input
symbolic vector

Factors of input, returned as a symbolic vector.
More About

Tips

• To factor an integer greater than flintmax, wrap the integer with sym. Then place the integer in quotation marks to represent it accurately, for example, \texttt{sym('465971235659856452')}.
• To factor a negative integer, wrap the integer with \texttt{sym}, for example, \texttt{sym(-3)}.

See Also
\texttt{collect | combine | divisors | expand | horner | numden | rewrite | simplify | simplifyFraction}

Introduced before R2006a
factorial

Factorial function

Syntax

factorial(n)
factorial(A)

Description

factorial(n) returns the factorial of n.
factorial(A) returns the factorials of each element of A.

Input Arguments

n
Symbolic variable or expression representing a nonnegative integer.

A
Vector or matrix of symbolic variables or expressions representing nonnegative integers.

Examples

Compute the factorial function for these expressions:

syms n
f = factorial(n^2 + 1)

f =
factorial(n^2 + 1)

Now substitute the variable n with the value 3:
```matlab
subs(f, n, 3)
ans =
   3628800

Differentiate the expression involving the factorial function:

```matlab
syms n
diff(factorial(n^2 + n + 1))
```

ans =
    factorial(n^2 + n + 1)*psi(n^2 + n + 2)*(2*n + 1)

Expand the expression involving the factorial function:

```matlab
syms n
expand(factorial(n^2 + n + 1))
```

ans =
    factorial(n^2 + n)*(n^2 + n + 1)

Compute the limit for the expression involving the factorial function:

```matlab
syms n
limit(factorial(n)/exp(n), n, inf)
```

ans =
    Inf

Call `factorial` for the matrix `A`. The result is a matrix of the factorial functions:

```matlab
A = sym([1 2; 3 4]);
factorial(A)
```

ans =
    [ 1,  2]
    [ 6, 24]

**More About**

**Factorial Function**

This product defines the factorial function of a positive integer:
\[ n! = \prod_{k=1}^{n} k \]

The factorial function 0! = 1.

**Tips**
- Calling `factorial` for a number that is not a symbolic object invokes the MATLAB `factorial` function.

**See Also**
beta | gamma | nchoosek | psi

*Introduced in R2012a*
**feval**

Evaluate MuPAD expressions specifying their arguments

**Syntax**

result = feval(symengine,F,x1,...,xn)
[result,status] = feval(symengine,F,x1,...,xn)

**Description**

result = feval(symengine,F,x1,...,xn) evaluates F, which is either a MuPAD function name or a symbolic object, with arguments x1,...,xn, with result a symbolic object. If F with the arguments x1,...,xn throws an error in MuPAD, then this syntax throws an error in MATLAB.

[result,status] = feval(symengine,F,x1,...,xn) lets you catch errors thrown by MuPAD. This syntax returns the error status in status, and the error message in result if status is nonzero. If status is 0, result is a symbolic object. Otherwise, result is a string.

**Input Arguments**

F
MuPAD function name or symbolic object.

x1,...,xn
Arguments of F.

**Output Arguments**

result
Symbolic object or string containing a MuPAD error message.
status

Integer indicating the error status. If F with the arguments \(x_1, \ldots, x_n\) executes without errors, the error status is 0.

Examples

```matlab
syms a b c x
p = a*x^2+b*x+c;
feval(symengine,'polylib::discrim', p, x)

ans =
b^2 - 4*a*c
```

Alternatively, the same calculation based on variables not defined in the MATLAB workspace is:

```matlab
feval(symengine,'polylib::discrim', 'a*x^2 + b*x + c', 'x')

ans =
b^2 - 4*a*c
```

Try using `polylib::discrim` to compute the discriminant of the following nonpolynomial expression:

```matlab
[result, status] = feval(symengine,'polylib::discrim',
 'a*x^2 + b*x + c*ln(x)', 'x')
```

result =
An arithmetical expression is expected.

status =
2

Alternatives

evalin lets you evaluate MuPAD expressions without explicitly specifying their arguments.
More About

Tips

• Results returned by `feval` can differ from the results that you get using a MuPAD notebook directly. The reason is that `feval` sets a lower level of evaluation to achieve better performance.

• `feval` does not open a MuPAD notebook, and therefore, you cannot use this function to access MuPAD graphics capabilities.

• “Evaluations in Symbolic Computations”
• “Level of Evaluation”

See Also
`evalin | read | symengine`

Introduced in R2008b
findDecoupledBlocks

Search for decoupled blocks in systems of equations

**Syntax**

\[
[\text{eqsBlocks},\text{varsBlocks}] = \text{findDecoupledBlocks}(\text{eqs},\text{vars})
\]

**Description**

\[
[\text{eqsBlocks},\text{varsBlocks}] = \text{findDecoupledBlocks}(\text{eqs},\text{vars})
\]

identifies subsets (blocks) of equations that can be used to define subsets of variables. The number of variables \(\text{vars}\) must coincide with the number of equations \(\text{eqs}\).

The \(i\)th block is the set of equations determining the variables in \(\text{vars}(:,:,i)\). The variables in \(\text{vars}(:,:,[1],\ldots,varsBlocks{1-1})\) are determined recursively by the previous blocks of equations. After you solve the first block of equations for the first block of variables, the second block of equations, given by \(\text{eqs}(:,:,2)\), defines a decoupled subset of equations containing only the subset of variables given by the second block of variables, \(\text{vars}(:,:,2)\), plus the variables from the first block (these variables are known at this time). Thus, if a nontrivial block decomposition is possible, you can split the solution process for a large system of equations involving many variables into several steps, where each step involves a smaller subsystem.

The number of blocks \(\text{length(eqsBlocks)}\) coincides with \(\text{length(varsBlocks)}\). If \(\text{length(eqsBlocks)} = \text{length(varsBlocks)} = 1\), then a nontrivial block decomposition of the equations is not possible.

**Examples**

**Block Lower Triangular Decomposition of DAE System**

Compute a block lower triangular decomposition (BLT decomposition) of a symbolic system of differential algebraic equations (DAEs).
Create the following system of four differential algebraic equations. Here, the symbolic function calls $x_1(t)$, $x_2(t)$, $x_3(t)$, and $x_4(t)$ represent the state variables of the system. The system also contains symbolic parameters $c_1$, $c_2$, $c_3$, $c_4$, and functions $f(t,x,y)$ and $g(t,x,y)$.

```matlab
syms x1(t) x2(t) x3(t) x4(t)
syms c1 c2 c3 c4
syms f(t,x,y) g(t,x,y)
eqs = [c1*diff(x1(t),t)+c2*diff(x3(t),t)==c3*f(t,x1(t),x3(t));
 c2*diff(x1(t),t)+c1*diff(x3(t),t)==c4*g(t,x3(t),x4(t));
 x1(t)==g(t,x1(t),x3(t));
 x2(t)==f(t,x3(t),x4(t))];
vars = [x1(t), x2(t), x3(t), x4(t)];

Use `findDecoupledBlocks` to find the block structure of the system.

```matlab
[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars)
eqsBlocks =
   [1x2 double]    [2]    [4]
varsBlocks =
   [1x2 double]    [4]    [2]
```

The first block contains two equations in two variables.

```matlab
eqs(eqsBlocks{1})
an =
c1*diff(x1(t), t) + c2*diff(x3(t), t) == c3*f(t, x1(t), x3(t))
   x1(t) == g(t, x1(t), x3(t))
vars(varsBlocks{1})
an =
   [ x1(t), x3(t)]
```

After you solve this block for the variables $x_1(t)$, $x_3(t)$, you can solve the next block of equations. This block consists of one equation.

```matlab
eqs(eqsBlocks{2})
an =
```
\[c_2 \frac{d}{dt}x_1(t) + c_1 \frac{d}{dt}x_3(t) = c_4 g(t, x_3(t), x_4(t)) \]

The block involves one variable.

vars(varsBlocks{2})

ans =

\(x_4(t) \)

After you solve the equation from block 2 for the variable \(x_4(t) \), the remaining block of equations, eqs(eqsBlocks{3}), defines the remaining variable, vars(varsBlocks{3}).

eqs(eqsBlocks{3})
vars(varsBlocks{3})

ans =

\(x_2(t) = f(t, x_3(t), x_4(t)) \)

ans =

\(x_2(t) \)

Find the permutations that convert the system to a block lower triangular form.

eqsPerm = [eqsBlocks{:}]
varsPerm = [varsBlocks{:}]

eqsPerm =

\[
\begin{bmatrix}
1 & 3 & 2 & 4
\end{bmatrix}
\]

varsPerm =

\[
\begin{bmatrix}
1 & 3 & 4 & 2
\end{bmatrix}
\]

Convert the system to a block lower triangular system of equations.

eqs = eqs(eqsPerm)
vars = vars(varsPerm)

eqs =

\[
\begin{align*}
& c_1 \frac{d}{dt}x_1(t) + c_2 \frac{d}{dt}x_3(t) \equiv c_3 f(t, x_1(t), x_3(t)) \\
& x_1(t) \equiv g(t, x_1(t), x_3(t)) \\
& c_2 \frac{d}{dt}x_1(t) + c_1 \frac{d}{dt}x_3(t) \equiv c_4 g(t, x_3(t), x_4(t)) \\
& x_2(t) \equiv f(t, x_3(t), x_4(t))
\end{align*}
\]

vars =

\[
[x_1(t), x_3(t), x_4(t), x_2(t)]
\]
Find the incidence matrix of the resulting system. The incidence matrix shows that the system of permuted equations has three diagonal blocks of size 2-by-2, 1-by-1, and 1-by-1.

\[
\text{incidenceMatrix}(\text{eqs}, \text{vars})
\]

\[
\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}
\]

BLT Decomposition and Solution of Linear System

Find blocks of equations in a linear algebraic system, and then solve the system by sequentially solving each block of equations starting from the first one.

Create the following system of linear algebraic equations.

\[
\text{syms } x1 \ x2 \ x3 \ x4 \ x5 \ x6 \ c1 \ c2 \ c3
\]

\[
eqs = [c1* x1 + x3 + x5 == c1 + c2 + 1; \ldots \\
 x1 + x3 + x4 + 2*x6 == 4 + c2; \ldots \\
 x1 + 2*x3 + c3*x5 == 1 + 2*c2 + c3; \ldots \\
 x2 + x3 + x4 + x5 == 2 + c2; \ldots \\
 x1 - c2*x3 + x5 == 2 - c2^2; \ldots \\
 x1 - x3 + x4 - x6 == 1 - c2];
\]

\[
\text{vars} = [x1, x2, x3, x4, x5, x6];
\]

Use \texttt{findDecoupledBlocks} to convert the system to a lower triangular form. For this system, \texttt{findDecoupledBlocks} identifies three blocks of equations and corresponding variables.

\[
[\text{eqsBlocks}, \text{varsBlocks}] = \text{findDecoupledBlocks}(\text{eqs}, \text{vars})
\]

\[
eqsBlocks = \\
\begin{bmatrix}
1x3 & 1x2 & 4
\end{bmatrix}
\]

\[
\text{varsBlocks} = \\
\begin{bmatrix}
1x3 & 1x2 & 2
\end{bmatrix}
\]

Identify the variables in the first block. This block consists of three equations in three variables.
vars(varsBlocks{1})

ans =
[x1, x3, x5]

Solve the first block of equations for the first block of variables assigning the solutions to the corresponding variables.

[x1,x3,x5] = solve(eqs(eqsBlocks{1}), vars(varsBlocks{1}))

x1 =
1

x3 =
c2

x5 =
1

Identify the variables in the second block. This block consists of two equations in two variables.

vars(varsBlocks{2})

ans =
[x4, x6]

Solve this block of equations assigning the solutions to the corresponding variables.

[x4, x6] = solve(eqs(eqsBlocks{2}), vars(varsBlocks{2}))

x4 =
x3/3 - x1 - c2/3 + 2

x6 =
(2*c2)/3 - (2*x3)/3 + 1

Use subs to evaluate the result for the already known values of variables x1, x3, and x5.

x4 = subs(x4)
x6 = subs(x6)

x4 =
1

x6 =
Identify the variables in the third block. This block consists of one equation in one variable.

```
vars(varsBlocks{3})
ans =
x2
```

Solve this equation assigning the solution to \(x_2\).

```
x2 = solve(eqs(eqsBlocks{3}), vars(varsBlocks{3}))
```

```
x2 =
c2 - x3 - x4 - x5 + 2
```

Use `subs` to evaluate the result for the already known values of all other variables of this system.

```
x2 = subs(x2)
x2 =
0
```

Alternatively, you can rewrite this example using the `for`-loop. This approach lets you use the example for larger systems of equations.

```
syms x1 x2 x3 x4 x5 x6 c1 c2 c3

eqs = [c1*x1 + x3 + x5 == c1 + c2 + 1;...
x1 + x3 + x4 + 2*x6 == 4 + c2;...
x1 + 2*x3 + c3*x5 == 1 + 2*c2 + c3;...
x2 + x3 + x4 + x5 == 2 + c2;...
x1 - c2*x3 + x5 == 2 - c2^2
x1 - x3 + x4 - x6 == 1 - c2];

vars = [x1, x2, x3, x4, x5, x6];

[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars);

vars_sol = vars;

for i = 1:numel(eqsBlocks)
    sol = solve(eqs(eqsBlocks{i}), vars(varsBlocks{i}));
```
vars_sol_per_block = subs(vars(varsBlocks{i}), sol);
for k=1:i-1
 vars_sol_per_block = subs(vars_sol_per_block, vars(varsBlocks{k}),...
 vars_sol(varsBlocks{k}));
end
vars_sol(varsBlocks{i}) = vars_sol_per_block
end

vars_sol =
[1, x2, c2, x4, 1, x6]
vars_sol =
[1, x2, c2, 1, 1, 1]
vars_sol =
[1, 0, c2, 1, 1, 1]

Input Arguments

eqs — System of equations
vector of symbolic equations | vector of symbolic expressions

System of equations, specified as a vector of symbolic equations or expressions.

vars — Variables
vector of symbolic variables | vector of symbolic functions | vector of symbolic function calls

Variables, specified as a vector of symbolic variables, functions, or function calls, such as x(t).
Example: [x(t),y(t)] or [x(t);y(t)]

Output Arguments

eqsBlocks — Indices defining blocks of equations
cell array

Indices defining blocks of equations, returned as a cell array. Each block of indices is a row vector of double-precision integer numbers. The ith block of equations
consists of the equations \(\text{eqs(eqsBlocks}\{i\}) \) and involves only the variables in \(\text{vars(varsBlocks}\{1:i\}) \).

varsBlocks — Indices defining blocks of variables

Cell array

Indices defining blocks of variables, returned as a cell array. Each block of indices is a row vector of double-precision integer numbers. The \(i \)th block of equations consists of the equations \(\text{eqs(eqsBlocks}\{i\}) \) and involves only the variables in \(\text{vars(varsBlocks}\{1:i\}) \).

More About

Tips

- The implemented algorithm requires that for each variable in \(\text{vars} \) there must be at least one matching equation in \(\text{eqs} \) involving this variable. The same equation cannot also be matched to another variable. If the system does not satisfy this condition, then \(\text{findDecoupledBlocks} \) throws an error. In particular, \(\text{findDecoupledBlocks} \) requires that \(\text{length(eqs)} = \text{length(vars)} \).

- Applying the permutations \(e = [\text{eqsBlocks}\{:\}] \) to the vector \(\text{eqs} \) and \(v = [\text{varsBlocks}\{:\}] \) to the vector \(\text{vars} \) produces an incidence matrix \(\text{incidenceMatrix(eqs(e), vars(v))} \) that has a block lower triangular sparsity pattern.

See Also

daeFunction | decic | diag | incidenceMatrix | isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies | tril | triu

Introduced in R2014b
finverse

Functional inverse

Syntax

\[
g = \text{finverse}(f) \\
g = \text{finverse}(f,\text{var})
\]

Description

\[
g = \text{finverse}(f)
\]

returns the inverse of function \(f \). Here \(f \) is an expression or function of one symbolic variable, for example, \(x \). Then \(g \) is an expression or function, such that \(f(g(x)) = x \). That is, \(\text{finverse}(f) \) returns \(f^{-1} \), provided \(f^{-1} \) exists.

\[
g = \text{finverse}(f,\text{var})
\]

uses the symbolic variable \(\text{var} \) as the independent variable. Then \(g \) is an expression or function, such that \(f(g(\text{var})) = \text{var} \). Use this form when \(f \) contains more than one symbolic variable.

Input Arguments

\(f \)

Symbolic expression or function.

\(\text{var} \)

Symbolic variable.

Output Arguments

\(g \)

Symbolic expression or function.
Examples

Compute functional inverse for this trigonometric function:

```matlab
syms x
f(x) = 1/tan(x);
g = finverse(f)
g(x) = atan(1/x)
```

Compute functional inverse for this exponent function:

```matlab
syms u v
finverse(exp(u - 2*v), u)
```

```
ans =
2*v + log(u)
```

More About

Tips

- `finverse` does not issue a warning when the inverse is not unique.

See Also

`compose` | `syms`

Introduced before R2006a
fix

Round toward zero

Syntax

`fix(X)`

Description

`fix(X)` is the matrix of the integer parts of `X`.

`fix(X) = floor(X)` if `X` is positive and `ceil(X)` if `X` is negative.

See Also

`round` | `ceil` | `floor` | `frac`

Introduced before R2006a
floor

Round symbolic matrix toward negative infinity

Syntax

floor(X)

Description

floor(X) is the matrix of the greatest integers less than or equal to X.

Examples

x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[-2, -3, -3, -2, -1/2]

See Also

round | ceil | fix | frac

Introduced before R2006a
formula
Mathematical expression defining symbolic function

Syntax
formula(f)

Description
formula(f) returns the mathematical expression that defines f.

Input Arguments
f
Symbolic function.

Examples
Create this symbolic function:

```
syms x y
f(x, y) = x + y;
```

Use formula to find the mathematical expression that defines f:

```
formula(f)
```

```
ans =
x + y
```

Create this symbolic function:

```
syms f(x, y)
```

If you do not specify a mathematical expression for the symbolic function, formula returns the symbolic function definition as follows:
formula(f)
ans =
f(x, y)

See Also
argnames | sym | syms | symvar

Introduced in R2012a
fortran

Fortran representation of symbolic expression

Syntax

`fortran(S)`

`fortran(S, 'file', fileName)`

Description

`fortran(S)` returns the Fortran code equivalent to the expression `S`.

`fortran(S, 'file', fileName)` writes an “optimized” Fortran code fragment that evaluates the symbolic expression `S` to the file named `fileName`. “Optimized” means intermediate variables are automatically generated in order to simplify the code. MATLAB generates intermediate variables as a lowercase letter `t` followed by an automatically generated number, for example `t32`.

Examples

The statements

```matlab
syms x
f = taylor(log(1+x));
fortran(f)
```

return

```matlab
ans = t0 = x-x**2*(1.000/2.000)+x**3*(1.000/3.000)-x**4*(1.000/4.000)+x*
&*5*(1.000/5.000)
```

The statements

```matlab
H = sym(hilb(3));
fortran(H)
```

return
ans =
 H(1,1) = 1.0D0
 H(1,2) = 1.0D0/2.0D0
 H(1,3) = 1.0D0/3.0D0
 H(2,1) = 1.0D0/2.0D0
 H(2,2) = 1.0D0/3.0D0
 H(2,3) = 1.0D0/4.0D0
 H(3,1) = 1.0D0/3.0D0
 H(3,2) = 1.0D0/4.0D0
 H(3,3) = 1.0D0/5.0D0

The statements

 syms x
 z = exp(-exp(-x));
 fortran(diff(z,3),'file','fortrantest')

return a file named fortantest containing the following:

 t7 = exp(-x)
 t8 = exp(-t7)
 t0 = t8*exp(x*(-2))*(x*(-3))+t8*exp(x*(-3))+t7*t8

See Also
ccode | latex | matlabFunction | pretty

Introduced before R2006a
fourier

Fourier transform

Syntax

fourier(f,trans_var,eval_point)

Description

fourier(f,trans_var,eval_point) computes the Fourier transform of f with respect to the transformation variable trans_var at the point eval_point.

Examples

Fourier Transform of Symbolic Expression

Compute the Fourier transform of this expression with respect to the variable x at the evaluation point y.

syms x y
f = exp(-x^2);
fourier(f, x, y)

ans =
pi^(1/2)*exp(-y^2/4)

Default Transformation Variable and Evaluation Point

Compute the Fourier transform of this expression calling the fourier function with one argument. If you do not specify the transformation variable, then fourier uses the variable x.

syms x t y
f = exp(-x^2)*exp(-t^2);
fourier(f, y)
If you also do not specify the evaluation point, `fourier` uses the variable \(w \).

```matlab
fourier(f)
ans =
pi^(1/2)*exp(-t^2)*exp(-w^2/4)
```

Fourier Transforms Involving Dirac and Heaviside Functions

Compute the following Fourier transforms that involve the Dirac and Heaviside functions.

```matlab
syms t w
fourier(t^3, t, w)
ans =
-pi*dirac(3, w)*2i
```

```matlab
syms t0
fourier(heaviside(t - t0), t, w)
ans =
exp(-t0*w*1i)*(pi*dirac(w) - 1i/w)
```

Fourier Transform Parameters

Specify parameters of the Fourier transform.

Compute the Fourier transform of this expression using the default values \(c = 1, s = -1 \) of the Fourier parameters. (For details, see “Fourier Transform” on page 4-518.)

```matlab
syms t w
pretty(fourier(t*exp(-t^2), t, w))
```

```
\[
\frac{w \sqrt{\pi} \exp\left(-\frac{w^2}{4}\right)}{2}
\]
```
Change the values of the Fourier parameters to $c = 1, s = 1$ by using `sympref`. Then compute the Fourier transform of the same expression again.

```matlab
sympref('FourierParameters', [1, 1]);
pretty(fourier(t*exp(-t^2), t, w))
```

\[
\frac{w \sqrt{\pi} \exp\left(-\frac{w}{4}\right)}{2}
\]

Change the values of the Fourier parameters to $c = 1/2\pi, s = 1$ by using `sympref`. Compute the Fourier transform using these values.

```matlab
sympref('FourierParameters', [1/(2*sym(pi)), 1]);
pretty(fourier(t*exp(-t^2), t, w))
```

\[
\frac{w \exp\left(-\frac{w}{4}\right)}{4 \sqrt{\pi}}
\]

The preferences set by `sympref` persist through your current and future MATLAB sessions. To restore the default values of c and s, set `sympref` to 'default'.

```matlab
sympref('FourierParameters','default');
```

Fourier Transform of Function and Its Derivative

The Fourier transform of a function is related to the Fourier transform of its derivative.

```matlab
syms f(t) w
fourier(diff(f(t), t), t, w)
```

\[
\text{ans} = \frac{w*\text{fourier}(f(t), t, w)*1i}{2}
\]
Fourier Transform of Matrix

Find the Fourier transform of this matrix. Use matrices of the same size to specify the transformation variable and evaluation point.

```matlab
syms a b c d w x y z
fourier([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])
```

```plaintext
ans =
[ 2*pi*exp(x)*dirac(a), 2*pi*dirac(b)]
[ -pi*(dirac(c - 1) - dirac(c + 1))*1i, -2*pi*dirac(1, d)]
```

When the input arguments are nonscalars, `fourier` acts on them element-wise. If `fourier` is called with both scalar and nonscalar arguments, then `fourier` expands the scalar arguments into arrays of the same size as the nonscalar arguments with all elements of the array equal to the scalar.

```matlab
syms w x y z a b c d
fourier(x,[x, w; y, z],[a, b; c, d])
```

```plaintext
ans =
[ pi*dirac(1, a)*2i, 2*pi*x*dirac(b)]
[ 2*pi*x*dirac(c), 2*pi*x*dirac(d)]
```

Note that nonscalar input arguments must have the same size.

Fourier Transform of Vector of Symbolic Functions

When the first argument is a symbolic function, the second argument must be a scalar.

```matlab
syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
fourier([f1, f2],x,[a, b])
```

```plaintext
ans =
[ fourier(exp(x), x, a), pi*dirac(1, b)*2i]
```

If Fourier Transform Cannot be Found

If `fourier` cannot find an explicit representation of the transform, it returns an unevaluated call.
syms f(t) w
F = fourier(f, t, w)

F =
fourier(f(t), t, w)

ifourier returns the original expression.

ifourier(F, w, t)
ans =
f(t)

Input Arguments

f — Input function
symbolic expression | symbolic function | vector of symbolic expressions or functions | matrix of symbolic expressions or functions

Input function, specified as a symbolic expression or function or a vector or matrix of symbolic expressions or functions.

trans_var — Transformation variable
x (default) | symbolic variable

Transformation variable, specified as a symbolic variable. This variable is often called the “time variable” or the “space variable”.

If you do not specify the transformation variable, fourier uses the variable x by default. If f does not contain x, then the default variable is determined by symvar.

eval_point — Evaluation point
w (default) | v | symbolic variable | symbolic expression | vector of symbolic variables or expressions | matrix of symbolic variables or expressions

Evaluation point, specified as a symbolic variable, expression, or vector or matrix of symbolic variables or expressions. This is often called the “frequency variable”.

If you do not specify the evaluation point, fourier uses the variable w by default. If w is the transformation variable of f, then the default evaluation point is the variable v.
More About

Fourier Transform

The Fourier transform of the expression $f = f(x)$ with respect to the variable x at the point w is defined as follows:

$$F(w) = c \int_{-\infty}^{\infty} f(x) e^{iswx} dx.$$

Here, c and s are parameters of the Fourier transform. The `fourier` function uses $c = 1$, $s = -1$.

Tips

- If you call `fourier` with two arguments, it assumes that the second argument is the evaluation point `eval_point`.
- If f is a matrix, `fourier` acts element-wise on all components of the matrix.
- If `eval_point` is a matrix, `fourier` acts element-wise on all components of the matrix.
- To compute the inverse Fourier transform, use `ifourier`.
- “Compute Fourier and Inverse Fourier Transforms” on page 2-193

References

See Also

`ifourier` | `ilaplace` | `iztrans` | `laplace` | `sympref` | `ztrans`

Introduced before R2006a
frac

Symbolic matrix element-wise fractional parts

Syntax

frac(X)

Description

frac(X) is the matrix of the fractional parts of the elements: frac(X) = X - fix(X).

Examples

x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[-2, -3, -3, -2, -1/2]

See Also

round | ceil | floor | fix

Introduced before R2006a
fresnelc

Fresnel cosine integral function

Syntax

fresnelc(z)

Description

fresnelc(z) returns the Fresnel cosine integral of z.

Examples

Fresnel Cosine Integral Function for Numeric and Symbolic Input

Arguments

Find the Fresnel cosine integral function for these numbers. Since these are not symbolic objects, you receive floating-point results.

fresnelc([-2 0.001 1.22+0.31i])

ans =
 -0.4883 + 0.0000i 0.0010 + 0.0000i 0.8617 - 0.2524i

Find the Fresnel cosine integral function symbolically by converting the numbers to symbolic objects:

y = fresnelc(sym([-2 0.001 1.22+0.31i]))

y =
 [-fresnelc(2), fresnelc(1/1000), fresnelc(61/50 + 31i/100)]

Use vpa to approximate results:

vpa(y)

ans =
 [-0.48825340607534075450022350335726, 0.00099999999999975325988997279422003,...
 0.86166573430841730950055370401908 - 0.252365402913861501676583494939721]
Fresnel Cosine Integral Function for Special Values

Find the Fresnel cosine integral function for special values:

\[
fresnelc([0 \ \text{Inf} \ -\text{Inf} \ i*\text{Inf} \ -i*\text{Inf}])
\]

\[
\text{ans} = \\
0.0000 + 0.0000i \quad 0.5000 + 0.0000i \quad -0.5000 + 0.0000i \cdots \\
0.0000 + 0.5000i \quad 0.0000 - 0.5000i
\]

Fresnel Cosine Integral for Symbolic Functions

Find the Fresnel cosine integral for the function \(\exp(x) + 2x \):

\[
syms \ f(x) \\
f = \exp(x)+2*x; \\
fresnelc(f)
\]

\[
\text{ans} = \\
fresnelc(2*x + \exp(x))
\]

Fresnel Cosine Integral for Symbolic Vectors and Arrays

Find the Fresnel cosine integral for elements of vector \(V \) and matrix \(M \):

\[
syms \ x \\
V = [\sin(x) \ 2i \ -7]; \\
M = [0 \ 2; \ i \ \exp(x)]; \\
fresnelc(V) \\
fresnelc(M)
\]

\[
\text{ans} = \\
[\ \text{fresnelc(sin(x))}, \ \text{fresnelc(2i)}, \ -\text{fresnelc(7)}] \\
\text{ans} = \\
[0, \ \text{fresnelc(2)}] \\
[\ \text{fresnelc(1i)}, \ \text{fresnelc(exp(x))}]
\]

Plot Fresnel Cosine Integral Function

Plot the Fresnel cosine integral function from \(x = -5 \) to \(x = 5 \).

\[
syms \ x \\
\text{ezplot(fresnelc(x),[-5,5])} \\
\text{grid on}
\]
Differentiate and Find Limits of Fresnel Cosine Integral

The functions `diff` and `limit` handle expressions containing `fresnelc`.

Find the third derivative of the Fresnel cosine integral function:

```syms x
diff(fresnelc(x), x, 3)
```

```
ans =
    - pi*sin((pi*x^2)/2) - x^2*pi^2*cos((pi*x^2)/2)
```

Find the limit of the Fresnel cosine integral function as \(x \) tends to infinity:
syms x
limit(fresnelc(x),Inf)
ans =
1/2

Taylor Series Expansion of Fresnel Cosine Integral

Use taylor to expand the Fresnel cosine integral in terms of the Taylor series:

syms x
taylor(fresnelc(x))
ans =
x - (x^5*pi^2)/40

Simplify Expressions Containing fresnelc

Use simplify to simplify expressions:

syms x
simplify(3*fresnelc(x)+2*fresnelc(-x))
ans =
fresnelc(x)

Input Arguments

z — Upper limit on Fresnel cosine integral
numeric value | vector | matrix | multidimensional array | symbolic variable | symbolic expression | symbolic vector | symbolic matrix | symbolic function

Upper limit on the Fresnel cosine integral, specified as a numeric value, vector, matrix, or as a multidimensional array, or a symbolic variable, expression, vector, matrix, or function.

More About

Fresnel Cosine Integral

The Fresnel cosine integral of \(z \) is
\[\text{fresnelc}(z) = \int_0^z \cos \left(\frac{\pi t^2}{2} \right) dt. \]

Algorithms

\text{fresnelc} is analytic throughout the complex plane. It satisfies \(\text{fresnelc}(-z) = -\text{fresnelc}(z) \), \(\text{conj}(\text{fresnelc}(z)) = \text{fresnelc}(\text{conj}(z)) \), and \(\text{fresnelc}(i^* z) = i^* \text{fresnelc}(z) \) for all complex values of \(z \).

\text{fresnelc} returns special values for \(z = 0, \pm \infty \), and \(z = \pm i \infty \) which are 0, \pm 5, and \pm 0.5i. \text{fresnelc}(z)\) returns symbolic function calls for all other symbolic values of \(z \).

See Also

erf | fresnels

Introduced in R2014a
fresnels

Fresnel sine integral function

Syntax

fresnels(z)

Description

fresnels(z) returns the Fresnel sine integral of z.

Examples

Fresnel Sine Integral Function for Numeric and Symbolic Arguments

Find the Fresnel sine integral function for these numbers. Since these are not symbolic objects, you receive floating-point results.

fresnels([-2 0.001 1.22+0.31i])

ans =
-0.3434 + 0.0000i 0.0000 + 0.0000i 0.7697 + 0.2945i

Find the Fresnel sine integral function symbolically by converting the numbers to symbolic objects:

y = fresnels(sym([-2 0.001 1.22+0.31i]))

y =
[-fresnels(2), fresnels(1/1000), fresnels(61/50 + 31i/100)]

Use vpa to approximate the results:

vpa(y)

ans =
[-0.34341567836369824219530081595807, 0.000000000052359877559820659249174920261227,...
 0.76969209233306959998384249252902 + 0.294495303442854330301672564176371]
Fresnel Sine Integral for Special Values

Find the Fresnel sine integral function for special values:

\[
\text{fresnels}([0 \text{ Inf} -\text{Inf} i\text{Inf} -i\text{Inf}])
\]

\[
\text{ans} =
\begin{bmatrix}
0.0000 + 0.0000i & 0.5000 + 0.0000i & -0.5000 + 0.0000i & 0.0000 - 0.5000i \\
0.0000 + 0.5000i & & & \\
\end{bmatrix}
\]

Fresnel Sine Integral for Symbolic Functions

Find the Fresnel sine integral for the function \(\exp(x) + 2x \):

\[
syms \ x \\
f = \text{symfun}(\exp(x)+2x,x); \\
\text{fresnels}(f)
\]

\[
\text{ans}(x) = \text{fresnels}(2x + \exp(x))
\]

Fresnel Sine Integral for Symbolic Vectors and Arrays

Find the Fresnel sine integral for elements of vector \(V \) and matrix \(M \):

\[
syms \ x \\
V = [\sin(x) 2i -7]; \\
M = [0 2; i \exp(x)]; \\
\text{fresnels}(V) \\
\text{fresnels}(M)
\]

\[
\text{ans} =
\begin{bmatrix}
\text{fresnels}(\sin(x)), \text{fresnels}(2i), -\text{fresnels}(7)
\end{bmatrix}
\]

\[
\text{ans} =
\begin{bmatrix}
0, \text{fresnels}(2)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{fresnels}(1i), \text{fresnels}(\exp(x))
\end{bmatrix}
\]

Plot Fresnel Sine Integral Function

Plot the Fresnel sine integral function from \(x = -5 \) to \(x = 5 \).

\[
syms \ x \\
\text{ezplot(fresnels(x),[-5,5])} \\
\text{grid on}
\]
Differentiate and Find Limits of Fresnel Sine Integral

The functions `diff` and `limit` handle expressions containing `fresnels`.

Find the fourth derivative of the Fresnel sine integral function:

```plaintext
syms x
diff(fresnels(x),x,4)
```

```plaintext
ans =
- 3*x*pi^2*sin((pi*x^2)/2) - x^3*pi^3*cos((pi*x^2)/2)
```

Find the limit of the Fresnel sine integral function as `x` tends to infinity:
syms x
limit(fresnels(x),Inf)

ans = 1/2

Taylor Series Expansion of Fresnel Sine Integral

Use `taylor` to expand the Fresnel sine integral in terms of the Taylor series:

syms x
taylor(fresnels(x))

ans = (pi*x^3)/6

Simplify Expressions Containing fresnels

Use `simplify` to simplify expressions:

syms x
simplify(3*fresnels(x)+2*fresnels(-x))

ans = fresnels(x)

Input Arguments

\[z \text{ — Upper limit on the Fresnel sine integral} \]

numeric value | vector | matrix | multidimensional array | symbolic variable | symbolic expression | symbolic vector | symbolic matrix | symbolic function

Upper limit on the Fresnel sine integral, specified as a numeric value, vector, matrix, or a multidimensional array or as a symbolic variable, expression, vector, matrix, or function.

More About

Fresnel Sine Integral

The Fresnel sine integral of \(z \) is
fresnels(z) = \int_{0}^{z} \sin\left(\frac{\pi t^2}{2}\right)dt

Algorithms

The fresnels(z) function is analytic throughout the complex plane. It satisfies fresnels(-z) = -fresnels(z), conj(fresnels(z)) = fresnels(conj(z)), and fresnels(i*z) = -i*fresnels(z) for all complex values of z.

fresnels(z) returns special values for z = 0, z = ±∞, and z = ±i∞ which are 0, ±5, and ±0.5i. fresnels(z) returns symbolic function calls for all other symbolic values of z.

See Also
erf | fresnelc

Introduced in R2014a
functionalDerivative

Functional derivative

Syntax

\[D = \text{functionalDerivative}(f, y) \]

Description

\[D = \text{functionalDerivative}(f, y) \]

returns the “Functional Derivative” on page 4-534 of the functional

\[F \int f(x, y(x), y'(x)) \, dx \]

with respect to the function \(y = y(x) \), where \(x \) represents one or more independent variables. If \(y \) is a vector of symbolic functions, `functionalDerivative` returns a vector of functional derivatives with respect to the functions in \(y \), where all functions in \(y \) must depend on the same independent variables.

Examples

Find Functional Derivative

Find the functional derivative of the function given by \(f(y) = y(x) \sin(y(x)) \) with respect to the function \(y \).

```matlab
syms y(x)
f = y*\sin(y);
D = functionalDerivative(f, y)

D(x) = \sin(y(x)) + \cos(y(x))*y(x)
```
Find Functional Derivative of Vector of Functionals

Find the functional derivative of the function given by $H(u,v) = u \frac{dv}{dx} + v \frac{d^2u}{dx^2}$ with

respect to the functions u and v.

```
syms u(x) v(x)
H = u^2*diff(v,x)+v*diff(u,x,x);
D = functionalDerivative(H,[u v])
```

```
D(x) =
2*u(x)*diff(v(x), x) + diff(v(x), x, x)
diff(u(x), x, x) - 2*u(x)*diff(u(x), x)
```

`functionalDerivative` returns a vector of symbolic functions containing the
functional derivatives of H with respect to u and v, respectively.

Find Euler-Lagrange Equation for Spring

First find the Lagrangian for a spring with mass m and spring constant k, and then
derive the Euler-Lagrange equation. The Lagrangian is the difference of kinetic energy T
and potential energy V which are functions of the displacement $x(t)$.

```
syms m k x(t)
T = sym(1)/2*m*diff(x,t)^2;
V = sym(1)/2*k*x^2;
L = T - V
```

```
L(t) =
(m*diff(x(t), t)^2)/2 - (k*x(t)^2)/2
```

Find the Euler-Lagrange equation by finding the functional derivative of L with respect
to x, and equate it to 0.

```
eqn = functionalDerivative(L,x) == 0
```

```
eqn(t) =
- m*diff(x(t), t, t) - k*x(t) == 0
```

`diff(x(t), t, t)` is the acceleration. The equation `eqn` represents the expected
differential equation that describes spring motion.
Solve `eqn` using `dsolve`. Obtain the expected form of the solution by assuming mass `m` and spring constant `k` are positive.

```plaintext
assume(m,'positive')
assume(k,'positive')
xSol = dsolve(eqn,x(0) == 0)
```

```plaintext
xSol =
C5*sin((k^(1/2)*t)/m^(1/2))
```

Clear assumptions for further calculations.

```plaintext
assume([k m],'clear')
```

Find Differential Equation for Brachistochrone Problem

The Brachistochrone problem is to find the quickest path of descent under gravity. The time for a body to move along a curve `y(x)` under gravity is given by

\[
f = \sqrt{\frac{1 + \left(\frac{dy}{dx}\right)^2}{2gy}},
\]

where `g` is the acceleration due to gravity.

Find the quickest path by minimizing `f` with respect to the path `y`. The condition for a minimum is

\[
\frac{\delta f}{\delta y} = 0.
\]

Compute this condition to obtain the differential equation that describes the Brachistochrone problem. Use `simplify` to simplify the solution to its expected form.

```plaintext
syms g y(x)
assume(g,'positive')
f = sqrt((1+diff(y)^2)/(2*g*y));
eqn = functionalDerivative(f,y) == 0;
eqn = simplify(eqn)
eqn(x) =
diff(y(x), x)^2 + 2*y(x)*diff(y(x), x, x) == -1
```
This equation is the standard differential equation for the Brachistochrone problem.

Find Minimal Surface in 3-D Space

If the function \(u(x,y) \) describes a surface in 3-D space, then the surface area is found by the functional

\[
F(u) = \iint f(x,y,u,u_x,u_y) \, dx \, dy = \iint \sqrt{1 + u_x^2 + u_y^2} \, dx \, dy,
\]

where \(u_x \) and \(u_y \) are the partial derivatives of \(u \) with respect to \(x \) and \(y \).

Find the equation that describes the minimal surface for a 3-D surface described by the function \(u(x,y) \) by finding the functional derivative of \(f \) with respect to \(u \).

```matlab
syms u(x,y)
f = sqrt(1 + diff(u,x)^2 + diff(u,y)^2);
D = functionalDerivative(f,u)
```

\[
D(x, y) = -(\frac{diff(u(x, y), y)^2*diff(u(x, y), x, x) + diff(u(x, y), x)^2*diff(u(x, y), y, y) - 2*diff(u(x, y), x)*diff(u(x, y), y)*diff(u(x, y), x, y) + diff(u(x, y), x, x) + diff(u(x, y), y, y))}{diff(u(x, y), x)^2 + diff(u(x, y), y)^2 + 1}^{3/2})
\]

The solutions to this equation \(D \) describe minimal surfaces in 3-D space such as soap bubbles.

Input Arguments

- **f** — Expression to find functional derivative of
type: symbolic variable | symbolic function | symbolic expression

Expression to find functional derivative of, specified as a symbolic variable, function, or expression. The argument \(f \) represents the density of the functional.

- **y** — Differentiation function

type: symbolic function | vector of symbolic functions | matrix of symbolic functions | multidimensional array of symbolic functions
Differentiation function, specified as a symbolic function or a vector, matrix, or multidimensional array of symbolic functions. The argument \(y \) can be a function of one or more independent variables. If \(y \) is a vector of symbolic functions, \texttt{functionalDerivative} returns a vector of functional derivatives with respect to the functions in \(y \), where all functions in \(y \) must depend on the same independent variables.

Output Arguments

\(D \) — Functional derivative
symbolic function | vector of symbolic functions

Functional derivative, returned as a symbolic function or a vector of symbolic functions. If input \(y \) is a vector, then \(D \) is a vector.

More About

Functional Derivative

Consider functionals

\[
F(y) = \int_{\Omega} f(x, y(x), y'(x), y''(x), \ldots) \, dx,
\]

where \(\Omega \) is a region in \(x \)-space.

For a small change in the value of \(y \), \(\delta y \), the change in the functional \(F \) is

\[
\frac{\delta F}{\delta y} = \left. \frac{d}{d\varepsilon} \right|_{\varepsilon=0} F(y + \varepsilon \delta y) = \int_{\Omega} \frac{\delta f(x)}{\delta y} \delta y(x) \, dx + \text{boundary terms.}
\]

The expression \(\frac{\delta f(x)}{\delta y} \) is the functional derivative of \(f \) with respect to \(y \).

See Also

diff | dsolve | int
Introduced in R2015a
funm

General matrix function

Syntax

F = funm(A,f)

Description

F = funm(A,f) computes the function \(f(A) \) for the square matrix A. For details, see “Matrix Function” on page 4-540.

Examples

Matrix Cube Root

Find matrix B, such that \(B^3 = A \), where A is a 3-by-3 identity matrix.

To solve \(B^3 = A \), compute the cube root of the matrix A using the \texttt{funm} function. Create the symbolic function \(f(x) = x^{(1/3)} \) and use it as the second argument for \texttt{funm}. The cube root of an identity matrix is the identity matrix itself.

\[
A = \text{sym(eye(3))}
\]

\[
syms f(x)
f(x) = x^{(1/3)};
\]

\[
B = \text{funm(A,f)}
\]

\[
A = \\
[1, 0, 0] \\
[0, 1, 0] \\
[0, 0, 1] \\
\]

\[
B = \\
[1, 0, 0] \\
\]
Replace one of the 0 elements of matrix A with 1 and compute the matrix cube root again.

\[
A(1,2) = 1 \\
B = \text{funm}(A,f)
\]

\[
A = \\
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
B = \\
\begin{bmatrix}
1 & 1/3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Now, compute the cube root of the upper triangular matrix.

\[
A(1:2,2:3) = 1 \\
B = \text{funm}(A,f)
\]

\[
A = \\
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
B = \\
\begin{bmatrix}
1 & 1/3 & 2/9 \\
0 & 1 & 1/3 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Verify that \(B^3 = A\).

\[
B^3 \\
\text{ans} = \\
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Matrix Lambert W Function

Find the matrix Lambert W function.
First, create a 3-by-3 matrix \(A \) using variable-precision arithmetic with five digit accuracy. In this example, using variable-precision arithmetic instead of exact symbolic numbers lets you speed up computations and decrease memory usage. Using only five digits helps the result to fit on screen.

```matlab
savedefault = digits(5)
A = vpa(magic(3))
```

Create the symbolic function \(f(x) = \text{lambertw}(x) \).

```matlab
syms f(x)
f(x) = lambertw(x);
```

To find the Lambert W function (\(W_0 \) branch) in a matrix sense, call `funm` using \(f(x) \) as its second argument.

```matlab
W0 = funm(A,f)
```

Verify that this result is a solution of the matrix equation \(A = W_0 \cdot e^{W_0} \) within the specified accuracy.

```matlab
W0*expm(W0)
```

Now, create the symbolic function \(f(x) \) representing the branch \(W_{-1} \) of the Lambert W function.

```matlab
f(x) = lambertw(-1,x);
```

Find the \(W_{-1} \) branch for the matrix \(A \).

```matlab
Wm1 = funm(A,f)
```

```matlab
[ 0.40925 - 4.7154i, 0.54204 + 0.5947i, 0.13764 - 0.80906i]
[ 0.38028 + 0.033194i, 0.65189 - 3.8732i, 0.056763 - 1.0898i]
[ 0.2994 - 0.24756i, - 0.105 - 1.6513i, 0.89453 - 3.0309i]
```
Verify that this result is the solution of the matrix equation $A = Wm1 \cdot e^{Wm1}$ within the specified accuracy.

$Wm1 \cdot \text{expm}(Wm1)$

\[
\begin{array}{ccc}
8.0 + 5.6417e-12i & 1.0 - 1.5064e-12i & 6.0 + 8.2423e-13i \\
3.0 - 3.4106e-13i & 5.0 - 2.558e-13i & 7.0 - 7.3896e-13i \\
4.0 + 5.6843e-14i & 9.0 - 9.3081e-13i & 2.0 - 1.1369e-13i \\
\end{array}
\]

Matrix Exponential, Logarithm, and Square Root

You can use `funm` with appropriate second arguments to find matrix exponential, logarithm, and square root. However, the more efficient approach is to use the functions `expm`, `logm`, and `sqrtm` for this task.

Create this square matrix and find its exponential, logarithm, and square root.

```matlab
syms x
A = [1 -1; 0 x]
expA = expm(A)
logA = logm(A)
sqrtA = sqrtm(A)
```

$A = $

\[
\begin{array}{cc}
1, & -1 \\
0, & x \\
\end{array}
\]

$\text{expA} = $

\[
\begin{array}{cc}
\exp(1), & (\exp(1) - \exp(x))/(x - 1) \\
0, & \exp(x) \\
\end{array}
\]

$logA = $

\[
\begin{array}{cc}
0, & -\log(x)/(x - 1) \\
0, & \log(x) \\
\end{array}
\]

$sqrtA = $

\[
\begin{array}{cc}
1, & 1/(x - 1) - x^{(1/2)}/(x - 1) \\
0, & x^{(1/2)} \\
\end{array}
\]

Find the matrix exponential, logarithm, and square root of A using `funm`. Use the symbolic expressions $\exp(x)$, $\log(x)$, and \sqrt{x} as the second argument of `funm`. The results are identical.
expA = funm(A, exp(x))
logA = funm(A, log(x))
sqrtA = funm(A, sqrt(x))

expA =
[exp(1), exp(1)/(x - 1) - exp(x)/(x - 1)]
[0, exp(x)]

logA =
[0, -log(x)/(x - 1)]
[0, log(x)]

sqrtA =
[1, 1/(x - 1) - x^(1/2)/(x - 1)]
[0, x^(1/2)]

Input Arguments

A — Input matrix
square matrix

Input matrix, specified as a square symbolic or numeric matrix.

f — Function
symbolic function | symbolic expression

Function, specified as a symbolic function or expression.

Output Arguments

F — Resulting matrix
symbolic matrix

Resulting function, returned as a symbolic matrix.

More About

Matrix Function

Matrix function is a scalar function that maps one matrix to another.
Suppose, $f(x)$, where x is a scalar, has a Taylor series expansion. Then the matrix function $f(A)$, where A is a matrix, is defined by the Taylor series of $f(A)$, with addition and multiplication performed in the matrix sense.

If A can be represented as $A = P \cdot D \cdot P^{-1}$, where D is a diagonal matrix, such that

$$D = \begin{pmatrix} d_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_n \end{pmatrix}$$

then the matrix function $f(A)$ can be computed as follows:

$$f(A) = P \cdot \begin{pmatrix} f(d_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f(d_n) \end{pmatrix} \cdot P^{-1}$$

Non-diagonalizable matrices can be represented as $A = P \cdot J \cdot P^{-1}$, where J is a Jordan form of the matrix A. Then, the matrix function $f(A)$ can be computed by using the following definition on each Jordan block:

$$f \left(\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & \cdots & \lambda \end{pmatrix} \right) = \begin{pmatrix} f(\lambda) & f'(\lambda) & f''(\lambda) & \cdots & f^{(n-1)}(\lambda) \\ 0! & 1! & 2! & \cdots & (n-1)! \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f''(\lambda) & f'('\lambda) & \cdots & \cdots & \cdots \\ 2! & 1! & \cdots & \cdots & \cdots \\ f(\lambda) & 0! \\ 0! & 1! \end{pmatrix}$$

Tips

- For compatibility with the MATLAB `funm` function, `funm` accepts the following arguments:
 - Function handles such as `@exp` and `@sin`, as its second input argument.
• The `options` input argument, such as `funm(A,f,options)`.
• Additional input arguments of the function `f`, such as `funm(A,f,options,p1,p2,...)`
• The `exitflag` output argument, such as `[F,exitflag] = funm(A,f)`. Here, `exitflag` is 1 only if the `funm` function call errors, for example, if it encounters a division by zero. Otherwise, `exitflag` is 0.

For more details and a list of all acceptable function handles, see the MATLAB `funm` function.

• If the input matrix `A` is numeric (not a symbolic object) and the second argument `f` is a function handle, then the `funm` call invokes the MATLAB `funm` function.

See Also
edg | expm | jordan | logm | sqrtm

Introduced in R2014b
funtool

Function calculator

Syntax

funtool

Description

funtool is a visual function calculator that manipulates and displays functions of one variable. At the click of a button, for example, funtool draws a graph representing the sum, product, difference, or ratio of two functions that you specify. funtool includes a function memory that allows you to store functions for later retrieval.

At startup, funtool displays graphs of a pair of functions, \(f(x) = x \) and \(g(x) = 1 \). The graphs plot the functions over the domain \([-2\pi, 2\pi]\). funtool also displays a control panel that lets you save, retrieve, redefine, combine, and transform \(f \) and \(g \).
Text Fields

The top of the control panel contains a group of editable text fields.

\[f = \] Displays a symbolic expression representing \(f \). Edit this field to redefine \(f \).

\[g = \] Displays a symbolic expression representing \(g \). Edit this field to redefine \(g \).

\[x = \] Displays the domain used to plot \(f \) and \(g \). Edit this field to specify a different domain.
a= Displays a constant factor used to modify \(f \) (see button descriptions in the next section). Edit this field to change the value of the constant factor.

funtool redraws \(f \) and \(g \) to reflect any changes you make to the contents of the control panel's text fields.

Control Buttons

The bottom part of the control panel contains an array of buttons that transform \(f \) and perform other operations.

The first row of control buttons replaces \(f \) with various transformations of \(f \).

- \(df/dx \) Derivative of \(f \)
- \(\text{int } f \) Integral of \(f \)
- \(\text{simplify } f \) Simplified form of \(f \), if possible
- \(\text{num } f \) Numerator of \(f \)
- \(\text{den } f \) Denominator of \(f \)
- \(1/f \) Reciprocal of \(f \)
- \(\text{finv } f \) Inverse of \(f \)

The operators \(\text{int } f \) and \(\text{finv } f \) can fail if the corresponding symbolic expressions do not exist in closed form.

The second row of buttons translates and scales \(f \) and the domain of \(f \) by a constant factor. To specify the factor, enter its value in the field labeled \(a= \) on the calculator control panel. The operations are

- \(f+a \) Replaces \(f(x) \) by \(f(x) + a \).
- \(f-a \) Replaces \(f(x) \) by \(f(x) - a \).
- \(f*a \) Replaces \(f(x) \) by \(f(x) \times a \).
- \(f/a \) Replaces \(f(x) \) by \(f(x) / a \).
- \(f^a \) Replaces \(f(x) \) by \(f(x) ^ a \).
- \(f(x+a) \) Replaces \(f(x) \) by \(f(x + a) \).
- \(f(x*a) \) Replaces \(f(x) \) by \(f(x * a) \).
The first four buttons of the third row replace \(f \) with a combination of \(f \) and \(g \).

\[
\begin{align*}
\text{f+g} & \quad \text{Replaces} \ f(x) \ \text{by} \ f(x) + g(x). \\
\text{f-g} & \quad \text{Replaces} \ f(x) \ \text{by} \ f(x) - g(x). \\
\text{f*g} & \quad \text{Replaces} \ f(x) \ \text{by} \ f(x) \ * \ g(x). \\
\text{f/g} & \quad \text{Replaces} \ f(x) \ \text{by} \ f(x) \ / \ g(x).
\end{align*}
\]

The remaining buttons on the third row interchange \(f \) and \(g \).

\[
\begin{align*}
\text{g=f} & \quad \text{Replaces} \ g \ \text{with} \ f. \\
\text{swap} & \quad \text{Replaces} \ f \ \text{with} \ g \ \text{and} \ g \ \text{with} \ f.
\end{align*}
\]

The first three buttons in the fourth row allow you to store and retrieve functions from the calculator's function memory.

\[
\begin{align*}
\text{Insert} & \quad \text{Adds} \ f \ \text{to the end of the list of stored functions.} \\
\text{Cycle} & \quad \text{Replaces} \ f \ \text{with the next item on the function list.} \\
\text{Delete} & \quad \text{Deletes} \ f \ \text{from the list of stored functions.}
\end{align*}
\]

The other four buttons on the fourth row perform miscellaneous functions:

\[
\begin{align*}
\text{Reset} & \quad \text{Resets the calculator to its initial state.} \\
\text{Help} & \quad \text{Displays the online help for the calculator.} \\
\text{Demo} & \quad \text{Runs a short demo of the calculator.} \\
\text{Close} & \quad \text{Closes the calculator's windows.}
\end{align*}
\]

See Also

ezplot | syms

Introduced before R2006a
gamma

Gamma function

Syntax

gamma(X)

Description

gamma(X) returns the gamma function of a symbolic variable or symbolic expression X.

Examples

Gamma Function for Numeric and Symbolic Arguments

Depending on its arguments, gamma returns floating-point or exact symbolic results.

Compute the gamma function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

A = gamma([-11/3, -7/5, -1/2, 1/3, 1, 4])

A =
0.2466 2.6593 -3.5449 2.6789 1.0000 6.0000

Compute the gamma function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, gamma returns unresolved symbolic calls.

symA = gamma(sym([-11/3, -7/5, -1/2, 1/3, 1, 4]))

symA =
[(27*pi*3^(1/2))/(440*gamma(2/3)), gamma(-7/5),...
-2*pi^(1/2), (2*pi*3^(1/2))/(3*gamma(2/3)), 1, 6]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[0.24658411512650858900694446388517,
 2.6592718728800305399898810505738,
 -3.5449077018110320545963349666823,
 2.6789385347077476336556929409747,
 1.0, 6.0]

Plot Gamma Function

Plot the gamma function and add grid lines.

```matlab
syms x
ezplot(gamma(x))
grid on
```
Handle Expressions Containing Gamma Function

Many functions, such as `diff`, `limit`, and `simplify`, can handle expressions containing `gamma`.

Differentiate the gamma function, and then substitute the variable `t` with the value 1:

```matlab
syms t
u = diff(gamma(t^3 + 1))
u1 = subs(u, t, 1)
```

\[u = 3*t^2*gamma(t^3 + 1)*psi(t^3 + 1) \]
\[
u_1 = 3 - 3\text{eulergamma}
\]

Approximate the result using \texttt{vpa}:
\[
\texttt{vpa(u1)}
\]
\[
\text{ans} = 1.2683530052954014181804637297528
\]

Compute the limit of the following expression that involves the gamma function:
\[
\texttt{syms x} \\
\texttt{limit(x/gamma(x), x, inf)}
\]
\[
\text{ans} = 0
\]

Simplify the following expression:
\[
\texttt{syms x} \\
\texttt{simplify(gamma(x)*gamma(1 - x))}
\]
\[
\text{ans} = \frac{\pi}{\sin(\pi x)}
\]

Input Arguments

\texttt{X} — Input
\begin{itemize}
\item symbolic number
\item symbolic variable
\item symbolic expression
\item symbolic function
\item symbolic vector
\item symbolic matrix
\end{itemize}

Input, specified as symbolic number, variable, expression, function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Gamma Function

The following integral defines the gamma function:
\[\Gamma(z) = \int_{0}^{\infty} t^{z-1}e^{-t}dt. \]

See Also

beta | factorial | gammain | nchoosek | pochhammer | psi

Introduced before R2006a
gammaln

Logarithmic gamma function

Syntax

\[
gammaln(X)
\]

Description

\(\text{gammaln}(X)\) returns the logarithmic gamma function for each element of \(X\).

Examples

Logarithmic Gamma Function for Numeric and Symbolic Arguments

Depending on its arguments, \(\text{gammaln}\) returns floating-point or exact symbolic results.

Compute the logarithmic gamma function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

\[
A = \text{gammaln}([1/5, 1/2, 2/3, 8/7, 3])
\]

\[
A = \\
\begin{bmatrix}
1.5241 & 0.5724 & 0.3032 & -0.0667 & 0.6931
\end{bmatrix}
\]

Compute the logarithmic gamma function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, \(\text{gammaln}\) returns results in terms of the \(\text{gammaln}\), \(\log\), and \(\text{gamma}\) functions.

\[
symA = \text{gammaln}(\text{sym}([1/5, 1/2, 2/3, 8/7, 3]))
\]

\[
symA = \\
[\text{gammaln}(1/5), \log(\pi^{(1/2)}), \text{gammaln}(2/3),... \]
\[
\log(\text{gamma}(1/7)/7), \log(2)]
\]

Use \texttt{vpa} to approximate symbolic results with floating-point numbers:

vpa(symA)
ans =
[1.5240638224307845248810564939263,...
0.57236494292470008707171367567653,...
0.30315027514752356867586281737201,...
-0.06674087745947749396334098109,...
0.69314718055994530941723212145818]

Definition of the Logarithmic Gamma Function on Complex Plane

`gammaln` is defined for all complex arguments, except negative infinity.

Compute the logarithmic gamma function for positive integer arguments. For such arguments, the logarithmic gamma function is defined as the natural logarithm of the gamma function, \(\text{gammaln}(x) = \log(\text{gamma}(x)) \).

`pos = gammaln(sym([1/4, 1/3, 1, 5, Inf]))`
`pos =
[\log((pi*2^(1/2))/gamma(3/4)), \log((2*pi*3^(1/2))/(3*gamma(2/3))), 0, \log(24), Inf]`

Compute the logarithmic gamma function for nonpositive integer arguments. For nonpositive integers, `gammaln` returns Inf.

`nonposint = gammaln(sym([0, -1, -2, -5, -10]))`
`nonposint =
[Inf, Inf, Inf, Inf, Inf]`

Compute the logarithmic gamma function for complex and negative rational arguments. For these arguments, `gammaln` returns unresolved symbolic calls.

`complex = gammaln(sym([i, -1 + 2*i , -2/3, -10/3]))`
`complex =
[gammaln(1i), gammaln(- 1 + 2i), gammaln(-2/3), gammaln(-10/3)]`

Use `vpa` to approximate symbolic results with floating-point numbers:

`vpa(complex)`
`ans =
[- 0.65092319930185633888521683150395 - 1.8724366472624298171188533494366i,...
 - 3.3739449232079248379476073664725 - 3.47559394628081104329319215835581,...
 1.3908857550359314511651871524423 - 3.14159265358979323846264338327951,...
 - 0.9371901733492872737096467598178 - 12.5663706143591729538505735331181]`
Compute the logarithmic gamma function of negative infinity:

```matlab
gammaln(sym(-Inf))
```

```matlab
ans =
NaN
```

Plot Logarithmic Gamma Function

Plot the logarithmic gamma function on the interval from 0 to 10.

```matlab
syms x
ezplot(gammaln(x), 0, 10)
grid on
```
To see the negative values better, plot the same function on the interval from 1 to 2.

```matlab
ezplot(gammaln(x), 1, 2)
grid on
```

Handle Expressions Containing Logarithmic Gamma Function

Many functions, such as `diff` and `limit`, can handle expressions containing `l gamm a`.

Differentiate the logarithmic gamma function:

```matlab
syms x
diff(gammaln(x), x)
```
ans =
psi(x)

Compute the limits of these expressions containing the logarithmic gamma function:

```matlab
syms x
limit(1/gammaln(x), x, Inf)
ans =
0
limit(gammaln(x - 1) - gammaln(x - 2), x, 0)
ans =
log(2) + pi*i
```

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as symbolic number, variable, expression, function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Algorithms

For single or double input to `gammaln(x)`, x must be real and positive.

For symbolic input,

- `gammaln(x)` is defined for all complex x except the singular points 0, -1, -2,
- For positive real x, `gammaln(x)` represents the logarithmic gamma function `log(gamma(x))`.
- For negative real x or for complex x, `gammaln(x) = log(gamma(x)) + f(x)2*pi*i` where `f(x)` is some integer valued function. The integer multiples of 2*pi*i are chosen such that `gammaln(x)` is analytic throughout the complex plane with a branch cut along the negative real semi axis.
• For negative real x, \texttt{gammaln(x)} is equal to the limit of \texttt{log(gamma(x))} from ‘above’.

\textbf{See Also}
\texttt{beta | gamma | log | nchoosek | psi}

\textit{Introduced in R2014a}
gcd

Greatest common divisor

Syntax

G = gcd(A)
G = gcd(A,B)
[G,C,D] = gcd(A,B,X)

Description

G = gcd(A) finds the greatest common divisor of all elements of A.

G = gcd(A,B) finds the greatest common divisor of A and B.

[G,C,D] = gcd(A,B,X) finds the greatest common divisor of A and B, and also returns the Bézout coefficients, C and D, such that \(G = A \cdot C + B \cdot D \), and X does not appear in the denominator of C and D. If you do not specify X, then gcd uses the default variable determined by symvar.

Examples

Greatest Common Divisor of Four Integers

To find the greatest common divisor of three or more values, specify those values as a symbolic vector or matrix.

Find the greatest common divisor of these four integers, specified as elements of a symbolic vector.

\[
A = \text{sym}([4420, -128, 8984, -488])
\]

\[\text{gcd}(A)\]

A =
Alternatively, specify these values as elements of a symbolic matrix.

```matlab
A = sym([4420, -128; 8984, -488])
gcd(A)
```

```
A =
[ 4420, -128]
[ 8984, -488]
ans =
4
```

Greatest Common Divisor of Rational Numbers

The greatest common divisor of rational numbers a_1, a_2, \ldots is a number g, such that $g/a_1, g/a_2, \ldots$ are integers, and $\gcd(g) = 1$.

Find the greatest common divisor of these rational numbers, specified as elements of a symbolic vector.

```matlab
gcd(sym([1/4, 1/3, 1/2, 2/3, 3/4]))
```

```
ans =
1/12
```

Greatest Common Divisor of Complex Numbers

\gcd computes the greatest common divisor of complex numbers over the Gaussian integers (complex numbers with integer real and imaginary parts). It returns a complex number with a positive real part and a nonnegative imaginary part.

Find the greatest common divisor of these complex numbers.

```matlab
gcd(sym([10 - 5*i, 20 - 10*i, 30 - 15*i]))
```

```
ans =
5 + 10i
```
Greatest Common Divisor of Elements of Matrices

For vectors and matrices, `gcd` finds the greatest common divisors element-wise. Nonscalar arguments must be the same size.

Find the greatest common divisors for the elements of these two matrices.

```matlab
A = sym([309, 186; 486, 224]);
B = sym([558, 444; 1024, 1984]);
gcd(A,B)
```

```matlab
ans =
[ 3,  6]
[ 2, 32]
```

Find the greatest common divisors for the elements of matrix `A` and the value `200`. Here, `gcd` expands `200` into the 2-by-2 matrix with all elements equal to `200`.

```matlab
gcd(A,200)
```

```matlab
ans =
[ 1,  2]
[ 2,  8]
```

Greatest Common Divisor of Polynomials

Find the greatest common divisor of univariate and multivariate polynomials.

Find the greatest common divisor of these univariate polynomials.

```matlab
syms x
gcd(x^3 - 3*x^2 + 3*x - 1, x^2 - 5*x + 4)
```

```matlab
ans =
x - 1
```

Find the greatest common divisor of these multivariate polynomials. Because there are more than two polynomials, specify them as elements of a symbolic vector.

```matlab
syms x y
gcd([x^2*y + x^3, (x + y)^2, x^2 + x*y^2 + x*y + x + y^3 + y])
```

```matlab
ans =
```
Bézout Coefficients

Find the greatest common divisor and the Bézout coefficients of these polynomials. For multivariate expressions, use the third input argument to specify the polynomial variable. When computing Bézout coefficients, \texttt{gcd} ensures that the polynomial variable does not appear in their denominators.

Find the greatest common divisor and the Bézout coefficients of these polynomials with respect to variable \texttt{x}.

\[
\text{[G,C,D]} = \text{gcd}(x^2y + x^3, (x + y)^2, x)
\]

\[
\begin{align*}
G &= x + y \\
C &= 1/y^2 \\
D &= 1/y - x/y^2
\end{align*}
\]

Find the greatest common divisor and the Bézout coefficients of the same polynomials with respect to variable \texttt{y}.

\[
\text{[G,C,D]} = \text{gcd}(x^2y + x^3, (x + y)^2, y)
\]

\[
\begin{align*}
G &= x + y \\
C &= 1/x^2 \\
D &= 0
\end{align*}
\]

If you do not specify the polynomial variable, then the toolbox uses \texttt{symvar} to determine the variable.

\[
\text{[G,C,D]} = \text{gcd}(x^2y + x^3, (x + y)^2)
\]

\[
G = \]

\texttt{gcd}

\texttt{x + y}
Solution to Diophantine Equation

Solve the Diophantine equation, \(30x + 56y = 8 \), for \(x \) and \(y \).

Find the greatest common divisor and a pair of Bézout coefficients for 30 and 56.

\[
\begin{align*}
G, C, D &= \text{gcd(sym(30), 56)} \\
G &= 2 \\
C &= -13 \\
D &= 7 \\
\end{align*}
\]

\(C = -13 \) and \(D = 7 \) satisfy the Bézout's identity, \((30 \cdot (-13)) + (56 \cdot 7) = 2\).

Rewrite Bézout's identity so that it looks more like the original equation. Do this by multiplying by 4. Use == to verify that both sides of the equation are equal.

\[
\text{isAlways}((30 \cdot C \cdot 4) + (56 \cdot D \cdot 4) == G \cdot 4)
\]

\[
\text{ans} = 1
\]

Calculate the values of \(x \) and \(y \) that solve the problem.

\[
\begin{align*}
x &= C \cdot 4 \\
y &= D \cdot 4
\end{align*}
\]

\[
\begin{align*}
x &= -52 \\
y &=
\end{align*}
\]
Input Arguments

A — Input value
number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

B — Input value
number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

X — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

G — Greatest common divisor
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Greatest common divisor, returned as a symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions.

C, D — Bézout coefficients
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Bézout coefficients, returned as symbolic numbers, variables, expressions, functions, or vectors or matrices of symbolic numbers, variables, expressions, or functions.
More About

Tips

• Calling \texttt{gcd} for numbers that are not symbolic objects invokes the MATLAB \texttt{gcd} function.

• The MATLAB \texttt{gcd} function does not accept rational or complex arguments. To find the greatest common divisor of rational or complex numbers, convert these numbers to symbolic objects by using \texttt{sym}, and then use \texttt{gcd}.

• Nonscalar arguments must be the same size. If one input argument is nonscalar, then \texttt{gcd} expands the scalar into a vector or matrix of the same size as the nonscalar argument, with all elements equal to the corresponding scalar.

See Also

\texttt{lcm}

Introduced in R2014b
ge

Define greater than or equal to relation

Compatibility

In previous releases, ge in some cases evaluated inequalities involving only symbolic numbers and returned logical 1 or 0. To obtain the same results as in previous releases, wrap inequalities in isAlways. For example, use isAlways(A >= B).

Syntax

A >= B
ge(A, B)

Description

A >= B creates a greater than or equal to relation.

ge(A, B) is equivalent to A >= B.

Input Arguments

A

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or expression, or array of numbers, symbolic variables or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or expression, or array of numbers, symbolic variables or expressions.
Examples

Use `assume` and the relational operator `>=` to set the assumption that \(x \) is greater than or equal to 3:

```matlab
syms x
assume(x >= 3)
```

Solve this equation. The solver takes into account the assumption on variable \(x \), and therefore returns these two solutions.

```matlab
solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)
```

```matlab
ans =
    3
    4
```

Use the relational operator `>=` to set this condition on variable \(x \):

```matlab
syms x
cond = (abs(sin(x)) >= 1/2);
for i = 0:sym(pi/12):sym(pi)
    if subs(cond, x, i)
        disp(i)
    end
end
```

Use the `for` loop with step \(\pi/24 \) to find angles from 0 to \(\pi \) that satisfy that condition:

```matlab
pi/6
pi/4
pi/3
(5*pi)/12
pi/2
(7*pi)/12
(2*pi)/3
(3*pi)/4
(5*pi)/6
```

Alternatives

You can also define this relation by combining an equation and a greater than relation. Thus, \(A \geq B \) is equivalent to \((A > B) \mid (A == B)\).
More About

Tips

• Calling >= or ge for non-symbolic A and B invokes the MATLAB ge function. This function returns a logical array with elements set to logical 1 (true) where A is greater than or equal to B; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then these arrays must have the same dimensions. A >= B returns an array of relations A(i,j,...) >= B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is expanded into an array of the same dimensions as the other array. In other words, if A is a variable (for example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of elements, each set to x.

• The field of complex numbers is not an ordered field. MATLAB projects complex numbers in relations to a real axis. For example, x >= i becomes x >= 0, and x >= 3 + 2*i becomes x >= 3.

See Also
eq | gt | isAlways | le | lt | ne

Introduced in R2012a
gegenbauerC

Gegenbauer polynomials

Syntax

gegenbauerC(n,a,x)

Description

gegenbauerC(n,a,x) represents the nth-degree Gegenbauer (ultraspherical) polynomial with parameter a at the point x.

Examples

First Four Gegenbauer Polynomials

Find the first four Gegenbauer polynomials for the parameter a and variable x.

```latex
syms a x
gegenbauerC([0, 1, 2, 3], a, x)
```

ans =

\[
\begin{array}{c}
[1, 2a x, (2a^2 + 2a)x^2 - a, \\
(4a^3)/3 + 4a^2 + (8a)/3)x^3 + (- 2a^2 - 2a)x]
\end{array}
\]

Gegenbauer Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, gegenbauerC returns floating-point or exact symbolic results.

Find the value of the fifth-degree Gegenbauer polynomial for the parameter \(a = 1/3 \) at these points. Because these numbers are not symbolic objects, gegenbauerC returns floating-point results.
gegenbauerC(5, 1/3, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])

ans =
 0.1520 0.1911 0.1914 0.0672 -0.1483 -0.2188

Find the value of the fifth-degree Gegenbauer polynomial for the same numbers converted to symbolic objects. For symbolic numbers, gegenbauerC returns exact symbolic results.

gegenbauerC(5, 1/3, sym([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]))

ans =
 [26929/177147, 4459/23328, 33908/177147, 49/729, -26264/177147, -7/32]

Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Gegenbauer polynomials by direct calls of gegenbauerC is numerically stable. However, first computing the polynomial using a symbolic variable, and then substituting variable-precision values into this expression can be numerically unstable.

Find the value of the 500th-degree Gegenbauer polynomial for the parameter 4 at 1/3 and vpa(1/3). Floating-point evaluation is numerically stable.

gegenbauerC(500, 4, 1/3)
gegenbauerC(500, 4, vpa(1/3))

ans =
 -1.9161e+05

ans =
 -191609.1025089753278488518393655

Now, find the symbolic polynomial C500 = gegenbauerC(500, 4, x), and substitute x = vpa(1/3) into the result. This approach is numerically unstable.

syms x
C500 = gegenbauerC(500, 4, x);
subs(C500, x, vpa(1/3))

ans =
 -8.0178726380235741521208852037291e35
Approximate the polynomial coefficients by using \texttt{vpa}, and then substitute \(x = \texttt{sym}(1/3) \) into the result. This approach is also numerically unstable.

\begin{verbatim}
subs(vpa(C500), x, sym(1/3))
\end{verbatim}

\texttt{ans} =
\begin{verbatim}
-8.1125412405858470246887213923167e36
\end{verbatim}

Plot Gegenbauer Polynomials

Plot the first five Gegenbauer polynomials for the parameter \(a = 3 \).

\begin{verbatim}
syms x y
for n = [0, 1, 2, 3, 4]
 ezplot(gegenbauerC(n,3,x))
 hold on
end
hold off
axis([-1, 1, -10, 10])
grid on
ylabel('G_n^{3}(x)')
legend('G_0^{3}(x)', 'G_1^{3}(x)', 'G_2^{3}(x)', 'G_3^{3}(x)', 'G_4^{3}(x)','=', 'Location', 'Best');
title('Gegenbauer polynomials')
\end{verbatim}
Input Arguments

n — Degree of polynomial
defined as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Degree of the polynomial, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.
a — Parameter
number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Parameter, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

x — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

More About
Gegenbauer Polynomials

Gegenbauer polynomials are defined by this recursion formula.

\[
G(0, a, x) = 1, \quad G(1, a, x) = 2ax, \quad G(n, a, x) = \frac{2x(n + a - 1)}{n} G(n - 1, a, x) - \frac{n + 2a - 2}{n} G(n - 2, a, x)
\]

For all real \(a > -1/2\), Gegenbauer polynomials are orthogonal on the interval \(-1 \leq x \leq 1\) with respect to the weight function

\[
w(x) = (1 - x^2)^{a-\frac{1}{2}}
\]

Chebyshev polynomials of the first and second kinds are a special case of the Gegenbauer polynomials.

\[
T(n, x) = \frac{n}{2} G(n, 0, x)
\]

\[
U(n, x) = G(n, 1, x)
\]
Legendre polynomials are also a special case of the Gegenbauer polynomials.

\[P(n, x) = G\left(n, \frac{1}{2}, x \right) \]

Tips

- `gegenbauerC` returns floating-point results for numeric arguments that are not symbolic objects.
- `gegenbauerC` acts element-wise on nonscalar inputs.
- All nonscalar arguments must have the same size. If one or two input arguments are nonscalar, then `gegenbauerC` expands the scalars into vectors or matrices of the same size as the nonscalar arguments, with all elements equal to the corresponding scalar.

References

See Also

`chebyshevT` | `chebyshevU` | `hermiteH` | `jacobiP` | `laguerreL` | `legendreP`

Introduced in R2014b
getVar

Get variable from MuPAD notebook

Syntax

MATLABvar = getVar(nb,'MuPADvar')

Description

MATLABvar = getVar(nb,'MuPADvar') assigns the variable MuPADvar in the MuPAD notebook nb to a symbolic variable MATLABvar in the MATLAB workspace.

Examples

Copy Variable from MuPAD to MATLAB

Copy a variable with a value assigned to it from a MuPAD notebook to the MATLAB workspace.

Create a new MuPAD notebook and specify a handle mpnb to that notebook:

mpnb = mupad;

In the MuPAD notebook, enter the following command. This command creates the variable f and assigns the value x^2 to this variable. At this point, the variable and its value exist only in MuPAD.

f := x^2

Return to the MATLAB Command Window and use the getVar function:

f = getVar(mpnb,'f')

f =
x^2

After you call getVar, the variable f appears in the MATLAB workspace. The value of the variable f in the MATLAB workspace is x^2.
Now, use `getVar` to copy variables `a` and `b` from the same notebook. Although you do not specify these variables explicitly, and they do not have any values assigned to them, they exist in MuPAD.

```matlab
a = getVar(mpnb,'a')
b = getVar(mpnb,'b')
```

• “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25

Input Arguments

nb — Pointer to MuPAD notebook
handle to notebook

Pointer to a MuPAD notebook, specified as a MuPAD notebook handle. You create the notebook handle when opening a notebook with the `mupad` or `openmn` function.

MuPADvar — Variable in MuPAD notebook
variable

Variable in a MuPAD notebook, specified as a variable. A variable exists in MuPAD even if it has no value assigned to it.

Output Arguments

MATLABvar — Variable in MATLAB workspace
symbolic variable

Variable in the MATLAB workspace, returned as a symbolic variable.

See Also

mupad | openmu | setVar

4-575
Introduced in R2008b
gradient

Gradient vector of scalar function

Syntax

gradient(f,v)

Description

gradient(f,v) finds the gradient vector of the scalar function \(f \) with respect to vector \(v \) in Cartesian coordinates.

If you do not specify \(v \), then \(\text{gradient}(f) \) finds the gradient vector of the scalar function \(f \) with respect to a vector constructed from all symbolic variables found in \(f \). The order of variables in this vector is defined by \text{symvar}.

Examples

Find Gradient of Function

The gradient of a function \(f \) with respect to the vector \(v \) is the vector of the first partial derivatives of \(f \) with respect to each element of \(v \).

Find the gradient vector of \(f(x, y, z) \) with respect to vector \([x, y, z]\). The gradient is a vector with these components.

\[
\begin{align*}
\text{syms} & \quad x \quad y \quad z \\
 f & = 2*y*z*sin(x) + 3*x*sin(z)*cos(y); \\
\text{gradient}(f, [x, y, z]) \\
\text{ans} = \\
& 3*cos(y)*sin(z) + 2*y*z*cos(x) \\
& 2*z*sin(x) - 3*x*sin(y)*sin(z) \\
& 2*y*sin(x) + 3*x*cos(y)*cos(z)
\end{align*}
\]
Plot Gradient of Function

Find the gradient of a function \(f(x, y) \), and plot it as a quiver (velocity) plot.

Find the gradient vector of \(f(x, y) \) with respect to vector \([x, y]\). The gradient is vector \(g \) with these components.

```matlab
syms x y
f = -(sin(x) + sin(y))^2;
g = gradient(f, [x, y])
g =
-2*cos(x)*(sin(x) + sin(y))
-2*cos(y)*(sin(x) + sin(y))
```

Now plot the vector field defined by these components. MATLAB provides the \texttt{quiver} plotting function for this task. The function does not accept symbolic arguments. First, replace symbolic variables in expressions for components of \(g \) with numeric values. Then use \texttt{quiver}:

```matlab
[X, Y] = meshgrid(-1:.1:1,-1:.1:1);
G1 = subs(g(1), [x y], {X,Y});
G2 = subs(g(2), [x y], {X,Y});
quiver(X, Y, G1, G2)
```
Input Arguments

\(f \) — Scalar function
symbolic expression | symbolic function

Scalar function, specified as symbolic expression or symbolic function.

\(v \) — Vector with respect to which you find gradient vector
symbolic vector
Vector with respect to which you find gradient vector, specified as a symbolic vector. By default, v is a vector constructed from all symbolic variables found in f. The order of variables in this vector is defined by symvar.

If v is a scalar, gradient(f, v) = diff(f, v). If v is an empty symbolic object, such as sym([]), then gradient returns an empty symbolic object.

More About

Gradient Vector

The gradient vector of \(f(x) \) with respect to the vector \(x \) is the vector of the first partial derivatives of \(f \).

\[
\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right)
\]

See Also

curl | diff | divergence | hessian | jacobian | laplacian | potential | quiver | vectorPotential

Introduced in R2011b
gt
Define greater than relation

Compatibility
In previous releases, gt in some cases evaluated inequalities involving only symbolic numbers and returned logical 1 or 0. To obtain the same results as in previous releases, wrap inequalities in isAlways. For example, use isAlways(A > B).

Syntax
A > B
gt(A,B)

Description
A > B creates a greater than relation.
gt(A,B) is equivalent to A > B.

Input Arguments
A
Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or expression, or array of numbers, symbolic variables or expressions.

B
Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or expression, or array of numbers, symbolic variables or expressions.

Examples
Use assume and the relational operator > to set the assumption that x is greater than 3:
syms x
assume(x > 3)

Solve this equation. The solver takes into account the assumption on variable \(x \), and therefore returns this solution.

\[
solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)
\]

ans =
4

Use the relational operator > to set this condition on variable \(x \):

\[
syms x
cond = abs(sin(x)) + abs(cos(x)) > 7/5;
\]

\[
for i = 0:sym(pi/24):sym(pi)
 if subs(cond, x, i)
 disp(i)
 end
end
\]

Use the \texttt{for} loop with step \(\pi/24 \) to find angles from 0 to \(\pi \) that satisfy that condition:

\[
(5*\pi)/24
\]
\[
\pi/4
\]
\[
(7*\pi)/24
\]
\[
(17*\pi)/24
\]
\[
(3*\pi)/4
\]
\[
(19*\pi)/24
\]

More About

Tips

- Calling > or gt for non-symbolic \(A \) and \(B \) invokes the MATLAB \texttt{gt} function. This function returns a logical array with elements set to logical 1 (\texttt{true}) where \(A \) is greater than \(B \); otherwise, it returns logical 0 (\texttt{false}).

- If both \(A \) and \(B \) are arrays, then these arrays must have the same dimensions. \(A > B \) returns an array of relations \(A(i,j,...) > B(i,j,...) \)

- If one input is scalar and the other an array, then the scalar input is expanded into an array of the same dimensions as the other array. In other words, if \(A \) is a variable...
(for example, \(x \)), and \(B \) is an \(m \)-by-\(n \) matrix, then \(A \) is expanded into \(m \)-by-\(n \) matrix of elements, each set to \(x \).

- The field of complex numbers is not an ordered field. MATLAB projects complex numbers in relations to a real axis. For example, \(x > i \) becomes \(x > 0 \), and \(x > 3 + 2i \) becomes \(x > 3 \).

See Also

eq | ge | isAlways | le | lt | ne

Introduced in R2012a
harmonic

Harmonic function (harmonic number)

Syntax

harmonic(x)

Description

harmonic(x) returns the harmonic function of x. For integer values of x, harmonic(x) generates harmonic numbers.

Examples

Generate Harmonic Numbers

Generate the first 10 harmonic numbers.

harmonic(sym(1:10))

ans =
[1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, 7381/2520]

Harmonic Function for Numeric and Symbolic Arguments

Find the harmonic function for these numbers. Since these are not symbolic objects, you get floating-point results.

harmonic([2 i 13/3])

ans =
1.5000 + 0.0000i 0.6719 + 1.0767i 2.1545 + 0.0000i

Find the harmonic function symbolically by converting the numbers to symbolic objects.
y = harmonic(sym([2 i 13/3]))

y =
[3/2, harmonic(1i), 8571/1820 - (pi*3^(1/2))/6 - (3*log(3))/2]

If the denominator of x is 2, 3, 4, or 6, and |x| < 500, then the result is expressed in terms of pi and log.

Use vpa to approximate the results obtained.

vpa(y)

ans =
[1.5, 0.67186598552400983787839057280431...
+ 1.07667404746858117413405079475i,...
2.1545225442213858782694336751358]

For |x| > 1000, harmonic returns the function call as it is. Use vpa to force harmonic to evaluate the function call.

harmonic(sym(1001))

vpa(harmonic(sym(1001)))

ans =
harmonic(1001)
ans =
7.4864698615493459116575172053329

Harmonic Function for Special Values

Find the harmonic function for special values.

harmonic([0 1 -1 Inf -Inf])

ans =
 0 1 Inf Inf NaN

Harmonic Function for Symbolic Functions

Find the harmonic function for the symbolic function f.

syms f(x)
f(x) = exp(x) + tan(x);
y = harmonic(f)

\[y(x) =
\text{harmonic}(\exp(x) + \tan(x)) \]

Harmonic Function for Symbolic Vectors and Matrices

Find the harmonic function for elements of vector \(V \) and matrix \(M \).

```matlab
syms x
V = [x sin(x) 3*i];
M = [exp(i*x) 2; -6 Inf];
harmonic(V)
harmonic(M)
```

```matlab
ans =
[ harmonic(x), harmonic(sin(x)), harmonic(3i)]
ans =
[ harmonic(exp(x*1i)), 3/2]
[ Inf, Inf]
```

Plot Harmonic Function

Plot the harmonic function from \(x = -5 \) to \(x = 5 \).

```matlab
syms x
ezplot(harmonic(x),[-5,5]), grid on
```
Differentiate and Find Limit of Harmonic Function

The functions diff and limit handle expressions containing harmonic.

Find the second derivative of harmonic(x^2+1).

```matlab
syms x
diff(harmonic(x^2+1),x,2)
anst =
2*psi(1, x^2 + 2) + 4*x^2*psi(2, x^2 + 2)
```

Find the limit of harmonic(x) as x tends to ∞ and of (x+1) * harmonic(x) as x tends to -1.
syms x
limit(harmonic(x),Inf)
limit((x+1)*harmonic(x),-1)

ans =
Inf
ans =
-1

Taylor Series Expansion of Harmonic Function

Use `taylor` to expand the harmonic function in terms of the Taylor series.

syms x
taylor(harmonic(x))

ans =
(pi^6*x^5)/945 - zeta(5)*x^4 + (pi^4*x^3)/90...
 - zeta(3)*x^2 + (pi^2*x)/6

Expand Harmonic Function

Use `expand` to expand the harmonic function.

syms x
expand(harmonic(2*x+3))

ans =
harmonic(x + 1/2)/2 + log(2) + harmonic(x)/2 - 1/(2*(x + 1/2))...
 + 1/(2*x + 1) + 1/(2*x + 2) + 1/(2*x + 3)

Input Arguments

x — Input

number | vector | matrix | multidimensional array | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic N-D array

Input, specified as number, vector, matrix, or as a multidimensional array or symbolic variable, expression, function, vector, matrix, or multidimensional array.
More About

Harmonic Function

The harmonic function for x is defined as

$$\text{harmonic}(x) = \sum_{k=1}^{x} \frac{1}{k}$$

It is also defined as

$$\text{harmonic}(x) = \Psi(x) + \gamma$$

where $\Psi(x)$ is the polygamma function and γ is the Euler-Mascheroni constant.

Algorithms

The harmonic function is defined for all complex arguments z except for negative integers -1, -2,... where a singularity occurs.

If x has denominator 1, 2, 3, 4, or 6, then an explicit result is computed and returned. For other rational numbers, harmonic uses the functional equation

$$\text{harmonic}(x + 1) = \text{harmonic}(x) + \frac{1}{x}$$

to obtain a result with an argument x from the interval $[0, 1]$.

expand expands harmonic using the equations

$$\text{harmonic}(x + 1) = \text{harmonic}(x) + \frac{1}{x},$$

$$\text{harmonic}(-x) = \text{harmonic}(x) - \frac{1}{x} + \pi \cot(\pi x),$$

and the Gauss multiplication formula for $\text{harmonic}(kx)$, where k is an integer.

harmonic implements the following explicit formulae:

$$\text{harmonic} \left(-\frac{1}{2} \right) = -2\ln(2)$$
harmonic \left(\frac{-2}{3} \right) = -\frac{3}{2} \ln(3) - \frac{\sqrt{3}}{6} \pi

harmonic \left(\frac{-1}{3} \right) = -\frac{3}{2} \ln(3) + \frac{\sqrt{3}}{6} \pi

harmonic \left(\frac{-3}{4} \right) = -3 \ln(2) - \frac{\pi}{2}

harmonic \left(\frac{-1}{4} \right) = -3 \ln(2) + \frac{\pi}{2}

harmonic \left(\frac{-5}{6} \right) = -2 \ln(2) - \frac{3}{2} \ln(3) - \frac{\sqrt{3}}{2} \pi

harmonic \left(\frac{-1}{6} \right) = -2 \ln(2) - \frac{3}{2} \ln(3) + \frac{\sqrt{3}}{2} \pi

harmonic (0) = 0

harmonic \left(\frac{1}{2} \right) = 2 - 2 \ln(2)

harmonic \left(\frac{1}{3} \right) = 3 - \frac{3}{2} \ln(3) - \frac{\sqrt{3}}{6} \pi

harmonic \left(\frac{2}{3} \right) = \frac{3}{2} - \frac{3}{2} \ln(3) + \frac{\sqrt{3}}{6} \pi

harmonic \left(\frac{1}{4} \right) = 4 - 3 \ln(2) - \frac{\pi}{2}
\[
\text{harmonic}\left(\frac{3}{4}\right) = \frac{4}{3} - 3\ln(2) + \frac{\pi}{2}
\]

\[
\text{harmonic}\left(\frac{1}{6}\right) = 6 - 2\ln(2) - \frac{3}{2}\ln(3) - \frac{\sqrt{3}}{2}\pi
\]

\[
\text{harmonic}\left(\frac{5}{6}\right) = \frac{6}{5} - 2\ln(2) - \frac{3}{2}\ln(3) + \frac{\sqrt{3}}{2}\pi
\]

\[
\text{harmonic}(1) = 1
\]

\[
\text{harmonic}(\infty) = \infty
\]

\[
\text{harmonic}(-\infty) = \text{NaN}
\]

See Also
beta | factorial | gamma | gammaln | nchoosek | zeta

Introduced in R2014a
has

Check if expression contains particular subexpression

Syntax

has(expr, subexpr)

Description

has(expr, subexpr) returns logical 1 (true) if expr contains subexpr. Otherwise, it returns logical 0 (false).

- If expr is an array, has(expr, subexpr) returns an array of the same size as expr. The returned array contains logical 1s (true) where the elements of expr contain subexpr, and logical 0s (false) where they do not.
- If subexpr is an array, has(expr, subexpr) checks if expr contains any element of subexpr.

Examples

Check If Expression Contains Particular Subexpression

Use the has function to check if an expression contains a particular variable or subexpression.

Check if these expressions contain variable z.

```matlab
syms x y z
has(x + y + z, z)
```

ans =
1

```matlab
has(x + y, z)
```
Check if \(x + y + z \) contains the following subexpressions. Note that \texttt{has} finds the subexpression \(x + z \) even though the terms \(x \) and \(z \) do not appear next to each other in the expression.

\[
\texttt{has}(x + y + z, x + y) \\
\texttt{has}(x + y + z, y + z) \\
\texttt{has}(x + y + z, x + z)
\]

\[
\begin{align*}
\texttt{ans} &= 0 \\
\texttt{ans} &= 1 \\
\texttt{ans} &= 1 \\
\texttt{ans} &= 1
\end{align*}
\]

Check if the expression \((x + 1)^2\) contains \(x^2\). Although \((x + 1)^2\) is mathematically equivalent to the expression \(x^2 + 2*x + 1\), the result is a logical 0 because \texttt{has} typically does not transform expressions to different forms when testing for subexpressions.

\[
\texttt{has}((x + 1)^2, x^2)
\]

\[
\texttt{ans} = 0
\]

Expand the expression and then call \texttt{has} to check if the result contains \(x^2\). Because \texttt{expand}((\(x + 1\))^2) transforms the original expression to \(x^2 + 2*x + 1\), the \texttt{has} function finds the subexpression \(x^2\) and returns logical 1.

\[
\texttt{has}((\texttt{expand}(x + 1)^2), x^2)
\]

\[
\texttt{ans} = 1
\]

Check If Expression Contains Any of Specified Subexpressions

Check if a symbolic expression contains any of subexpressions specified as elements of a vector.
If an expression contains one or more of the specified subexpressions, `has` returns logical 1.

```matlab
syms x
has(sin(x) + cos(x) + x^2, [tan(x), cot(x), sin(x), exp(x)])
ans =
    1
```

If an expression does not contain any of the specified subexpressions, `has` returns logical 0.

```matlab
syms x
has(sin(x) + cos(x) + x^2, [tan(x), cot(x), exp(x)])
ans =
    0
```

Find Matrix Elements Containing Particular Subexpression

Using `has`, find those elements of a symbolic matrix that contain a particular subexpression.

First, create a matrix.

```matlab
syms x y
M = [sin(x)*sin(y), cos(x*y) + 1; cos(x)*tan(x), 2*sin(x)^2]
```

```matlab
M =
     [ sin(x)*sin(y), cos(x*y) + 1]
     [ cos(x)*tan(x),  2*sin(x)^2]
```

Use `has` to check which elements of `M` contain `sin(x)`. The result is a matrix of the same size as `M`, with 1s and 0s as its elements. For the elements of `M` containing the specified expression, `has` returns logical 1s. For the elements that do not contain that subexpression, `has` returns logical 0s.

```matlab
T = has(M, sin(x))
```

```matlab
T =
     1   0
     0   1
```

Return only the elements that contain `sin(x)` and replace all other elements with 0 by multiplying `M` by `T` elementwise.
M.*T

ans =
[sin(x)*sin(y), 0]
[0, 2*sin(x)^2]

To check if any of matrix elements contain a particular subexpression, use any.

any(has(M,:), sin(x)))

ans =
1

any(has(M,:), cos(y)))

ans =
0

Find Vector Elements Containing Any of Specified Subexpressions

Using has, find those elements of a symbolic vector that contain any of the specified subexpressions.

syms x y z
T = has([x + 1, cos(y) + 1, y + z, 2*x*cos(y)], [x, cos(y)])

T =
1 1 0 1

Return only the elements of the original vector that contain x or cos(y) or both, and replace all other elements with 0 by multiplying the original vector by T elementwise.

[x + 1, cos(y) + 1, y + z, 2*x*cos(y]).*T

ans =
[x + 1, cos(y) + 1, 0, 2*x*cos(y)]

Use has for Symbolic Functions

If expr or subexpr is a symbolic function, has uses formula(expr) or formula(subexpr). This approach lets the has function check if an expression defining the symbolic function expr contains an expression defining the symbolic function subexpr.
Create a symbolic function.

```matlab
syms x
f(x) = sin(x) + cos(x);
```

Here, $\sin(x) + \cos(x)$ is an expression defining the symbolic function f.

```matlab
formula(f)
```

```matlab
ans =
cos(x) + sin(x)
```

Check if f and $f(x)$ contain $\sin(x)$. In both cases `has` checks if the expression $\sin(x) + \cos(x)$ contains $\sin(x)$.

```matlab
has(f, sin(x))
has(f(x), sin(x))
```

```matlab
ans =
1
ans =
1
```

Check if $f(x^2)$ contains f. For these arguments, `has` returns logical 0 (false) because it does not check if the expression $f(x^2)$ contains the letter f. This call is equivalent to `has(f(x^2), formula(f))`, which, in turn, resolves to `has(cos(x^2) + sin(x^2), cos(x) + sin(x))`.

```matlab
has(f(x^2), f)
```

```matlab
ans =
0
```

Input Arguments

- **expr** — Expression to test
 symbolic expression | symbolic function | symbolic equation | symbolic inequality |
 symbolic vector | symbolic matrix | symbolic array

Expression to test, specified as a symbolic expression, function, equation, or inequality. Also it can be a vector, matrix, or array of symbolic expressions, functions, equations, and inequalities.
Subexpression to test for, specified as a symbolic variable, expression, function, equation, or inequality. Also it can be a vector, matrix, or array of symbolic variables, expressions, functions, equations, and inequalities.

More About

Tips

- `has` does not transform or simplify expressions. This is why it does not find subexpressions like `x^2` in expressions like `(x + 1)^2`. However, in some cases `has` might find that an expression or subexpression can be represented in a form other than its original form. For example, `has` finds that the expression `-x - 1` can be represented as `-(x + 1)`. Thus, the call `has(-x - 1, x + 1)` returns 1.
- If `expr` is an empty symbolic array, `has` returns an empty logical array of the same size as `expr`.

See Also

`subexpr`, `subs`, `times`

Introduced in R2015b
heaviside

Heaviside step function

Syntax

heaviside(x)

Description

heaviside(x) returns the value 0 for \(x < 0 \), 1 for \(x > 0 \), and \(1/2 \) for \(x = 0 \).

Examples

Evaluate Heaviside Function for Numeric and Symbolic Arguments

Depending on the argument value, heaviside returns one of these values: 0, 1, or \(1/2 \). If the argument is a floating-point number (not a symbolic object), then heaviside returns floating-point results.

For \(x < 0 \), the function heaviside(x) returns 0:

heaviside(sym(-3))

ans =

0

For \(x > 0 \), the function heaviside(x) returns 1:

heaviside(sym(3))

ans =

1

For \(x = 0 \), the function heaviside(x) returns \(1/2 \):
heaviside(sym(0))

ans =
1/2

For numeric \(x = 0\), the function \texttt{heaviside}(x) returns the numeric result:

\texttt{heaviside}(0)

ans =
0.5000

Use Assumptions on Variables

\texttt{heaviside} takes into account assumptions on variables.

\begin{verbatim}
syms x
assume(x < 0)
heaviside(x)

ans =
0
\end{verbatim}

For further computations, clear the assumptions:

\begin{verbatim}
syms x clear
\end{verbatim}

Plot Heaviside Function

Plot the Heaviside step function for \(x\) and \(x - 1\).

\begin{verbatim}
syms x
ezplot(heaviside(x), [-2, 2])
\end{verbatim}
ezplot(heaviside(x - 1), [-2, 2])
Evaluate Heaviside Function for Symbolic Matrix

Call `heaviside` for this symbolic matrix. When the input argument is a matrix, `heaviside` computes the Heaviside function for each element.

```matlab
syms x
heaviside(sym([-1 0; 1/2 x]))
```

```
ans =
[ 0, 1/2]
[ 1, heaviside(x)]
```
Differentiate and Integrate Expressions Involving Heaviside Function

Compute derivatives and integrals of expressions involving the Heaviside function.

Find the first derivative of the Heaviside function. The first derivative of the Heaviside function is the Dirac delta function.

```matlab
syms x
diff(heaviside(x), x)
```

ans =
`dirac(x)`

Find the integral of the expression involving the Heaviside function:

```matlab
syms x
int(exp(-x)*heaviside(x), x, -Inf, Inf)
```

ans =
`1`

Change Value of Heaviside Function at Origin

`heaviside` assumes that the value of the Heaviside function at the origin is $1/2$.

```matlab
heaviside(sym(0))
```

ans =
`1/2`

Other common values for the Heaviside function at the origin are 0 and 1. To change the value of `heaviside` at the origin, use the 'HeavisideAtOrigin' preference of `sympref`. Store the previous parameter value returned by `sympref`, so that you can restore it later.

```matlab
oldparam = sympref('HeavisideAtOrigin',1);
```

Check the new value of `heaviside` at 0.

```matlab
heaviside(sym(0))
```

ans =
`1`
The preferences set by `sympref` persist throughout your current and future MATLAB sessions. To restore the previous value of `heaviside` at the origin, use the value stored in `oldparam`.

```matlab
sympref('HeavisideAtOrigin',oldparam);
```

Alternatively, you can restore the default value of `'HeavisideAtOrigin'` by using the `'default'` setting.

```matlab
sympref('HeavisideAtOrigin','default');
```

Input Arguments

x — Input

- symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, function, vector, or matrix.

See Also
dirac | sympref

Introduced before R2006a
hermiteForm

Hermite form of matrix

Syntax

H = hermiteForm(A)
[U,H] = hermiteForm(A)
___ = hermiteForm(A,var)

Description

H = hermiteForm(A) returns the Hermite normal form of a matrix A. The elements of A must be integers or polynomials in a variable determined by symvar(A,1). The Hermite form H is an upper triangular matrix.

[U,H] = hermiteForm(A) returns the Hermite normal form of A and a unimodular transformation matrix U, such that H = U*A.

___ = hermiteForm(A,var) assumes that the elements of A are univariate polynomials in the specified variable var. If A contains other variables, hermiteForm treats those variables as symbolic parameters.

You can use the input argument var in any of the previous syntaxes.

If A does not contain var, then hermiteForm(A) and hermiteForm(A,var) return different results.

Examples

Hermite Form for Matrix of Integers

Find the Hermite form of an inverse Hilbert matrix.

A = sym(invhilb(5))
H = hermiteForm(A)

A =
[25, -300, 1050, -1400, 630]
[-300, 4800, -18900, 26880, -12600]
[1050, -18900, 79380, -117600, 56700]
[-1400, 26880, -117600, 179200, -88200]
[630, -12600, 56700, -88200, 44100]

H =
[5, 0, -210, -280, 630]
[0, 60, 0, 0, 0]
[0, 0, 420, 0, 0]
[0, 0, 0, 840, 0]
[0, 0, 0, 0, 2520]

Hermite Form for Matrix of Univariate Polynomials

Create a 2-by-2 matrix, the elements of which are polynomials in the variable \(x \).

```matlab
syms x
A = [x^2 + 3, (2*x - 1)^2; (x + 2)^2, 3*x^2 + 5]
```

A =
[x^2 + 3, (2*x - 1)^2]
[(x + 2)^2, 3*x^2 + 5]

Find the Hermite form of this matrix.

H = hermiteForm(A)

H =
[1, (4*x^3)/49 + (47*x^2)/49 - (76*x)/49 + 20/49]
[0, x^4 + 12*x^3 - 13*x^2 - 12*x - 11]

Hermite Form for Matrix of Multivariate Polynomials

Create a 2-by-2 matrix that contains two variables: \(x \) and \(y \).

```matlab
syms x y
A = [2/x + y, x^2 - y^2; 3*sin(x) + y, x]
```

A =
[y + 2/x, x^2 - y^2]
Find the Hermite form of this matrix. If you do not specify the polynomial variable, `hermiteForm` uses `symvar(A,1)` and thus determines that the polynomial variable is x. Because $3\sin(x) + y$ is not a polynomial in x, `hermiteForm` throws an error.

$H = \text{hermiteForm}(A)$

Error using mupadengine/feval (line 163)
Cannot convert the matrix entries to integers or univariate polynomials.

Find the Hermite form of A specifying that all elements of A are polynomials in the variable y.

$H = \text{hermiteForm}(A,y)$

$H =$

$\begin{bmatrix}
1, & \frac{(x*y^2)/(3*x*\sin(x) - 2) + (x*(x - x^2))/(3*x*\sin(x) - 2)}{3*y^2*\sin(x) - 3*x^2*\sin(x) + y^3 + y*(- x^2 + x) + 2} \\
0, & 3*y^2*\sin(x) - 3*x^2*\sin(x) + y^3 + y*(- x^2 + x) + 2
\end{bmatrix}$

Hermite Form and Transformation Matrix

Find the Hermite form and the corresponding transformation matrix for an inverse Hilbert matrix.

$A = \text{sym}(\text{invhilb}(3));$

$[U,H] = \text{hermiteForm}(A)$

$U =$

$\begin{bmatrix}
13, & 9, & 7 \\
6, & 4, & 3 \\
20, & 15, & 12
\end{bmatrix}$

$H =$

$\begin{bmatrix}
3, & 0, & 30 \\
0, & 12, & 0 \\
0, & 0, & 60
\end{bmatrix}$

Verify that $H = U*A$.

`isAlways(H == U*A)`

`ans =
1 1 1
1 1 1
1 1 1`
Find the Hermite form and the corresponding transformation matrix for a matrix of polynomials.

```matlab
syms x y
A = [2*(x - y), 3*(x^2 - y^2); 4*(x^3 - y^3), 5*(x^4 - y^4)];
[U,H] = hermiteForm(A,x)
```

\[
U =
\begin{bmatrix}
\frac{1}{2}, & 0 \\
2x^2 + 2xy + 2y^2, & -1
\end{bmatrix}
\]

\[
H =
\begin{bmatrix}
x - y, & \frac{3x^2}{2} - \frac{3y^2}{2} \\
0, & x^4 + 6x^3y - 6xy^3 - y^4
\end{bmatrix}
\]

Verify that \(H = U*A \).

```matlab
isAlways(H == U*A)
```

\[
\text{ans} =
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\]

If You Specify Variable for Integer Matrix

If a matrix does not contain a particular variable, and you call `hermiteForm` specifying that variable as the second argument, then the result differs from what you get without specifying that variable. For example, create a matrix that does not contain any variables.

```matlab
A = [9 -36 30; -36 192 -180; 30 -180 180]
```

\[
A =
\begin{bmatrix}
9 & -36 & 30 \\
-36 & 192 & -180 \\
30 & -180 & 180
\end{bmatrix}
\]

Call `hermiteForm` specifying variable \(x \) as the second argument. In this case, `hermiteForm` assumes that the elements of \(A \) are univariate polynomials in \(x \).

```matlab
syms x
```


```plaintext
hermiteForm(A, x)
ans =
   1     0     0
   0     1     0
   0     0     1
```

Call `hermiteForm` without specifying variables. In this case, `hermiteForm` treats `A` as a matrix of integers.

```plaintext
hermiteForm(A)
ans =
   3     0    30
   0    12     0
   0     0    60
```

Input Arguments

A — Input matrix

symbolic matrix

Input matrix, specified as a symbolic matrix, the elements of which are integers or univariate polynomials. If the elements of `A` contain more than one variable, use the `var` argument to specify a polynomial variable, and treat all other variables as symbolic parameters. If `A` is multivariate, and you do not specify `var`, then `hermiteForm` uses `symvar(A, 1)` to determine a polynomial variable.

var — Polynomial variable

symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

H — Hermite normal form of input matrix

symbolic matrix

Hermite normal form of input matrix, returned as a symbolic matrix. The Hermite form of a matrix is an upper triangular matrix.
U — Transformation matrix
unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A are integers, then elements of U are also integers, and \(\det(U) = 1 \) or \(\det(U) = -1 \). If elements of A are polynomials, then elements of U are univariate polynomials, and \(\det(U) \) is a constant.

More About

Hermite Normal Form

For any square \(n \)-by-\(n \) matrix \(A \) with integer coefficients, there exists an \(n \)-by-\(n \) matrix \(H \) and an \(n \)-by-\(n \) unimodular matrix \(U \), such that \(A*U = H \), where \(H \) is the Hermite normal form of \(A \). A unimodular matrix is a real square matrix, such that its determinant equals 1 or -1. If \(A \) is a matrix of polynomials, then the determinant of \(U \) is a constant.

\texttt{hermiteForm} returns the Hermite normal form of a nonsingular integer square matrix \(A \) as an upper triangular matrix \(H \), such that \(H_{jj} \geq 0 \) and \(-\frac{H_{jj}}{2} < H_{ij} \leq \frac{H_{jj}}{2} \) for \(j > i \). If \(A \) is not a square matrix or a singular matrix, the matrix \(H \) is simply an upper triangular matrix.

See Also
jordan | smithForm

Introduced in R2015b
hermiteH

Hermite polynomials

Syntax

hermiteH(n,x)

Description

hermiteH(n,x) represents the n-th-degree Hermite polynomial at the point x.

Examples

First Five Hermite Polynomials

Find the first five Hermite polynomials of the second kind for the variable x.

```matlab
syms x
hermiteH([0, 1, 2, 3, 4], x)
```

ans =

```
[ 1, 2*x, 4*x^2 - 2, 8*x^3 - 12*x, 16*x^4 - 48*x^2 + 12]
```

Hermite Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, hermiteH returns floating-point or exact symbolic results.

Find the value of the fifth-degree Hermite polynomial at these points. Because these numbers are not symbolic objects, hermiteH returns floating-point results.

```matlab
hermiteH(5, [1/6, 1/3, 1/2, 2/3, 3/4])
```
Find the value of the fifth-degree Hermite polynomial for the same numbers converted to symbolic objects. For symbolic numbers, `hermiteH` returns exact symbolic results.

```matlab
hermiteH(5, sym([1/6, 1/3, 1/2, 2/3, 3/4]))
```

```
ans =
[ 4681/243, 8312/243, 41, 8944/243, 963/32]
```

Plot Hermite Polynomials

Plot the first five Hermite polynomials.

```matlab
syms x y
for n = [0, 1, 2, 3, 4]
    ezplot(hermiteH(n,x))
    hold on
end
hold off

axis([-2, 2, -30, 30])
grid on
ylabel('H_n(x)')
legend('H_0(x)', 'H_1(x)', 'H_2(x)', 'H_3(x)', 'H_4(x)', 'Location', 'Best')
title('Hermite polynomials')
```
Input Arguments

\(n \) — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.
x — Evaluation point

number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

More About

Hermite Polynomials

Hermite polynomials are defined by this recursion formula:

\[
H(0, x) = 1, \quad H(1, x) = 2x, \quad H(n, x) = 2xH(n-1, x) - 2(n-1)H(n-2, x)
\]

Hermite polynomials are orthogonal on the real line with respect to the weight function

\[w(x) = e^{-x^2} \]

Tips

- `hermiteH` returns floating-point results for numeric arguments that are not symbolic objects.
- `hermiteH` acts element-wise on nonscalar inputs.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then `hermiteH` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

See Also

`chebyshevT` | `chebyshevU` | `gegenbauerC` | `jacobiP` | `laguerreL` | `legendreP`
Introduced in R2014b
hessian

Hessian matrix of scalar function

Syntax

```matlab
hessian(f,v)
```

Description

`hessian(f,v)` finds the Hessian matrix of the scalar function `f` with respect to vector `v` in Cartesian coordinates.

If you do not specify `v`, then `hessian(f)` finds the Hessian matrix of the scalar function `f` with respect to a vector constructed from all symbolic variables found in `f`. The order of variables in this vector is defined by `symvar`.

Examples

Find Hessian Matrix of Scalar Function

Find the Hessian matrix of a function by using `hessian`. Then find the Hessian matrix of the same function as the Jacobian of the gradient of the function.

Find the Hessian matrix of this function of three variables:

```matlab
syms x y z
f = x*y + 2*z*x;
```  
```
hessian(f,[x,y,z])
```

```matlab
ans =
[  0,  1,  2]
[  1,  0,  0]
[  2,  0,  0]
```

Alternatively, compute the Hessian matrix of this function as the Jacobian of the gradient of that function:
jacobian(gradient(f))

ans =
[0, 1, 2]
[1, 0, 0]
[2, 0, 0]

Input Arguments

- **f** — Scalar function
 symbolic expression | symbolic function

Scalar function, specified as symbolic expression or symbolic function.

- **v** — Vector with respect to which you find Hessian matrix
 symbolic vector

Vector with respect to which you find Hessian matrix, specified as a symbolic vector. By default, v is a vector constructed from all symbolic variables found in f. The order of variables in this vector is defined by `symvar`.

If v is an empty symbolic object, such as `sym([])`, then `hessian` returns an empty symbolic object.

More About

Hessian Matrix

The Hessian matrix of f(x) is the square matrix of the second partial derivatives of f(x).

\[
H(f) = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}
\]
See Also

curl | diff | divergence | gradient | jacobian | laplacian | potential |
vectorPotential

Introduced in R2011b
horner

Horner nested polynomial representation

Syntax

horner(P)

Description

Suppose P is a matrix of symbolic polynomials. horner(P) transforms each element of P into its Horner, or nested, representation.

Examples

Find nested polynomial representation of the polynomial:

```matlab
syms x
horner(x^3 - 6*x^2 + 11*x - 6)
```

```matlab
ans =
x*(x*(x - 6) + 11) - 6
```

Find nested polynomial representation for the polynomials that form a vector:

```matlab
syms x y
horner([x^2 + x; y^3 - 2*y])
```

```matlab
ans =
x*(x + 1)
y*(y^2 - 2)
```

See Also

collect | combine | expand | factor | numden | rewrite | simplify | simplifyFraction

Introduced before R2006a
horzcat

Concatenate symbolic arrays horizontally

Syntax

horzcat(A1,...,AN)
[A1 ... AN]

Description

horzcat(A1,...,AN) horizontally concatenates the symbolic arrays A1,...,AN. For vectors and matrices, all inputs must have the same number of rows. For multidimensional arrays, horzcat concatenates inputs along the second dimension. The remaining dimensions must match.

[A1 ... AN] is a shortcut for horzcat(A1,...,AN).

Examples

Concatenate Two Symbolic Matrices Horizontally

Create matrices A and B.

A = sym('a%d%d',[2 2])
B = sym('b%d%d',[2 2])

A =
[a11, a12]
[a21, a22]
B =
[b11, b12]
[b21, b22]

Concatenate A and B.

horzcat(A,B)
ans =
[a11, a12, b11, b12]
[a21, a22, b21, b22]

Alternatively, use the shortcut \([A \ B]\).

\([A \ B]\)
ans =
[a11, a12, b11, b12]
[a21, a22, b21, b22]

Concatenate Multiple Symbolic Arrays Horizontally

\(A = \text{sym('a%d', [3 1]);}\)
\(B = \text{sym('b%d%d', [3 3]);}\)
\(C = \text{sym('c%d%d', [3 2]);}\)
\(\text{horzcat(C,A,B)}\)
ans =
[c11, c12, a1, b11, b12, b13]
[c21, c22, a2, b21, b22, b23]
[c31, c32, a3, b31, b32, b33]

Alternatively, use the shortcut \([C \ A \ B]\).

\([C \ A \ B]\)
ans =
[c11, c12, a1, b11, b12, b13]
[c21, c22, a2, b21, b22, b23]
[c31, c32, a3, b31, b32, b33]

Concatenate Multidimensional Arrays Horizontally

Create the 3-D symbolic arrays \(A\) and \(B\).

\(A = \text{sym('a%d%d', [2 3]);}\)
\(A(:,:,2) = -A\)
\(B = \text{sym('b%d%d', [2 2]);}\)
\(B(:,:,2) = -B\)
\(A(:,:,1) =\)
[a11, a12, a13]
[a21, a22, a23]
A(:,:,2) =
[-a11, -a12, -a13]
[-a21, -a22, -a23]

B(:,:,1) =
[b11, b12]
[b21, b22]
B(:,:,2) =
[-b11, -b12]
[-b21, -b22]

Use horzcat to concatenate A and B.

horzcat(A,B)

ans(:,:,1) =
[a11, a12, a13, b11, b12]
[a21, a22, a23, b21, b22]
ans(:,:,2) =
[-a11, -a12, -a13, -b11, -b12]
[-a21, -a22, -a23, -b21, -b22]

Alternatively, use the shortcut [A B].

[A B]

ans(:,:,1) =
[a11, a12, a13, b11, b12]
[a21, a22, a23, b21, b22]
ans(:,:,2) =
[-a11, -a12, -a13, -b11, -b12]
[-a21, -a22, -a23, -b21, -b22]

Input Arguments

A1, ..., AN — Input arrays
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional arrays.

See Also

cat | vertcat
Introduced before R2006a
hypergeom

Hypergeometric function

Syntax

`hypergeom(a,b,z)`

Description

`hypergeom(a,b,z)` represents the generalized hypergeometric function.

Examples

Hypergeometric Function for Numeric and Symbolic Arguments

Depending on its arguments, `hypergeom` can return floating-point or exact symbolic results.

Compute the hypergeometric function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```matlab
A = [hypergeom([1, 2], 2.5, 2),
     hypergeom(1/3, [2, 3], pi),
     hypergeom([1, 1/2], 1/3, 3*i)]
```

```matlab
A =
    -1.2174 - 0.8330i
    1.2091 + 0.0000i
   -0.2028 + 0.2405i
```

Compute the hypergeometric function for the numbers converted to symbolic objects. For most symbolic (exact) numbers, `hypergeom` returns unresolved symbolic calls.

```matlab
symA = [hypergeom([1, 2], 2.5, sym(2)),
        hypergeom(1/3, [2, 3], sym(pi)),

```
hypergeom([1, 1/2], sym(1/3), 3*i])

symA =
 hypergeom([1, 2], 5/2, 2)
 hypergeom(1/3, [2, 3], pi)
 hypergeom([1/2, 1], 1/3, 3i)

Use vpa to approximate symbolic results with the required number of digits:

vpa(symA,10)

ans =
 - 1.21741893 - 0.8330405509i
 1.209063189
 - 0.2027516975 + 0.2405013423i

Special Values

The hypergeometric function has special values for some parameters:

syms a b c d x
hypergeom([], [], x)
hypergeom([a, b, c, d], [a, b, c, d], x)
hypergeom(a, [], x)

ans =
 exp(x)

ans =
 exp(x)

ans =
 1/(1 - x)^a

Any hypergeometric function, evaluated at 0, has the value 1:

syms a b c d
hypergeom([a, b], [c, d], 0)

ans =
 1

If, after canceling identical parameters, the list of upper parameters contains 0, the resulting hypergeometric function is constant with the value 1:
hypergeom([0, 0, 2, 3], [a, 0, 4], x)
ans =
1

If, after canceling identical parameters, the upper parameters contain a negative integer larger than the largest negative integer in the lower parameters, the hypergeometric function is a polynomial. If all parameters as well as the argument x are numeric, a corresponding explicit value is returned:

hypergeom([(-4), -2, 3], [-3, 1, 4], x*pi*sqrt(2))
ans =
(6*pi^2*x^2)/5 - 2*2^(1/2)*pi*x + 1

Hypergeometric functions also reduce to other special functions for some parameters:

hypergeom([1], [a], x)
hypergeom([a], [a, b], x)

ans =
(exp(x/2)*whittakerM(1 - a/2, a/2 - 1/2, -x))/(-x)^(a/2)

ans =
x^(1/2 - b/2)*gamma(b)*besseli(b - 1, 2*x^(1/2))

Handling Expressions That Contain Hypergeometric Functions

Many functions, such as `diff` and `taylor`, can handle expressions containing `hypergeom`.

Differentiate this expression containing hypergeometric function:

```matlab
syms a b c d x
diff(1/x*hypergeom([a, b], [c, d], x), x)
```

```matlab
ans =
(a*b*hypergeom([a + 1, b + 1], [c + 1, d + 1], x))/(c*d*x)...
   - hypergeom([a, b], [c, d], x)/x^2
```

Compute the Taylor series of this hypergeometric function:

```matlab
taylor(hypergeom([1, 2], [3], x), x)
```

```matlab
ans =
```
(2*x^5)/7 + x^4/3 + (2*x^3)/5 + x^2/2 + (2*x)/3 + 1

Input Arguments

a — Upper parameters of hypergeometric function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Upper parameters of hypergeometric function, specified as a number, variable, symbolic expression, symbolic function, or vector.

b — Lower parameters of hypergeometric function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Lower parameters of hypergeometric function, specified as a number, variable, symbolic expression, symbolic function, or vector.

z — Argument of hypergeometric function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Argument of hypergeometric function, specified as a number, variable, symbolic expression, symbolic function, or vector. If z is a vector, hypergeom(a,b,z) is evaluated element-wise.

More About

Generalized Hypergeometric Function

The generalized hypergeometric function of order p, q is defined as follows:

\[pF_q (a; b; z) = \sum_{k=0}^{\infty} \frac{(a_1)_k (a_2)_k \cdots (a_p)_k}{(b_1)_k (b_2)_k \cdots (b_q)_k} \left(\frac{z^k}{k!} \right) \]

Here \(a = [a_1,a_2,\ldots,a_p] \) and \(b = [b_1,b_2,\ldots,b_q] \) are vectors of lengths \(p \) and \(q \), respectively. \((a)_k\) and \((b)_k\) are Pochhammer symbols.
For empty vectors a and b, \texttt{hypergeom} is defined as follows:

\[
\begin{align*}
0F_q (;b;z) &= \sum_{k=0}^{\infty} \frac{1}{(b_1)_k (b_2)_k \ldots (b_q)_k} \left(\frac{z^k}{k!} \right) \\
pFq{p}{0}{a;b;z} &= \sum_{k=0}^{\infty} \frac{(a_1)_k (a_2)_k \ldots (a_p)_k}{(b)_k} \left(\frac{z^k}{k!} \right) \\
0F_0 (;;z) &= \sum_{k=0}^{\infty} \left(\frac{z^k}{k!} \right) = e^z
\end{align*}
\]

\textbf{Pochhammer Symbol}

The Pochhammer symbol is defined as follows:

\[(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)}\]

If n is a positive integer, then $(x)_n = x(x+1)\ldots(x+n-1)$.

\textbf{Tips}

- For most exact arguments, the hypergeometric function returns a symbolic function call. If an upper parameter coincides with a lower parameter, these values cancel and are removed from the parameter lists.
- If, after cancellation of identical parameters, the upper parameters contain a negative integer larger than the largest negative integer in the lower parameters, then $pFq{a;b;z}$ is a polynomial in z.
- The following special values are implemented:
 - $pFq{p}{0}{a;a;z} = 0F_0(;;z) = e^z$.
 - $pFq{p}{0}{a;b;z} = 1$ if the list of upper parameters a contains more 0s than the list of lower parameters b.
 - $pFq{p}{0}{a;b;0} = 1$.

\textbf{Algorithms}

The series
\[pF_q(a; b; z) = \sum_{k=0}^{\infty} \left(\frac{(a_1)_k (a_2)_k \cdots (a_p)_k}{(b_1)_k (b_2)_k \cdots (b_q)_k} \right) \left(\frac{z^k}{k!} \right) \]

- Converges for any \(|z| < \infty \) if \(p \leq q \).
- Converges for \(|z| < 1 \) if \(p = q + 1 \). For \(|z| \geq 1 \), the series diverges, and \(pF_q \) is defined by analytic continuation.
- Diverges for any \(z \neq 0 \) if \(p > q + 1 \). The series defines an asymptotic expansion of \(pF_q(a; b; z) \) around \(z = 0 \). The positive real axis is the branch cut.

If one of the parameters in \(a \) is equal to 0 or a negative integer, then the series terminates, turning into what is called a hypergeometric polynomial.

\(pF_q(a; b; z) \) is symmetric with respect to the parameters, that is, it does not depend on the order of the arrangement \(a_1, a_2, \ldots \) in \(a \) or \(b_1, b_2, \ldots \) in \(b \).

If at least one upper parameter equals \(n = 0, -1, -2, \ldots \), the function turns into a polynomial of degree \(n \). If the previous condition for the lower parameters \(b \) is relaxed, and there is some lower parameter equal to \(m = 0, -1, -2, \ldots \), then the function \(pF_q(a; b; z) \) also reduces to a polynomial in \(z \) provided \(n > m \). It is undefined if \(m > n \) or if no upper parameter is a nonpositive integer (resulting in division by 0 in one of the series coefficients). The case \(m = n \) is handled by the following rule.

. If for \(r \) values of the upper parameters, there are \(r \) values of the lower parameters equal to them (that is, \(a = [a_1, \ldots, a_{p-r}, c_1, \ldots, c_r] \), \(b = [b_1, \ldots, b_{q-r}, c_1, \ldots, c_r] \)), then the order \((p, q)\) of the function \(pF_q(a; b; z) \) is reduced to \((p - r, q - r)\):

\[
pF_q(a_1, \ldots, a_{p-r}, c_1, \ldots, c_r; b_1, \ldots, b_{q-r}, c_1, \ldots, c_r; z) = p-r F_{q-r}(a_1, \ldots, a_{p-r}; b_1, \ldots, b_{q-r}; z)
\]

This rule applies even if any of the \(c_i \) is zero or a negative integer. For details, see Luke, Y.L. "The Special Functions and Their Approximations", vol. 1, p. 42.

\(U(z) = pF_q(a; b; z) \) satisfies a differential equation in \(z \):

\[
[\delta (\delta + b - 1) - z(\delta + a)] U(z) = 0, \quad \delta = z \frac{d}{dz},
\]
where \((\delta + a)\) and \((\delta + b)\) stand for
\[
P \prod_{i=1}^{p} (\delta + a_i)
\]
and
\[
q \prod_{j=1}^{q} (\delta + b_j),
\]
respectively. Thus, the order of this differential equation is \(\max(p, q + 1)\) and the hypergeometric function is only one of its solutions. If \(p < q + 1\), this differential equation has a regular singularity at \(z = 0\) and an irregular singularity at \(z = \infty\). If \(p = q + 1\), the points \(z = 0\), \(z = 1\), and \(z = \infty\) are regular singularities, thus explaining the convergence properties of the hypergeometric series.

References

See Also

kummerU | whittakerM | whittakerW

Introduced before R2006a
ifourier

Inverse Fourier transform

Syntax

ifourier(F, trans_var, eval_point)

Description

ifourier(F, trans_var, eval_point) computes the inverse Fourier transform of F with respect to the transformation variable trans_var at the point eval_point.

Examples

Inverse Fourier Transform of Symbolic Expression

Compute the inverse Fourier transform of this expression with respect to the variable y at the evaluation point x.

```matlab
syms x y
F = sqrt(sym(pi))*exp(-y^2/4);
ifourier(F, y, x)
an =
exp(-x^2)
```

Default Transformation Variable and Evaluation Point

Compute the inverse Fourier transform of this expression calling the ifourier function with one argument. If you do not specify the transformation variable, ifourier uses the variable w.

```matlab
syms a w t real
F = exp(-w^2/(4*a^2));
ifourier(F, t)
```
Inverse Fourier Transforms Involving Dirac and Heaviside Functions

Compute the following inverse Fourier transforms that involve the Dirac and Heaviside functions.

\[
\text{syms } t \ w \\
\text{ifourier(dirac}(w), w, t) \\
\text{ans } = \\
1/(2*pi) \\
\text{ifourier}(2*exp(-\text{abs}(w)) - 1, w, t) \\
\text{ans } = \\
-(2*pi*\text{dirac}(t) - 4/(t^2 + 1))/(2*pi) \\
\text{ifourier}(\text{exp}(-w)*\text{heaviside}(w), w, t) \\
\text{ans } = \\
-1/(2*pi*(-1 + t*1i))
\]

Parameters of Inverse Fourier Transform

Specify parameters of the inverse Fourier transform.

Compute the inverse Fourier transform of this expression using the default values \(c = 1, s = -1 \) of the Fourier parameters. (For details, see “Inverse Fourier Transform” on page 4-634.)

\[
\text{syms } t \ w \\
\text{ifourier}(-\text{sqrt(sym(pi)))}*w*\text{exp}(-w^2/4)*i)/2, w, t)
\]
Change the values of the Fourier parameters to $c = 1$, $s = 1$ by using `sympref`. Then compute the inverse Fourier transform of the same expression again.

```matlab
sympref('FourierParameters', [1, 1]);
ifourier((-sqrt(sym(pi))*w*exp(-w^2/4)*i)/2, w, t)
ans =
-t*exp(-t^2)
```

Change the values of the Fourier parameters to $c = 1/2\pi$, $s = 1$ by using `sympref`. Compute the inverse Fourier transform using these values.

```matlab
sympref('FourierParameters', [1/(2*sym(pi)), 1]);
ifourier((-sqrt(sym(pi))*w*exp(-w^2/4)*i)/2, w, t)
ans =
-2*t*pi*exp(-t^2)
```

The preferences set by `sympref` persist through your current and future MATLAB sessions. To restore the default values of c and s, set `sympref` to `'default'`.

```matlab
sympref('FourierParameters','default');
```

Inverse Fourier Transform of Matrix

Find the inverse Fourier transform of this matrix. Use matrices of the same size to specify the transformation variable and evaluation point.

```matlab
syms a b c d w x y z
ifourier([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])
ans =
[exp(x)*dirac(a), dirac(b)]
[ (dirac(c - 1)*i)/2 - (dirac(c + 1)*i)/2, dirac(1, d)]
```

When the input arguments are nonscalars, `ifourier` acts on them element-wise. If `ifourier` is called with both scalar and nonscalar arguments, then `ifourier` expands the scalar arguments into arrays of the same size as the nonscalar arguments with all elements of the array equal to the scalar.

```matlab
syms w x y z a b c d
```
ifourier(x,[x, w; y, z],[a, b; c, d])

ans =
[-dirac(1, a)*1i, x*dirac(b)]
[x*dirac(c), x*dirac(d)]

Note that nonscalar input arguments must have the same size.

Inverse Fourier Transform of Vector of Symbolic Functions

When the first argument is a symbolic function, the second argument must be a scalar.

```matlab
syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
ifourier([f1, f2],x,[a, b])
```

ans =
[fourier(exp(x), x, -a)/(2*pi), -dirac(1, b)*1i]

If Inverse Fourier Transform Cannot be Found

If `ifourier` cannot find an explicit representation of the transform, it returns results in terms of the direct Fourier transform.

```matlab
syms F(w) t
f = ifourier(F, w, t)
```

```matlab
f =
fourier(F(w), w, -t)/(2*pi)
```

Input Arguments

- **F** — **Input function**
symbolic expression | symbolic function | vector of symbolic expressions or functions | matrix of symbolic expressions or functions

Input function, specified as a symbolic expression or function or a vector or matrix of symbolic expressions or functions.

- **trans_var** — **Transformation variable**
w (default) | symbolic variable
Transformation variable, specified as a symbolic variable. This variable is often called the “frequency variable”.

If you do not specify the transformation variable, `ifourier` uses the variable `w` by default. If `F` does not contain `w`, then the default variable is determined by `symvar`.

eval_point — Evaluation point

`x` (default) | `t` | symbolic variable | symbolic expression | vector of symbolic variables or expressions | matrix of symbolic variables or expressions

Evaluation point, specified as a symbolic variable, expression, or vector or matrix of symbolic variables or expressions. This is often called the “time variable” or the “space variable”.

If you do not specify the evaluation point, `ifourier` uses the variable `x` by default. If `x` is the transformation variable of `F`, then the default evaluation point is the variable `t`.

More About

Inverse Fourier Transform

The inverse Fourier transform of the expression \(F = F(w) \) with respect to the variable \(w \) at the point \(x \) is defined as follows:

\[
 f(x) = \frac{|s|}{2\pi c} \int_{-\infty}^{\infty} F(w) e^{-iswx} dw.
\]

Here, \(c \) and \(s \) are parameters of the inverse Fourier transform. The `ifourier` function uses \(c = 1, s = -1 \).

Tips

- If you call `ifourier` with two arguments, it assumes that the second argument is the evaluation point `eval_point`.
- If `F` is a matrix, `ifourier` acts element-wise on all components of the matrix.
- If `eval_point` is a matrix, `ifourier` acts element-wise on all components of the matrix.
- The toolbox computes the inverse Fourier transform via the direct Fourier transform:
\[\text{ifourier}(F, w, t) = \frac{1}{2\pi} \text{fourier}(F, w, -t) \]

If \text{ifourier} cannot find an explicit representation of the inverse Fourier transform, it returns results in terms of the direct Fourier transform.

- To compute the direct Fourier transform, use \text{fourier}.
- “Compute Fourier and Inverse Fourier Transforms” on page 2-193

References

See Also

\text{fourier} | \text{ilaplace} | \text{iztrans} | \text{laplace} | \text{sympref} | \text{ztrans}

Introduced before R2006a
igamma

Incomplete gamma function

Syntax

igamma(nu,z)

Description

igamma(nu,z) returns the incomplete gamma function.

igamma uses the definition of the upper incomplete gamma function. The MATLAB gammainc function uses the definition of the lower incomplete gamma function,

gammainc(z, nu) = 1 - igamma(nu, z)/gamma(nu). The order of input arguments differs between these functions.

Examples

Compute Incomplete Gamma Function for Numeric and Symbolic Arguments

Depending on its arguments, igamma returns floating-point or exact symbolic results.

Compute the incomplete gamma function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

A = [igamma(0, 1), igamma(3, sqrt(2)), igamma(pi, exp(1)), igamma(3, Inf)]
A =

0.2194 1.6601 1.1979 0

Compute the incomplete gamma function for the numbers converted to symbolic objects:

symA = [igamma(sym(0), 1), igamma(3, sqrt(sym(2))),...
Compute Lower Incomplete Gamma Function

igamma is implemented according to the definition of the upper incomplete gamma function. If you want to compute the lower incomplete gamma function, convert results returned by *igamma* as follows.

Compute the lower incomplete gamma function for these arguments using the MATLAB *gammainc* function:

```matlab
A = [-5/3, -1/2, 0, 1/3];
gammainc(A, 1/3)
```

```
ans =
    1.1456 + 1.9842i   0.5089 + 0.8815i   0.0000 + 0.0000i   0.7175 + 0.0000i
```

Compute the lower incomplete gamma function for the same arguments using *igamma*:

```matlab
1 - igamma(1/3, A)/gamma(1/3)
```

```
ans =
    1.1456 + 1.9842i   0.5089 + 0.8815i   0.0000 + 0.0000i   0.7175 + 0.0000i
```

If one or both arguments are complex numbers, use *igamma* to compute the lower incomplete gamma function. *gammainc* does not accept complex arguments.

```matlab
1 - igamma(1/2, i)/gamma(1/2)
```

```
ans =
0.9693 + 0.4741i
```
Input Arguments

nu — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

z — Input
symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Upper Incomplete Gamma Function

The following integral defines the upper incomplete gamma function:

\[\Gamma(\eta,z) = \int_{z}^{\infty} t^{\eta-1} e^{-t} dt \]

Lower Incomplete Gamma Function

The following integral defines the lower incomplete gamma function:

\[\gamma(\eta,z) = \int_{0}^{z} t^{\eta-1} e^{-t} dt \]

Tips

• The MATLAB \texttt{gammainc} function does not accept complex arguments. For complex arguments, use \texttt{igamma}.
\cdot \text{gammainc}(z, \nu) = 1 - \text{igamma}(\nu, z)/\text{gamma}(\nu) \text{ represents the lower incomplete gamma function in terms of the upper incomplete gamma function.}

\cdot \text{igamma}(\nu, z) = \text{gamma}(\nu)(1 - \text{gammainc}(z, \nu)) \text{ represents the upper incomplete gamma function in terms of the lower incomplete gamma function.}

\cdot \text{gammainc}(z, \nu, 'upper') = \text{igamma}(\nu, z)/\text{gamma}(\nu).

\textbf{See Also}
\texttt{ei} | \texttt{erfc} | \texttt{factorial} | \texttt{gamma} | \texttt{gammainc} | \texttt{int}

\textbf{Introduced in R2014a}
ilaplace

Inverse Laplace transform

Syntax

ilaplace(F,trans_var,eval_point)

Description

ilaplace(F,trans_var,eval_point) computes the inverse Laplace transform of F with respect to the transformation variable trans_var at the point eval_point.

Input Arguments

F
Symbolic expression or function, vector or matrix of symbolic expressions or functions.

trans_var
Symbolic variable representing the transformation variable. This variable is often called the “complex frequency variable”.

Default: The variable s. If F does not contain s, then the default variable is determined by symvar.

eval_point
Symbolic variable or expression representing the evaluation point. This variable is often called the “time variable”.

Default: The variable t. If t is the transformation variable of F, then the default evaluation point is the variable x.
Examples

Compute the inverse Laplace transform of this expression with respect to the variable \(y \) at the evaluation point \(x \):

```matlab
syms x y
F = 1/y^2;
ilaplace(F, y, x)
```

```matlab
ans =
x
```

Compute the inverse Laplace transform of this expression calling the \texttt{ilaplace} function with one argument. If you do not specify the transformation variable, \texttt{ilaplace} uses the variable \(s \).

```matlab
syms a s x
F = 1/(s - a)^2;
ilaplace(F, x)
```

```matlab
ans =
x*exp(a*x)
```

If you also do not specify the evaluation point, \texttt{ilaplace} uses the variable \(t \):

```matlab
ilaplace(F)
```

```matlab
ans =
t*exp(a*t)
```

Compute the following inverse Laplace transforms that involve the Dirac and Heaviside functions:

```matlab
syms s t
ilaplace(1, s, t)
```

```matlab
ans =
dirac(t)
```

```matlab
ilaplace(exp(-2*s)/(s^2 + 1) + s/(s^3 + 1), s, t)
```

```matlab
ans =
heaviside(t - 2)*sin(t - 2) - exp(-t)/3 +...
(exp(t/2)*(cos((3^(1/2)*t)/2) + 3^(1/2)*sin((3^(1/2)*t)/2)))/3
```
If `ilaplace` cannot find an explicit representation of the transform, it returns an unevaluated call:

```matlab
syms F(s) t
f = ilaplace(F, s, t)
```

```matlab
f =
ilaplace(F(s), s, t)
```

`laplace` returns the original expression:

```matlab
laplace(f, t, s)
```

```matlab
ans =
F(s)
```

Find the inverse Laplace transform of this matrix. Use matrices of the same size to specify the transformation variable and evaluation point.

```matlab
syms a b c d w x y z
ilaplace([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])
```

```matlab
ans =
[ exp(x)*dirac(a), dirac(b)]
[ ilaplace(sin(y), y, c), dirac(1, d)*1i]
```

When the input arguments are nonscalars, `ilaplace` acts on them element-wise. If `ilaplace` is called with both scalar and nonscalar arguments, then `ilaplace` expands the scalar arguments into arrays of the same size as the nonscalar arguments with all elements of the array equal to the scalar.

```matlab
syms w x y z a b c d
ilaplace(x,[x, w; y, z],[a, b; c, d])
```

```matlab
ans =
[ dirac(1, a), x*dirac(b)]
[ x*dirac(c), x*dirac(d)]
```

Note that nonscalar input arguments must have the same size.

When the first argument is a symbolic function, the second argument must be a scalar.

```matlab
syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
```
ilaplace([f1, f2],x,[a, b])

ans =
[ilaplace(exp(x), x, a), dirac(1, b)]

More About

Inverse Laplace Transform

The inverse Laplace transform is defined by a contour integral in the complex plane:

\[
f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) e^{st} ds.
\]

Here, \(c\) is a suitable complex number.

Tips

- If you call `ilaplace` with two arguments, it assumes that the second argument is the evaluation point `eval_point`.
- If \(F\) is a matrix, `ilaplace` acts element-wise on all components of the matrix.
- If `eval_point` is a matrix, `ilaplace` acts element-wise on all components of the matrix.
- To compute the direct Laplace transform, use `laplace`.
- “Compute Laplace and Inverse Laplace Transforms” on page 2-199

See Also

`fourier` | `ifourier` | `iztrans` | `laplace` | `ztrans`

Introduced before R2006a
imag

Imaginary part of complex number

Syntax

`imag(z)`
`imag(A)`

Description

`imag(z)` returns the imaginary part of `z`.

`imag(A)` returns the imaginary part of each element of `A`.

Input Arguments

- `z`
 Symbolic number, variable, or expression.

- `A`
 Vector or matrix of symbolic numbers, variables, or expressions.

Examples

Find the imaginary parts of these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[imag(2 + 3/2*i), imag(sin(5*i)), imag(2*exp(1 + i))]
```

```
ans =  
1.5000   74.2032    4.5747
```
Compute the imaginary parts of the numbers converted to symbolic objects:

\[\text{imag}(\text{sym}(2) + \frac{3}{2}i), \text{imag}(\frac{4}{\text{sym}(1) + 3i}), \text{imag}(\sin(\text{sym}(5)i)) \]

\[
\text{ans} = \\
[\frac{3}{2}, -\frac{6}{5}, \sinh(5)]
\]

Compute the imaginary part of this symbolic expression:

\[
\text{imag}(2\exp(1 + \text{sym}(i)))
\]

\[
\text{ans} = \\
2\exp(1)\sin(1)
\]

In general, \text{imag} cannot extract the entire imaginary parts from symbolic expressions containing variables. However, \text{imag} can rewrite and sometimes simplify the input expression:

\[
\text{syms} \ a \ x \ y \\
\text{imag}(a + 2) \\
\text{imag}(x + yi)
\]

\[
\text{ans} = \\
\text{imag}(a)
\]

\[
\text{ans} = \\
\text{imag}(x) + \text{real}(y)
\]

If you assign numeric values to these variables or if you specify that these variables are real, \text{imag} can extract the imaginary part of the expression:

\[
\text{syms} \ a \\
a = 5 + 3i; \\
\text{imag}(a + 2)
\]

\[
\text{ans} = \\
3
\]

\[
\text{syms} \ x \ y \ \text{real} \\
\text{imag}(x + yi)
\]

\[
\text{ans} = \\
y
\]

Clear the assumption that \(x \) and \(y \) are real:
syms x y clear

Find the imaginary parts of the elements of matrix A:

```matlab
syms x
A = [-1 + sym(i), sinh(x); exp(10 + sym(7)*i), exp(sym(pi)*i)];
imag(A)
```

```
ans =
[              1, imag(sinh(x))]
[ exp(10)*sin(7),             0]
```

Alternatives

You can compute the imaginary part of \(z \) via the conjugate: \(\text{imag}(z) = \frac{(z - \text{conj}(z))}{2i} \).

More About

Tips

- Calling `imag` for a number that is not a symbolic object invokes the MATLAB `imag` function.

See Also

`conj` | `in` | `real` | `sign` | `signIm`

Introduced before R2006a
in

Numeric type of symbolic input

Compatibility

In previous releases, `in(x,type)` returned logical 1 if `x` belonged to `type` and 0 otherwise. To obtain the same results as in previous releases, wrap such expressions in `isAlways`. For example, use `isAlways(in(sym(5), 'integer'))`.

Syntax

`in(x,type)`

Description

`in(x,type)` expresses the logical condition that `x` is of the specified `type`.

Examples

Express Condition on Symbolic Variable or Expression

The syntax `in(x,type)` expresses the condition that `x` is of the specified `type`. Express the condition that `x` is of type `Real`.

```matlab
syms x
cond = in(x,'real')
cond =
in(x, 'real')
```

Evaluate the condition using `isAlways`. Because `isAlways` cannot determine the condition, it issues a warning and returns logical 0 (`false`).

```matlab
isAlways(cond)
```
Warning: Cannot prove 'in(x, 'real')'.

ans =

0

Assume the condition cond is true using assume, and evaluate the condition again. The isAlways function returns logical 1 (true) indicating that the condition is true.

assume(cond)
isAlways(cond)

ans =
 1

Clear the assumption on x to use it in further computations.
syms x clear

Express Conditions in Output

Functions such as solve use in in output to express conditions.

Solve the equation \(\sin(x) = 0 \) using solve. Set the option ReturnConditions to true to return conditions on the solution. The solve function uses in to express the conditions.

syms x
[solx, params, conds] = solve(sin(x) == 0,'ReturnConditions',true)
solx =
 pi*k
params =
 k
conds =
 in(k, 'integer')

The solution is \(\pi k \) with parameter \(k \) under the condition \(\text{in}(k, \text{integer}) \). You can use this condition to set an assumption for further computations. Under the assumption, solve returns only integer values of \(k \).

assume(conds)
k = solve(solx > 0, solx < 5*pi, params)
To find the solutions corresponding to these values of k, use `subs` to substitute for k in `solx`.

```
subs(solx,k)
```

```
ans =
    pi
   2*pi
   3*pi
   4*pi
```

Clear the assumption on k to use it in further computations.

```
assume(params, 'clear')
```

Test if Elements of Symbolic Matrix Are Rational

Create symbolic matrix M.

```
syms x y z
M = sym([1.22 i x; sin(y) 3*x 0; Inf sqrt(3) sym(22/7)])
```

```
M =
[  61/50,      1i,    x]
[ sin(y),     3*x,    0]
[    Inf, 3^(1/2), 22/7]
```

Use `isAlways` to test if the elements of M are rational numbers. The `in` function acts on M element-by-element. Note that `isAlways` returns logical 0 (false) for statements that cannot be decided and issues a warning for those statements.

```
in(M,'rational')
```

```
ans =
[ in(61/50, 'rational'), in(1i, 'rational'), in(x, 'rational')]
[ in(sin(y), 'rational'), in(3*x, 'rational'), in(0, 'rational')]
[ in(Inf, 'rational'), in(3^(1/2), 'rational'), in(22/7, 'rational')]
```

```
isAlways(in(M,'rational'))
```
Warning: Cannot prove 'in(sin(y), 'rational')'.
Warning: Cannot prove 'in(3*x, 'rational')'.
Warning: Cannot prove 'in(x, 'rational')'.
ans =
 1 0 0
 0 0 1
 0 0 1

Input Arguments

x — Input
symbolic number | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic expression | symbolic function

Input, specified as a symbolic number, vector, matrix, multidimensional array, expression, or function.

type — Type of input
'real' | 'positive' | 'integer' | 'rational'

Type of input, specified as 'real', 'positive', 'integer', or 'rational'.

See Also
assume | assumeAlso | false | imag | isalways | isequaln | isfinite | isinf
| real | true

Introduced in R2014b
incidenceMatrix

Find incidence matrix of system of equations

Syntax

\[A = \text{incidenceMatrix}(\text{eqs}, \text{vars}) \]

Description

\[A = \text{incidenceMatrix}(\text{eqs}, \text{vars}) \] for \(m \) equations \(\text{eqs} \) and \(n \) variables \(\text{vars} \) returns an \(m \)-by-\(n \) matrix \(A \). Here, \(A(i,j) = 1 \) if \(\text{eqs}(i) \) contains \(\text{vars}(j) \) or any derivative of \(\text{vars}(j) \). All other elements of \(A \) are 0s.

Examples

Incidence Matrix

Find the incidence matrix of a system of five equations in five variables.

Create the following symbolic vector \(\text{eqs} \) containing five symbolic differential equations.

```matlab
syms y1(t) y2(t) y3(t) y4(t) y5(t) c1 c3
eqs = [diff(y1(t),t) == y2(t),...diff(y2(t),t) == c1*y1(t) + c3*y3(t),...diff(y3(t),t) == y2(t) + y4(t),...diff(y4(t),t) == y3(t) + y5(t),...diff(y5(t),t) == y4(t)];
```

Create the vector of variables. Here, \(c1 \) and \(c3 \) are symbolic parameters (not variables) of the system.

```matlab
vars = [y1(t), y2(t), y3(t), y4(t), y5(t)];
```

Find the incidence matrix \(A \) for the equations \(\text{eqs} \) and with respect to the variables \(\text{vars} \).

\[A = \text{incidenceMatrix}([\text{eqs}], \text{vars}) \]
\[A = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix} \]

Input Arguments

- **eqs** — Equations

 vector of symbolic equations | vector of symbolic expressions

 Equations, specified as a vector of symbolic equations or expressions.

- **vars** — Variables

 vector of symbolic variables | vector of symbolic functions | vector of symbolic function calls

 Variables, specified as a vector of symbolic variables, symbolic functions, or function calls, such as \(x(t) \).

Output Arguments

- **A** — Incidence matrix

 matrix of double-precision values

 Incidence matrix, returned as a matrix of double-precision values.

See Also

- daeFunction
- decic
- findDecoupledBlocks
- isLowIndexDAE
- massMatrixForm
- odeFunction
- reduceDAEIndex
- reduceDAEToODE
- reduceDifferentialOrder
- reduceRedundancies
- spy

Introduced in R2014b
int

Definite and indefinite integrals

Syntax

int(expr,var)
int(expr,var,a,b)
int(____,Name,Value)

Description

int(expr,var) computes the indefinite integral of expr with respect to the symbolic scalar variable var. Specifying the variable var is optional. If you do not specify it, int uses the default variable determined by symvar. If expr is a constant, then the default variable is x.

int(expr,var,a,b) computes the definite integral of expr with respect to var from a to b. If you do not specify it, int uses the default variable determined by symvar. If expr is a constant, then the default variable is x.

int(expr,var,[a,b]), int(expr,var,[a b]), and int(expr,var,[a;b]) are equivalent to int(expr,var,a,b).

int(____,Name,Value) uses additional options specified by one or more Name,Value pair arguments.

Examples

Indefinite Integral of Univariate Expression

Find an indefinite integral of this univariate expression:

```plaintext
syms x
int(-2*x/(1 + x^2)^2)
```
ans =
1/(x^2 + 1)

Indefinite Integrals of Multivariate Expression

Find indefinite integrals of this multivariate expression with respect to the variables x and z:

```matlab
syms x z
int(x/(1 + z^2), x)
int(x/(1 + z^2), z)
```

ans =
x^2/(2*(z^2 + 1))

ans =
x*atan(z)

If you do not specify the integration variable, `int` uses the variable returned by `symvar`. For this expression, `symvar` returns x:

```matlab
symvar(x/(1 + z^2), 1)
```

ans =
x

Definite Integrals of Univariate Expressions

Integrate this expression from 0 to 1:

```matlab
syms x
int(x*log(1 + x), 0, 1)
```

ans =
1/4

Integrate this expression from \(\sin(t)\) to 1 specifying the integration range as a vector:

```matlab
syms x t
int(2*x, [sin(t), 1])
```

ans =
\(\cos(t)^2\)
Integrals of Matrix Elements

Find indefinite integrals for the expressions listed as the elements of a matrix:

```matlab
syms a x t z
int([exp(t), exp(a*t); sin(t), cos(t)])
```

```matlab
ans =
[ exp(t), exp(a*t)/a]
[ -cos(t), sin(t)]
```

Apply IgnoreAnalyticConstraints

Compute this indefinite integral. By default, int uses strict mathematical rules. These rules do not let int rewrite \(\text{asin}(\sin(x)) \) and \(\text{acos}(\cos(x)) \) as \(x \).

```matlab
syms x
int(acos(sin(x)), x)
```

```matlab
ans =
x*acos(sin(x)) + (x^2*sign(cos(x)))/2
```

If you want a simple practical solution, try IgnoreAnalyticConstraints:

```matlab
int(acos(sin(x)), x, 'IgnoreAnalyticConstraints', true)
```

```matlab
ans =
-(x*(x - pi))/2
```

Ignore Special Cases

Compute this integral with respect to the variable \(x \):

```matlab
syms x t
int(x^t, x)
```

By default, int returns the integral as a piecewise object where every branch corresponds to a particular value (or a range of values) of the symbolic parameter \(t \):

```matlab
ans =
piecewise([t == -1, log(x)], [t ~= -1, x^(t + 1)/(t + 1)])
```

To ignore special cases of parameter values, use IgnoreSpecialCases:
int(x^t, x, 'IgnoreSpecialCases', true)

With this option, int ignores the special case \(t=-1 \) and returns only the branch where \(t\neq-1 \):

\[
\text{ans} = \frac{x^{(t + 1)}}{t + 1}
\]

Find Cauchy Principal Value

Compute this definite integral, where the integrand has a pole in the interior of the interval of integration. Mathematically, this integral is not defined.

```matlab
syms x
int(1/(x - 1), x, 0, 2)
```

\[
\text{ans} = \text{NaN}
\]

However, the Cauchy principal value of the integral exists. Use `PrincipalValue` to compute the Cauchy principal value of the integral:

```matlab
int(1/(x - 1), x, 0, 2, 'PrincipalValue', true)
```

\[
\text{ans} = 0
\]

Approximate Indefinite Integrals

If `int` cannot compute a closed form of an integral, it returns an unresolved integral:

```matlab
syms x
F = sin(sinh(x));
int(F, x)
```

\[
\text{ans} = \int(\sin(\sinh(x)), x)
\]

If `int` cannot compute a closed form of an indefinite integral, try to approximate the expression around some point using `taylor`, and then compute the integral. For example, approximate the expression around \(x = 0 \):

```matlab
int(taylor(F, x, 'ExpansionPoint', 0, 'Order', 10), x)
```

\[
\text{ans} = \text{NaN}
\]
\[
\frac{x^{10}}{56700} - \frac{x^{8}}{720} - \frac{x^{6}}{90} + \frac{x^{2}}{2}
\]

Approximate Definite Integrals

Compute this definite integral:

```matlab
syms x
F = int(cos(x)/sqrt(1 + x^2), x, 0, 10)
```

\[
F = \int \frac{\cos(x)}{(x^2 + 1)^{1/2}} \, dx, \quad x, \quad 0, \quad 10
\]

If `int` cannot compute a closed form of a definite integral, try approximating that integral numerically using `vpa`. For example, approximate \(F \) with five significant digits:

```matlab
vpa(F, 5)
```

\[
\text{ans} = 0.37571
\]

Input Arguments

- **expr** — Integrand
 - symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic number
 - Integrand, specified as a symbolic expression or function, a constant, or a vector or matrix of symbolic expressions, functions, or constants.

- **var** — Integration variable
 - symbolic variable
 - Integration variable, specified as a symbolic variable. If you do not specify this variable, `int` uses the default variable determined by `symvar(expr,1)`. If `expr` is a constant, then the default variable is \(x \).

- **a** — Lower bound
 - number | symbolic number | symbolic variable | symbolic expression | symbolic function
 - Lower bound, specified as a number, symbolic number, variable, expression or function (including expressions and functions with infinities).
Functions — Alphabetical List

b — Upper bound
number | symbolic number | symbolic variable | symbolic expression | symbolic function

Upper bound, specified as a number, symbolic number, variable, expression or function (including expressions and functions with infinities).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes ('). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'IgnoreAnalyticConstraints',true specifies that int applies purely algebraic simplifications to the integrand.

'IgnoreAnalyticConstraints' — Indicator for applying purely algebraic simplifications to integrand
false (default) | true

Indicator for applying purely algebraic simplifications to integrand, specified as true or false. If the value is true, apply purely algebraic simplifications to the integrand. This option can provide simpler results for expressions, for which the direct use of the integrator returns complicated results. In some cases, it also enables int to compute integrals that cannot be computed otherwise.

Note that using this option can lead to wrong or incomplete results.

'IgnoreSpecialCases' — Indicator for ignoring special cases
false (default) | true

Indicator for ignoring special cases, specified as true or false. If the value is true and integration requires case analysis, ignore cases that require one or more parameters to be elements of a comparatively small set, such as a fixed finite set or a set of integers.

'PrincipalValue' — Indicator for returning principal value
false (default) | true

Indicator for returning principal value, specified as true or false. If the value is true, compute the Cauchy principal value of the integral.
More About

Tips

• In contrast to differentiation, symbolic integration is a more complicated task. If \texttt{int} cannot compute an integral of an expression, one of these reasons might apply:
 • The antiderivative does not exist in a closed form.
 • The antiderivative exists, but \texttt{int} cannot find it.

If \texttt{int} cannot compute a closed form of an integral, it returns an unresolved integral.

Try approximating such integrals by using one of these methods:

• For indefinite integrals, use series expansions. Use this method to approximate an integral around a particular value of the variable.
• For definite integrals, use numeric approximations.
• Results returned by \texttt{int} do not include integration constants.
• For indefinite integrals, \texttt{int} implicitly assumes that the integration variable \texttt{var} is real. For definite integrals, \texttt{int} restricts the integration variable \texttt{var} to the specified integration interval. If one or both integration bounds \texttt{a} and \texttt{b} are not numeric, \texttt{int} assumes that \texttt{a <= b} unless you explicitly specify otherwise.

Algorithms

When you use \texttt{IgnoreAnalyticConstraints}, \texttt{int} applies these rules:

• \(\log(a) + \log(b) = \log(a \cdot b) \) for all values of \(a \) and \(b \). In particular, the following equality is valid for all values of \(a, b, \) and \(c \):
 \[
 (a \cdot b)^c = a^c \cdot b^c.
 \]
• \(\log(a^b) = b \cdot \log(a) \) for all values of \(a \) and \(b \). In particular, the following equality is valid for all values of \(a, b, \) and \(c \):
 \[
 (a^b)^c = a^{b \cdot c}.
 \]
• If \(f \) and \(g \) are standard mathematical functions and \(f(g(x)) = x \) for all small positive numbers, then \(f(g(x)) = x \) is assumed to be valid for all complex values \(x \). In particular:
 • \(\log(e^x) = x \)
• \(\text{asin}(\sin(x)) = x, \ \text{acos}(\cos(x)) = x, \ \text{atan}(\tan(x)) = x \)
• \(\text{asinh}(\sinh(x)) = x, \ \text{acosh}(\cosh(x)) = x, \ \text{atanh}(\tanh(x)) = x \)
• \(W_k(x e^x) = x \) for all values of \(k \)

See Also

diff | functionalDerivative | symprod | symsum | symvar

Introduced before R2006a
int8int16int32int64

Convert symbolic matrix to signed integers

Syntax

int8(S)
int16(S)
int32(S)
int64(S)

Description

int8(S) converts a symbolic matrix S to a matrix of signed 8-bit integers.

int16(S) converts S to a matrix of signed 16-bit integers.

int32(S) converts S to a matrix of signed 32-bit integers.

int64(S) converts S to a matrix of signed 64-bit integers.

Note The output of int8, int16, int32, and int64 does not have data type symbolic.

The following table summarizes the output of these four functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Output Range</th>
<th>Output Type</th>
<th>Bytes per Element</th>
<th>Output Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>int8</td>
<td>-128 to 127</td>
<td>Signed 8-bit integer</td>
<td>1</td>
<td>int8</td>
</tr>
<tr>
<td>int16</td>
<td>-32,768 to 32,767</td>
<td>Signed 16-bit integer</td>
<td>2</td>
<td>int16</td>
</tr>
<tr>
<td>int32</td>
<td>-2,147,483,648 to 2,147,483,647</td>
<td>Signed 32-bit integer</td>
<td>4</td>
<td>int32</td>
</tr>
<tr>
<td>int64</td>
<td>-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807</td>
<td>Signed 64-bit integer</td>
<td>8</td>
<td>int64</td>
</tr>
</tbody>
</table>
See Also
sym | vpa | single | uint8 | double | uint16 | uint32 | uint64

Introduced before R2006a
inv

Compute symbolic matrix inverse

Syntax

R = inv(A)

Description

R = inv(A) returns inverse of the symbolic matrix A.

Examples

Compute the inverse of the following matrix of symbolic numbers:

\[
A = \text{sym}([2,-1,0;-1,2,-1;0,-1,2]);
\]

\[
\text{inv}(A)
\]

\[
\begin{bmatrix}
\frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{bmatrix}
\]

Compute the inverse of the following symbolic matrix:

\[
s\text{yms} a \ b \ c \ d
\]

\[
A = [a \ b; \ c \ d];
\]

\[
\text{inv}(A)
\]

\[
\begin{bmatrix}
\frac{d}{a*d - b*c}, & -\frac{b}{a*d - b*c}
\end{bmatrix}
\]

\[
\begin{bmatrix}
-\frac{c}{a*d - b*c}, & \frac{a}{a*d - b*c}
\end{bmatrix}
\]

Compute the inverse of the symbolic Hilbert matrix:

\[
\text{inv}([\text{sym(hilb(4))}])
\]

\[
\text{ans} =
\]
[16, -120, 240, -140]
[-120, 1200, -2700, 1680]
[240, -2700, 6480, -4200]
[-140, 1680, -4200, 2800]

See Also
eig | det | rank

Introduced before R2006a
isAlways

Check whether equation or inequality holds for all values of its variables

Compatibility

isAlways issues a warning when returning false for undecidable inputs. To suppress the warning, set the Unknown option to false as isAlways(cond,'Unknown','false'). For details, see “Handle Output for Undecidable Conditions” on page 4-666.

Syntax

isAlways(cond)
isAlways(cond,Name,Value)

Description

isAlways(cond) checks if the condition cond is valid for all possible values of the symbolic variables in cond. When verifying cond, the isAlways function considers all assumptions on the variables in cond. If the condition holds, isAlways returns logical 1 (true). Otherwise it returns logical 0 (false).

isAlways(cond,Name,Value) uses additional options specified by one or more Name,Value pair arguments.

Examples

Test Conditions

Check if this inequality is valid for all values of x.

syms x
isAlways(abs(x) >= 0)
isAlways returns logical 1 (true) indicating that the inequality \(\text{abs}(x) \geq 0 \) is valid for all values of \(x \).

Check if this equation is valid for all values of \(x \).

\[
\text{isAlways}(\sin(x)^2 + \cos(x)^2 == 1)
\]

\[
\text{ans} = 1
\]

isAlways returns logical 1 (true) indicating that the inequality is valid for all values of \(x \).

Test if One of Several Conditions Is Valid

Check if at least one of these two conditions is valid. To check if at least one of several conditions is valid, combine them using the logical operator or or its shortcut |.

\[
\text{syms} \ x
\]

\[
\text{isAlways}(\sin(x)^2 + \cos(x)^2 == 1 \mid x^2 > 0)
\]

\[
\text{ans} = 1
\]

Check if both conditions are valid. To check if several conditions are valid, combine them using the logical operator and or its shortcut &.

\[
\text{isAlways}(\sin(x)^2 + \cos(x)^2 == 1 \& \text{abs}(x) > 2\text{abs}(x))
\]

\[
\text{ans} = 0
\]

Handle Output for Undecidable Conditions

Test this condition. When isAlways cannot determine if the condition is valid, it returns logical 0 (false) and issues a warning by default.

\[
\text{syms} \ x
\]

\[
\text{isAlways}(2x \geq x)
\]
Warning: Cannot prove 'x <= 2*x'.
ans = 0

To change this default behavior, use Unknown. For example, specify Unknown as false to suppress the warning and make isAlways return logical 0 (false) if it cannot determine the validity of the condition.

isAlways(2*x >= x,'Unknown','false')
ans = 0

Instead of false, you can also specify error to return an error, and true to return logical 1 (true).

Test Conditions with Assumptions

Check this inequality under the assumption that x is positive. When isAlways tests an equation or inequality, it takes into account assumptions on variables in that equation or inequality.

syms x
assume(x < 0)
isAlways(2*x < x)
ans = 1

For further computations, clear the assumption on x.
syms x clear

Input Arguments

cond — Condition to check
symbolic condition | vector of symbolic conditions | matrix of symbolic conditions | multidimensional array of symbolic conditions

Condition to check, specified as a symbolic condition, or a vector, matrix, or multidimensional array of symbolic conditions.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes ('). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: isAlways(cond,'Unknown',true) makes isAlways return logical 1 (true) when the specified condition cannot be decided.

'Unknown' — Return value for undecidable condition
falseWithWarning (default) | false | true | error

Return value for an undecidable condition, specified as the comma-separated pair of 'Unknown' and one of these values.

<table>
<thead>
<tr>
<th>falseWithWarning (default)</th>
<th>On undecidable inputs, return logical 0 (false) and a warning that the condition cannot be proven.</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>On undecidable inputs, return logical 0 (false).</td>
</tr>
<tr>
<td>true</td>
<td>On undecidable inputs, return logical 1 (true).</td>
</tr>
<tr>
<td>error</td>
<td>On undecidable inputs, return an error.</td>
</tr>
</tbody>
</table>

More About

• “Use Assumptions on Symbolic Variables” on page 1-27
• “Clear Assumptions and Reset the Symbolic Engine” on page 3-43

See Also

assume | assumeAlso | assumptions | in | isequaln | isfinite | isinf | isnan | sym | syms

Introduced in R2012a
isequaln

Test symbolic objects for equality, treating NaN values as equal

Syntax

isequaln(A,B)
isequaln(A1,A2,...,An)

Description

isequaln(A,B) returns logical 1 (true) if A and B are the same size and their contents are of equal value. Otherwise, isequaln returns logical 0 (false). All NaN (not a number) values are considered to be equal to each other. isequaln recursively compares the contents of symbolic data structures and the properties of objects. If all contents in the respective locations are equal, isequaln returns logical 1 (true).

isequaln(A1,A2,...,An) returns logical 1 (true) if all the inputs are equal.

Examples

Compare Two Expressions

Use isequaln to compare these two expressions:

syms x
isequaln(abs(x), x)
ans =
0

For positive x, these expressions are identical:

assume(x > 0)
isequaln(abs(x), x)
ans =
1
For further computations, remove the assumption:

```matlab
syms x clear
```

Compare Two Matrices

Use `isequaln` to compare these two matrices:

```matlab
A = hilb(3);
B = sym(A);
isequaln(A, B)
```

```matlab
ans =
    1
```

Compare Vectors Containing NaN Values

Use `isequaln` to compare these vectors:

```matlab
syms x
A1 = [x NaN NaN];
A2 = [x NaN NaN];
A3 = [x NaN NaN];
isequaln(A1, A2, A3)
```

```matlab
ans =
    1
```

Input Arguments

A, B — Inputs to compare

- symbolic numbers
- symbolic variables
- symbolic expressions
- symbolic functions
- symbolic vectors
- symbolic matrices

Inputs to compare, specified as symbolic numbers, variables, expressions, functions, vectors, or matrices. If one of the arguments is a symbolic object and the other one is numeric, the toolbox converts the numeric object to symbolic before comparing them.

A1, A2, ..., An — Series of inputs to compare

- symbolic numbers
- symbolic variables
- symbolic expressions
- symbolic functions
- symbolic vectors
- symbolic matrices
Series of inputs to compare, specified as symbolic numbers, variables, expressions, functions, vectors, or matrices. If at least one of the arguments is a symbolic object, the toolbox converts all other arguments to symbolic objects before comparing them.

More About

Tips

- Calling `isequaln` for arguments that are not symbolic objects invokes the MATLAB `isequaln` function. If one of the arguments is symbolic, then all other arguments are converted to symbolic objects before comparison.

See Also

`in` | `isAlways` | `isequaln` | `isfinite` | `isinf` | `isnan`

Introduced in R2013a
isfinite

Check whether symbolic array elements are finite

Syntax

\[\text{isfinite}(A) \]

Description

\[\text{isfinite}(A) \] returns an array of the same size as \(A \) containing logical 1s (true) where the elements of \(A \) are finite, and logical 0s (false) where they are not. For a complex number, \(\text{isfinite} \) returns 1 if both the real and imaginary parts of that number are finite. Otherwise, it returns 0.

Examples

Determine Which Elements of Symbolic Array Are Finite Values

Using \(\text{isfinite} \), determine which elements of this symbolic matrix are finite values:

\[\text{isfinite}(\text{sym}([[\pi \text{NaN} \text{Inf}; 1 + i \text{Inf} + i \text{NaN} + i]))) \]

\[\text{ans} = \\
1 \quad 0 \quad 0 \\
1 \quad 0 \quad 0 \]

Determine if Exact and Approximated Values Are Finite

Approximate these symbolic values with the 50-digit accuracy:

\[V = \text{sym}([\pi, 2*\pi, 3*\pi, 4*\pi]); \]
\[V_\text{approx} = \text{vpa}(V, 50); \]

The cotangents of the exact values are not finite:

\[\text{cot}(V) \]
isfinite(cot(V))
ans =
[Inf, Inf, Inf, Inf]

ans =
0 0 0 0

Nevertheless, the cotangents of the approximated values are finite due to the round-off errors:

isfinite(cot(V_approx))
ans =
1 1 1 1

Input Arguments

A — Input value
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an array, vector, or matrix of symbolic numbers, variables, expressions, functions.

More About

Tips

- For any `A`, exactly one of the three quantities `isfinite(A)`, `isinf(A)`, or `isnan(A)` is 1 for each element.
- Elements of `A` are recognized as finite if they are
 - Not symbolic NaN
 - Not symbolic Inf or -Inf
 - Not sums or products containing symbolic infinities Inf or -Inf

See Also

in | *isAlways* | *isequaln* | *isinf* | *isnan*
Introduced in R2013b
isinf

Check whether symbolic array elements are infinite

Syntax

isinf(A)

Description

isinf(A) returns an array of the same size as A containing logical 1s (true) where the elements of A are infinite, and logical 0s (false) where they are not. For a complex number, isinf returns 1 if the real or imaginary part of that number is infinite or both real and imaginary parts are infinite. Otherwise, it returns 0.

Examples

Determine Which Elements of Symbolic Array Are Infinite

Using isinf, determine which elements of this symbolic matrix are infinities:

isinf(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))

ans =
0 0 1
0 1 0

Determine if Exact and Approximated Values Are Infinite

Approximate these symbolic values with the 50-digit accuracy:

V = sym([pi, 2*pi, 3*pi, 4*pi]);
V_approx = vpa(V, 50);

The cotangents of the exact values are infinite:

cot(V)
isinf(cot(V))
ans =
[Inf, Inf, Inf, Inf]
ans =
 1 1 1 1

Nevertheless, the cotangents of the approximated values are not infinite due to the round-off errors:
isinf(cot(V_approx))
ans =
 0 0 0 0

Input Arguments

A — Input value
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an array, vector, or matrix of symbolic numbers, variables, expressions, functions.

More About

Tips

- For any A, exactly one of the three quantities isfinite(A), isnan(A), or isinf(A) is 1 for each element.
- The elements of A are recognized as infinite if they are
 - Symbolic Inf or -Inf
 - Sums or products containing symbolic Inf or -Inf and not containing the value NaN.

See Also
in | isAlways | isequaln | isfinite | isnan
Introduced in R2013b
isLowIndexDAE

Check if differential index of system of equations is lower than 2

Syntax

isLowIndexDAE(eqs, vars)

Description

isLowIndexDAE(eqs, vars) checks if the system eqs of first-order semilinear differential algebraic equations (DAEs) has a low differential index. If the differential index of the system is 0 or 1, then isLowIndexDAE returns logical 1 (true). If the differential index of eqs is higher than 1, then isLowIndexDAE returns logical 0 (false).

The number of equations eqs must match the number of variables vars.

Examples

Check Differential Index of DAE System

Check if a system of first-order semilinear DAEs has a low differential index (0 or 1).

Create the following system of two differential algebraic equations. Here, \(x(t) \) and \(y(t) \) are the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```matlab
syms x(t) y(t)
eqs = [diff(x(t),t) == x(t) + y(t), x(t)^2 + y(t)^2 == 1];
vars = [x(t), y(t)];
```

Use isLowIndexDAE to check the differential order of the system. The differential order of this system is 1. For systems of index 0 and 1, isLowIndexDAE returns 1 (true).

```matlab
isLowIndexDAE(eqs, vars)
```
Reduce Differential Index of DAE System

Check if the following DAE system has a low or high differential index. If the index is higher than 1, then use `reduceDAEIndex` to reduce it.

Create the following system of two differential algebraic equations. Here, \(x(t) \), \(y(t) \), and \(z(t) \) are the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```matlab
syms x(t) y(t) z(t)
vars = x(t), y(t), z(t);
eqs = diff(x(t), t) == x(t) + z(t),... diff(y(t), t) == f(t), x(t) == y(t);```

Use `isLowIndexDAE` to check the differential index of the system. For this system `isLowIndexDAE` returns 0 (false). This means that the differential index of the system is 2 or higher.

```matlab
isLowIndexDAE(eqs, vars)
ans =
0```

Use `reduceDAEIndex` to rewrite the system so that the differential index is 1. Calling this function with four output arguments also shows the differential index of the original system. The new system has one additional state variable, \(Dyt(t) \).

```matlab
[newEqs, newVars, ~, oldIndex] = reduceDAEIndex(eqs, vars)
newEqs =
diff(x(t), t) - z(t) - x(t)
        Dyt(t) - f(t)
        x(t) - y(t)
diff(x(t), t) - Dyt(t)
newVars =
x(t)
y(t)
z(t)```
Dyt(t)
oldIndex = 
    2

Check if the differential order of the new system is lower than 2.

isLowIndexDAE(newEqs, newVars)
ans = 
    1

**Input Arguments**

*eqs* — System of first-order semilinear differential algebraic equations

vector of symbolic equations | vector of symbolic expressions

System of first-order semilinear differential algebraic equations, specified as a vector of symbolic equations or expressions.

*vars* — State variables

vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as \( x(t) \).

Example: \([x(t), y(t)]\)

**See Also**

daeFunction | decic | findDecoupledBlocks | incidenceMatrix | massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies

*Introduced in R2014b*
isnan

Check whether symbolic array elements are NaNs

Syntax

isnan(A)

Description

isnan(A) returns an array of the same size as A containing logical 1s (true) where the elements of A are symbolic NaNs, and logical 0s (false) where they are not.

Examples

Determine Which Elements of Symbolic Array Are NaNs

Using isnan, determine which elements of this symbolic matrix are NaNs:

isnan(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))

ans =

0 1 0
0 0 1

Input Arguments

A — Input value
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an array, vector, or matrix of symbolic numbers, variables, expressions, functions.
More About

Tips

• For any A, exactly one of the three quantities `isfinite(A)`, `isinf(A)`, or `isnan(A)` is 1 for each element.

• Symbolic expressions and functions containing NaN evaluate to NaN. For example, `sym(NaN + i)` returns symbolic NaN.

See Also

`isAlways | isequaln | isfinite | isinf`

Introduced in R2013b
iztrans

Inverse Z-transform

Syntax

iztrans(F,trans_index,eval_point)

Description

iztrans(F,trans_index,eval_point) computes the inverse Z-transform of F with respect to the transformation index trans_index at the point eval_point.

Input Arguments

F
Symbolic expression, symbolic function, or vector or matrix of symbolic expressions or functions.

trans_index
Symbolic variable representing the transformation index. This variable is often called the “complex frequency variable”.

Default: The variable z. If F does not contain z, then the default variable is determined by symvar.

eval_point
Symbolic variable or expression representing the evaluation point. This variable is often called the “discrete time variable”.

Default: The variable n. If n is the transformation index of F, then the default evaluation point is the variable k.
Examples

Compute the inverse Z-transform of this expression with respect to the transformation index \(x\) at the evaluation point \(k\):

```matlab
syms k x
F = 2*x/(x - 2)^2;
iztrans(F, x, k)
```

\[
\text{ans} = 2^k + 2^k(k - 1)
\]

Compute the inverse Z-transform of this expression calling the `iztrans` function with one argument. If you do not specify the transformation index, `iztrans` uses the variable \(z\).

```matlab
syms z a k
F = exp(a/z);
iztrans(F, k)
```

\[
\text{ans} = \frac{a^k}{\text{factorial}(k)}
\]

If you also do not specify the evaluation point, `iztrans` uses the variable \(n\):

```matlab
iztrans(F)
```

\[
\text{ans} = \frac{a^n}{\text{factorial}(n)}
\]

Compute the inverse Z-transforms of these expressions. The results involve the Kronecker's delta function.

```matlab
syms n z
iztrans(1/z, z, n)
```

\[
\text{ans} = \text{kroneckerDelta}(n - 1, 0)
\]

```matlab
iztrans((z^3 + 3*z^2 + 6*z + 5)/z^5, z, n)
```

\[
\text{ans} = \text{kroneckerDelta}(n - 2, 0) + 3\text{kroneckerDelta}(n - 3, 0) + \ldots
6\text{kroneckerDelta}(n - 4, 0) + 5\text{kroneckerDelta}(n - 5, 0)
\]
If `iztrans` cannot find an explicit representation of the transform, it returns an unevaluated call:

```matlab
syms F(z) n
f = iztrans(F, z, n)
```

```matlab
f =
iztrans(F(z), z, n)
```

`ztrans` returns the original expression:

```matlab
ztrans(f, n, z)
```

```matlab
ans =
F(z)
```

Find the inverse Z-transform of this matrix. Use matrices of the same size to specify the transformation variable and evaluation point.

```matlab
syms a b c d w x y z
iztrans([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])
```

```matlab
ans =
[exp(x)*kroneckerDelta(a, 0), kroneckerDelta(b, 0)]
[iztrans(sin(y), y, c), iztrans(z, z, d)*1i]
```

When the input arguments are nonscalars, `iztrans` acts on them element-wise. If `iztrans` is called with both scalar and nonscalar arguments, then `iztrans` expands the scalar arguments into arrays of the same size as the nonscalar arguments with all elements of the array equal to the scalar.

```matlab
syms w x y z a b c d
iztrans(x,[x, w; y, z],[a, b; c, d])
```

```matlab
ans =
[iztrans(x, x, a), x*kroneckerDelta(b, 0)]
[x*kroneckerDelta(c, 0), x*kroneckerDelta(d, 0)]
```

Note that nonscalar input arguments must have the same size.

When the first argument is a symbolic function, the second argument must be a scalar.

```matlab
syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
```
iztrans([f1, f2],x,[a, b])

ans =
[ iztrans(exp(x), x, a), iztrans(x, x, b)]

**More About**

**Inverse Z-Transform**

If \( R \) is a positive number, such that the function \( F(z) \) is analytic on and outside the circle \( |z| = R \), then the inverse Z-transform is defined as follows:

\[
f(n) = \frac{1}{2\pi i} \oint_{|z|=R} F(z) z^{n-1} dz, \quad n = 0, 1, 2...
\]

**Tips**

- If you call `iztrans` with two arguments, it assumes that the second argument is the evaluation point `eval_point`.
- If \( F \) is a matrix, `iztrans` acts element-wise on all components of the matrix.
- If `eval_point` is a matrix, `iztrans` acts element-wise on all components of the matrix.
- To compute the direct Z-transform, use `ztrans`.
- “Compute Z-Transforms and Inverse Z-Transforms” on page 2-206

**See Also**

`fourier` | `ifourier` | `ilaplace` | `kroneckerDelta` | `laplace` | `ztrans`

**Introduced before R2006a**
**jacobian**

Jacobian matrix

**Syntax**

jacobian(f,v)

**Description**

jacobian(f,v) computes the Jacobian matrix of f with respect to v. The (i,j) element of the result is \( \frac{\partial f(i)}{\partial v(j)} \).

**Examples**

**Jacobian of Vector Function**

The Jacobian of a vector function is a matrix of the partial derivatives of that function.

Compute the Jacobian matrix of \([x*y*z, y^2, x + z]\) with respect to \([x, y, z]\).

```matlab
syms x y z
jacobian([x*y*z, y^2, x + z], [x, y, z])
```

```
ans =
[y*z, x*z, x*y]
[0, 2*y, 0]
[1, 0, 1]
```

Now, compute the Jacobian of \([x*y*z, y^2, x + z]\) with respect to \([x; y; z]\).

```matlab
jacobian([x*y*z, y^2, x + z], [x; y; z])
```

**Jacobian of Scalar Function**

The Jacobian of a scalar function is the transpose of its gradient.
Compute the Jacobian of $2x + 3y + 4z$ with respect to $[x, y, z]$.

```matlab
syms x y z
jacobian(2*x + 3*y + 4*z, [x, y, z])
```
```
ans =
[2, 3, 4]
```

Now, compute the gradient of the same expression.

```matlab
gradient(2*x + 3*y + 4*z, [x, y, z])
```
```
ans =
2
3
4
```

**Jacobian with Respect to Scalar**

The Jacobian of a function with respect to a scalar is the first derivative of that function. For a vector function, the Jacobian with respect to a scalar is a vector of the first derivatives.

Compute the Jacobian of $[x^2*y, x*sin(y)]$ with respect to $x$.

```matlab
syms x y
jacobian([x^2*y, x*sin(y)], x)
```
```
ans =
2*x*y
sin(y)
```

Now, compute the derivatives.

```matlab
diff([x^2*y, x*sin(y)], x)
```
```
ans =
[2*x*y, sin(y)]
```

**Input Arguments**

- `f` — Scalar or vector function
  - symbolic expression | symbolic function | symbolic vector
Scalar or vector function, specified as a symbolic expression, function, or vector. If \( f \) is a scalar, then the Jacobian matrix of \( f \) is the transposed gradient of \( f \).

\[ v \rightarrow \text{Vector of variables with respect to which you compute Jacobian} \]

symbolic variable | symbolic vector

Vector of variables with respect to which you compute Jacobian, specified as a symbolic variable or vector of symbolic variables. If \( v \) is a scalar, then the result is equal to the transpose of \( \text{diff}(f,v) \). If \( v \) is an empty symbolic object, such as \( \text{sym}([\ ]) \), then \( \text{jacobian} \) returns an empty symbolic object.

**More About**

**Jacobian Matrix**

The Jacobian matrix of the vector function \( f = (f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n)) \) is the matrix of the derivatives of \( f \):

\[
J(x_1,\ldots,x_n) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \ldots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}
\]

**See Also**

curl | diff | divergence | gradient | hessian | laplacian | potential | vectorPotential

Introduced before R2006a
**jacobiP**

Jacobi polynomials

**Syntax**

jacobiP(n,a,b,x)

**Description**

jacobiP(n,a,b,x) returns the nth degree Jacobi polynomial with parameters a and b at x.

**Examples**

**Find Jacobi Polynomials for Numeric and Symbolic Inputs**

Find the Jacobi polynomial of degree 2 for numeric inputs.

jacobiP(2,0.5,-3,6)

ans =
 7.3438

Find the Jacobi polynomial for symbolic inputs.

syms n a b x
jacobiP(n,a,b,x)

ans =
jacobiP(n, a, b, x)

If the degree of the Jacobi polynomial is not specified, jacobiP cannot find the polynomial and returns the function call.

Specify the degree of the Jacobi polynomial as 1 to return the form of the polynomial.
J = jacobiP(1,a,b,x)

J =
a/2 - b/2 + x*(a/2 + b/2 + 1)

To find the numeric value of a Jacobi polynomial, call jacobiP with the numeric values directly. Do not substitute into the symbolic polynomial because the result can be inaccurate due to round-off. Test this by using subs to substitute into the symbolic polynomial, and compare the result with a numeric call.

J = jacobiP(300, -1/2, -1/2, x);
subs(J,x,vpa(1/2))
jacobiP(300, -1/2, -1/2, vpa(1/2))

ans =
101573673381249394050.64541318209
ans =
0.032559931334979678350422392588404

When subs is used to substitute into the symbolic polynomial, the numeric result is subject to round-off error. The direct numerical call to jacobiP is accurate.

Find Jacobi Polynomial with Vector and Matrix Inputs

Find the Jacobi polynomials of degrees 1 and 2 by setting n = [1 2] for a = 3 and b = 1.

syms x
jacobiP([1 2],3,1,x)

ans =
[ 3*x + 1, 7*x^2 + (7*x)/2 - 1/2]

jacobiP acts on n element-wise to return a vector with two entries.

If multiple inputs are specified as a vector, matrix, or multidimensional array, these inputs must be the same size. Find the Jacobi polynomials for a = [1 2;3 1], b = [2 2;1 3], n = 1 and x.

a = [1 2;3 1];
b = [2 2;1 3];
J = jacobiP(1,a,b,x)
\[ J = \begin{bmatrix} \frac{(5x)\times 2}{2} - \frac{1}{2}, & 3x \\ 3x + 1, & 3x - 1 \end{bmatrix} \]

\texttt{jacobiP} acts element-wise on \texttt{a} and \texttt{b} to return a matrix of the same size as \texttt{a} and \texttt{b}.

**Visualize Zeros of Jacobi Polynomials**

Plot Jacobi polynomials of degree 1, 2, and 3 for \( a = 3 \), \( b = 3 \), and \(-1<x<1\). To better view the plot, set y-axis limits to \(-2<y<2\) using \texttt{ylim}.

```matlab
syms x
hold on
grid on
for n = 1:3
 ezplot(jacobiP(n,3,3,x),[-1 1])
end
ylim([-2 2]);
ylabel('P_n^{(\alpha,\beta)}(x)')
title('Zeros of Jacobi polynomials of degree=1,2,3 with a=3 and b=3');
legend('1','2','3','Location','best');
```
Prove Orthogonality of Jacobi Polynomials with Respect to Weight Function

The Jacobi polynomials $P(n,a,b,x)$ are orthogonal with respect to the weight function $(1-x)^a(1-x)^b$ on the interval $[-1,1]$.

Prove $P(3,a,b,x)$ and $P(5,a,b,x)$ are orthogonal with respect to the weight function $(1-x)^a(1-x)^b$ by integrating their product over the interval $[-1,1]$, where $a = 3.5$ and $b = 7.2$.

syms x
a = 3.5;
b = 7.2;
P3 = jacobiP(3, a, b, x);
P5 = jacobiP(5, a, b, x);
w = (1-x)^a*(1+x)^b;
int(P3*P5*w, x, -1, 1)

ans =
0

**Input Arguments**

**n — Degree of Jacobi polynomial**
nonnegative integer | vector of nonnegative integers | matrix of nonnegative integers | multidimensional array of nonnegative integers | symbolic nonnegative integer | symbolic variable | symbolic vector | symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional array

Degree of Jacobi polynomial, specified as a nonnegative integer, or a vector, matrix, or multidimensional array of nonnegative integers, or a symbolic nonnegative integer, variable, vector, matrix, function, expression, or multidimensional array.

**a — Input**
number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, expression, or multidimensional array.

**b — Input**
number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, expression, or multidimensional array.

**x — Evaluation point**
number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional array
Evaluation point, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, expression, or multidimensional array.

More About

Jacobi Polynomials

The Jacobi polynomials are given by the recursion formula

\[
2nc_{n-2}P(n,a,b,x) = c_{n-1} \left( c_{2n-2}c_{2n}x + a^2 - b^2 \right)P(n-1,a,b,x) \\
- 2(n-1+a)(n-1+b)c_{2n}P(n-2,a,b,x),
\]

where
\[
c_n = n + a + b \\
P(0,a,b,x) = 1 \\
P(1,a,b,x) = \frac{a - b}{2} + \left( 1 + \frac{a+b}{2} \right)x.
\]

For fixed real \(a > -1\) and \(b > -1\), the Jacobi polynomials are orthogonal on the interval \([-1,1]\) with respect to the weight function \(w(x) = (1-x)^a (1+x)^b\).

For \(a = 0\) and \(b = 0\), the Jacobi polynomials \(P(n,0,0,x)\) reduce to the Legendre polynomials \(P(n,x)\).

The relation between Jacobi polynomials \(P(n,a,b,x)\) and Chebyshev polynomials of the first kind \(T(n,x)\) is

\[
T(n,x) = \frac{2^{2n} (n!)^2}{(2n)!} P\left( n, -\frac{1}{2}, -\frac{1}{2}, x \right).
\]

The relation between Jacobi polynomials \(P(n,a,b,x)\) and Chebyshev polynomials of the second kind \(U(n,x)\) is

\[
U(n,x) = \frac{2^{2n} n!(n+1)!}{(2n+1)!} P\left( n, \frac{1}{2}, \frac{1}{2}, x \right).
\]
The relation between Jacobi polynomials $P(n,a,b,x)$ and Gegenbauer polynomials $G(n,a,x)$ is

$$G(n,a,x) = \frac{\Gamma\left(\frac{a + \frac{1}{2}}{2}\right) \Gamma(n + 2a)}{\Gamma(2a) \Gamma\left(n + a + \frac{1}{2}\right)} P\left(\frac{n}{2}, a - \frac{1}{2}, x\right).$$

**See Also**

chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | laguerreL | legendreP

**Introduced in R2014b**
jordan

Jordan form of matrix

Syntax

J = jordan(A)
[V, J] = jordan(A)

Description

J = jordan(A) computes the Jordan canonical form (also called Jordan normal form) of a symbolic or numeric matrix A. The Jordan form of a numeric matrix is extremely sensitive to numerical errors. To compute Jordan form of a matrix, represent the elements of the matrix by integers or ratios of small integers, if possible.

[V, J] = jordan(A) computes the Jordan form J and the similarity transform V. The matrix V contains the generalized eigenvectors of A as columns, and V*A*V = J.

Examples

Compute the Jordan form and the similarity transform for this numeric matrix. Verify that the resulting matrix V satisfies the condition V*A*V = J:

A = [1 -3 -2; -1 1 -1; 2 4 5]
[V, J] = jordan(A)
V*A*V

A =

1  -3  -2
-1   1  -1
2    4    5

V =

-1   1  -1
-1   0   0
-1   0   1
\[ J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \]

\[ \text{ans} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \]

**See Also**
charpoly | inv | eig | hermiteForm | smithForm

*Introduced before R2006a*
kroneckerDelta

Kronecker delta function

Syntax

kroneckerDelta(m)
kronckerDelta(m,n)

Description

kroneckerDelta(m) returns 1 if m == 0 and 0 if m ~= 0.

kroneckerDelta(m,n) returns 1 if m == n and 0 if m ~= n.

Examples

Compare Two Symbolic Variables

Set symbolic variable m equal to symbolic variable n and test their equality using kroneckerDelta.

```matlab
syms m n
m = n;
kroneckerDelta(m, n)
```

ans =

1

kroneckerDelta returns 1 indicating that the inputs are equal.

Compare symbolic variables p and q.

```matlab
syms p q
kronckerDelta(p, q)
```

ans =
kroneckerDelta(p - q, 0)

kroneckerDelta cannot decide if \( p = q \) and returns the function call with the undecidable input. Note that \( \text{kroneckerDelta}(p, q) \) is equal to \( \text{kroneckerDelta}(p - q, 0) \).

To force a logical result for undecidable inputs, use \( \text{isAlways} \). The \( \text{isAlways} \) function issues a warning and returns logical 0 (false) for undecidable inputs. Set the Unknown option to false to suppress the warning.

\[
\text{isAlways}(\text{kroneckerDelta}(p, q), 'Unknown', 'false')
\]

\[
\text{ans} =
\begin{align*}
0
\end{align*}
\]

**Compare Symbolic Variable with Zero**

Set symbolic variable \( m \) to 0 and test \( m \) for equality with 0. The \( \text{kroneckerDelta} \) function errors because it does not accept numeric inputs of type double.

\[
m = 0;
\]

\[
\text{kroneckerDelta}(m)
\]

Undefined function 'kroneckerDelta' for input arguments of type 'double'.

Use sym to convert 0 to a symbolic object before assigning it to \( m \). This is because \( \text{kroneckerDelta} \) only accepts symbolic inputs.

\[
syms m
\]

\[
m = \text{sym}(0);
\]

\[
\text{kroneckerDelta}(m)
\]

\[
\text{ans} =
\begin{align*}
1
\end{align*}
\]

\( \text{kroneckerDelta} \) returns 1 indicating that \( m \) is equal to 0. Note that \( \text{kroneckerDelta}(m) \) is equal to \( \text{kroneckerDelta}(m, 0) \).

**Compare Vector of Numbers with Symbolic Variable**

Compare a vector of numbers [1 2 3 4] with symbolic variable \( m \). Set \( m \) to 3.

\[
V = 1:4
\]
syms m
m = sym(3)
sol = kroneckerDelta(V, m)

V =
    1  2  3  4
m =
  3
sol =
[ 0, 0, 1, 0]

kroneckerDelta acts on V element-wise to return a vector, sol, which is the same size as V. The third element of sol is 1 indicating that the third element of V equals m.

**Compare Two Matrices**

Compare matrices A and B.

Declare matrices A and B.

    syms m
    A = [m m+1 m+2; m-2 m-1 m]
    B = [m m+3 m+2; m-1 m-1 m+1]

A =
[     m, m + 1, m + 2]
[ m - 2, m - 1,     m]
B =
[     m, m + 3, m + 2]
[ m - 1, m - 1, m + 1]

Compare A and B using kroneckerDelta.

sol = kroneckerDelta(A, B)

sol =
[ 1, 0, 1]
[ 0, 1, 0]

kroneckerDelta acts on A and B element-wise to return the matrix sol which is the same size as A and B. The elements of sol that are 1 indicate that the corresponding elements of A and B are equal. The elements of sol that are 0 indicate that the corresponding elements of A and B are not equal.
Use kroneckerDelta in Inputs to Other Functions

kroneckerDelta appears in the output of iztrans.

```matlab
syms z n
sol = iztrans(1/(z-1), z, n)

sol =
1 - kroneckerDelta(n, 0)
```

Use this output as input to ztrans to return the initial input expression.

```matlab
ztrans(sol, n, z)
```

```
ans =
z/(z - 1) - 1
```

Filter Response to Kronecker Delta Input

Use filter to find the response of a filter when the input is the Kronecker Delta function. Convert k to a symbolic vector using sym because kroneckerDelta only accepts symbolic inputs, and convert it back to double using double. Provide arbitrary filter coefficients a and b for simplicity.

```matlab
b = [0 1 1];
a = [1 -0.5 0.3];
k = -20:20;
x = double(kroneckerDelta(sym(k)));
y = filter(b,a,x);
plot(k,y)
```
Input Arguments

\( m \) — Input

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array. At least one of the inputs, \( m \) or \( n \), must be symbolic.
n — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector
| symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array. At least one of the inputs, m
or n, must be symbolic.

More About

Kronecker Delta Function

The Kronecker delta function is defined as

\[ \delta(m,n) = \begin{cases} 0 & \text{if } m \neq n \\ 1 & \text{if } m = n \end{cases} \]

Tips

• When m or n is NaN, the kroneckerDelta function returns NaN.

See Also

iztrans | ztrans

Introduced in R2014b
**kummerU**

Confluent hypergeometric Kummer U function

**Syntax**

\( \text{kummerU}(a,b,z) \)

**Description**

\( \text{kummerU}(a,b,z) \) computes the value of confluent hypergeometric function, \( U(a,b,z) \). If the real parts of \( z \) and \( a \) are positive values, then the integral representations of the Kummer U function is as follows:

\[
U(a,b,z) = \frac{1}{\Gamma(a)} \int_0^\infty e^{-zt} t^{a-1} (1+t)^{b-a-1} dt
\]

**Examples**

**Equation Returning the Kummer U Function as Its Solution**

dsolve can return solutions of second-order ordinary differential equations in terms of the Kummer U function.

Solve this equation. The solver returns the results in terms of the Kummer U function and another hypergeometric function.

\[
\text{syms } t \quad z \quad y(z) \\
\text{dsolve}(z^3\text{diff}(y,2) + (z^2 + t)\text{diff}(y) + z*y) \\
\text{ans} = \\
(C4*\text{hypergeom}(1i/2, 1 + 1i, t/(2*z^2)))/z^{1i} +... \\
(C3*\text{kummerU}(1i/2, 1 + 1i, t/(2*z^2)))/z^{1i}
\]
**Kummer U Function for Numeric and Symbolic Arguments**

Depending on its arguments, `kummerU` can return floating-point or exact symbolic results.

Compute the Kummer U function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

\[
A = \begin{bmatrix}
\text{kummerU}(-1/3, 2.5, 2) \\
\text{kummerU}(1/3, 2, \pi) \\
\text{kummerU}(1/2, 1/3, 3i)
\end{bmatrix}
\]

\[A =
\begin{bmatrix}
0.8234 + 0.0000i \\
0.7284 + 0.0000i \\
0.4434 - 0.3204i
\end{bmatrix}
\]

Compute the Kummer U function for the numbers converted to symbolic objects. For most symbolic (exact) numbers, `kummerU` returns unresolved symbolic calls.

\[
symA = \begin{bmatrix}
\text{kummerU}(-1/3, 5/2, 2) \\
\text{kummerU}(1/3, 2, \pi) \\
\text{kummerU}(1/2, 1/3, 3i)
\end{bmatrix}
\]

\[symA =
\begin{bmatrix}
\text{kummerU}(-1/3, 5/2, 2) \\
\text{kummerU}(1/3, 2, \pi) \\
\text{kummerU}(1/2, 1/3, 3i)
\end{bmatrix}
\]

Use `vpa` to approximate symbolic results with the required number of digits.

\[vpa(symA, 10)\]

\[\text{ans} =
\begin{bmatrix}
0.8233667846 \\
0.7284037305 \\
0.4434362538 - 0.3204327531i
\end{bmatrix}
\]

**Some Special Values of Kummer U**

The Kummer U function has special values for some parameters.

If \(a\) is a negative integer, the Kummer U function reduces to a polynomial.
syms a b z
[kummerU(-1, b, z)
kummerU(-2, b, z)
kummerU(-3, b, z)]

ans =
\begin{align*}
  & z - b \\
  & \quad - \quad b - 2z(b + 1) + b^2 + z^2 \\
  & \quad - \quad 6z(b^2/2 + (3b)/2 + 1) - 2b - 6z^2(b/2 + 1) - 3b^2 - b^3 + z^3
\end{align*}

If \( b = 2a \), the Kummer U function reduces to an expression involving the modified Bessel function of the second kind.

\( \text{kummerU}(a, 2a, z) \)

\begin{align*}
\text{ans} &= \frac{z^{(1/2 - a)} \exp(z/2) \text{besselk}(a - 1/2, z/2)}{\pi^{(1/2)}}
\end{align*}

If \( a = 1 \) or \( a = b \), the Kummer U function reduces to an expression involving the incomplete gamma function.

\( \text{kummerU}(1, b, z) \)

\begin{align*}
\text{ans} &= z^{(1 - b)} \exp(z) \text{igamma}(b - 1, z)
\end{align*}

\( \text{kummerU}(a, a, z) \)

\begin{align*}
\text{ans} &= \exp(z) \text{igamma}(1 - a, z)
\end{align*}

If \( a = 0 \), the Kummer U function is 1.

\( \text{kummerU}(0, a, z) \)

\begin{align*}
\text{ans} &= 1
\end{align*}

**Handle Expressions Containing the Kummer U Function**

Many functions, such as \texttt{diff}, \texttt{int}, and \texttt{limit}, can handle expressions containing \texttt{kummerU}.

Find the first derivative of the Kummer U function with respect to \( z \).

\texttt{syms a b z}
diff(kummerU(a, b, z), z)

ans =
(a*kummerU(a + 1, b, z)*(a - b + 1))/z - (a*kummerU(a, b, z))/z

Find the indefinite integral of the Kummer U function with respect to z.

int(kummerU(a, b, z), z)

ans =
((b - 2)/(a - 1) - 1)*kummerU(a, b, z) +...
(kummerU(a + 1, b, z)*(a - a*b + a^2))/(a - 1) -...
(z*kummerU(a, b, z))/(a - 1)

Find the limit of this Kummer U function.

limit(kummerU(1/2, -1, z), z, 0)

ans =
4/(3*pi^(1/2))

Input Arguments

a — Parameter of Kummer U function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Parameter of Kummer U function, specified as a number, variable, symbolic expression, symbolic function, or vector.

b — Parameter of Kummer U function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Parameter of Kummer U function, specified as a number, variable, symbolic expression, symbolic function, or vector.

z — Argument of Kummer U function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Argument of Kummer U function, specified as a number, variable, symbolic expression, symbolic function, or vector. If z is a vector, kummerU(a, b, z) is evaluated element-wise.
More About

Confluent Hypergeometric Function (Kummer U Function)

The confluent hypergeometric function (Kummer U function) is one of the solutions of the differential equation

\[ z \frac{d^2}{dz^2} y + (b - z) \frac{d}{dz} y - ay = 0 \]

The other solution is the hypergeometric function \(_1F_1(a,b,z)\).

The Whittaker W function can be expressed in terms of the Kummer U function:

\[ W_{a,b}(z) = e^{-z/2} z^{b+1/2} U\left(b - a + \frac{1}{2}, 2b + 1, z\right) \]

Tips

- `kummerU` returns floating-point results for numeric arguments that are not symbolic objects.
- `kummerU` acts element-wise on nonscalar inputs.
- All nonscalar arguments must have the same size. If one or two input arguments are nonscalar, then `kummerU` expands the scalars into vectors or matrices of the same size as the nonscalar arguments, with all elements equal to the corresponding scalar.

References


See Also

hypergeom | whittakerM | whittakerW

Introduced in R2014b
laguerreL

Generalized Laguerre Function and Laguerre Polynomials

Syntax

laguerreL(n,x)
laguerreL(n,a,x)

Description

laguerreL(n,x) returns the Laguerre polynomial of degree n if n is a nonnegative integer. When n is not a nonnegative integer, laguerreL returns the Laguerre function. For details, see “Generalized Laguerre Function” on page 4-715.

laguerreL(n,a,x) returns the generalized Laguerre polynomial of degree n if n is a nonnegative integer. When n is not a nonnegative integer, laguerreL returns the generalized Laguerre function.

Examples

Find Laguerre Polynomials for Numeric and Symbolic Inputs

Find the Laguerre polynomial of degree 3 for input 4.3.

laguerreL(3,4.3)

ans =
    2.5838

Find the Laguerre polynomial for symbolic inputs. Specify degree n as 3 to return the explicit form of the polynomial.

syms x
\texttt{laguerreL}(3,x)

\begin{verbatim}
ans =
- x^3/6 + (3*x^2)/2 - 3*x + 1
\end{verbatim}

If the degree of the Laguerre polynomial \( n \) is not specified, \texttt{laguerreL} cannot find the polynomial. When \texttt{laguerreL} cannot find the polynomial, it returns the function call.

\begin{verbatim}
syms n x
laguerreL(n,x)
\end{verbatim}

\textbf{Find Generalized Laguerre Polynomial}

Find the explicit form of the generalized Laguerre polynomial \( L(n,a,x) \) of degree \( n = 2 \).

\begin{verbatim}
syms a x
laguerreL(2,a,x)
\end{verbatim}

\begin{verbatim}
ans =
(3*a)/2 - x*(a + 2) + a^2/2 + x^2/2 + 1
\end{verbatim}

\textbf{Return Generalized Laguerre Function}

When \( n \) is not a nonnegative integer, \texttt{laguerreL}(n,a,x) returns the generalized Laguerre function.

\begin{verbatim}
laguerreL(-2.7,3,2)
\end{verbatim}

\begin{verbatim}
ans =
0.2488
\end{verbatim}

\texttt{laguerreL} is not defined for certain inputs and returns an error.

\begin{verbatim}
syms x
laguerreL(-5/2, -3/2, x)
\end{verbatim}

\texttt{Error using mupadmex}
\texttt{Error in MuPAD command: The function 'laguerreL' is not
defined for parameter values '-5/2' and '-3/2'.
[lasterror]
  Evaluating: trapfcn

Find Laguerre Polynomial with Vector and Matrix Inputs

Find the Laguerre polynomials of degrees 1 and 2 by setting \( n = [1 \ 2] \).

\[ \text{syms } x \]
\[ \text{laguerreL([1 2],x)} \]
\[ \text{ans = } \]
\[ [1 - x, x^2/2 - 2*x + 1] \]

\text{laguerreL} acts element-wise on \( n \) to return a vector with two elements.

If multiple inputs are specified as a vector, matrix, or multidimensional array, the inputs must be the same size. Find the generalized Laguerre polynomials where input arguments \( n \) and \( x \) are matrices.

\[ \text{syms } a \]
\[ n = [2 3; 1 2]; \]
\[ xM = [x^2 11/7; -3.2 -x]; \]
\[ \text{laguerreL(n,a,xM)} \]
\[ \text{ans = } \]
\[ [ a^2/2 - a*x^2 + (3*a)/2 + x^4/2 - 2*x^2 + 1, ... \]
\[ a^3/6 + (3*a^2)/14 - (253*a)/294 - 676/1029 \]
\[ [ \]
\[ a + 21/5, ... \]
\[ a^2/2 + a*x + (3*a)/2 + x^2/2 + 2*x + 1 ] \]

\text{laguerreL} acts element-wise on \( n \) and \( x \) to return a matrix of the same size as \( n \) and \( x \).

Differentiate and Find Limits of Laguerre Polynomials

Use \text{limit} to find the limit of a generalized Laguerre polynomial of degree 3 as \( x \) tends to \( \infty \).

\[ \text{syms } x \]
\[ \text{expr = laguerreL(3,2,x);} \]
\[ \text{limit(expr,x,Inf)} \]
Use `diff` to find the third derivative of the generalized Laguerre polynomial \( \text{laguerreL}(n,a,x) \).

```plaintext
syms n a
expr = laguerreL(n,a,x);
diff(expr,x,3)
```

```
ans =
-laguerreL(n - 3, a + 3, x)
```

### Find Taylor Series Expansion of Laguerre Polynomials

Use `taylor` to find the Taylor series expansion of the generalized Laguerre polynomial of degree 2 at \( x = 0 \).

```plaintext
syms a x
expr = laguerreL(2,a,x);
taylor(expr,x)
```

```
ans =
(3*a)/2 - x*(a + 2) + a^2/2 + x^2/2 + 1
```

### Plot Laguerre Polynomials

Plot the Laguerre polynomials of orders 1 through 4 for \(-2 < x < 10\). To better view the plot, use `ylim` to set the y-axis limits.

```plaintext
syms x
hold on
grid on
for n = 1:4
 ezplot(laguerreL(n,x),[-2 10])
end
ylim([-10, 10])
ylabel('L_n(x)')
title('Laguerre polynomials of orders 1 through 4')
legend('1','2','3','4','Location','best');
```
Input Arguments

\( n \) — Degree of polynomial

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Degree of polynomial, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array.

\( x \) — Input

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array
Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array.

**a — Input**
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
| symbolic matrix | symbolic function | symbolic multidimensional array |

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array.

**More About**

**Generalized Laguerre Function**

The generalized Laguerre function is defined in terms of the hypergeometric function as

\[ \text{laguerreL}(n, a, x) = {n + a \choose a} \left( -n; a + 1; x \right) \]

For nonnegative integer values of \( n \), the function returns the generalized Laguerre polynomials that are orthogonal with respect to the scalar product

\[ \langle f_1, f_2 \rangle = \int_0^\infty e^{-x} x^a f_1(x) f_2(x) \, dx. \]

In particular,

\[ \langle \text{laguerreL}(n, a, x), \text{laguerreL}(m, a, x) \rangle = \begin{cases} 0 & \text{if } n \neq m \\ \Gamma(a + n + 1) \frac{1}{n!} & \text{if } n = m. \end{cases} \]

**Algorithms**

- The generalized Laguerre function is not defined for all values of parameters \( n \) and \( a \) because certain restrictions on the parameters exist in the definition of the hypergeometric functions. If the generalized Laguerre function is not defined for a
particular pair of \( n \) and \( a \), the \texttt{laguerreL} function returns an error message. See “Return Generalized Laguerre Function” on page 4-711.

- The calls \( \texttt{laguerreL}(n,x) \) and \( \texttt{laguerreL}(n,0,x) \) are equivalent.
- If \( n \) is a nonnegative integer, the \texttt{laguerreL} function returns the explicit form of the corresponding Laguerre polynomial.

The special values \( \texttt{laguerreL}(n,a,0) = \binom{n+a}{a} \) are implemented for arbitrary values of \( n \) and \( a \).

- If \( n \) is a negative integer and \( a \) is a numerical noninteger value satisfying \( a \geq -n \), then \( \texttt{laguerreL} \) returns 0.
- If \( n \) is a negative integer and \( a \) is an integer satisfying \( a < -n \), the function returns an explicit expression defined by the reflection rule

\[
\texttt{laguerreL}(n,a,x) = (-1)^a e^x \texttt{laguerreL}(-n-a-1,a,-x)
\]

- If all arguments are numerical and at least one argument is a floating-point number, then \( \texttt{laguerreL}(x) \) returns a floating-point number. For all other arguments, \( \texttt{laguerreL}(n,a,x) \) returns a symbolic function call.

See Also
chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | jacobiP | legendreP

Introduced in R2014b
lambertw

Lambert W function

Syntax

lambertw(x)
lambertw(k,x)

Description

lambertw(x) is the Lambert W function of x, which returns the principal branch of the Lambert W function. Therefore, the syntax is equivalent to lambertw(0, x).

lambertw(k, x) is the kth branch of the Lambert W function.

Examples

Equation Returning Lambert W Function as Its Solution

The Lambert W function $W(x)$ is a set of solutions of the equation $x = W(x)e^{W(x)}$.

Solve this equation. The solutions is the Lambert W function.

```matlab
syms x W
solve(x == W*exp(W), W)
```

```matlab
ans =
lambertw(0, x)
```

Verify that various branches of the Lambert W function are valid solutions of the equation $x = W e^W$:

```matlab
k = -2:2
```
syms x
isAlways(x - subs(W*exp(W), W, lambertw(k,x)) == 0)

k =
   -2   -1    0    1    2
ans =
   1    1    1    1    1

Lambert W Function for Numeric and Symbolic Arguments

Depending on its arguments, lambertw can return floating-point or exact symbolic results.

Compute the Lambert W functions for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

A = [0 -1/exp(1); pi i];
lambertw(A)
lambertw(-1, A)

ans =
  0.0000 + 0.0000i  -1.0000 + 0.0000i
  1.0737 + 0.0000i   0.3747 + 0.5764i

ans =
  -Inf + 0.0000i  -1.0000 + 0.0000i
  -0.3910 - 4.6281i  -1.0896 - 2.7664i

Compute the Lambert W functions for the numbers converted to symbolic objects. For most symbolic (exact) numbers, lambertw returns unresolved symbolic calls.

A = [0 -1/exp(sym(1)); pi i];
WO = lambertw(A)
Wmin1 = lambertw(-1, A)

WO =
   [   0,          -1]
   [ lambertw(0, pi), lambertw(0, 1i)]

Wmin1 =
   [   -Inf,          -1]
   [ lambertw(-1, pi), lambertw(-1, 1i)]
Use \texttt{vpa} to approximate symbolic results with the required number of digits:

\begin{verbatim}
vpa(W0, 10)
vpa(Wmin1, 5)
\end{verbatim}

\begin{verbatim}
ans =
[ 0, -1.0]
[ 1.073658195, 0.3746990207 + 0.576412723i]
\end{verbatim}

\begin{verbatim}
ans =
[ -Inf, -1.0]
[ -0.39097 - 4.6281i, -1.0896 - 2.7664i]
\end{verbatim}

**Lambert W Function Plot on Complex Plane**

Plot the principal branch of the Lambert W function on the complex plane.

Create the combined mesh and contour plot of the real value of the Lambert W function on the complex plane.

\begin{verbatim}
syms x y real
ezmeshc(real(lambertw(x + i*y)), [-100, 100, -100, 100])
\end{verbatim}
Now, plot the imaginary value of the Lambert W function on the complex plane. This function has a branch cut along the negative real axis. For better perspective, create the mesh and contour plots separately.

```matlab
ezmesh(imag(lambertw(x + i*y)), [-100, 100, -100, 100])
```
ezcontourf(imag(lambertw(x + i*y)), [-100, 100, -100, 100])
Plot the absolute value of the Lambert W function on the complex plane.

ezmeshc(abs(lambertw(x + i*y)), [-100, 100, -100, 100])
For further computations, clear the assumptions on $x$ and $y$:

```matlab
syms x y clear
```

**Plot Two Main Branches**

Plot the two main branches, $W_0(x)$ and $W_{-1}(x)$, of the Lambert W function.

Plot the principal branch $W_0(x)$:

```matlab
syms x
ezplot(lambertw(x))
```
Add the branch $W_{-1}(x)$:

```matlab
hold on
ezplot(lambertw(-1, x))
```
Adjust the axes limits and add the title:

```matlab
axis([-0.5, 4, -4, 2])
title('Lambert W function, two main branches')
```
Input Arguments

\( x \) — Argument of Lambert W function

number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Argument of Lambert W function, specified as a number, symbolic number, variable, expression, function, or vector or matrix of numbers, symbolic numbers, variables, expressions, or functions. If \( x \) is a vector or matrix, \texttt{lambertW} returns the Lambert W function for each element of \( x \).
k — Branch of Lambert W function
integer | vector | matrix

Branch of Lambert W function, specified as an integer or a vector or matrix of integers. If k is a vector or matrix, lambertW returns the Lambert W function for each element of k.

More About
Lambert W Function

The Lambert W function W(x) represents the solutions y of the equation ye^y = x for any complex number x.

• For complex x, the equation has an infinite number of solutions y = lambertW(k,x) where k ranges over all integers.
• For real x where x ≥ 0, the equation has exactly one real solution y = lambertW(x) = lambertW(0,x).
• For real x where -e^{-1} < x < 0, the equation has exactly two real solutions. The larger solution is represented by y = lambertW(x) and the smaller solution by y = lambertW(-1,x).
• For x = -e^{-1}, the equation has exactly one real solution y = -1 = lambertW(0, -exp(-1)) = lambertW(-1, -exp(-1)).

Algorithms

• The equation x = w(x)e^{w(x)} has infinitely many solutions on the complex plane. These solutions are represented by w = lambertw(k,x) with the branch index k ranging over the integers.
• For all real x ≥ 0, the equation x = w(x)e^{w(x)} has exactly one real solution. It is represented by w = lambertw(x) or, equivalently, w = lambertw(0,x).
• For all real x in the range -1/e < x < 0, there are exactly two distinct real solutions. The larger one is represented by w = lambertw(x), and the smaller one is represented by w = lambertw(-1,x).
• For w = -1/e, there is exactly one real solution lambertw(0, -exp(-1)) = lambertw(-1, -exp(-1)) = -1.
• \texttt{lambertw(k,x)} returns real values only if \( k = 0 \) or \( k = -1 \). For \( k \neq \{0, -1\} \), \texttt{lambertw(k,x)} is always complex.

• At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, \texttt{lambertw} expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References


See Also

\texttt{wrightOmega}

Introduced before R2006a
laplace

Laplace transform

Syntax

laplace(f,trans_var,eval_point)

Description

laplace(f,trans_var,eval_point) computes the Laplace transform of f with respect to the transformation variable trans_var at the point eval_point.

Input Arguments

f

Symbolic expression, symbolic function, or vector or matrix of symbolic expressions or functions.

trans_var

Symbolic variable representing the transformation variable. This variable is often called the “time variable”.

Default: The variable \( t \). If \( f \) does not contain \( t \), then the default variable is determined by symvar.

eval_point

Symbolic variable or expression representing the evaluation point. This variable is often called the “complex frequency variable”.

Default: The variable \( s \). If \( s \) is the transformation variable of \( f \), then the default evaluation point is the variable \( z \).
Examples

Compute the Laplace transform of this expression with respect to the variable \( x \) at the evaluation point \( y \):

```matlab
syms x y
f = 1/sqrt(x);
laplace(f, x, y)
```

```
ans =
pi^(1/2)/y^(1/2)
```

Compute the Laplace transform of this expression calling the `laplace` function with one argument. If you do not specify the transformation variable, `laplace` uses the variable \( t \).

```matlab
syms a t y
f = exp(-a*t);
laplace(f, y)
```

```
ans =
1/(a + y)
```

If you also do not specify the evaluation point, `laplace` uses the variable \( s \):

```matlab
laplace(f)
```

```
ans =
1/(a + s)
```

Compute the following Laplace transforms that involve the Dirac and Heaviside functions:

```matlab
syms t s
laplace(dirac(t - 3), t, s)
```

```
ans =
exp(-3*s)
```

```matlab
laplace(heaviside(t - pi), t, s)
```

```
ans =
exp(-pi*s)/s
```

If `laplace` cannot find an explicit representation of the transform, it returns an unevaluated call:
syms f(t) s
F = laplace(f, t, s)

F = 
laplace(f(t), t, s)

ilaplace returns the original expression:

ilaplace(F, s, t)
ans = 
f(t)

The Laplace transform of a function is related to the Laplace transform of its derivative:

syms f(t) s
laplace(diff(f(t), t), t, s)

ans = 
s*laplace(f(t), t, s) - f(0)

Find the Laplace transform of this matrix. Use matrices of the same size to specify the transformation variable and evaluation point.

syms a b c d w x y z
laplace([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])

ans =
[ exp(x)/a, 1/b]
[ 1/(c^2 + 1), 1i/d^2]

When the input arguments are nonscalars, laplace acts on them element-wise. If laplace is called with both scalar and nonscalar arguments, then laplace expands the scalar arguments into arrays of the same size as the nonscalar arguments with all elements of the array equal to the scalar.

syms w x y z a b c d
laplace(x,[x, w; y, z],[a, b; c, d])

ans =
[ 1/a^2, x/b]
[ x/c, x/d]

Note that nonscalar input arguments must have the same size.

When the first argument is a symbolic function, the second argument must be a scalar.
syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
laplace([f1, f2], x, [a, b])
ans =
[ 1/(a - 1), 1/b^2]

More About

Laplace Transform

The Laplace transform is defined as follows:

\[ F(s) = \int_0^\infty f(t) e^{-st} dt. \]

Tips

- If you call `laplace` with two arguments, it assumes that the second argument is the evaluation point `eval_point`.
- If \( f \) is a matrix, `laplace` acts element-wise on all components of the matrix.
- If `eval_point` is a matrix, `laplace` acts element-wise on all components of the matrix.
- To compute the inverse Laplace transform, use `ilaplace`.
- “Compute Laplace and Inverse Laplace Transforms” on page 2-199

See Also

`fourier` | `ifourier` | `ilaplace` | `iztrans` | `ztrans`

Introduced before R2006a
**laplacian**

Laplacian of scalar function

**Syntax**

\[ \text{laplacian}(f, x) \]
\[ \text{laplacian}(f) \]

**Description**

**laplacian**(\(f, x\)) computes the Laplacian of the scalar function or functional expression \(f\) with respect to the vector \(x\) in Cartesian coordinates.

**laplacian**(\(f\)) computes the gradient vector of the scalar function or functional expression \(f\) with respect to a vector constructed from all symbolic variables found in \(f\). The order of variables in this vector is defined by `symvar`.

**Input Arguments**

- \(f\)
  - Symbolic expression or symbolic function.
- \(x\)
  - Vector with respect to which you compute the Laplacian.

**Default:** Vector constructed from all symbolic variables found in \(f\). The order of variables in this vector is defined by `symvar`.

**Examples**

Compute the Laplacian of this symbolic expression. By default, **laplacian** computes the Laplacian of an expression with respect to a vector of all variables found in that expression. The order of variables is defined by `symvar`. 


syms x y t
laplacian(1/x^3 + y^2 - log(t))

ans =
1/t^2 + 12/x^5 + 2

Create this symbolic function:

syms x y z
f(x, y, z) = 1/x + y^2 + z^3;

Compute the Laplacian of this function with respect to the vector [x, y, z]:

L = laplacian(f, [x y z])

L(x, y, z) =
6*z + 2/x^3 + 2

Alternatives

The Laplacian of a scalar function or functional expression is the divergence of the gradient of that function or expression:

\[ \Delta f = \nabla \cdot (\nabla f) \]

Therefore, you can compute the Laplacian using the `divergence` and `gradient` functions:

syms f(x, y)
divergence(gradient(f(x, y)), [x y])

More About

Laplacian of Scalar Function

The Laplacian of the scalar function or functional expression \( f \) with respect to the vector \( X = (X_1,\ldots,X_n) \) is the sum of the second derivatives of \( f \) with respect to \( X_1,\ldots,X_n \):

\[ \Delta f = \sum_{i=1}^{n} \frac{\partial^2 f_i}{\partial x_i^2} \]
Tips

- If \( x \) is a scalar, \( \text{gradient}(f, x) = \text{diff}(f, 2, x) \).

See Also

curl | diff | divergence | gradient | hessian | jacobian | potential | vectorPotential

Introduced in R2012a
latex

LaTeX representation of symbolic expression

Syntax

latex(S)

Description

latex(S) returns the LaTeX representation of the symbolic expression S.

Examples

The statements

syms x
f = taylor(log(1+x));
latex(f)

return

ans =
\frac{x^5}{5} - \frac{x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + x

The statements

H = sym(hilb(3));
latex(H)

return

ans =
\left(\begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{array}\right)

The statements

syms t
alpha = sym('alpha');
A = [alpha t alpha*t];
latex(A)

return

ans =
\left(\begin{array}{ccc}
\mathrm{alpha} & t & \mathrm{alpha}\, t \\
\end{array}\right)

You can use the \texttt{latex} command to annotate graphs:

syms x
f = taylor(log(1+x));
ezplot(f)
hold on
title(['$' latex(f) '$','interpreter','latex'])
hold off

See Also
ccode | fortran | pretty | texlabel

Introduced before R2006a
lcm
Least common multiple

Syntax
lcm(A)
lcm(A,B)

Description
lcm(A) finds the least common multiple of all elements of A.
lcm(A,B) finds the least common multiple of A and B.

Examples

Least Common Multiple of Four Integers

To find the least common multiple of three or more values, specify those values as a symbolic vector or matrix.

Find the least common multiple of these four integers, specified as elements of a symbolic vector.

A = sym([4420, -128, 8984, -488])
lcm(A)

A =
[ 4420, -128, 8984, -488]

ans =
9689064320

Alternatively, specify these values as elements of a symbolic matrix.

A = sym([4420, -128; 8984, -488])
Least Common Multiple of Rational Numbers

lcm lets you find the least common multiple of symbolic rational numbers.

Find the least common multiple of these rational numbers, specified as elements of a symbolic vector.

\[
lcm\left(\text{sym}\left([\frac{3}{4}, \frac{7}{3}, \frac{11}{2}, \frac{12}{3}, \frac{33}{4}]\right)\right)
\]

\[
\text{ans} = 924
\]

Least Common Multiple of Complex Numbers

lcm lets you find the least common multiple of symbolic complex numbers.

Find the least common multiple of these complex numbers, specified as elements of a symbolic vector.

\[
lcm\left(\text{sym}\left([10 - 5i, 20 - 10i, 30 - 15i]\right)\right)
\]

\[
\text{ans} = -60 + 30i
\]

Least Common Multiple of Elements of Matrices

For vectors and matrices, lcm finds the least common multiples element-wise. Nonscalar arguments must be the same size.

Find the least common multiples for the elements of these two matrices.

\[
\begin{align*}
A &= \text{sym}\left([309, 186; 486, 224]\right); \\
B &= \text{sym}\left([558, 444; 1024, 1984]\right); \\
lcm(A,B)
\end{align*}
\]
Find the least common multiples for the elements of matrix `A` and the value 99. Here, `lcm` expands 99 into the 2-by-2 matrix with all elements equal to 99.

\[
lcm(A, 99)
\]

Find the least common multiple of these univariate polynomials.

\[
syms x \n\lcm(x^3 - 3x^2 + 3x - 1, x^2 - 5x + 4)
\]

Find the least common multiple of these multivariate polynomials. Because there are more than two polynomials, specify them as elements of a symbolic vector.

\[
syms x y \n\lcm([x^2*y + x^3, (x + y)^2, x^2 + x*y^2 + x*y + x + y^3 + y])
\]

**Input Arguments**

**A — Input value**

number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.
B — Input value

number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

More About

Tips

• Calling `lcm` for numbers that are not symbolic objects invokes the MATLAB `lcm` function.
• The MATLAB `lcm` function does not accept rational or complex arguments. To find the least common multiple of rational or complex numbers, convert these numbers to symbolic objects by using `sym`, and then use `lcm`.
• Nonscalar arguments must have the same size. If one input arguments is nonscalar, then `lcm` expands the scalar into a vector or matrix of the same size as the nonscalar argument, with all elements equal to the corresponding scalar.

See Also

gcd

Introduced in R2014b
ldivide, .\n
Symbolic array left division

**Syntax**

B.\A
ldivide(B,A)

**Description**

B.\A divides A by B.

ldivide(B,A) is equivalent to B.\A.

**Examples**

**Divide Scalar by Matrix**

Create a 2-by-3 matrix.

B = sym('b', [2 3])

B =

B =

[ b1_1, b1_2, b1_3]
[ b2_1, b2_2, b2_3]

Divide the symbolic expression sin(a) by each element of the matrix B.

syms a
B.\sin(a)

ans =

ans =

[ sin(a)/b1_1, sin(a)/b1_2, sin(a)/b1_3]
[ sin(a)/b2_1, sin(a)/b2_2, sin(a)/b2_3]
### Divide Matrix by Matrix

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

\[
H = \text{sym}(\text{hilb}(3)) \\
d = \text{diag}(\text{sym}([1 2 3]))
\]

\[
H = \\
\begin{bmatrix}
1 & 1/2 & 1/3 \\
1/2 & 1/3 & 1/4 \\
1/3 & 1/4 & 1/5 \\
\end{bmatrix}
\]

\[
d = \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3 \\
\end{bmatrix}
\]

Divide \(d\) by \(H\) by using the elementwise left division operator \(\div\). This operator divides each element of the first matrix by the corresponding element of the second matrix. The dimensions of the matrices must be the same.

\[
H \div d
\]

\[
\text{ans} = \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 15 \\
\end{bmatrix}
\]

### Divide Expression by Symbolic Function

Divide a symbolic expression by a symbolic function. The result is a symbolic function.

\[
s\text{yms } f(x) \\
f(x) = x^2; \\
f1 = f \div (x^2 + 5*x + 6)
\]

\[
f1(x) =
\frac{x^2 + 5*x + 6}{x^2}
\]

### Input Arguments

- **A** — Input
  - symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression
Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

**B — Input**
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

**See Also**
ctranspose | minus | mldivide | mpower | mrdivide | mtimes | plus | power | rdivide | times | transpose

**Introduced before R2006a**
Define less than or equal to relation

Compatibility

In previous releases, `le` in some cases evaluated inequalities involving only symbolic numbers and returned logical 1 or 0. To obtain the same results as in previous releases, wrap inequalities in `isAlways`. For example, use `isAlways(A <= B)`.

Syntax

```plaintext
A <= B
le(A,B)
```

Description

`A <= B` creates a less than or equal to relation.

`le(A,B)` is equivalent to `A <= B`.

Input Arguments

**A**

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or expression, or array of numbers, symbolic variables or expressions.

**B**

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or expression, or array of numbers, symbolic variables or expressions.
Examples

Use `assume` and the relational operator <= to set the assumption that x is less than or equal to 3:

```matlab
syms x
assume(x <= 3)
```

Solve this equation. The solver takes into account the assumption on variable x, and therefore returns these three solutions.

```matlab
solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)
```

```
ans =
1
2
3
```

Use the relational operator <= to set this condition on variable x:

```matlab
syms x
cond = (abs(sin(x)) <= 1/2);
```

```matlab
for i = 0:sym(pi/12):sym(pi)
 if subs(cond, x, i)
 disp(i)
 end
end
```

Use the `for` loop with step \(\pi/24\) to find angles from 0 to \(\pi\) that satisfy that condition:

0
\(\pi/12\)
\(\pi/6\)
(5*\(\pi\))/6
(11*\(\pi\))/12
\(\pi\)

Alternatives

You can also define this relation by combining an equation and a less than relation. Thus, \(A <= B\) is equivalent to \((A < B) | (A == B)\).
More About

Tips

• Calling <= or le for non-symbolic A and B invokes the MATLAB le function. This function returns a logical array with elements set to logical 1 (true) where A is less than or equal to B; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then these arrays must have the same dimensions. A <= B returns an array of relations A(i,j,...) <= B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is expanded into an array of the same dimensions as the other array. In other words, if A is a variable (for example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of elements, each set to x.

• The field of complex numbers is not an ordered field. MATLAB projects complex numbers in relations to a real axis. For example, x <= i becomes x <= 0, and x <= 3 + 2*i becomes x <= 3.

See Also

eq | ge | gt | isAlways | lt | ne

Introduced in R2012a
**legendreP**

Legendre polynomials

**Syntax**

`legendreP(n,x)`

**Description**

`legendreP(n,x)` returns the nth degree Legendre polynomial at `x`.

**Examples**

**Find Legendre Polynomials for Numeric and Symbolic Inputs**

Find the Legendre polynomial of degree 3 at 5.6.

`legendreP(3,5.6)`

`ans =
430.6400`

Find the Legendre polynomial of degree 2 at `x`.

```matlab
syms x
legendreP(2,x)
```

`ans =
(3*x^2)/2 - 1/2`

If you do not specify a numerical value for the degree `n`, the `legendreP` function cannot find the explicit form of the polynomial and returns the function call.

```matlab
syms n
```
\textbf{Find Legendre Polynomial with Vector and Matrix Inputs}

Find the Legendre polynomials of degrees 1 and 2 by setting \( n = [1 \ 2]\).

\begin{verbatim}
syms x
legendreP([1 2],x)
\end{verbatim}

\texttt{legendreP} acts element-wise on \( n \) to return a vector with two elements.

If multiple inputs are specified as a vector, matrix, or multidimensional array, the inputs must be the same size. Find the Legendre polynomials where input arguments \( n \) and \( x \) are matrices.

\begin{verbatim}
n = [2 3; 1 2];
xM = [x^2 11/7; -3.2 -x];
legendreP(n,xM)
\end{verbatim}

\texttt{legendreP} acts element-wise on \( n \) and \( x \) to return a matrix of the same size as \( n \) and \( x \).

\textbf{Differentiate and Find Limits of Legendre Polynomials}

Use \texttt{limit} to find the limit of a Legendre polynomial of degree 3 as \( x \) tends to \(-\infty\).

\begin{verbatim}
syms x
expr = legendreP(4,x);
limit(expr,x,-Inf)
\end{verbatim}

Use \texttt{diff} to find the third derivative of the Legendre polynomial of degree 5.
syms n
expr = legendreP(5,x);
diff(expr,x,3)

ans =  
(945*x^2)/2 - 105/2

**Find Taylor Series Expansion of Legendre Polynomial**

Use `taylor` to find the Taylor series expansion of the Legendre polynomial of degree 2 at \( x = 0 \).

syms x
expr = legendreP(2,x);
taylor(expr,x)

ans =  
(3*x^2)/2 - 1/2

**Plot Legendre Polynomials**

Plot Legendre polynomials of orders 1 through 4. To better view the plot, better set the axes limits using `axis`.

syms x y
hold on
for n=1:4
    ezplot(legendreP(n,x))
end
axis([-1.5,1.5,-1,1])
grid on
ylabel('P_n(x)')
title('Legendre polynomials of degrees 1 through 4')
legend('1','2','3','4','Location','best');
Find Roots of Legendre Polynomial

Use `vpasolve` to find the roots of the Legendre polynomial of degree 7.

```matlab
syms x
roots = vpasolve(legendreP(7,x) == 0)
```

```
roots =
 -0.94910791234275852452618968404785
 -0.74153118559939443986386477328079
 -0.40584515137739716690660641207696
 0
 0.40584515137739716690660641207696
```
0.74153118559939439866477328079
0.94910791234275852452618968404785

**Input Arguments**

**n — Degree of polynomial**
nonnegative number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Degree of polynomial, specified as a nonnegative number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array. All elements of nonscalar inputs should be nonnegative integers or symbols.

**x — Input**
number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array.

**More About**

**Legendre Polynomial**

The Legendre polynomials are defined as

\[
P(n, x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left( x^2 - 1 \right)^n.
\]

They satisfy the recursion formula

\[
P(n, x) = \frac{2n - 1}{n} xP(n - 1, x) - \frac{n - 1}{n} P(n - 2, x),
\]

where

\[
P(0, x) = 1
\]

\[
P(1, x) = x.
\]

\[
0.74153118559939439866477328079
0.94910791234275852452618968404785
\]
The Legendre polynomials are orthogonal on the interval [-1,1] with respect to the weight function \( w(x) = 1 \).

The relation with Gegenbauer polynomials \( G(n,a,x) \) is

\[
P(n,x) = G\left(n, \frac{1}{2}, x\right).
\]

The relation with Jacobi polynomials \( P(n,a,b,x) \) is

\[
P(n,x) = P(n,0,0,x).
\]

**See Also**
chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | jacobiP | laguerreL

**Introduced in R2014b**
**limit**

Compute limit of symbolic expression

**Syntax**

```plaintext
limit(expr,x,a)
limit(expr,a)
limit(expr)
limit(expr,x,a,'left')
limit(expr,x,a,'right')
```

**Description**

- `limit(expr,x,a)`: computes bidirectional limit of the symbolic expression `expr` when `x` approaches `a`.
- `limit(expr,a)`: computes bidirectional limit of the symbolic expression `expr` when the default variable approaches `a`.
- `limit(expr)`: computes bidirectional limit of the symbolic expression `expr` when the default variable approaches 0.
- `limit(expr,x,a,'left')`: computes the limit of the symbolic expression `expr` when `x` approaches `a` from the left.
- `limit(expr,x,a,'right')`: computes the limit of the symbolic expression `expr` when `x` approaches `a` from the right.

**Examples**

Compute bidirectional limits for the following expressions:

```plaintext
syms x h
limit(sin(x)/x)
limit((sin(x + h) - sin(x))/h, h, 0)
```
Compute the limits from the left and right for the following expressions:

```
syms x
limit(1/x, x, 0, 'right')
limit(1/x, x, 0, 'left')
```

```
ans =
Inf
ans =
-Inf
```

Compute the limit for the functions presented as elements of a vector:

```
syms x a
v = [(1 + a/x)^
 limit(v, x, inf)
```

```
ans =
[exp(a), 0]
```

See Also

```
diff | taylor
```

Introduced before R2006a
**linsolve**

Solve linear system of equations given in matrix form

**Syntax**

```markdown
X = linsolve(A,B)
[X,R] = linsolve(A,B)
```

**Description**

`X = linsolve(A,B)` solves the matrix equation $AX = B$. In particular, if $B$ is a column vector, `linsolve` solves a linear system of equations given in the matrix form.

`[X,R] = linsolve(A,B)` solves the matrix equation $AX = B$ and returns the reciprocal of the condition number of $A$ if $A$ is a square matrix, and the rank of $A$ otherwise.

**Input Arguments**

- **A**  
  Coefficient matrix.

- **B**  
  Matrix or column vector containing the right sides of equations.

**Output Arguments**

- **X**  
  Matrix or vector representing the solution.

- **R**  
  Reciprocal of the condition number of $A$ if $A$ is a square matrix. Otherwise, the rank of $A$. 
Examples

Define the matrix equation using the following matrices A and B:

```matlab
syms x y z
A = [x 2*x y; x*z 2*x*z y*z+z; 1 0 1];
B = [z y; z^2 y*z; 0 0];
```

Use \texttt{linsolve} to solve this equation. Assigning the result of the \texttt{linsolve} call to a single output argument, you get the matrix of solutions:

```matlab
X = linsolve(A, B)
```

```
X =
[0, 0]
[z/(2*x), y/(2*x)]
[0, 0]
```

To return the solution and the reciprocal of the condition number of the square coefficient matrix, assign the result of the \texttt{linsolve} call to a vector of two output arguments:

```matlab
syms a x y z
A = [a 0 0; 0 a 0; 0 0 1];
B = [x; y; z];
[X, R] = linsolve(A, B)
```

```
X =
x/a
y/a
z
```

```
R =
1/(max(abs(a), 1)*max(1/abs(a), 1))
```

If the coefficient matrix is rectangular, \texttt{linsolve} returns the rank of the coefficient matrix as the second output argument:

```matlab
syms a b x y
A = [a 0 1; 1 b 0];
B = [x; y];
[X, R] = linsolve(A, B)
```

Warning: The system is rank-deficient. Solution is not unique.

In sym.linsolve at 67
More About

Matrix Representation of System of Linear Equations

A system of linear equations

\[ a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \]
\[ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \]
\[ \ldots \]
\[ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \]

can be represented as the matrix equation \( A \cdot \vec{x} = \vec{b} \), where \( A \) is the coefficient matrix:

\[
A = \begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{pmatrix}
\]

and \( \vec{b} \) is the vector containing the right sides of equations:

\[
\vec{b} = \begin{pmatrix}
b_1 \\
\vdots \\
b_m
\end{pmatrix}
\]

Tips

- If the solution is not unique, \texttt{linsolve} issues a warning, chooses one solution and returns it.
- If the system does not have a solution, \texttt{linsolve} issues a warning and returns \( X \) with all elements set to \texttt{Inf}.
• Calling `linsolve` for numeric matrices that are not symbolic objects invokes the MATLAB `linsolve` function. This function accepts real arguments only. If your system of equations uses complex numbers, use `sym` to convert at least one matrix to a symbolic matrix, and then call `linsolve`.

**See Also**
`cond | dsolve | equationsToMatrix | inv | norm | odeToVectorField | rank | solve | symvar | vpasolve`
**log**

Natural logarithm of entries of symbolic matrix

**Syntax**

\[ Y = \log(X) \]

**Description**

\[ Y = \log(X) \] returns the natural logarithm of \( X \).

**Input Arguments**

\( X \)

Symbolic variable, expression, function, or matrix

**Output Arguments**

\( Y \)

Number, variable, expression, function, or matrix. If \( X \) is a matrix, \( Y \) is a matrix of the same size, each entry of which is the logarithm of the corresponding entry of \( X \).

**Examples**

Compute the natural logarithm of each entry of this symbolic matrix:

```verbatim
syms x
M = x*hilb(2);
log(M)
```

\[ \text{ans} = \]
Differentiate this symbolic expression:

```matlab
syms x
diff(log(x^3), x)
```

ans =
3/x

**See Also**

log10 | log2

**Introduced before R2006a**
log10
Logarithm base 10 of entries of symbolic matrix

Syntax
Y = log10(X)

Description
Y = log10(X) returns the logarithm to the base 10 of X. If X is a matrix, Y is a matrix of the same size, each entry of which is the logarithm of the corresponding entry of X.

See Also
log | log2

Introduced before R2006a
log2

Logarithm base 2 of entries of symbolic matrix

Syntax

\[ Y = \log2(X) \]

Description

\[ Y = \log2(X) \] returns the logarithm to the base 2 of \( X \). If \( X \) is a matrix, \( Y \) is a matrix of the same size, each entry of which is the logarithm of the corresponding entry of \( X \).

See Also

\[ \log \mid \log10 \]
**logical**

Check validity of equation or inequality

**Syntax**

`logical(cond)`

**Description**

`logical(cond)` checks whether the condition `cond` is valid.

**Input Arguments**

`cond`

Equation, inequality, or vector or matrix of equations or inequalities. You also can combine several conditions by using the logical operators `and`, `or`, `xor`, `not`, or their shortcuts.

**Examples**

Use `logical` to check if 3/5 is less than 2/3:

```matlab
logical(sym(3)/5 < sym(2)/3)
```

```matlab
ans =
1
```

Check if the following two conditions are both valid. To check if several conditions are valid at the same time, combine these conditions by using the logical operator `and` or its shortcut `&`.

```matlab
syms x
logical(1 < 2 & x == x)
```
Check this inequality. Note that `logical` evaluates the left side of the inequality.

```matlab
classical(sym(11)/4 - sym(1)/2 > 2)
classical =
 1
```

`logical` also evaluates more complicated symbolic expressions on both sides of equations and inequalities. For example, it evaluates the integral on the left side of this equation:

```matlab
syms x
classical(int(x, x, 0, 2) - 1 == 1)
classical =
 1
```

Check the validity of this equation using `logical`. Without an additional assumption that `x` is nonnegative, this equation is invalid.

```matlab
syms x
classical(x == sqrt(x^2))
classical =
 0
```

Use `assume` to set an assumption that `x` is nonnegative. Now the expression `sqrt(x^2)` evaluates to `x`, and `logical` returns 1:

```matlab
assume(x >= 0)
classical(x == sqrt(x^2))
classical =
 1
```

Note that `logical` typically ignores assumptions on variables:

```matlab
syms x
assume(x == 5)
classical(x == 5)
classical =
 1
```
To compare expressions taking into account assumptions on their variables, use `isAlways`:

```matlab
isAlways(x == 5)
ans =
 1
```

For further computations, clear the assumption on `x`:

```matlab
syms x clear
```

Do not use `logical` to check equations and inequalities that require simplification or mathematical transformations. For such equations and inequalities, `logical` might return unexpected results. For example, `logical` does not recognize mathematical equivalence of these expressions:

```matlab
syms x
logical(sin(x)/cos(x) == tan(x))
ans =
 0
```

`logical` also does not realize that this inequality is invalid:

```matlab
logical(sin(x)/cos(x) ~= tan(x))
ans =
 1
```

To test the validity of equations and inequalities that require simplification or mathematical transformations, use `isAlways`:

```matlab
isAlways(sin(x)/cos(x) == tan(x))
ans =
 1
isAlways(sin(x)/cos(x) ~= tan(x))
Warning: Cannot prove 'sin(x)/cos(x) ~= tan(x)'.
ans =
 0
```
More About

Tips

• For symbolic equations, `logical` returns logical 1 (`true`) only if the left and right sides are identical. Otherwise, it returns logical 0 (`false`).

• For symbolic inequalities constructed with `~=` or `~<`, `logical` returns logical 0 (`false`) only if the left and right sides are identical. Otherwise, it returns logical 1 (`true`).

• For all other inequalities (constructed with `<`, `<=`, `>`, or `>=`), `logical` returns logical 1 if it can prove that the inequality is valid and logical 0 if it can prove that the inequality is invalid. If `logical` cannot determine whether such inequality is valid or not, it throws an error.

• `logical` evaluates expressions on both sides of an equation or inequality, but does not simplify or mathematically transform them. To compare two expressions applying mathematical transformations and simplifications, use `isAlways`.

• `logical` typically ignores assumptions on variables.

See Also

`assume` | `assumeAlso` | `assumptions` | `in` | `isAlways` | `isequaln` | `isfinite` | `isinf` | `isnan` | `sym` | `syms`

Introduced in R2012a
\textbf{logint}

Logarithmic integral function

\section*{Syntax}

\texttt{logint(X)}

\section*{Description}

\texttt{logint(X)} represents the logarithmic integral function (integral logarithm).

\section*{Examples}

\subsection*{Integral Logarithm for Numeric and Symbolic Arguments}

Depending on its arguments, \texttt{logint} returns floating-point or exact symbolic results.

Compute integral logarithms for these numbers. Because these numbers are not symbolic objects, \texttt{logint} returns floating-point results.

\begin{verbatim}
A = logint([-1, 0, 1/4, 1/2, 1, 2, 10])
\end{verbatim}

\begin{verbatim}
A =
  0.0737 + 3.4227i  0.0000 + 0.0000i  -0.1187 + 0.0000i  -0.3787 + 0.0000i...
  -Inf + 0.0000i  1.0452 + 0.0000i  6.1656 + 0.0000i
\end{verbatim}

Compute integral logarithms for the numbers converted to symbolic objects. For many symbolic (exact) numbers, \texttt{logint} returns unresolved symbolic calls.

\begin{verbatim}
symA = logint(sym([-1, 0, 1/4, 1/2, 1, 2, 10]))
symA =
[ logint(-1), 0, logint(1/4), logint(1/2), -Inf, logint(2), logint(10)]
\end{verbatim}

Use \texttt{vpa} to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ 0.07366791204642548599010096523015...
+ 3.4227333787773627895923750617977i,...
0,...
-0.11866205644712310530509570647204,...
-0.37867104306108797672720718463656,...
-Inf,...
1.0451637801174927848445888891946,...
6.1655995047872979375229817526695]

**Plot Integral Logarithm**

Plot the integral logarithm function on the interval from 0 to 10.

```matlab
syms x
ezplot(logint(x), [0, 10])
grid on```

4-769
Handle Expressions Containing Integral Logarithm

Many functions, such as diff and limit, can handle expressions containing logint.

Find the first and second derivatives of the integral logarithm:

```matlab
syms x
diff(logint(x), x)
diff(logint(x), x, x)
```

```matlab
diff(logint(x), x, x)
```

```matlab
ans =
1/log(x)
```
ans =
-1/(x*log(x)^2)

Find the right and left limits of this expression involving logint:

limit(exp(1/x)/logint(x + 1), x, 0, 'right')
ans =
Inf

limit(exp(1/x)/logint(x + 1), x, 0, 'left')
ans =
0

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Logarithmic Integral Function

The logarithmic integral function, also called the integral logarithm, is defined as follows:

\[
\text{logint}(x) = \text{Li}(x) = \int_{0}^{x} \frac{1}{\ln(t)} dt
\]

Tips

- \(\text{logint}(\text{sym}(0))\) returns 1.
- \(\text{logint}(\text{sym}(1))\) returns -Inf.
- \(\text{logint}(z) = \text{ei}(\log(z))\) for all complex \(z\).
References

Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
coshint | cosint | ei | expint | int | log | sinhint | sinint | ssinint

Introduced in R2014a
logm

Matrix logarithm

Syntax

\[R = \text{logm}(A) \]

Description

\[R = \text{logm}(A) \] computes the matrix logarithm of the square matrix \(A \).

Examples

Matrix Logarithm

Compute the matrix logarithm for the 2-by-2 matrix.

```matlab
syms x
A = [x 1; 0 -x];
logm(A)
```

\[\text{ans} = \\
\begin{bmatrix}
\log(x) & \frac{\log(x)}{2x} - \frac{\log(-x)}{2x} \\
0 & \log(-x)
\end{bmatrix} \]

Input Arguments

- **A** — Input matrix
 - square matrix

Input matrix, specified as a square symbolic matrix.
Output Arguments

R — Resulting matrix
symbolic matrix

Resulting function, returned as a symbolic matrix.

See Also

eig | expm | funm | jordan | sqrtm

Introduced in R2014b
lt
Define less than relation

Compatibility
In previous releases, lt in some cases evaluated inequalities involving only symbolic
numbers and returned logical 1 or 0. To obtain the same results as in previous releases,
wrap inequalities in isAlways. For example, use isAlways(A < B).

Syntax
A < B
lt(A,B)

Description
A < B creates a less than relation.
lt(A,B) is equivalent to A < B.

Input Arguments
A
Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

B
Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or
expression, or array of numbers, symbolic variables or expressions.

Examples
Use assume and the relational operator < to set the assumption that x is less than 3:
syms x
assume(x < 3)

Solve this equation. The solver takes into account the assumption on variable x, and therefore returns these two solutions.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =
1
2

Use the relational operator < to set this condition on variable x:

```matlab
syms x
cond = abs(sin(x)) + abs(cos(x)) < 6/5;
```

Use the for loop with step π/24 to find angles from 0 to π that satisfy that condition:

```matlab
for i = 0:sym(pi/24):sym(pi)
    if subs(cond, x, i)
        disp(i)
    end
end
```

0
pi/24
(11*pi)/24
pi/2
(13*pi)/24
(23*pi)/24
pi

More About

Tips

- Calling < or lt for non-symbolic A and B invokes the MATLAB lt function. This function returns a logical array with elements set to logical 1 (true) where A is less than B; otherwise, it returns logical 0 (false).
- If both A and B are arrays, then these arrays must have the same dimensions. A < B returns an array of relations A(i,j,...) < B(i,j,...)
• If one input is scalar and the other an array, then the scalar input is expanded into an array of the same dimensions as the other array. In other words, if A is a variable (for example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of elements, each set to x.

• The field of complex numbers is not an ordered field. MATLAB projects complex numbers in relations to a real axis. For example, x < i becomes x < 0, and x < 3 + 2*i becomes x < 3.

See Also
eq | ge | gt | isAlways | le | ne

Introduced in R2012a
lu

LU factorization

Syntax

\[
\begin{align*}
[L,U] &= \text{lu}(A) \\
[L,U,P] &= \text{lu}(A) \\
[L,U,p] &= \text{lu}(A, '\text{vector}') \\
[L,U,p,q] &= \text{lu}(A, '\text{vector}') \\
[L,U,P,Q,R] &= \text{lu}(A) \\
[L,U,p,q,R] &= \text{lu}(A, '\text{vector}') \\
\text{lu}(A)
\end{align*}
\]

Description

\[[L,U] = \text{lu}(A)\] returns an upper triangular matrix \(U\) and a matrix \(L\), such that \(A = L*U\). Here, \(L\) is a product of the inverse of the permutation matrix and a lower triangular matrix.

\[[L,U,P] = \text{lu}(A)\] returns an upper triangular matrix \(U\), a lower triangular matrix \(L\), and a permutation matrix \(P\), such that \(P*A = L*U\).

\[[L,U,p] = \text{lu}(A, '\text{vector}')\] returns the permutation information as a vector \(p\), such that \(A(p,:) = L*U\).

\[[L,U,p,q] = \text{lu}(A, '\text{vector}')\] returns the permutation information as two row vectors \(p\) and \(q\), such that \(A(p,q) = L*U\).

\[[L,U,P,Q,R] = \text{lu}(A)\] returns an upper triangular matrix \(U\), a lower triangular matrix \(L\), permutation matrices \(P\) and \(Q\), and a scaling matrix \(R\), such that \(P*(R\backslash A)*Q = L*U\).

\[[L,U,p,q,R] = \text{lu}(A, '\text{vector}')\] returns the permutation information in two row vectors \(p\) and \(q\), such that \(R(:,p)\backslash A(:,q) = L*U\).

\(\text{lu}(A)\) returns the matrix that contains the strictly lower triangular matrix \(L\) (the matrix without its unit diagonal) and the upper triangular matrix \(U\) as submatrices. Thus, \(\text{lu}(A)\) returns the matrix \(U + L - \text{eye(size(A))}\), where \(L\) and \(U\) are defined as \([L,U,P] = \text{lu}(A)\). The matrix \(A\) must be square.
Input Arguments

A
Square or rectangular symbolic matrix.

'vector'
Flag that prompts lu to return the permutation information in row vectors.

Output Arguments

L
Lower triangular matrix or a product of the inverse of the permutation matrix and a lower triangular matrix.

U
Upper triangular matrix.

P
Permutation matrix.

p
Row vector.

q
Row vector.

Q
Permutation matrix.

R
Diagonal scaling matrix.
Examples

Compute the LU factorization of this matrix. Because these numbers are not symbolic objects, you get floating-point results.

\[
[L, U] = \text{lu}([2 -3 -1; 1/2 1 -1; 0 1 -1])
\]

\[
L = \\
[\begin{array}{ccc}
1.0000 & 0 & 0 \\
0.2500 & 1.0000 & 0 \\
0 & 0.5714 & 1.0000 \\
\end{array}]
\]

\[
U = \\
[\begin{array}{ccc}
2.0000 & -3.0000 & -1.0000 \\
0 & 1.7500 & -0.7500 \\
0 & 0 & -0.5714 \\
\end{array}]
\]

Now convert this matrix to a symbolic object, and compute the LU factorization:

\[
[L, U] = \text{lu}(\text{sym}([2 -3 -1; 1/2 1 -1; 0 1 -1]))
\]

\[
L = \\
[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{4} & 1 & 0 \\
0 & \frac{4}{7} & 1 \\
\end{array}]
\]

\[
U = \\
[\begin{array}{ccc}
2 & -3 & -1 \\
0 & \frac{7}{4} & -\frac{3}{4} \\
0 & 0 & -\frac{4}{7} \\
\end{array}]
\]

Compute the LU factorization returning the lower and upper triangular matrices and the permutation matrix:

\[
\text{syms} \ a
\]

\[
[L, U, P] = \text{lu}(\text{sym}([0 0 \ a; 2 3; 0 \ a \ 2]))
\]

\[
L = \\
[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}]
\]

\[
U = \\
[\begin{array}{ccc}
a & 2 & 3 \\
0 & a & 2 \\
0 & 0 & a \\
\end{array}]
\]
Use the 'vector' flag to return the permutation information as a vector:

```matlab
syms a
A = [0 0 a; a 2 3; 0 a 2];
[L, U, p] = lu(A, 'vector')
```

```matlab
L =
[ 1, 0, 0]
[ 0, 1, 0]
[ 0, 0, 1]
U =
[ a, 2, 3]
[ 0, a, 2]
[ 0, 0, a]
p =
2 3 1
```

Use `isAlways` to check that \(A(p,:) = L*U \):

```matlab
isAlways(A(p,:) == L*U)
```

```matlab
ans =
1 1 1
1 1 1
1 1 1
```

Restore the permutation matrix \(P \) from the vector \(p \):

```matlab
P = zeros(3, 3);
for i = 1:3
    P(i, p(i)) = 1;
end
P
```

```
P =
0 1 0
0 0 1
1 0 0
```

Compute the LU factorization of this matrix returning the permutation information in the form of two vectors \(p \) and \(q \):
syms a
A = [a, 2, 3*a; 2*a, 3, 4*a; 4*a, 5, 6*a];
[L, U, p, q] = lu(A, 'vector')

L =
[1, 0, 0]
[2, 1, 0]
[4, 3, 1]
U =
[a, 2, 3*a]
[0, -1, -2*a]
[0, 0, 0]
p =
1 2 3
q =
1 2 3

Use isAlways to check that \(A(p, q) = L*U \):
isAlways(A(p, q) == L*U)

ans =
1 1 1
1 1 1
1 1 1

Compute the LU factorization of this matrix returning the lower and upper triangular matrices, permutation matrices, and the scaling matrix:
syms a
A = [0, a; 1/a, 0; 0, 1/5; 0,-1];
[L, U, P, Q, R] = lu(A)

L =
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 1/(5*a), 1, 0]
[0, -1/a, 0, 1]
U =
[1/a, 0]
[0, a]
[0, 0]
[0, 0]
P =
0 1 0 0
\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\(Q = \)
\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

\(R = \)
\[
\begin{bmatrix}
1, & 0, & 0, & 0 \\
0, & 1, & 0, & 0 \\
0, & 0, & 1, & 0 \\
0, & 0, & 0, & 1
\end{bmatrix}
\]

Use \texttt{isAlways} to check that \(P \cdot (R\, A) \cdot Q = L \cdot U \):

\texttt{isAlways(P*(R\, A)*Q == L*U)}

\texttt{ans =}
\[
\begin{bmatrix}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix}
\]

Compute the LU factorization of this matrix using the \texttt{’vector’} flag to return the permutation information as vectors \(p \) and \(q \). Also compute the scaling matrix \(R \):

\texttt{syms a}
\texttt{A = [0, a; 1/a, 0; 0, 1/5; 0, -1];}
\texttt{[L, U, p, q, R] = lu(A, ’vector’);}
\texttt{L =}
\[
\begin{bmatrix}
1, & 0, & 0, & 0 \\
0, & 1, & 0, & 0 \\
0, & 1/(5*a), & 1, & 0 \\
0, & -1/a, & 0, & 1
\end{bmatrix}
\]
\texttt{U =}
\[
\begin{bmatrix}
1/a, & 0 \\
0, & a \\
0, & 0 \\
0, & 0
\end{bmatrix}
\]
\texttt{p =}
\[
\begin{bmatrix}
2 & 1 & 3 & 4
\end{bmatrix}
\]
\texttt{q =}
\[
\begin{bmatrix}
1 & 2
\end{bmatrix}
\]
\texttt{R =}
\[
\begin{bmatrix}
1, & 0, & 0, & 0
\end{bmatrix}
\]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

Use `isAlways` to check that \(R(:,p) \setminus A(:,q) = L*U \):

```matlab
isAlways(R(:,p) \setminus A(:,q) == L*U)
```

```matlab
ans =
   1  1
   1  1
   1  1
   1  1
```

Call the `lu` function for this matrix:

```matlab
syms a
A = [0 0 a; a 2 3; 0 a 2];
lu(A)
```

```matlab
ans =
 [ a, 2, 3]
[ 0, a, 2]
[ 0, 0, a]
```

Verify that the resulting matrix is equal to \(U + L - \text{eye(size}(A)) \), where \(L \) and \(U \) are defined as \([L,U,P] = \text{lu}(A)\):

```matlab
[L,U,P] = lu(A);
U + L - eye(size(A))
```

```matlab
ans =
   [ a, 2, 3]
   [ 0, a, 2]
   [ 0, 0, a]
```

More About

LU Factorization of a Matrix

LU factorization expresses an \(m \)-by-\(n \) matrix \(A \) as \(P * A = L * U \). Here, \(L \) is an \(m \)-by-\(m \) lower triangular matrix, \(U \) is an \(m \)-by-\(n \) upper triangular matrix, and \(P \) is a permutation matrix.
Permutation Vector

Permutation vector \(p \) contains numbers corresponding to row exchanges in the matrix \(A \). For an \(m \)-by-\(m \) matrix, \(p \) represents the following permutation matrix with indices \(i \) and \(j \) ranging from 1 to \(m \):

\[
P_{ij} = \delta_{p_i, j} = \begin{cases}
1 & \text{if } j = p_i \\
0 & \text{if } j \neq p_i
\end{cases}
\]

Tips

- Calling `lu` for numeric arguments that are not symbolic objects invokes the MATLAB `lu` function.
- The `thresh` option supported by the MATLAB `lu` function does not affect symbolic inputs.
- If you use `'matrix'` instead of `'vector'`, then `lu` returns permutation matrices, as it does by default.
- \(L \) and \(U \) are nonsingular if and only if \(A \) is nonsingular. `lu` also can compute the LU factorization of a singular matrix \(A \). In this case, \(L \) or \(U \) is a singular matrix.
- Most algorithms for computing LU factorization are variants of Gaussian elimination.

See Also

`chol` | `eig` | `isAlways` | `lu` | `qr` | `svd` | `vpa`

Introduced in R2013a
massMatrixForm

Extract mass matrix and right side of semilinear system of differential algebraic equations

Syntax

[M,F] = massMatrixForm(eqs,vars)

Description

[M,F] = massMatrixForm(eqs,vars) returns the mass matrix \(M \) and the right side of equations \(F \) of a semilinear system of first-order differential algebraic equations (DAEs). Algebraic equations in \(\text{eqs} \) that do not contain any derivatives of the variables in \(\text{vars} \) correspond to empty rows of the mass matrix \(M \).

The mass matrix \(M \) and the right side of equations \(F \) refer to the form

\[
M(t, x(t)) \dot{x}(t) = F(t, x(t))
\]

Examples

Convert DAE System to Mass Matrix Form

Convert a semilinear system of differential algebraic equations to mass matrix form.

Create the following system of differential algebraic equations. Here, the functions \(x1(t) \) and \(x2(t) \) represent state variables of the system. The system also contains symbolic parameters \(r \) and \(m \), and the function \(f(t, x1, x2) \). Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

\[
syms x1(t) x2(t) f(t, x1, x2) r m;
\]
eqs = [m*x2(t)*diff(x1(t), t) + m*t*diff(x2(t), t) == f(t, x1(t), x2(t)),
 x1(t)^2 + x2(t)^2 == r^2];
vars = [x1(t), x2(t)];

Find the mass matrix form of this system.

[M, F] = massMatrixForm(eqs, vars)

M =
 [m*x2(t), m*t]
 [0, 0]
F =
 f(t, x1(t), x2(t))
 r^2 - x2(t)^2 - x1(t)^2

Solve this system using the numerical solver ode15s. Before you use ode15s, assign the following values to symbolic parameters of the system: m = 100, r = 1, f(t, x1, x2) = t + x1*x2. Also, replace the state variables x1(t), x2(t) by variables Y1, Y2 acceptable by matlabFunction.

syms Y1 Y2;
M = subs(M, [vars, m, r, f], [Y1, Y2, 100, 1, @(t,x1,x2) t + x1*x2]);
F = subs(F, [vars, m, r, f], [Y1, Y2, 100, 1, @(t,x1,x2) t + x1*x2]);

Create the following function handles MM and FF. You can use these function handles as input arguments for odeset and ode15s. Note that these functions require state variables to be specified as column vectors.

MM = matlabFunction(M, 'vars', {t, [Y1; Y2]});
FF = matlabFunction(F, 'vars', {t, [Y1; Y2]});

Use ode15s to solve the system.

opt = odeset('Mass', MM, 'InitialSlope', [0.005;0]);
ode15s(FF, [0,1], [0.5; 0.5*sqrt(3)], opt)
Input Arguments

eqs — System of semilinear first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of semilinear first-order DAEs, specified as a vector of symbolic equations or expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as \(x(t) \).
Example: \([x(t), y(t)]\) or \([x(t); y(t)]\)

Output Arguments

\(M\) — Mass matrix

symbolic matrix

Mass matrix of the system, returned as a symbolic matrix. The number of rows is the number of equations in \(\text{eqs}\), and the number of columns is the number of variables in \(\text{vars}\).

\(F\) — Right sides of equations

symbolic column vector of symbolic expressions

Right sides of equations, returned as a column vector of symbolic expressions. The number of elements in this vector coincides with the number of equations \(\text{eqs}\).

See Also

daeFunction | decic | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE | matlabFunction | ode15s | odeFunction | odeset | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies

Introduced in R2014b
matlabFunction

Convert symbolic expression to function handle or file

Syntax

```
g = matlabFunction(f)  
g = matlabFunction(f1,...,fN)  
g = matlabFunction(___,Name,Value)
```

Description

`g = matlabFunction(f)` converts `f` to a MATLAB function with the handle `g`. Here, `f` can be a symbolic expression, function, or a vector of symbolic expressions or functions.

`g = matlabFunction(f1,...,fN)` converts `f1,...,fN` to a MATLAB function with `N` outputs. The function handle is `g`. Each element of `f1,...,fN` can be a symbolic expression, function, or a vector of symbolic expressions or functions.

`g = matlabFunction(___,Name,Value)` converts symbolic expressions, functions, or vectors of symbolic expressions or functions to a MATLAB function using additional options specified by one or more `Name,Value` pair arguments. You can specify `Name,Value` after the input arguments used in the previous syntaxes.

Examples

Convert Symbolic Expression to Anonymous Function

Create the following symbolic expression `r`. Then convert `sin(r)/r` to a MATLAB function with the handle `ht`.

```matlab
syms x y  
r = sqrt(x^2 + y^2);  
ht = matlabFunction(sin(r)/r)
```

`ht =`
Create the following symbolic expression \(r \). Then convert \(\sin(r)/r \) and \(\cos(r)/r \) to a MATLAB function with the handle \(\text{ht} \).

\[
syms \ x \ y\\
r = \sqrt{x^2 + y^2};\\
ht = \text{matlabFunction}(\sin(r)/r, \cos(r)/r)\\
ht = @(x,y)\text{deal}(\sin(\sqrt{x^2+y^2})).*1.0./\sqrt{x^2+y^2},...\\
\cos(\sqrt{x^2+y^2})).*1.0./\sqrt{x^2+y^2})
\]

Create a symbolic function and convert it to a MATLAB function with the handle \(\text{ht} \).

\[
syms \ x \ y\\
f(x,y) = x^3 + y^3;\\
ht = \text{matlabFunction}(f)\\
ht = @(x,y)x.^3+y.^3
\]

Convert a symbolic expression to a MATLAB function and write it to a file.

Create a symbolic expression.

\[
syms \ x \ y \ z\\
r = x^2 + y^2 + z^2;\\
\]

Convert \(r \) to a MATLAB function and write this function to a file called \(\text{myfile} \). If \(\text{myfile.m} \) already exists in the current folder, \text{matlabFunction} replaces the existing function with the converted symbolic expression. You can open and edit the resulting file.

\[
f = \text{matlabFunction}(\log(r)+r^{(-1/2)},'File','myfile');\\
function \text{out1} = \text{myfile}(x,y,z)
\]
%MYFILE
% OUT1 = MYFILE(X,Y,Z)
t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
t5 = t2 + t3 + t4;
out1 = log(t5) + 1.0./sqrt(t5);

If a path to the file is an empty string, then `matlabFunction` does not create a file. It generates an anonymous function instead.

```matlab
syms x y z
r = x^2 + y^2 + z^2;
f = matlabFunction(log(r)+r^(-1/2),'File','')
```

```matlab
f = @(x,y,z)log(x.^2+y.^2+z.^2)+1.0./sqrt(x.^2+y.^2+z.^2)
```

Disable Code Optimization

When you convert a symbolic expression to a MATLAB function and write the resulting function to a file, `matlabFunction` optimizes the code by default. This approach can help simplify and speed up further computations that use the file. However, generating the optimized code from some symbolic expressions and functions can be very time consuming. Use `Optimize` to disable code optimization.

Create a symbolic expression.

```matlab
syms x
r = x^2*(x^2 + 1);
```

Convert `r` to a MATLAB function and write the function to the file `myfile`. By default, `matlabFunction` creates a file containing the optimized code.

```matlab
f = matlabFunction(r,'File','myfile');
```

```matlab
function r = myfile(x)
%MYFILE
%    R = MYFILE(X)
t2 = x.^2;
r = t2.*(t2+1.0);
```

Disable the code optimization by setting the value of `Optimize` to `false`.
Generate Sparse Matrices

When you convert a symbolic matrix to a MATLAB function, `matlabFunction` represents it by a dense matrix by default. If most of the elements of the input symbolic matrix are zeros, the more efficient approach is to represent it by a sparse matrix.

Create a 3-by-3 symbolic diagonal matrix:

```matlab
syms x
A = diag(x*ones(1,3))
```

Convert `A` to a MATLAB function representing a numeric matrix, and write the result to the file `myfile1`. By default, the generated MATLAB function creates the dense numeric matrix specifying each element of the matrix, including all zero elements.

```matlab
f1 = matlabFunction(A,'File','myfile1');
```

Convert `A` to a MATLAB function setting `Sparse` to `true`. Now, the generated MATLAB function creates the sparse numeric matrix specifying only nonzero elements and assuming that all other elements are zeros.

```matlab
f2 = matlabFunction(A,'File','myfile2','Sparse',true);
```
A = sparse([1,2,3],[1,2,3],[x,x,x],3,3);

Specify Input Arguments for Generated Function

When converting an expression to a MATLAB function, you can specify the order of the input arguments of the resulting function. You also can specify that some input arguments are vectors instead of single variables.

Create a symbolic expression.

```matlab
syms x y z
r = x + y/2 + z/3;
```

Convert `r` to a MATLAB function and write this function to the file `myfile`. By default, `matlabFunction` uses alphabetical order of input arguments when converting symbolic expressions.

```matlab
matlabFunction(r,'File','myfile');
```

```matlab
function r = myfile(x,y,z)
%MYFILE
%    R = MYFILE(X,Y,Z)
    r = x+y.*(1.0./2.0)+z.*(1.0./3.0);
end
```

Use the `Vars` argument to specify the order of input arguments for the generated MATLAB function.

```matlab
matlabFunction(r,'File','myfile','Vars',[y z x]);
```

```matlab
function r = myfile(y,z,x)
%MYFILE
%    R = MYFILE(Y,Z,X)
    r = x+y.*(1.0./2.0)+z.*(1.0./3.0);
end
```

Now, convert an expression `r` to a MATLAB function whose second input argument is a vector.

```matlab
syms x y z t
r = (x + y/2 + z/3)*exp(-t);
matlabFunction(r,'File','myfile','Vars',[t,[x y z]]);
```

```matlab
function r = myfile(t,in2)
%MYFILE
%    R = MYFILE(T,IN2)
```
x = in2(:,1);
y = in2(:,2);
z = in2(:,3);
r = exp(-t).*x+y.*(1.0./2.0)+z.*(1.0./3.0);

Specify Output Variables

When converting a symbolic expression to a MATLAB function, you can specify the names of the output variables. Note that `matlabFunction` without the `File` argument (or with a file path specified by an empty string) creates a function handle and ignores the `Outputs` flag.

Create symbolic expressions \(r \) and \(q \).

```matlab
syms x y z
r = x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;
```

Convert \(r \) and \(q \) to a MATLAB function and write the resulting function to a file `myfile`, which returns a vector of two elements, `name1` and `name2`.

```matlab
f = matlabFunction(r,q,'File','myfile',
                    'Outputs',{'name1','name2'});
```

Convert MuPAD Expression to MATLAB Function

You can convert MuPAD expressions to MATLAB functions using the following two-step approach.

Use `evalin` to evaluate the MuPAD expression \(\arcsin(x) + \arccos(y) \) in the MATLAB Command Window.
syms x y
f = evalin(symengine, 'arcsin(x) + arccos(y)');

Now, use \texttt{matlabFunction} to convert the resulting expression to a MATLAB function. The file \texttt{myfile} contains the expression written in the MATLAB language.

\texttt{matlabFunction(f,'File','myfile');}

\texttt{function f = myfile(x,y)
%MYFILE
% F = MYFILE(X,Y)
f = asin(x) + acos(y);}

\section*{Input Arguments}

\textbf{f} — Symbolic input to be converted to MATLAB function
\begin{itemize}
 \item symbolic expression | symbolic function | symbolic vector | symbolic matrix
\end{itemize}

Symbolic input to be converted to a MATLAB function, specified as a symbolic expression, function, vector, or matrix. When converting sparse symbolic vectors or matrices, use the name-value pair argument \texttt{Sparse},true.

\textbf{f1,...,fN} — Symbolic input to be converted to MATLAB function with N outputs
\begin{itemize}
 \item several symbolic expressions | several symbolic functions | several symbolic vectors | several symbolic matrices
\end{itemize}

Symbolic input to be converted to MATLAB function with N outputs, specified as several symbolic expressions, functions, vectors, or matrices, separated by comma.

\texttt{matlabFunction} does not create a separate output argument for each element of a symbolic vector or matrix. For example, \texttt{g = matlabFunction([x + 1, y + 1])} creates a MATLAB function with one output argument, while \texttt{g = matlabFunction(x + 1, y + 1)} creates a MATLAB function with two output arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.
Example: `matlabFunction(f,'File','myfile','Optimize',false)`

'File' — Path to file containing generated MATLAB function

Path to the file containing the generated MATLAB function, specified as a string. The generated function accepts arguments of type `double`, and can be used without Symbolic Math Toolbox. If the value string is empty, `matlabFunction` generates an anonymous function. If the string does not end in `.m`, the function appends `.m`.

By default, `matlabFunction` with the `File` argument generates a file containing optimized code. Code optimization means that intermediate variables are used to simplify or speed up the code. MATLAB generates intermediate variables as a lowercase letter `t` followed by an automatically generated number, for example `t32`. To disable code optimization, use the `Optimize` argument.

See “Write Generated MATLAB Function to File” on page 4-791.

'Optimize' — Flag preventing optimization of code written to function file

Flag preventing optimization of code written to a function file, specified as `false` or `true`.

By default, `matlabFunction` with the `File` argument generates a file containing optimized code. Code optimization means that intermediate variables are used to simplify or speed up the code. MATLAB generates intermediate variables as a lowercase letter `t` followed by an automatically generated number, for example `t32`.

`matlabFunction` without the `File` argument (or with a file path specified by an empty string) creates a function handle. In this case, the code is not optimized. If you try to enforce code optimization by setting `Optimize` to `true`, then `matlabFunction` throws an error.

See “Disable Code Optimization” on page 4-792.

'Sparse' — Flag that switches between sparse and dense matrix generation

Flag that switches between sparse and dense matrix generation, specified as `true` or `false`. When you specify `'Sparse',true`, the generated MATLAB function represents symbolic matrices by sparse numeric matrices. Use `'Sparse',true` when you convert...
symbolic matrices containing many zero elements. Often, operations on sparse matrices are more efficient than the same operations on dense matrices.

See “Generate Sparse Matrices” on page 4-793.

'Vars' — Order of input variables or vectors in generated MATLAB function

string | vector of symbolic variables | one-dimensional cell array of strings | one-dimensional cell array of symbolic variables | one-dimensional cell array of vectors of symbolic variables

Order of input variables or vectors in a generated MATLAB function, specified as a string, a vector of symbolic variables, or a one-dimensional cell array of strings, symbolic variables, or vectors of symbolic variables.

The number of specified input variables must equal or exceed the number of free variables in \(f \). Do not use the same names for the input variables specified by Vars and the output variables specified by Outputs.

By default, when you convert symbolic expressions, the order is alphabetical. When you convert symbolic functions, their input arguments appear in front of other variables, and all other variables are sorted alphabetically.

See “Specify Input Arguments for Generated Function” on page 4-794

'Outputs' — Names of output variables

one-dimensional cell array of strings

Names of output variables, specified as a one-dimensional cell array of strings.

If you do not specify the output variable names, then they coincide with the names you use when calling \texttt{matlabFunction}. If you call \texttt{matlabFunction} using an expression instead of individual variables, the default names of output variables consist of the word \texttt{out} followed by a number, for example, \texttt{out3}.

Do not use the same names for the input variables specified by Vars and the output variables specified by Outputs.

\texttt{matlabFunction} without the \texttt{File} argument (or with a file path specified by an empty string) creates a function handle. In this case, \texttt{matlabFunction} ignores the Outputs flag.

See “Specify Output Variables” on page 4-795.
Output Arguments

g — Function handle that can serve as input argument to numerical functions
MATLAB function handle

Function handle that can serve as an input argument to numerical functions, returned as a MATLAB function handle.

More About

Tips

- When you use the `File` argument, use `rehash` to make the generated function available immediately. `rehash` updates the MATLAB list of known files for directories on the search path.
- To convert a MuPAD expression or function to a MATLAB symbolic expression, use `f = evalin(symengine,'MuPAD_Expression')` or `f = feval(symengine,'MuPAD_Function',x1,...,xn)`. Then you can convert the resulting symbolic expression to a MATLAB function.

`matlabFunction` cannot correctly convert some MuPAD expressions to MATLAB functions. These expressions do not trigger an error message. When converting a MuPAD expression or function that is not on the “Differences Between MATLAB and MuPAD Syntax” on page 3-22 list, always check the conversion results. To verify the results, execute the resulting function.

See Also

`ccode` | `daeFunction` | `evalin` | `feval` | `fortran` | `matlabFunctionBlock` | `odeFunction` | `rehash` | `simscapeEquation` | `subs` | `sym2poly`
matlabFunctionBlock

Convert symbolic expression to MATLAB Function block

Syntax

matlabFunctionBlock(block,f)
matlabFunctionBlock(block,f1,...,fN)
matlabFunctionBlock(___,Name,Value)

Description

matlabFunctionBlock(block,f) converts f to a MATLAB Function block that you can use in Simulink models. Here, f can be a symbolic expression, function, or a vector of symbolic expressions or functions.

block specifies the name of the block that you create or modify.

matlabFunctionBlock(block,f1,...,fN) converts symbolic expressions or functions f1,...,fN to a MATLAB Function block with N outputs. Each element of f1,...,fN can be a symbolic expression, function, or a vector of symbolic expressions or functions.

matlabFunctionBlock(___,Name,Value) converts a symbolic expression, function, or a vector of symbolic expressions or functions to a MATLAB Function block using additional options specified by one or more Name,Value pair arguments. You can specify Name,Value after the input arguments used in the previous syntaxes.

Examples

Convert Symbolic Expression

Create a new model and convert a symbolic expression to a MATLAB Function block.

Create a new empty model and open it.

new_system('my_system')
open_system('my_system')

Create a symbolic expression.

syms x y z
f = x^2 + y^2 + z^2;

Use \texttt{matlabFunctionBlock} to create the block \texttt{my}_\texttt{block} containing the symbolic expression. Double-click the generated block to open and edit the function defining the block.

\texttt{matlabFunctionBlock('my_system/my_block',f)}

function f = my_block(x,y,z)
 %#codegen
 f = x.^2 + y.^2 + z.^2;

If you use the name of an existing block, \texttt{matlabFunctionBlock} replaces the definition of an existing block with the converted symbolic expression.

Save and close \texttt{my_system}:

save_system('my_system')
close_system('my_system')

\section*{Convert Symbolic Function}

Create a new model and convert a symbolic function to a MATLAB Function block.

Create a new empty model and open it.

\texttt{new_system('my_system')}
\texttt{open_system('my_system')}

Create a symbolic function.

syms x y z
f(x, y, z) = x^2 + y^2 + z^2;

Convert \texttt{f} to a MATLAB Function block. Double-click the block to see the function.

\texttt{matlabFunctionBlock('my_system/my_block',f)}

function f = my_block(x,y,z)
 %#codegen
 f = x.^2+y.^2+z.^2;
Create Blocks with Multiple Outputs

Convert several symbolic expressions to a MATLAB Function block with multiple output ports.

Create a new empty model and open it.

```matlab
new_system('my_system')
open_system('my_system')
```

Create three symbolic expressions.

```matlab
syms x y z
f = x^2;
g = y^2;
h = z^2;
```

Convert them to a MATLAB Function block. `matlabFunctionBlock` creates a block with three output ports. Double-click the block to see the function.

```matlab
matlabFunctionBlock('my_system/my_block',f,g,h)
function [f,g,h] = my_block(x,y,z)
    f = x.^2;
    if nargout > 1
        g = y.^2;
    end
    if nargout > 2
        h = z.^2;
    end
```

Specify Function Name for Generated Function

Specifying the name of the function defining the generated MATLAB Function block.

Create a new empty model and open it.

```matlab
new_system('my_system')
open_system('my_system')
```

Create a symbolic expression.

```matlab
syms x y z
f = x^2 + y^2 + z^2;
```
Generate a block and set the function name to `my_function`. Double-click the block to see the function.

```
matlabFunctionBlock('my_system/my_block', f, ...
  'FunctionName', 'my_function')
```

```matlab
function f = my_function(x,y,z)
  %#codegen
  f = x.^2 + y.^2 + z.^2;
end
```

Disable Code Optimization

When you convert a symbolic expression to a MATLAB Function block, `matlabFunctionBlock` optimizes the code by default. This approach can help simplify and speed up further computations that use the file. Nevertheless, generating the optimized code from some symbolic expressions and functions can be very time-consuming. Use **Optimize** to disable code optimization.

Create a new empty model and open it.

```
new_system('my_system')
open_system('my_system')
```

Create a symbolic expression.

```
syms x
r = x^2*(x^2 + 1);
```

Use `matlabFunctionBlock` to create the block `my_block` containing the symbolic expression. Double-click the block to see the function defining the block. By default, `matlabFunctionBlock` creates a file containing the optimized code.

```
matlabFunctionBlock('my_system/my_block', r)
```

```matlab
function r = my_block(x)
  %#codegen
  t2 = x.^2;
  r = t2.*(t2+1.0);
end
```

Disable the code optimization by setting the value of `Optimize` to false.

```
matlabFunctionBlock('my_system/my_block', r, ...
  'Optimize',false)
```

```matlab
function r = my_block(x)
```
Specify Input Ports for Generated Block

Specify the order of the input variables that form the input ports in a generated block.

Create a new empty model and open it.

```matlab
new_system('my_system')
open_system('my_system')
```

Create a symbolic expression.

```matlab
syms x y z
f = x^2 + y^2 + z^2;
```

Convert the expression to a MATLAB Function block. By default, `matlabFunctionBlock` uses alphabetical order of input arguments when converting symbolic expressions.

```matlab
matlabFunctionBlock('my_system/my_block',f)
```

```matlab
function f = my_block(x,y,z)
    %#codegen
    f = x.^2+y.^2+z.^2;
```

Use the `Vars` argument to specify the order of the input ports.

```matlab
matlabFunctionBlock('my_system/my_block',f,...
    'Vars', [y z x])
```

```matlab
function f = my_block(y,z,x)
    %#codegen
    f = x.^2+y.^2+z.^2;
```

Specify Output Ports

When generating a block, rename the output variables and the corresponding ports.

Create a new empty model and open it.

```matlab
new_system('my_system')
open_system('my_system')
```
Create a symbolic expression.

```matlab
syms x y z
f = x^2 + y^2 + z^2;
```

Convert the expression to a MATLAB Function block and specify the names of the output variables and ports. Double-click the block to see the function defining the block.

```matlab
matlabFunctionBlock('my_system/my_block', f, f + 1, f + 2, ...
  'Outputs', {'name1', 'name2', 'name3'});
```

```matlab
function [name1, name2, name3] = my_block(x, y, z)
  %#codegen
  t2 = x.^2;
  t3 = y.^2;
  t4 = z.^2;
  name1 = t2 + t3 + t4;
  if nargout > 1
    name2 = t2 + t3 + t4 + 1.0;
  end
  if nargout > 2
    name3 = t2 + t3 + t4 + 2.0;
  end
```

Specify Function Name, Input and Output Ports

Call `matlabFunctionBlock` using several name-value pair arguments simultaneously.

Create a new empty model and open it.

```matlab
new_system('my_system')
open_system('my_system')
```

Create a symbolic expression.

```matlab
syms x y z
f = x^2 + y^2 + z^2;
```

Call `matlabFunctionBlock` using the name-value pair arguments to specify the function name, the order of the input ports, and the names of the output ports. Double-click the block to see the function defining the block.

```matlab
matlabFunctionBlock('my_system/my_block', f, f + 1, f + 2, ...
  'FunctionName', 'my_function', 'Vars', [y z x], ...
function [name1,name2,name3] = my_function(y,z,x)
%#codegen
    t2 = x.^2;
    t3 = y.^2;
    t4 = z.^2;
    name1 = t2+t3+t4;
    if nargout > 1
        name2 = t2+t3+t4+1.0;
    end
    if nargout > 2
        name3 = t2+t3+t4+2.0;
    end
end

Convert MuPAD Expression to MATLAB Function Block

Convert a MuPAD expression to a MATLAB Function block.

Create a new empty model and open it.

new_system('my_system')
open_system('my_system')

Create a expression written in the MuPAD language.

syms x y
f = evalin(symengine, 'arcsin(x) + arccos(y)');

Convert the expression to a MATLAB Function block The resulting block contains the same expressions written in the MATLAB language:

matlabFunctionBlock('my_system/my_block', f)
function f = my_block(x,y)
    f = asin(x) + acos(y);

Input Arguments

block — Block to create or modify
string
Block to create or modify, specified as a string.

\( f \) — Symbolic input to be converted to MATLAB Function block  
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Symbolic input to be converted to MATLAB Function block, specified as a symbolic expression, function, vector, or matrix.

\( f_1, \ldots, f_N \) — Symbolic input to be converted to MATLAB Function block with \( N \) outputs  
several symbolic expressions | several symbolic functions | several symbolic vectors | several symbolic matrices

Symbolic input to be converted to MATLAB Function block with \( N \) outputs, specified as several symbolic expressions, functions, vectors, or matrices, separated by comma.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside single quotes ('). You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example:

`'FunctionName'` — Name of function  
coincedes with the input argument `block` (default) | string

Name of the function, specified as a string. By default, `matlabFunction(block,...)` uses `block` as the function name.

See “Specify Function Name for Generated Function” on page 4-802.

`'Optimize'` — Flag preventing code optimization  
true (default) | false

Flag preventing code optimization, specified as `false` or `true`.

By default, `matlabFunctionBlock` generates a file containing optimized code. Optimized means intermediate variables are automatically generated to simplify or speed up the code. MATLAB generates intermediate variables as a lowercase letter `t` followed by an automatically generated number, for example `t32`. 
See “Disable Code Optimization” on page 4-803.

'Vars' — Order of input variables and corresponding input ports of generated block
string | one-dimensional cell array of strings | one-dimensional cell array of symbolic variables | one-dimensional cell array of vectors of symbolic variables | vector of symbolic variables

Order of input variables and corresponding input ports of generated block, specified as a string, a vector of symbolic variables, or a one-dimensional cell array of strings, symbolic variables, or vectors of symbolic variables.

The number of specified input ports must equal or exceed the number of free variables in f. Do not use the same names for the input ports specified by Vars and the output ports specified by Outputs.

By default, when you convert symbolic expressions, the order is alphabetical. When you convert symbolic functions, their input arguments appear in front of other variables, and all other variables are sorted alphabetically.

See “Specify Input Ports for Generated Block” on page 4-804.

'Outputs' — Names of output ports
out followed by output port numbers (default) | one-dimensional cell array of strings

Names of output ports, specified as a one-dimensional cell array of strings. If you do not specify the output port names, matlabFunctionBlock uses names that consist of the word out followed by output port numbers, for example, out3.

Do not use the same names for the input ports specified by Vars and the output ports specified by Outputs. See “Specify Output Ports” on page 4-804.

More About

Tips

• To convert a MuPAD expression or function to a MATLAB symbolic expression, use f = evalin(symengine,'MuPAD_Expression') or f = feval(symengine,'MuPAD_Function',x1,...,xn). Then you can convert the resulting symbolic expression to a MATLAB Function block. matlabFunctionBlock cannot correctly convert some MuPAD expressions to a block. These expressions do
not trigger an error message. When converting a MuPAD expression or function that is not on the MATLAB vs. MuPAD Expressions list, always check the conversion results. To verify the results, you can run the simulation containing the resulting block.

See Also
ccode | evalin | feval | fortran | matlabFunction | simscapeEquation | subs | sym2poly

Introduced in R2009a
**max**

Largest elements

**Syntax**

C = `max(A)`
C = `max(A,[],dim)`
[C,I] = `max(___)`
C = `max(A,B)`

**Description**

C = `max(A)` returns the largest element of A if A is a vector. If A is a matrix, this syntax treats the columns of A as vectors, returning a row vector containing the largest element from each column.

C = `max(A,[],dim)` returns the largest elements of matrix A along the dimension dim. Thus, `max(A,[],1)` returns a row vector containing the largest elements of each column of A, and `max(A,[],2)` returns a column vector containing the largest elements of each row of A.

Here, the required argument [] serves as a divider. If you omit it, `max(A,dim)` compares elements of A with the value dim.

[C,I] = `max(___)` finds the indices of the largest elements, and returns them in output vector I. If there are several identical largest values, this syntax returns the index of the first largest element that it finds.

C = `max(A,B)` compares each element of A with the corresponding element of B and returns C containing the largest elements of each pair.
Examples

Maximum of Vector of Numbers

Find the largest of these numbers. Because these numbers are not symbolic objects, you get a floating-point result.

\[
\max([-\pi, \pi/2, 1, 1/3])
\]

\[
\text{ans} = \\
1.5708
\]

Find the largest of the same numbers converted to symbolic objects.

\[
\max(\text{sym}([-\pi, \pi/2, 1, 1/3]))
\]

\[
\text{ans} = \\
\pi/2
\]

Maximum of Each Column in Symbolic Matrix

Create matrix \( A \) containing symbolic numbers, and call \( \max \) for this matrix. By default, \( \max \) returns the row vector containing the largest elements of each column.

\[
A = \text{sym}([[0, 1, 2; 3, 4, 5; 1, 2, 3]])
\]

\[
\max(A)
\]

\[
A = \\
[ 0, 1, 2] \\
[ 3, 4, 5] \\
[ 1, 2, 3]
\]

\[
\text{ans} = \\
[ 3, 4, 5]
\]

Maximum of Each Row in Symbolic Matrix

Create matrix \( A \) containing symbolic numbers, and find the largest elements of each row of the matrix. In this case, \( \max \) returns the result as a column vector.

\[
A = \text{sym}([[0, 1, 2; 3, 4, 5; 1, 2, 3]])
\]

\[
\max(A,[],2)
\]

\[
A = 
\]
```matlab
[0, 1, 2]
[3, 4, 5]
[1, 2, 3]

ans =
 2
 5
 3

Indices of Largest Elements

Create matrix A. Find the largest element in each column and its index.

\begin{align*}
A &= 1./\text{sym(magic(3))} \\
[Cc,Ic] &= \text{max}(A)
\end{align*}

\begin{align*}
A &= \\
&= \begin{bmatrix}
\frac{1}{8}, & 1, & \frac{1}{6} \\
\frac{1}{3}, & \frac{1}{5}, & \frac{1}{7} \\
\frac{1}{4}, & \frac{1}{9}, & \frac{1}{2}
\end{bmatrix}
\end{align*}

\begin{align*}
Cc &= \\
&= \begin{bmatrix}
\frac{1}{3}, & 1, & \frac{1}{2}
\end{bmatrix}
\end{align*}

\begin{align*}
Ic &= \\
&= \begin{bmatrix}
2, & 1, & 3
\end{bmatrix}
\end{align*}

Now, find the largest element in each row and its index.

\begin{align*}
[Cr,Ir] &= \text{max}(A,[],2)
\end{align*}

\begin{align*}
Cr &= \\
&= \begin{bmatrix}
1 \\
\frac{1}{3} \\
\frac{1}{2}
\end{bmatrix}
\end{align*}

\begin{align*}
Ir &= \\
&= \begin{bmatrix}
2, & 1, & 3
\end{bmatrix}
\end{align*}

If \text{dim} exceeds the number of dimensions of A, then the syntax \([C,I] = \text{max}(A,[],\text{dim})\) returns \(C = A\) and \(I = \text{ones(size(A))}\).

\begin{align*}
[C,I] &= \text{max}(A,[],3)
\end{align*}

4-812
C =
[1/8, 1, 1/6]
[1/3, 1/5, 1/7]
[1/4, 1/9, 1/2]

I =
1 1 1
1 1 1
1 1 1

Largest Elements of Two Symbolic Matrices

Create matrices A and B containing symbolic numbers. Use max to compare each element of A with the corresponding element of B, and return the matrix containing the largest elements of each pair.

A = sym(pascal(3))
B = toeplitz(sym([pi/3 pi/2 pi]))
maxAB = max(A,B)

A =
[1, 1, 1]
[1, 2, 3]
[1, 3, 6]

B =
[pi/3, pi/2, pi]
[pi/2, pi/3, pi/2]
[pi, pi/2, pi/3]

maxAB =
[pi/3, pi/2, pi]
[pi/2, 2, 3]
[pi, 3, 6]

Maximum of Complex Numbers

When finding the maximum of these complex numbers, max chooses the number with the largest complex modulus.

modulus = abs([-1 - i, 1 + 1/2*i])
maximum = max(sym([1 - i, 1/2 + i]))

modulus =
1.4142 1.1180

maximum =
1 - 1i

If the numbers have the same complex modulus, \(\text{min} \) chooses the number with the largest phase angle.

\[
\text{modulus} = \text{abs}([1 - 1/2*i, 1 + 1/2*i])
\]
\[
\text{phaseAngle} = \text{angle}([1 - 1/2*i, 1 + 1/2*i])
\]
\[
\text{maximum} = \text{max}(%s)
\]

\[
\text{modulus} =
1.1180 1.1180
\]
\[
\text{phaseAngle} =
-0.4636 0.4636
\]
\[
\text{maximum} =
1/2 + 1i
\]

Input Arguments

\(A \) — Input
symbolic number | symbolic vector | symbolic matrix

Input, specified as a symbolic number, vector, or matrix. All elements of \(A \) must be convertible to floating-point numbers. If \(A \) is a scalar, then \(\text{max}(A) \) returns \(A \). \(A \) cannot be a multidimensional array.

\(\text{dim} \) — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1. If \(\text{dim} \) exceeds the number of dimensions of \(A \), then \(\text{max}(A,[],\text{dim}) \) returns \(A \), and \([C,I] = \text{max}(A,[],\text{dim}) \) returns \(C = A \) and \(I = \text{ones(size(A))} \).

\(B \) — Input
symbolic number | symbolic vector | symbolic matrix

Input, specified as a symbolic number, vector, or matrix. All elements of \(B \) must be convertible to floating-point numbers. If \(A \) and \(B \) are scalars, then \(\text{max}(A,B) \) returns the largest of \(A \) and \(B \).
If one argument is a vector or matrix, the other argument must either be a scalar or have the same dimensions as the first one. If one argument is a scalar and the other argument is a vector or matrix, then \texttt{max} expands the scalar into a vector or a matrix of the same length with all elements equal to that scalar.

\textit{B} cannot be a multidimensional array.

\textbf{Output Arguments}

\texttt{C — Largest elements}
\begin{verbatim}
symbolic number | symbolic vector
\end{verbatim}

Largest elements, returned as a symbolic number or vector of symbolic numbers.

\texttt{I — Indices of largest elements}
\begin{verbatim}
symbolic number | symbolic vector | symbolic matrix
\end{verbatim}

Indices of largest elements, returned as a symbolic number or vector of symbolic numbers. \([C,I] = \texttt{max}(A,[],\text{dim})\) also returns matrix \(I = \texttt{ones(size}(A))\) if the value \texttt{dim} exceeds the number of dimensions of \(A\).

\textbf{More About}

\textbf{Tips}

- Calling \texttt{max} for numbers (or vectors or matrices of numbers) that are not symbolic objects invokes the MATLAB \texttt{max} function.
- For complex input \(A\), \texttt{max} returns the complex number with the largest complex modulus (magnitude), computed with \texttt{max(abs(A))}. If complex numbers have the same modulus, \texttt{max} chooses the number with the largest phase angle, \texttt{max(angle(A))}.
- \texttt{max} ignores NaNs.

\textbf{See Also}

\texttt{abs | angle | max | min | sort}

\textit{Introduced in R2014a}
mfun

Numeric evaluation of special mathematical function

Compatibility

`mfun` will be removed in a future release. Instead, use the appropriate special function syntax listed in `mfunlist`. For example, use `bernoulli(n)` instead of `mfun('bernoulli',n)`.

Syntax

`mfun('function',par1,par2,par3,par4)`

Description

`mfun('function',par1,par2,par3,par4)` numerically evaluates one of the special mathematical functions listed in `mfunlist`. Each `par` argument is a numeric quantity corresponding to a parameter for `function`. You can use up to four parameters. The last parameter specified can be a matrix, usually corresponding to `X`. The dimensions of all other parameters depend on the specifications for `function`. You can access parameter information for `mfun` functions in `mfunlist`.

MuPAD software evaluates `function` using 16-digit accuracy. Each element of the result is a MATLAB numeric quantity. Any singularity in `function` is returned as NaN.

See Also

`mfunlist`

Introduced before R2006a
mfunlist

List special functions for use with \texttt{mfun}

\section*{Compatibility}
\texttt{mfun} will be removed in a future release. Instead, use the appropriate special function syntax listed below. For example, use \texttt{bernoulli(n)} instead of \texttt{mfun('bernoulli',n)}.

\section*{Syntax}
mfunlist

\section*{Description}
mfunlist lists the special mathematical functions for use with the \texttt{mfun} function. The following tables describe these special functions.

\section*{Syntax and Definitions of mfun Special Functions}
The following conventions are used in the next table, unless otherwise indicated in the \texttt{Arguments} column.

\begin{itemize}
\item \texttt{x, y} \quad real argument
\item \texttt{z, z1, z2} \quad complex argument
\item \texttt{m, n} \quad integer argument
\end{itemize}

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|}
\hline
\textbf{Function Name} & \textbf{Definition} & \textbf{mfun Name} & \textbf{Special Function Syntax} & \textbf{Arguments} \\
\hline
Bernoulli numbers and polynomials & Generating functions: & \texttt{bernoulli(n)} & \texttt{bernoulli(n)} & \texttt{bernoulli(n,t)} & \texttt{bernoulli(n,t)} & \texttt{n \geq 0} \\
\hline
\end{tabular}
\end{table}
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Definition</th>
<th>mfun Name</th>
<th>Special Function Syntax</th>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e^{xt} = \sum_{n=0}^{\infty} B_n(x) \cdot \frac{t^{n-1}}{n!}$</td>
<td></td>
<td></td>
<td>$0 <</td>
</tr>
<tr>
<td>Bessel functions</td>
<td>BesselI, BesselJ—Bessel functions of the first kind. BesselK, BesselY—Bessel functions of the second kind.</td>
<td>BesselJ(v,x)</td>
<td>besselj(v,x)</td>
<td>v is real.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BesselY(v,x)</td>
<td>bessely(v,x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BesselI(v,x)</td>
<td>besseli(v,x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BesselK(v,x)</td>
<td>besselk(v,x)</td>
<td></td>
</tr>
<tr>
<td>Beta function</td>
<td>$B(x, y) = \frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x + y)}$</td>
<td>Beta(x,y)</td>
<td>beta(x,y)</td>
<td></td>
</tr>
<tr>
<td>Binomial coefficients</td>
<td>$\binom{m}{n} = \frac{m!}{n!(m-n)!}$</td>
<td>binomial(m,n)</td>
<td>nchoosek(m,n)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Gamma(m+1) \frac{n!(m-n+1)}{\Gamma(n+1)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete elliptic integrals</td>
<td>Legendre's complete elliptic integrals of the first, second, and third kind. This definition uses modulus k. The numerical <code>ellipke</code> function and the MuPAD functions for computing elliptic integrals use the parameter $m = k^2 = \sin^2 \alpha$.</td>
<td>EllipticK(k)</td>
<td>ellipticK(k)</td>
<td>a is real, $-\infty < a < \infty$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EllipticE(k)</td>
<td>ellipticE(k)</td>
<td>k is real, $0 < k < 1$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EllipticPi(a,k)</td>
<td>ellipticPi(a,k)</td>
<td></td>
</tr>
<tr>
<td>Complete elliptic integrals</td>
<td>Associated complete elliptic integrals of the first, second, and third kind using complementary modulus. This definition uses modulus k. The numerical <code>ellipke</code> function and the MuPAD functions for computing elliptic integrals use the parameter $m = k^2 = \sin^2 \alpha$.</td>
<td>EllipticCK(k)</td>
<td>ellipticCK(k)</td>
<td>a is real, $-\infty < a < \infty$.</td>
</tr>
<tr>
<td>with complementary modulus</td>
<td></td>
<td>EllipticCE(k)</td>
<td>ellipticCE(k)</td>
<td>k is real, $0 < k < 1$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EllipticCPI(a,k)</td>
<td>ellipticCPI(a,k)</td>
<td></td>
</tr>
<tr>
<td>Function Name</td>
<td>Definition</td>
<td>mfun Name</td>
<td>Special Function Syntax</td>
<td>Arguments</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>elliptic integrals use the parameter $m = k^2 = \sin^2 \alpha$.</td>
<td>erf(z)</td>
<td>erfc(z)</td>
<td>erfc(z)</td>
<td>$n > 0$</td>
</tr>
<tr>
<td>Complementary error function and its iterated integrals</td>
<td>$erf(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^2} dt = 1 - erf(z)$</td>
<td>erfc(z)</td>
<td>erfc(z)</td>
<td>$n > 0$</td>
</tr>
<tr>
<td></td>
<td>$erf(-1, z) = \frac{2}{\sqrt{\pi}} e^{-z^2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$erfc(n, z) = \int_{z}^{\infty} erfc(n - 1, t) dt$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawson's integral</td>
<td>$F(x) = e^{-x^2} \int_{0}^{x} e^{t^2} dt$</td>
<td>dawson(x)</td>
<td>dawson(x)</td>
<td></td>
</tr>
<tr>
<td>Digamma function</td>
<td>$\Psi(x) = \frac{d}{dx} \ln(\Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}$</td>
<td>Psi(x)</td>
<td>psi(x)</td>
<td></td>
</tr>
<tr>
<td>Dilogarithm integral</td>
<td>$f(x) = \int_{1}^{x} \frac{\ln(t)}{1-t} dt$</td>
<td>dilog(x)</td>
<td>dilog(x)</td>
<td>$x > 1$</td>
</tr>
<tr>
<td>Error function</td>
<td>$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^2} dt$</td>
<td>erf(z)</td>
<td>erf(z)</td>
<td></td>
</tr>
<tr>
<td>Euler numbers and polynomials</td>
<td>Generating function for Euler numbers: $\frac{1}{\cosh(t)} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}$</td>
<td>euler(n)</td>
<td>euler(n)</td>
<td>$n \geq 0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>euler(n, z)</td>
<td>euler(n, z)</td>
<td>$</td>
</tr>
<tr>
<td>Function Name</td>
<td>Definition</td>
<td>mfun Name</td>
<td>Special Function Syntax</td>
<td>Arguments</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Exponential integrals</td>
<td>$Ei(n,z) = \int_{1}^{\infty} \frac{e^{-zt}}{t^n} dt$</td>
<td>Ei(n,z)</td>
<td>expint(n,x)</td>
<td>$n \geq 0$</td>
</tr>
<tr>
<td></td>
<td>$Ei(x) = PV \left(-\int_{-\infty}^{x} \frac{e^t}{t} dt \right)$</td>
<td>Ei(x)</td>
<td>ei(x)</td>
<td>Real(z) > 0</td>
</tr>
<tr>
<td>Fresnel sine and cosine integrals</td>
<td>$C(x) = \int_{0}^{x} \cos \left(\frac{\pi}{2} t^2 \right) dt$</td>
<td>FresnelC(x)</td>
<td>fresnelc(x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$S(x) = \int_{0}^{x} \sin \left(\frac{\pi}{2} t^2 \right) dt$</td>
<td>FresnelS(x)</td>
<td>fresnels(x)</td>
<td></td>
</tr>
<tr>
<td>Gamma function</td>
<td>$\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt$</td>
<td>GAMMA(z)</td>
<td>gamma(z)</td>
<td></td>
</tr>
<tr>
<td>Harmonic function</td>
<td>$h(n) = \sum_{k=1}^{n} \frac{1}{k} = \Psi(n+1) + \gamma$</td>
<td>harmonic(n)</td>
<td>harmonic(n)</td>
<td>$n > 0$</td>
</tr>
<tr>
<td>Hyperbolic sine and cosine integrals</td>
<td>$Shi(z) = \int_{0}^{z} \frac{\sinh(t)}{t} dt$</td>
<td>Shi(z)</td>
<td>sinhint(z)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Chi(z) = \gamma + \ln(z) + \int_{0}^{z} \frac{\cosh(t) - 1}{t} dt$</td>
<td>Chi(z)</td>
<td>coshint(z)</td>
<td></td>
</tr>
<tr>
<td>Function Name</td>
<td>Definition</td>
<td>mfun Name</td>
<td>Special Function Syntax</td>
<td>Arguments</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>(Generalized) hypergeometric function</td>
<td>$F(n, d, z) = \sum_{k=0}^{\infty} \prod_{i=1}^{j} \frac{\Gamma(n_i + k)}{\Gamma(n_i)} \cdot z^k \cdot \prod_{i=1}^{m} \frac{\Gamma(d_i + k)}{\Gamma(d_i)} \cdot k!$</td>
<td>hypergeom(n,d)</td>
<td>hypergeom(n,d,:n1,n2,...)</td>
<td>$n1, n2, \ldots$ are real. $d1, d2, \ldots$ are real and nonnegative.</td>
</tr>
<tr>
<td>Incomplete elliptic integrals</td>
<td>Legendre's incomplete elliptic integrals of the first, second, and third kind. This definition uses modulus k. The numerical elliptic function and the MuPAD functions for computing elliptic integrals use the parameter $m = k^2 = \sin^2 \alpha$.</td>
<td>ellipticF(x,k)</td>
<td>ellipticF(x,k)</td>
<td>$0 < x \leq \infty$. a is real, $-\infty < a < \infty$. k is real, $0 < k < 1$.</td>
</tr>
<tr>
<td>Incomplete gamma function</td>
<td>$\Gamma(a, z) = \int_{z}^{\infty} e^{-t} \cdot t^{a-1} dt$</td>
<td>GAMMA(z1,z2)</td>
<td>igamma(z1,z2)</td>
<td>$z1 = a$ $z2 = z$</td>
</tr>
<tr>
<td>Logarithm of the gamma function</td>
<td>$\ln\Gamma(z)$</td>
<td>lnGAMMA(z)</td>
<td>gammaln(z)</td>
<td>z is real.</td>
</tr>
<tr>
<td>Logarithmic integral</td>
<td>$Li(x) = \text{PV} \left(\int_{0}^{x} \frac{dt}{\ln t} \right) = Ei(\ln x)$</td>
<td>Li(x)</td>
<td>logint(x)</td>
<td>$x > 1$</td>
</tr>
<tr>
<td>Polygamma function</td>
<td>$\Psi^{(n)}(z) = \frac{d^n}{dz^n} \Psi(z)$</td>
<td>Psi(n,z)</td>
<td>psi(n,z)</td>
<td>$n \geq 0$</td>
</tr>
</tbody>
</table>

where $\Psi(z)$ is the Digamma function.
Functions — Alphabetical List

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Definition</th>
<th>mfun Name</th>
<th>Special Function Syntax</th>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shifted sine integral</td>
<td>$Ssi(z) = Si(z) - \frac{\pi}{2}$</td>
<td>Ssi(z)</td>
<td>ssinint(z)</td>
<td></td>
</tr>
</tbody>
</table>

The following orthogonal polynomials are available using `mfun`. In all cases, `n` is a nonnegative integer and `x` is real.

Orthogonal Polynomials

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>mfun Name</th>
<th>Special Function Syntax</th>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chebyshev of the first and second kind</td>
<td><code>T(n,x)</code></td>
<td>chebyshevT(n,x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>U(n,x)</code></td>
<td>chebyshevU(n,x)</td>
<td></td>
</tr>
<tr>
<td>Gegenbauer</td>
<td><code>G(n,a,x)</code></td>
<td>gegenbauerC(n,a)</td>
<td><code>a</code> is a nonrational algebraic expression or a rational number greater than $-1/2$.</td>
</tr>
<tr>
<td>Hermite</td>
<td><code>H(n,x)</code></td>
<td>hermiteH(n,x)</td>
<td></td>
</tr>
<tr>
<td>Jacobi</td>
<td><code>P(n,a,b,x)</code></td>
<td>jacobiP(n,a,b)</td>
<td><code>a, b</code> are nonrational algebraic expressions or rational numbers greater than -1.</td>
</tr>
<tr>
<td>Laguerre</td>
<td><code>L(n,x)</code></td>
<td>laguerreL(n,x)</td>
<td></td>
</tr>
<tr>
<td>Generalized Laguerre</td>
<td><code>L(n,a,x)</code></td>
<td>laguerreL(n,a)</td>
<td><code>a</code> is a nonrational algebraic expression or a rational number greater than -1.</td>
</tr>
<tr>
<td>Legendre</td>
<td><code>P(n,x)</code></td>
<td>legendreP(n,x)</td>
<td></td>
</tr>
</tbody>
</table>

Limitations

In general, the accuracy of a function will be lower near its roots and when its arguments are relatively large.
Running time depends on the specific function and its parameters. In general, calculations are slower than standard MATLAB calculations.

References

See Also

mfun

Introduced before R2006a
min

Smallest elements

Syntax

\[
\begin{align*}
C &= \text{min}(A) \\
C &= \text{min}(A,[\,],\text{dim}) \\
[C,I] &= \text{min}(___) \\
C &= \text{min}(A,B)
\end{align*}
\]

Description

\(C = \text{min}(A)\) returns the smallest element of \(A\) if \(A\) is a vector. If \(A\) is a matrix, this syntax treats the columns of \(A\) as vectors, returning a row vector containing the smallest element from each column.

\(C = \text{min}(A,[\,],\text{dim})\) returns the smallest elements of matrix \(A\) along the dimension \(\text{dim}\). Thus, \(\text{min}(A,[\,],1)\) returns a row vector containing the smallest elements of each column of \(A\), and \(\text{min}(A,[\,],2)\) returns a column vector containing the smallest elements of each row of \(A\).

Here, the required argument \([\,]\) serves as a divider. If you omit it, \(\text{min}(A,\text{dim})\) compares elements of \(A\) with the value \(\text{dim}\).

\([C,I] = \text{min}(___)\) finds the indices of the smallest elements, and returns them in output vector \(I\). If there are several identical smallest values, this syntax returns the index of the first smallest element that it finds.

\(C = \text{min}(A,B)\) compares each element of \(A\) with the corresponding element of \(B\) and returns \(C\) containing the smallest elements of each pair.
Examples

Minimum of Vector of Numbers

Find the smallest of these numbers. Because these numbers are not symbolic objects, you get a floating-point result.

\[
\text{min}([-\pi, \pi/2, 1, 1/3])
\]

\[
\text{ans} = -3.1416
\]

Find the smallest of the same numbers converted to symbolic objects.

\[
\text{min}(\text{sym}([-\pi, \pi/2, 1, 1/3]))
\]

\[
\text{ans} = -\pi
\]

Minimum of Each Column in Symbolic Matrix

Create matrix \(A \) containing symbolic numbers, and call \text{min} for this matrix. By default, \text{min} returns the row vector containing the smallest elements of each column.

\[
A = \text{sym}([0, 1, 2; 3, 4, 5; 1, 2, 3])
\]

\[
\text{min}(A)
\]

\[
A =
\begin{bmatrix}
0 & 1 & 2 \\
3 & 4 & 5 \\
1 & 2 & 3 \\
\end{bmatrix}
\]

\[
\text{ans} =
\begin{bmatrix}
0 & 1 & 2 \\
\end{bmatrix}
\]

Minimum of Each Row in Symbolic Matrix

Create matrix \(A \) containing symbolic numbers, and find the smallest elements of each row of the matrix. In this case, \text{min} returns the result as a column vector.

\[
A = \text{sym}([0, 1, 2; 3, 4, 5; 1, 2, 3])
\]

\[
\text{min}(A,[],2)
\]

\[
A =
\begin{bmatrix}
0 \\
1 \\
1 \\
\end{bmatrix}
\]
Indices of Smallest Elements

Create matrix A. Find the smallest element in each column and its index.

\[
A = \frac{1}{\text{sym}(ext{magic}(3))}
\]

\[
[A_{cc}, I_{cc}] = \text{min}(A)
\]

\[
A =
\begin{bmatrix}
\frac{1}{8} & 1 & \frac{1}{6} \\
\frac{1}{3} & \frac{1}{5} & \frac{1}{7} \\
\frac{1}{4} & \frac{1}{9} & \frac{1}{2}
\end{bmatrix}
\]

\[
A_{cc} =
\begin{bmatrix}
\frac{1}{8} & \frac{1}{9} & \frac{1}{7}
\end{bmatrix}
\]

\[
I_{cc} =
\begin{bmatrix}
1 & 3 & 2
\end{bmatrix}
\]

Now, find the smallest element in each row and its index.

\[
[C_{rr}, I_{rr}] = \text{min}(A,[],2)
\]

\[
C_r =
\begin{bmatrix}
\frac{1}{8} \\
\frac{1}{7} \\
\frac{1}{9}
\end{bmatrix}
\]

\[
I_r =
\begin{bmatrix}
1 \\
3 \\
2
\end{bmatrix}
\]

If \text{dim} exceeds the number of dimensions of \text{A}, then the syntax \([C, I] = \text{min}(A, [], \text{dim})\) returns \(C = A\) and \(I = \text{ones(size}(A))\).

\[
[C, I] = \text{min}(A, [], 3)
\]
\[
C = \\
\begin{bmatrix}
\frac{1}{8}, & 1, & \frac{1}{6} \\
\frac{1}{3}, & \frac{1}{5}, & \frac{1}{7} \\
\frac{1}{4}, & \frac{1}{9}, & \frac{1}{2}
\end{bmatrix}
\]

\[
I = \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\]

Smallest Elements of Two Symbolic Matrices

Create matrices \(A \) and \(B \) containing symbolic numbers. Use \(\min \) to compare each element of \(A \) with the corresponding element of \(B \), and return the matrix containing the smallest elements of each pair.

\[
A = \text{sym(pascal}(3))
\]

\[
B = \text{toeplitz(sym([pi/3 pi/2 pi]))}
\]

\[
\min AB = \min(A,B)
\]

\[
A = \\
\begin{bmatrix}
1, & 1, & 1 \\
1, & 2, & 3 \\
1, & 3, & 6
\end{bmatrix}
\]

\[
B = \\
\begin{bmatrix}
\frac{\pi}{3}, & \frac{\pi}{2}, & \pi \\
\frac{\pi}{2}, & \frac{\pi}{3}, & \frac{\pi}{2} \\
\pi, & \frac{\pi}{2}, & \frac{\pi}{3}
\end{bmatrix}
\]

\[
\min AB = \\
\begin{bmatrix}
1, & 1, & 1 \\
1, & \frac{\pi}{3}, & \frac{\pi}{2} \\
1, & \frac{\pi}{2}, & \frac{\pi}{3}
\end{bmatrix}
\]

Minimum of Complex Numbers

When finding the minimum of these complex numbers, \(\min \) chooses the number with the smallest complex modulus.

\[
\text{modulus} = \text{abs([-1 - i, 1 + 1/2*i])}
\]

\[
\text{minimum} = \min(\text{sym([1 - i, 1/2 + i]))}
\]

\[
\text{modulus} =
\]
Functions — Alphabetical List

1.4142 1.1180

\[\text{minimum} = \]
\[\frac{1}{2} + 1i \]

If the numbers have the same complex modulus, \(\text{min} \) chooses the number with the smallest phase angle.

\[\text{modulus} = \text{abs}([1 - 1/2*i, 1 + 1/2*i]) \]
\[\text{phaseAngle} = \text{angle}([1 - 1/2*i, 1 + 1/2*i]) \]
\[\text{minimum} = \text{min}(ext{sym}([1 - 1/2*i, 1/2 + i])) \]

\[\text{modulus} = \]
\[1.1180 \quad 1.1180 \]

\[\text{phaseAngle} = \]
\[-0.4636 \quad 0.4636 \]

\[\text{minimum} = \]
\[1 - 1i/2 \]

Input Arguments

A — Input
symbolic number | symbolic vector | symbolic matrix

Input, specified as a symbolic number, vector, or matrix. All elements of \(A \) must be convertible to floating-point numbers. If \(A \) is a scalar, then \(\text{min}(A) \) returns \(A \). \(A \) cannot be a multidimensional array.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1. If \(\text{dim} \) exceeds the number of dimensions of \(A \), then \(\text{min}(A,[],\text{dim}) \) returns \(A \), and \([\text{C,I}] = \text{min}(A,[],\text{dim}) \) returns \(\text{C} = A \) and \(\text{I} = \text{ones}(ext{size}(A)) \).

B — Input
symbolic number | symbolic vector | symbolic matrix

Input, specified as a symbolic number, vector, or matrix. All elements of \(B \) must be convertible to floating-point numbers. If \(A \) and \(B \) are scalars, then \(\text{min}(A,B) \) returns the smallest of \(A \) and \(B \).
If one argument is a vector or matrix, the other argument must either be a scalar or have the same dimensions as the first one. If one argument is a scalar and the other argument is a vector or matrix, then \texttt{min} expands the scalar into a vector or a matrix of the same length with all elements equal to that scalar.

\texttt{B} cannot be a multidimensional array.

Output Arguments

\textbf{C} — Smallest elements
symbolic number | symbolic vector

Smallest elements, returned as a symbolic number or vector of symbolic numbers.

\textbf{I} — Indices of smallest elements
symbolic number | symbolic vector | symbolic matrix

Indices of smallest elements, returned as a symbolic number or vector of symbolic numbers. \([C,I] = \text{min}(A,[],\text{dim})\) also returns matrix \(I = \text{ones}(size(A))\) if the value \text{dim} exceeds the number of dimensions of \(A\).

More About

Tips

- Calling \texttt{min} for numbers (or vectors or matrices of numbers) that are not symbolic objects invokes the MATLAB \texttt{min} function.
- For complex input \(A\), \texttt{min} returns the complex number with the smallest complex modulus (magnitude), computed with \(\text{min}(\text{abs}(A))\). If complex numbers have the same modulus, \texttt{min} chooses the number with the smallest phase angle, \(\text{min}(\text{angle}(A))\).
- \texttt{min} ignores NaNs.

See Also

\texttt{abs} | \texttt{angle} | \texttt{max} | \texttt{min} | \texttt{sort}

Introduced in R2014a
minpoly

Minimal polynomial of matrix

Syntax

```matlab
minpoly(A)
minpoly(A,var)
```

Description

`minpoly(A)` returns a vector of the coefficients of the minimal polynomial of `A`. If `A` is a symbolic matrix, `minpoly` returns a symbolic vector. Otherwise, it returns a vector with elements of type `double`.

`minpoly(A,var)` returns the minimal polynomial of `A` in terms of `var`.

Input Arguments

- **A**
 - Matrix.
- **var**
 - Free symbolic variable.

Default: If you do not specify `var`, `minpoly` returns a vector of coefficients of the minimal polynomial instead of returning the polynomial itself.

Examples

Compute the minimal polynomial of the matrix `A` in terms of the variable `x`:

```matlab
syms x
```
A = sym([1 1 0; 0 1 0; 0 0 1]);
minpoly(A, x)
ans =
x^2 - 2*x + 1

To find the coefficients of the minimal polynomial of A, call minpoly with one argument:

A = sym([1 1 0; 0 1 0; 0 0 1]);
minpoly(A)
ans =
[1, -2, 1]

Find the coefficients of the minimal polynomial of the symbolic matrix A. For this matrix, minpoly returns the symbolic vector of coefficients:

A = sym([0 2 0; 0 0 2; 2 0 0]);
P = minpoly(A)
P =
[1, 0, 0, -8]

Now find the coefficients of the minimal polynomial of the matrix B, all elements of which are double-precision values. Note that in this case minpoly returns coefficients as double-precision values:

B = [0 2 0; 0 0 2; 2 0 0];
P = minpoly(B)
P =
1 0 0 -8

More About

Minimal Polynomial of a Matrix

The minimal polynomial of a square matrix A is the monic polynomial p(x) of the least degree, such that p(A) = 0.

See Also
charpoly | eig | jordan | poly2sym | sym2poly
Introduced in R2012b
Symbolic subtraction

Syntax

- A
A - B
minus(A,B)

Description

- A returns the negation of A.

A - B subtracts B from A and returns the result.

minus(A,B) is an alternate way to execute A - B.

Examples

Subtract Scalar from Array

Subtract 2 from array A.

```matlab
syms x
A = [x 1; -2 sin(x)];
A - 2
```

ans =

```
[ x - 2, -1]
[ -4, sin(x) - 2]
```

minus subtracts 2 from each element of A.

Subtract the identity matrix from matrix M:

```matlab
syms x y z
M = [0 x; y z];
```
M - eye(2)

\[
\begin{bmatrix}
 -1 & x \\
 y & z - 1
\end{bmatrix}
\]

Subtract Numeric and Symbolic Arguments

Subtract one number from another. Because these are not symbolic objects, you receive floating-point results.

\[
\frac{11}{6} - \frac{5}{4}
\]

\[
\text{ans} = 0.5833
\]

Perform subtraction symbolically by converting the numbers to symbolic objects.

\[
\text{sym}(\frac{11}{6}) - \text{sym}(\frac{5}{4})
\]

\[
\text{ans} = \frac{7}{12}
\]

Alternatively, call `minus` to perform subtraction.

\[
\text{minus}(\text{sym}(\frac{11}{6}),\text{sym}(\frac{5}{4}))
\]

\[
\text{ans} = \frac{7}{12}
\]

Subtract Matrices

Subtract matrices B and C from A.

\[
\begin{align*}
A &= \text{sym}([3 \; 4; \; 2 \; 1]); \\
B &= \text{sym}([8 \; 1; \; 5 \; 2]); \\
C &= \text{sym}([6 \; 3; \; 4 \; 9]); \\
Y &= A - B - C
\end{align*}
\]

\[
Y =
\begin{bmatrix}
 -11 & 0 \\
 -7 & -10
\end{bmatrix}
\]

Use syntax `-Y` to negate the elements of Y.
\[Y \]

\[\text{ans} = \begin{bmatrix} 11 & 0 \\ 7 & 10 \end{bmatrix} \]

Subtract Functions

Subtract function \(g \) from function \(f \).

```matlab
syms f(x) g(x)
f = \sin(x) + 2*x;
y = f - g

y(x) = 2*x - g(x) + \sin(x)
```

Input Arguments

A — Input

- symbolic variable
- symbolic vector
- symbolic matrix
- symbolic multidimensional array
- symbolic function
- symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression.

B — Input

- symbolic variable
- symbolic vector
- symbolic matrix
- symbolic multidimensional array
- symbolic function
- symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression.

More About

Tips

- All nonscalar arguments must have the same size. If one input argument is nonscalar, then \texttt{minus} expands the scalar into an array of the same size as the nonscalar argument, with all elements equal to the corresponding scalar.
See Also
ctranspose | ldivide | mldivide | mpower | mrdivide | mtimes | plus | power
| rdivide | times | transpose

Introduced before R2006a
Symbolic matrix left division

Syntax

\[X = A\backslash B \]
\[X = \text{mldivide}(A,B) \]

Description

\(X = A\backslash B \) solves the symbolic system of linear equations in matrix form, \(A\times X = B \) for \(X \).

If the solution does not exist or if it is not unique, the \(\backslash \) operator issues a warning.

A can be a rectangular matrix, but the equations must be consistent. The symbolic operator \(\backslash \) does not compute least-squares solutions.

\(X = \text{mldivide}(A,B) \) is equivalent to \(x = A\backslash B \).

Examples

System of Equations in Matrix Form

Solve a system of linear equations specified by a square matrix of coefficients and a vector of right sides of equations.

Create a matrix containing the coefficient of equation terms, and a vector containing the right sides of equations.

\[A = \text{sym}(\text{pascal}(4)) \]
\[b = \text{sym}([4; 3; 2; 1]) \]

\[A = \]
\[\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix} \]
Use the operator \ to solve this system.

\[X = A \backslash b \]

\[
X = \\
5 \\
-1 \\
0 \\
0
\]

Rank-Deficient System

Create a matrix containing the coefficients of equation terms, and a vector containing the right sides of equations.

\[A = \text{sym(magic(4))} \]
\[b = \text{sym([0; 1; 1; 0])} \]

\[
A = \\
[16, 2, 3, 13] \\
[5, 11, 10, 8] \\
[9, 7, 6, 12] \\
[4, 14, 15, 1]
\]

\[
b = \\
0 \\
1 \\
1 \\
0
\]

Find the rank of the system. This system contains four equations, but its rank is 3. Therefore, the system is rank-deficient. This means that one variable of the system is not independent and can be expressed in terms of other variables.

\[\text{rank(horzcat(A,b))} \]

\[
\text{ans} = \\
3
\]
Try to solve this system using the symbolic \ operator. Because the system is rank-deficient, the returned solution is not unique.

\[\text{A\backslash b} \]

Warning: The system is rank-deficient. Solution is not unique.

\[\text{ans} = \]
\[1/34 \]
\[19/34 \]
\[-9/17 \]
\[0 \]

Inconsistent System

Create a matrix containing the coefficient of equation terms, and a vector containing the right sides of equations.

\[\text{A} = \text{sym(magic(4))} \]
\[\text{b} = \text{sym([0; 1; 2; 3])} \]
\[\text{A} = \]
\[[16, 2, 3, 13] \]
\[[5, 11, 10, 8] \]
\[[9, 7, 6, 12] \]
\[[4, 14, 15, 1] \]
\[\text{b} = \]
\[0 \]
\[1 \]
\[2 \]
\[3 \]

Try to solve this system using the symbolic \ operator. The operator issues a warning and returns a vector with all elements set to Inf because the system of equations is inconsistent, and therefore, no solution exists. The number of elements in the resulting vector equals the number of equations (rows in the coefficient matrix).

\[\text{A\backslash b} \]

Warning: The system is inconsistent. Solution does not exist.

\[\text{ans} = \]
\[\text{Inf} \]
Find the reduced row echelon form of this system. The last row shows that one of the equations reduced to $0 = 1$, which means that the system of equations is inconsistent.

\[\text{rref(horzcat(A,b))} \]

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 3 & 0 \\
0 & 0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Input Arguments

A — Coefficient matrix
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Coefficient matrix, specified as a symbolic number, variable, expression, function, vector, or matrix.

B — Right side
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Right side, specified as a symbolic number, variable, expression, function, vector, or matrix.

Output Arguments

X — Solution
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Solution, returned as a symbolic number, variable, expression, function, vector, or matrix.
More About

Tips

• When dividing by zero, \texttt{mldivide} considers the numerator’s sign and returns \texttt{Inf} or \texttt{-Inf} accordingly.

\begin{verbatim}
syms x
[sym(0)\ sym(1), sym(0)\ sym(-1), sym(0)\ x]
ans =
[Inf, -Inf, Inf*x]
\end{verbatim}

See Also

ctranspose | ldivide | minus | mpower | mrdivide | mtimes | plus | power | rdivide | times | transpose

Introduced before R2006a
mod

Symbolic modulus after division

Syntax

mod(a, b)

Description

mod(a, b) finds the modulus after division. To find the remainder, use rem.

If a is a polynomial expression, then mod(a, b) finds the modulus for each coefficient.

Examples

Divide Integers by Integers

Find the modulus after division in case both the dividend and divisor are integers.

Find the modulus after division for these numbers.

\[[\text{mod}(\text{sym}(27), 4), \text{mod}(\text{sym}(27), -4), \text{mod}(\text{sym}(-27), 4), \text{mod}(\text{sym}(-27), -4)]\]

\[\text{ans} = \]
\[[3, -1, 1, -3]\]

Divide Rationals by Integers

Find the modulus after division in case the dividend is a rational number, and divisor is an integer.

Find the modulus after division for these numbers.

\[[\text{mod}(\text{sym}(22/3), 5), \text{mod}(\text{sym}(1/2), 7), \text{mod}(\text{sym}(27/6), -11)]\]

\[\text{ans} = \]
[7/3, 1/2, -13/2]

Divide Polynomial Expressions by Integers

Find the modulus after division in case the dividend is a polynomial expression, and divisor is an integer. If the dividend is a polynomial expression, then \(\text{mod} \) finds the modulus for each coefficient.

Find the modulus after division for these polynomial expressions.

```matlab
syms x
mod(x^3 - 2*x + 999, 10)
ans =
x^3 + 8*x + 9

mod(8*x^3 + 9*x^2 + 10*x + 11, 7)
ans =
x^3 + 2*x^2 + 3*x + 4
```

Divide Elements of Matrices

For vectors and matrices, \(\text{mod} \) finds the modulus after division element-wise. Nonscalar arguments must be the same size.

Find the modulus after division for the elements of these two matrices.

```matlab
A = sym([27, 28; 29, 30]);
B = sym([2, 3; 4, 5]);
mod(A,B)
ans =
[ 1, 1]
[ 1, 0]

Find the modulus after division for the elements of matrix A and the value 9. Here, \( \text{mod} \) expands 9 into the 2-by-2 matrix with all elements equal to 9.

```matlab
mod(A,9)
ans =
[0, 1]
```
Input Arguments

a — Dividend (numerator)
number | symbolic number | symbolic variable | polynomial expression | vector | matrix

Dividend (numerator), specified as a number, symbolic number, variable, polynomial expression, or a vector or matrix of numbers, symbolic numbers, variables, or polynomial expressions.

b — Divisor (denominator)
number | symbolic number | vector | matrix

Divisor (denominator), specified as a number, symbolic number, or a vector or matrix of numbers or symbolic numbers.

More About

Modulus

The modulus of \( a \) and \( b \) is

\[
\text{mod}(a,b) = a - b \times \text{floor}\left(\frac{a}{b}\right),
\]

where \( \text{floor} \) rounds \( (a/b) \) towards negative infinity. For example, the modulus of -8 and -3 is -2, but the modulus of -8 and 3 is 1.

If \( b = 0 \), then \( \text{mod}(a,0) = 0 \).

Tips

• Calling \texttt{mod} for numbers that are not symbolic objects invokes the MATLAB \texttt{mod} function.
• All nonscalar arguments must be the same size. If one input arguments is nonscalar, then \texttt{mod} expands the scalar into a vector or matrix of the same size as the nonscalar argument, with all elements equal to the corresponding scalar.
See Also

quorem | rem

Introduced before R2006a
mpower, ^
Symbolic matrix power

Syntax
A^B
mpower(A,B)

Description
A^B computes A to the B power.
mpower(A,B) is equivalent to A^B.

Examples
Matrix Base and Scalar Exponent
Create a 2-by-2 matrix.
A = sym('a%d%d', [2 2])
A =
[ a11, a12]
[ a21, a22]
Find A^2.
A^2
ans =
[ a11^2 + a12*a21, a11*a12 + a12*a22]
[ a11*a21 + a21*a22, a22^2 + a12*a21]

Scalar Base and Matrix Exponent
Create a 2-by-2 symbolic magic square.
A = sym(magic(2))

A =
[1, 3]
[4, 2]

Find \( n^A \).

sym(pi)^A

ans =
[ (3*pi^7 + 4)/(7*pi^2), (3*(pi^7 - 1))/(7*pi^2)]
[ (4*(pi^7 - 1))/(7*pi^2), (4*pi^7 + 3)/(7*pi^2)]

**Input Arguments**

**A — Base**
number | symbolic number | symbolic variable | symbolic function | symbolic expression | square symbolic matrix

Base, specified as a number or a symbolic number, variable, expression, function, or square matrix. A and B must be one of the following:

- Both are scalars.
- A is a square matrix, and B is a scalar.
- B is a square matrix, and A is a scalar.

**B — Exponent**
number | symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic square matrix

Exponent, specified as a number or a symbolic number, variable, expression, function, or square matrix. A and B must be one of the following:

- Both are scalars.
- A is a square matrix, and B is a scalar.
- B is a square matrix, and A is a scalar.

**See Also**
ctranspose | ldivide | minus | mldivide | mrdivide | mtimes | plus | power | rdivide | times | transpose
Introduced before R2006a
mrdivide, /

Symbolic matrix right division

Syntax

\[
X = B/A
X = \text{mrdivide}(B,A)
\]

Description

\[
X = B/A\text{ solves the symbolic system of linear equations in matrix form, } X*A = B \text{ for } X. 
\]

The matrices A and B must contain the same number of columns. The right division of matrices B/A is equivalent to \((A \backslash B)'\).

If the solution does not exist or if it is not unique, the / operator issues a warning.

A can be a rectangular matrix, but the equations must be consistent. The symbolic operator / does not compute least-squares solutions.

\[
X = \text{mrdivide}(B,A)\text{ is equivalent to } x = B/A.
\]

Examples

System of Equations in Matrix Form

Solve a system of linear equations specified by a square matrix of coefficients and a vector of right sides of equations.

Create a matrix containing the coefficient of equation terms, and a vector containing the right sides of equations.

\[
A = \text{sym}(\text{pascal}(4))
b = \text{sym}([4 \ 3 \ 2 \ 1])
\]

\[
A =
\]
Use the operator / to solve this system.

\[ X = b/A \]

\[ X = [-5, -1, 0, 0] \]

**Rank-Deficient System**

Create a matrix containing the coefficient of equation terms, and a vector containing the right sides of equations.

\[ A = \text{sym(magic(4))}' \]
\[ b = \text{sym([0 1 1 0])} \]

\[ A = \begin{bmatrix}
16 & 5 & 9 & 4 \\
2 & 11 & 7 & 14 \\
3 & 10 & 6 & 15 \\
13 & 8 & 12 & 1
\end{bmatrix} \]
\[ b = \begin{bmatrix}
0 \\
1 \\
1 \\
0
\end{bmatrix} \]

Find the rank of the system. This system contains four equations, but its rank is 3. Therefore, the system is rank-deficient. This means that one variable of the system is not independent and can be expressed in terms of other variables.

\[ \text{rank(vertcat(A,b))} \]
\[ \text{ans} = 3 \]

Try to solve this system using the symbolic / operator. Because the system is rank-deficient, the returned solution is not unique.
b/A

Warning: The system is rank-deficient. Solution is not unique.

ans =
[ 1/34, 19/34, -9/17, 0]

Inconsistent System

Create a matrix containing the coefficient of equation terms, and a vector containing the right sides of equations.

A = sym(magic(4))'
b = sym([0 1 2 3])

A =
[ 16,  5,  9,  4]
[  2, 11,  7, 14]
[  3, 10,  6, 15]
[ 13,  8, 12,  1]

b =
[ 0, 1, 2, 3]

Try to solve this system using the symbolic / operator. The operator issues a warning and returns a vector with all elements set to Inf because the system of equations is inconsistent, and therefore, no solution exists. The number of elements equals the number of equations (rows in the coefficient matrix).

b/A

Warning: The system is inconsistent. Solution does not exist.

ans =
[ Inf, Inf, Inf, Inf]

Find the reduced row echelon form of this system. The last row shows that one of the equations reduced to 0 = 1, which means that the system of equations is inconsistent.

rref(vertcat(A,b)')

ans =
[ 1, 0, 0, 1, 0]
[ 0, 1, 0, 3, 0]
[ 0, 0, 1, -3, 0]
Input Arguments

A — Coefficient matrix
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Coefficient matrix, specified as a symbolic number, variable, expression, function, vector, or matrix.

B — Right side
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Right side, specified as a symbolic number, variable, expression, function, vector, or matrix.

Output Arguments

X — Solution
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Solution, returned as a symbolic number, variable, expression, function, vector, or matrix.

More About

Tips

• When dividing by zero, mrdivide considers the numerator’s sign and returns Inf or -Inf accordingly.

    syms x
    [sym(1)/sym(0), sym(-1)/sym(0), x/sym(0)]

    ans =

    [0, 0, 0, 0, 1]
[Inf, -Inf, Inf*x]

See Also
ctranspose | ldivide | minus | mldivide | mpower | mtimes | plus | power | rdivide | times | transpose

Introduced before R2006a
mtimes, *

Symbolic matrix multiplication

Syntax

A*B
mtimes(A,B)

Description

A*B is the matrix product of A and B. If A is an m-by-p and B is a p-by-n matrix, then the result is an m-by-n matrix C defined as

\[ C(i,j) = \sum_{k=1}^{p} A(i,k)B(k,j) \]

For nonscalar A and B, the number of columns of A must equal the number of rows of B. Matrix multiplication is not universally commutative for nonscalar inputs. That is, typically A*B is not equal to B*A. If at least one input is scalar, then A*B is equivalent to A.*B and is commutative.

mtimes(A,B) is equivalent to A*B.

Examples

Multiply Two Vectors

Create a 1-by-5 row vector and a 5-by-1 column vector.

\begin{verbatim}
 sym x
 A = [x, 2*x^2, 3*x^3, 4*x^4]
 B = [1/x; 2/x^2; 3/x^3; 4/x^4]

 A =
 [ x, 2*x^2, 3*x^3, 4*x^4]
\end{verbatim}
B = 
    1/x
2/x^2
3/x^3
4/x^4

Find the matrix product of these two vectors.

A*B

ans =
30

**Multiply Two Matrices**

Create a 4-by-3 matrix and a 3-by-2 matrix.

A = sym('a%d%d', [4 3])
B = sym('b%d%d', [3 2])

A =
    [ a11, a12, a13]
    [ a21, a22, a23]
    [ a31, a32, a33]
    [ a41, a42, a43]

B =
    [ b11, b12]
    [ b21, b22]
    [ b31, b32]

Multiply A by B.

A*B

ans =
    [ a11*b11 + a12*b21 + a13*b31, a11*b12 + a12*b22 + a13*b32]
    [ a21*b11 + a22*b21 + a23*b31, a21*b12 + a22*b22 + a23*b32]
    [ a31*b11 + a32*b21 + a33*b31, a31*b12 + a32*b22 + a33*b32]
    [ a41*b11 + a42*b21 + a43*b31, a41*b12 + a42*b22 + a43*b32]

**Multiply Matrix by Scalar**

Create a 4-by-4 Hilbert matrix H.
H = sym(hilb(4))

H =
[ 1, 1/2, 1/3, 1/4]
[ 1/2, 1/3, 1/4, 1/5]
[ 1/3, 1/4, 1/5, 1/6]
[ 1/4, 1/5, 1/6, 1/7]

Multiply H by $e^n$.

C = H*exp(sym(pi))

C =
[ exp(pi), exp(pi)/2, exp(pi)/3, exp(pi)/4]
[ exp(pi)/2, exp(pi)/3, exp(pi)/4, exp(pi)/5]
[ exp(pi)/3, exp(pi)/4, exp(pi)/5, exp(pi)/6]
[ exp(pi)/4, exp(pi)/5, exp(pi)/6, exp(pi)/7]

Use vpa and digits to approximate symbolic results with the required number of digits. For example, approximate it with five-digit accuracy.

old = digits(5);
vpa(C)
digits(old)

ans =
[ 23.141, 11.57, 7.7136, 5.7852]
[ 11.57, 7.7136, 5.7852, 4.6281]
[ 7.7136, 5.7852, 4.6281, 3.8568]
[ 5.7852, 4.6281, 3.8568, 3.3058]

**Input Arguments**

**A — Input**
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, function, vector, or matrix. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

**B — Input**
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix
Input, specified as a symbolic number, variable, expression, function, vector, or matrix. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

See Also
ctranpose | ldivide | minus | mldivide | mpower | mrdivide | plus | power | rdivide | times | transpose

Introduced before R2006a
mupad

Start MuPAD notebook

Syntax

mphandle = mupad
mphandle = mupad(file)

Description

mphandle = mupad creates a MuPAD notebook, and keeps a handle (pointer) to the
notebook in the variable mhandle. You can use any variable name you like instead of
mphandle.

mphandle = mupad(file) opens the MuPAD notebook named file and keeps
a handle (pointer) to the notebook in the variable mhandle. The file name must
be a full path unless the file is in the current folder. You also can use the argument
file#linktargetname to refer to the particular link target inside a notebook. In this
case, the mupad function opens the MuPAD notebook (file) and jumps to the beginning
of the link target linktargetname. If there are multiple link targets with the name
linktargetname, the mupad function uses the last linktargetname occurrence.

Examples

To start a new notebook and define a handle mhandle to the notebook, enter:

reset(symengine);
if ~feature('ShowFigureWindows')
    disp('no display available, skipping test ....');
else mhandle = mupad; end
mphandle = mupad;

To open an existing notebook named notebook1.mn located in the current folder, and
define a handle mhandle to the notebook, enter:

mphandle = mupad('notebook1.mn');
To open a notebook and jump to a particular location, create a link target at that location inside a notebook and refer to it when opening a notebook. For example, if you have the Conclusions section in notebook1.mn, create a link target named conclusions and refer to it when opening the notebook. The mupad function opens notebook1.mn and scroll it to display the Conclusions section:

```
mphandle = mupad('notebook1.mn#conclusions');
```

For information about creating link targets, see “Work with Links”.

**More About**

- “Create MuPAD Notebooks” on page 3-3
- “Open MuPAD Notebooks” on page 3-6

**See Also**

getVar | mupadwelcome | openmn | openmu | setVar

*Introduced in R2008b*
**mupadNotebookTitle**

Window title of MuPAD notebook

**Syntax**

\[ T = \text{mupadNotebookTitle}(nb) \]

**Description**

\( T = \text{mupadNotebookTitle}(nb) \) returns a cell array containing the window title of the MuPAD notebook with the handle \( nb \). If \( nb \) is a vector of handles to notebooks, then \( \text{mupadNotebookTitle}(nb) \) returns a cell array of the same size as \( nb \).

**Examples**

**Find Titles of Particular Notebooks**

Knowing the handles to notebooks, find the titles of these notebooks.

Suppose that your current folder contains MuPAD notebooks named \( \text{myFile1.mn} \) and \( \text{myFile2.mn} \). Open them keeping their handles in variables \( nb1 \) and \( nb2 \), respectively. Also create a new notebook with the handle \( nb3 \):

\[
\begin{align*}
nb1 &= \text{mupad}('\text{myFile1.mn}') \\
nb2 &= \text{mupad}('\text{myFile2.mn}') \\
nb3 &= \text{mupad}
\end{align*}
\]

\[
\begin{align*}
nb1 &= \text{myFile1} \\
nb2 &= \text{myFile2} \\
nb3 &= \text{Notebook1}
\end{align*}
\]

Find the titles of \( \text{myFile1.mn} \) and \( \text{myFile2.mn} \):
List Titles of All Open Notebooks

Get a cell array containing titles of all currently open MuPAD notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively. Also create a new notebook with the handle nb3:

\[
\begin{align*}
\text{nb1} &= \text{mupad('myFile1.mn')} \\
\text{nb2} &= \text{mupad('myFile2.mn')} \\
\text{nb3} &= \text{mupad}
\end{align*}
\]

Suppose that there are no other open notebooks. Use allMuPADNotebooks to get a vector of handles to these notebooks:

\[
\text{allNBs} = \text{allMuPADNotebooks}
\]

List the titles of all open notebooks. The result is a cell array of strings.

\[
\text{mupadNotebookTitle(allNBs)}
\]

\[
\begin{align*}
\text{ans} &= \\
&= [\text{'myFile1'}, \text{'myFile2'}]
\end{align*}
\]
Return Single Notebook Title as String

`mupadNotebookTitle` returns a cell array of titles even if there is only one element in that cell array. If `mupadNotebookTitle` returns a cell array of one element, you can quickly convert it to a string by using `char`.

Create a new notebook with the handle `nb`:

```matlab
nb = mupad;
```

Find the title of that notebook and convert it to a string:

```matlab
titleAsStr = char(mupadNotebookTitle(nb));
```

Use the title the same way as any string:

```matlab
disp(['The current notebook title is: ' titleAsStr])
```

The current notebook title is: Notebook1

- “Create MuPAD Notebooks” on page 3-3
- “Open MuPAD Notebooks” on page 3-6
- “Save MuPAD Notebooks” on page 3-12
- “Evaluate MuPAD Notebooks from MATLAB” on page 3-13
- “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25
- “Close MuPAD Notebooks from MATLAB” on page 3-16

Input Arguments

`nb — Pointer to MuPAD notebook`

handle to notebook | vector of handles to notebooks

Pointer to MuPAD notebook, specified as a MuPAD notebook handle or a vector of handles. You create the notebook handle when opening a notebook with the `mupad` or `openmn` function.

You can get the list of all open notebooks using the `allMuPADNotebooks` function. `mupadNotebookTitle` accepts a vector of handles returned by `allMuPADNotebooks`. 
Output Arguments

T — Window title of MuPAD notebook
    cell array

Window title of MuPAD notebook, returned as a cell array. If nb is a vector of handles to notebooks, then T is a cell array of the same size as nb.

See Also
allMuPADNotebooks | close | evaluateMuPADNotebook | getVar | mupad | openmn | setVar

Introduced in R2013b
**mupadwelcome**

Start MuPAD interfaces

**Syntax**

```plaintext
mupadwelcome
```

**Description**

`mupadwelcome` opens a window that enables you to start various interfaces:

- MuPAD Notebook app, for performing calculations
- MATLAB Editor, for writing programs and libraries
- Documentation in the **First Steps** pane, for information and examples

It also enables you to access recent MuPAD files or browse for files.
More About

• “Create MuPAD Notebooks” on page 3-3
• “Open MuPAD Notebooks” on page 3-6

See Also

mupad

Introduced in R2008b
nchoosek

Binomial coefficient

Syntax

nchoosek(n, k)

Description

nchoosek(n, k) returns the binomial coefficient of n and k.

Input Arguments

n
Symbolic number, variable or expression.

k
Symbolic number, variable or expression.

Examples

Compute the binomial coefficients for these expressions:

```plaintext
syms n
[nchoosek(n, n), nchoosek(n, n + 1), nchoosek(n, n - 1)]
```

```plaintext
ans =
[1, 0, n]
```

If one or both parameters are negative numbers, convert these numbers to symbolic objects:

```plaintext
[nchoosek(sym(-1), 3), nchoosek(sym(-7), 2), nchoosek(sym(-5), -5)]
```
ans =
[ -1, 28, 1]

If one or both parameters are complex numbers, convert these numbers to symbolic
objects:

[nchoosek(sym(i), 3), nchoosek(sym(i), i), nchoosek(sym(i), i + 1)]

ans =
[ 1/2 + 1i/6, 1, 0]

Differentiate the binomial coefficient:

syms n
diff(nchoosek(n, 2))

ans =
-(psi(n - 1) - psi(n + 1))*nchoosek(n, 2)

Expand the binomial coefficient:

syms n k
expand(nchoosek(n, k))

ans =
-(n*gamma(n))/(k^2*gamma(k)*gamma(n - k) - k*n*gamma(k)*gamma(n - k))

More About

Binomial Coefficient

If \( n \) and \( k \) are integers and \( 0 \leq k \leq n \), the binomial coefficient is defined as:

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

For complex numbers, the binomial coefficient is defined via the \( \Gamma \) function:

\[
\binom{n}{k} = \frac{\Gamma(n+1)}{\Gamma(k+1)\Gamma(n-k+1)}
\]
**Tips**

- Calling `nchoosek` for numbers that are not symbolic objects invokes the MATLAB `nchoosek` function.
- If one or both parameters are complex or negative numbers, convert these numbers to symbolic objects using `sym`, and then call `nchoosek` for those symbolic objects.

**Algorithms**

If $k < 0$ or $n - k < 0$, `nchoosek(n,k)` returns 0.

If one or both arguments are complex, `nchoosek` uses the formula representing the binomial coefficient via the `gamma` function.

**See Also**

`beta` | `gamma` | `factorial` | `psi`

**Introduced in R2012a**
**ne**

Define inequality

**Compatibility**

In previous releases, `ne` in some cases evaluated inequalities involving only symbolic numbers and returned logical 1 or 0. To obtain the same results as in previous releases, wrap inequalities in `isAlways`. For example, use `isAlways(A ~= B)`.

**Syntax**

```
A ~= B
ne(A,B)
```

**Description**

`A ~= B` creates a symbolic inequality.

`ne(A,B)` is equivalent to `A ~= B`.

**Input Arguments**

**A**

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or expression, or array of numbers, symbolic variables or expressions.

**B**

Number (integer, rational, floating-point, complex, or symbolic), symbolic variable or expression, or array of numbers, symbolic variables or expressions.
Examples

Use `assume` and the relational operator `~=` to set the assumption that `x` does not equal to 5:

```matlab
syms x
assume(x ~= 5)
```

Solve this equation. The solver takes into account the assumption on variable `x`, and therefore returns only one solution.

```matlab
solve((x - 5)*(x - 6) == 0, x)
```

```matlab
ans =
6
```

Alternatives

You can also define inequality using `eq` (or its shortcut `==`) and the logical negation `not` (or `~`). Thus, `A ~= B` is equivalent to `~(A == B)`.

More About

Tips

- Calling `~=` or `ne` for non-symbolic `A` and `B` invokes the MATLAB `ne` function. This function returns a logical array with elements set to logical 1 (true) where `A` is not equal to `B`; otherwise, it returns logical 0 (false).
- If both `A` and `B` are arrays, then these arrays must have the same dimensions. `A ~= B` returns an array of inequalities `A(i,j,...) ~= B(i,j,...)`.
- If one input is scalar and the other an array, then the scalar input is expanded into an array of the same dimensions as the other array. In other words, if `A` is a variable (for example, `x`), and `B` is an `m`-by-`n` matrix, then `A` is expanded into `m`-by-`n` matrix of elements, each set to `x`.

See Also

`eq | ge | gt | isAlways | le | lt`
Introduced in R2012a
nnz

Number of nonzero elements

Syntax

nnz(X)

Description

nnz(X) computes the number of nonzero elements in X.

Examples

Number of Nonzero Elements and Matrix Density

Compute the number of nonzero elements of a 10-by-10 symbolic matrix and its density.

Create the following matrix as an element-wise product of a random matrix composed of 0s and 1s and the symbolic Hilbert matrix.

A = gallery('rando',10).*sym(hilb(10))

A =
[ 0, 1/2, 1/3, 0, 1/5, 1/6, 1/7, 0, 0, 1/10]
[ 1/2, 1/3, 1/4, 0, 0, 0, 0, 1/9, 0, 1/11]
[ 0, 1/4, 0, 0, 1/7, 1/8, 1/9, 1/10, 0, 0]
[ 0, 1/5, 0, 0, 1/8, 0, 1/10, 1/11, 0, 1/13]
[ 1/5, 0, 0, 1/8, 1/9, 0, 1/11, 1/12, 0, 0]
[ 1/6, 0, 1/8, 0, 0, 0, 0, 1/14, 1/15]
[ 0, 1/8, 0, 0, 1/11, 0, 0, 0, 0, 1/16]
[ 1/8, 0, 1/10, 1/11, 0, 0, 0, 1/15, 1/16, 0]
[ 0, 0, 1/11, 0, 1/13, 0, 1/15, 1/16, 1/17, 0]
[ 1/10, 1/11, 0, 0, 1/14, 0, 1/16, 0, 1/18, 0]

Compute the number of nonzero elements in the resulting matrix.

Number = nnz(A)
Number =
48

Find the density of this sparse matrix.

Density = nnz(A)/prod(size(A))
Density =
0.4800

Input Arguments

X — Input array
symbolic vector | symbolic matrix | symbolic multidimensional array

Input array, specified as a symbolic vector, matrix, or multidimensional array.

See Also

nonzeros | rank | reshape | size

Introduced in R2014b
nonzeros

Nonzero elements

Syntax

nonzeros(X)

Description

nonzeros(X) returns a column vector containing all nonzero elements of X.

Examples

List All Nonzero Elements of Symbolic Matrix

Find all nonzero elements of a 10-by-10 symbolic matrix.

Create the following 5-by-5 symbolic Toeplitz matrix.

\[
T = \text{toeplitz}(\text{sym}([0 \ 2 \ 3 \ 4 \ 0]))
\]

\[
T = \\
[ 0, \ 2, \ 3, \ 4, \ 0] \\
[ 2, \ 0, \ 2, \ 3, \ 4] \\
[ 3, \ 2, \ 0, \ 2, \ 3] \\
[ 4, \ 3, \ 2, \ 0, \ 2] \\
[ 0, \ 4, \ 3, \ 2, \ 0]
\]

Use the triu function to return a triangular matrix that retains only the upper part of T.

\[
T1 = \text{triu}(T)
\]

\[
T1 = \\
[ 0, \ 2, \ 3, \ 4, \ 0] \\
[ 0, \ 0, \ 2, \ 3, \ 4] \\
[ 0, \ 0, \ 0, \ 2, \ 3] \\
[ 0, \ 0, \ 0, \ 0, \ 2]
\]
List all nonzero elements of this matrix. `nonzeros` searches for nonzero elements of a matrix in the first column, then in the second one, and so on. It returns the column vector containing all nonzero elements. It retains duplicate elements.

```
nonzeros(T1)
```

```
an =
 2
 3
 2
 4
 3
 2
 4
 3
 2
```

### Input Arguments

- **X — Input array**
  
  symbolic vector | symbolic matrix | symbolic multidimensional array
  
  Input array, specified as a symbolic vector, matrix, or multidimensional array.

### See Also

- `nnz` | `rank` | `reshape` | `size`

###Introduced in R2014b
norm

Norm of matrix or vector

Syntax

\[
\begin{align*}
norm(A) \\
norm(A,p) \\
norm(V) \\
norm(V,P)
\end{align*}
\]

Description

\( \text{norm}(A) \) returns the \( 2 \)-norm of matrix \( A \).

\( \text{norm}(A,p) \) returns the \( p \)-norm of matrix \( A \).

\( \text{norm}(V) \) returns the \( 2 \)-norm of vector \( V \).

\( \text{norm}(V,P) \) returns the \( P \)-norm of vector \( V \).

Input Arguments

\( A \)

Symbolic matrix.

\( p \)

One of these values 1, 2, \( \text{inf} \), or 'fro'.

- \( \text{norm}(A,1) \) returns the 1-norm of \( A \).
- \( \text{norm}(A,2) \) or \( \text{norm}(A) \) returns the 2-norm of \( A \).
- \( \text{norm}(A,\text{inf}) \) returns the infinity norm of \( A \).
- \( \text{norm}(A,'fro') \) returns the Frobenius norm of \( A \).
Default: 2

\( V \)
Symbolic vector.

\( P \)
- \( \|V\|_P \) is computed as \( \sum(\text{abs}(V)^P)^{1/P} \) for \( 1 \leq P < \infty \).
- \( \|V\|_2 \) computes the 2-norm of \( V \).
- \( \|A\|_{\infty} \) is computed as \( \max(\text{abs}(V)) \).
- \( \|A\|_{-\infty} \) is computed as \( \min(\text{abs}(V)) \).

Default: 2

**Examples**

Compute the 2-norm of the inverse of the 3-by-3 magic square \( A \):

\[
A = \text{inv}(	ext{sym}(\text{magic}(3)))
\]
\[
\text{norm2} = \text{norm}(A)
\]

\[
A =
\begin{bmatrix}
\frac{53}{360} & -\frac{13}{90} & \frac{23}{360} \\
-\frac{11}{180} & \frac{1}{45} & \frac{19}{180} \\
-\frac{7}{360} & \frac{17}{90} & -\frac{37}{360}
\end{bmatrix}
\]

\[
\text{norm2} =
\frac{3^{1/2}}{6}
\]

Use \texttt{vpa} to approximate the result with 20-digit accuracy:

\[
\text{vpa}(\text{norm2}, 20)
\]

\[
\text{ans} =
0.28867513459481288225
\]

Compute the 1-norm, Frobenius norm, and infinity norm of the inverse of the 3-by-3 magic square \( A \):

\[
A = \text{inv}(	ext{sym}(\text{magic}(3)))
\]
\[
\text{norm1} = \text{norm}(A, 1)
\]
functions = norm(A, 'fro')
normi = norm(A, inf)

\[ A = \begin{bmatrix}
\frac{53}{360}, & -\frac{13}{90}, & \frac{23}{360} \\
-\frac{11}{180}, & \frac{1}{45}, & \frac{19}{180} \\
-\frac{7}{360}, & \frac{17}{90}, & -\frac{37}{360}
\end{bmatrix} \]

norm1 = 16/45

normf = \( \frac{391^{1/2}}{60} \)

normi = 16/45

Use \texttt{vpa} to approximate these results 20-digit accuracy:

\texttt{vpa(norm1, 20)}
\texttt{vpa(normf, 20)}
\texttt{vpa(normi, 20)}

\texttt{ans =}
\texttt{0.35555555555555555556}

\texttt{ans =}
\texttt{0.32956199888808647519}

\texttt{ans =}
\texttt{0.35555555555555555556}

Compute the 1-norm, 2-norm, and 3-norm of the column vector \( V = [Vx; Vy; Vz] \):

\texttt{syms Vx Vy Vz}
\texttt{V = [Vx; Vy; Vz];}
\texttt{norm1 = norm(V, 1)}
\texttt{norm2 = norm(V)}
\texttt{norm3 = norm(V, 3)}

\texttt{norm1 =}
\texttt{abs(Vx) + abs(Vy) + abs(Vz)}

\texttt{norm2 =}
\texttt{(abs(Vx)^2 + abs(Vy)^2 + abs(Vz)^2)^{1/2}}
norm3 = 
(abs(Vx)^3 + abs(Vy)^3 + abs(Vz)^3)^(1/3)

Compute the infinity norm, negative infinity norm, and Frobenius norm of V:

\[ \text{normi} = \text{norm}(V, \text{inf}) \]
\[ \text{normni} = \text{norm}(V, -\text{inf}) \]
\[ \text{normf} = \text{norm}(V, 'fro') \]

\[ \text{normi} = \max(\text{abs}(Vx), \text{abs}(Vy), \text{abs}(Vz)) \]

\[ \text{normni} = \min(\text{abs}(Vx), \text{abs}(Vy), \text{abs}(Vz)) \]

\[ \text{normf} = (\text{abs}(Vx)^2 + \text{abs}(Vy)^2 + \text{abs}(Vz)^2)^{1/2} \]

More About

1-norm of a Matrix

The 1-norm of an \( m \)-by-\( n \) matrix \( A \) is defined as follows:

\[ \|A\|_1 = \max_j \left( \sum_{i=1}^m |A_{ij}| \right), \text{ where } j = 1...n \]

2-norm of a Matrix

The 2-norm of an \( m \)-by-\( n \) matrix \( A \) is defined as follows:

\[ \|A\|_2 = \sqrt{\max \text{ eigenvalue of } A^H A} \]

The 2-norm is also called the spectral norm of a matrix.

Frobenius Norm of a Matrix

The Frobenius norm of an \( m \)-by-\( n \) matrix \( A \) is defined as follows:
Functions — Alphabetical List

Infinity Norm of a Matrix

The infinity norm of an $m$-by-$n$ matrix $A$ is defined as follows:

$$
\|A\|_\infty = \max \left( \sum_{j=1}^n |A_{1j}|, \sum_{j=1}^n |A_{2j}|, \ldots, \sum_{j=1}^n |A_{mj}| \right)
$$

P-norm of a Vector

The P-norm of a 1-by-$n$ or $n$-by-1 vector $V$ is defined as follows:

$$
\|V\|_P = \left( \sum_{i=1}^n |V_i|^P \right)^{1/P}
$$

Here $n$ must be an integer greater than 1.

Frobenius Norm of a Vector

The Frobenius norm of a 1-by-$n$ or $n$-by-1 vector $V$ is defined as follows:

$$
\|V\|_F = \sqrt{\sum_{i=1}^n |V_i|^2}
$$

The Frobenius norm of a vector coincides with its 2-norm.

Infinity and Negative Infinity Norm of a Vector

The infinity norm of a 1-by-$n$ or $n$-by-1 vector $V$ is defined as follows:

$$
\|V\|_\infty = \max (|V_i|), \text{ where } i = 1 \ldots n
$$

The negative infinity norm of a 1-by-$n$ or $n$-by-1 vector $V$ is defined as follows:
\[ \|V\|_{\infty} = \min (|V_i|), \text{ where } i = 1 \ldots n \]

**Tips**

- Calling `norm` for a numeric matrix that is not a symbolic object invokes the MATLAB `norm` function.

**See Also**

`cond` | `equationsToMatrix` | `inv` | `linsolve` | `rank`

**Introduced in R2012b**
**not**

Logical NOT for symbolic expressions

**Syntax**

\[ \sim A \]  
not(A)

**Description**

\[ \sim A \] represents the logical negation. \[ \sim A \] is true when \( A \) is false and vice versa.  

not(A) is equivalent to \[ \sim A \].

**Input Arguments**

\( A \)

Symbolic equation, inequality, or logical expression that contains symbolic subexpressions.

**Examples**

Create this logical expression using \( \sim \):

```matlab
syms x y
xy = ~(x > y);
```

Use `assume` to set the corresponding assumption on variables \( x \) and \( y \):

```matlab
assume(xy)
```

Verify that the assumption is set:

```matlab
assumptions
```
ans =  
−y < x

Create this logical expression using logical operators ~ and &:

```matlab
syms x
range = abs(x) < 1 & ~(abs(x) < 1/3);
```

Replace variable x with these numeric values. Note that `subs` does not evaluate these inequalities to logical 1 or 0.

```matlab
x1 = subs(range, x, 0)
x2 = subs(range, x, 2/3)
```

```matlab
x1 =
0 < 1 & ~0 < 1/3
x2 =
2/3 < 1 & ~2/3 < 1/3
```

To evaluate these inequalities to logical 1 or 0, use `logical` or `isAlways`:

```matlab
logical(x1)
isAlways(x2)
```

```matlab
ans =
0
ans =
1
```

Note that `simplify` does not simplify these logical expressions to logical 1 or 0. Instead, they return `symbolic` values `TRUE` or `FALSE`.

```matlab
s1 = simplify(x1)
s2 = simplify(x2)
```

```matlab
s1 =
FALSE
s2 =
TRUE
```

Convert symbolic `TRUE` or `FALSE` to logical values using `logical`:

```matlab
logical(s1)
```
logical(s2)
ans =
  0
ans =
  1

More About

Tips

• If you call `simplify` for a logical expression that contains symbolic subexpressions, you can get symbolic values TRUE or FALSE. These values are not the same as logical 1 (true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use `logical`.

See Also
`all` | `and` | `any` | `isAlways` | `or` | `xor`

Introduced in R2012a
null

Form basis for null space of matrix

Syntax

Z = null(A)

Description

Z = null(A) returns a list of vectors that form the basis for the null space of a matrix A. The product A*Z is zero. size(Z, 2) is the nullity of A. If A has full rank, Z is empty.

Examples

Find the basis for the null space and the nullity of the magic square of symbolic numbers. Verify that A*Z is zero:

A = sym(magic(4));
Z = null(A)
nullityOfA = size(Z, 2)
A*Z

Z =
-1
-3
 3
 1

nullityOfA =
 1

ans =
 0
 0
 0
 0
 0

Find the basis for the null space of the matrix B that has full rank:
B = sym(hilb(3))
Z = null(B)

B =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

Z =
Empty sym: 1-by-0

See Also
rank | rref | size | svd

Introduced before R2006a
numden

Extract numerator and denominator

Syntax

\[ [N,D] = \text{numden}(A) \]

Description

\[ [N,D] = \text{numden}(A) \] converts \( A \) to a rational form where the numerator and denominator are relatively prime polynomials with integer coefficients. The function returns the numerator and denominator of the rational form of an expression.

If \( A \) is a symbolic or a numeric matrix, then \( N \) is the symbolic matrix of numerators, and \( D \) is the symbolic matrix of denominators. Both \( N \) and \( D \) are matrices of the same size as \( A \).

Examples

Numerator and Denominator of Symbolic Numbers

Find the numerator and denominator of a symbolic number.

\[ [n, d] = \text{numden(sym(4/5))] \]

\[
\begin{align*}
n &= 4 \\
d &= 5
\end{align*}
\]

Numerator and Denominator of Symbolic Expressions

Find the numerator and denominator of the symbolic expression.

\[
\text{syms } x \ y \quad [n,d] = \text{numden}(x/y + y/x)
\]
\[ n = x^2 + y^2 \]
\[ d = xy \]

**Numerator and Denominators of Matrix Elements**

Find the numerator and denominator of each element of a symbolic matrix.

```
syms a b
[n,d] = numden([a/b, 1/b; 1/a, 1/(a*b)])
n =
[a, 1]
[1, 1]
d =
[b, b]
[a, a*b]
```

**Input Arguments**

A — Input
Symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, expression, function, vector, or matrix.

**Output Arguments**

N — Numerator
Symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Numerator, returned as a symbolic number, expression, function, vector, or matrix.

D — Denominator
Symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic matrix
Denominator, returned as a symbolic number, expression, function, vector, or matrix.

See Also
divisors | partfrac | simplifyFraction

Introduced before R2006a
**numel**

Number of elements of symbolic array

**Syntax**

`numel(A)`

**Description**

`numel(A)` returns the number of elements in symbolic array `A`, equal to `prod(size(A))`.

**Examples**

**Number of Elements in Vector**

Find the number of elements in vector `V`.

```matlab
syms x y
V = [x y 3];
numel(V)
```

```
ans =
 3
```

**Number of Elements in 3-D Array**

Create a 3-D symbolic array and find the number of elements in it.

Create the 3-D symbolic array `A`:

```matlab
A = sym(magic(3));
A(:,:,2) = A'
A(:,:,1) =
[8, 1, 6]
```
[ 3, 5, 7]
[ 4, 9, 2]

A(:, :, 2) =
[ 8, 3, 4]
[ 1, 5, 9]
[ 6, 7, 2]

Use `numel` to count the number of elements in A.

`numel(A)`

```matlab
ans =
18
```

**Input Arguments**

A — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Input, specified as a symbolic variable, vector, matrix, or multidimensional array.

**See Also**

`prod` | `size`

**Introduced in R2008b**
odeFunction

Convert system of symbolic algebraic expressions to MATLAB function handle suitable for ode45, ode15s, and other ODE solvers

Syntax

\[
f = \text{odeFunction}(\text{expr}, \text{vars})
\]
\[
f = \text{odeFunction}(\text{expr}, \text{vars}, p_1, \ldots, p_N)
\]
\[
f = \text{odeFunction}(\_, \text{Name}, \text{Value})
\]

Description

\(f = \text{odeFunction}(\text{expr}, \text{vars})\) converts a system of symbolic algebraic expressions to a MATLAB function handle acceptable as an input argument to the numerical MATLAB ODE solvers, except for ode15i. The argument \(\text{vars}\) specifies the state variables of the system.

\(f = \text{odeFunction}(\text{expr}, \text{vars}, p_1, \ldots, p_N)\) lets you specify the symbolic parameters of the system as \(p_1, \ldots, p_N\).

\(f = \text{odeFunction}(\_, \text{Name}, \text{Value})\) uses additional options specified by one or more \(\text{Name}, \text{Value}\) pair arguments.

Examples

Function Handle Suitable for ODE Solvers

Convert a system of symbolic differential expressions to a function handle suitable for the MATLAB ODE solvers. Then solve the system by using the \texttt{ode15s} solver.

Create the following second-order differential algebraic equation.

\[
s\text{yms } y(t); \\
eqn = \text{diff}(y(t), t, t) \equiv (1 - y(t)^2) \times \text{diff}(y(t),t) - y(t);
\]
Use `reduceDifferentialOrder` to rewrite that equation as a system of two first-order differential equations. Here, `vars` is a vector of state variables of the system. The new variable `Dy(t)` represents the first derivative of `y(t)` with respect to `t`.

```matlab
[eqs,vars] = reduceDifferentialOrder(eqn,y(t))
```

```matlab
eqs =
 diff(Dyt(t), t) + y(t) + Dyt(t)*(y(t)^2 - 1)
 Dyt(t) - diff(y(t), t)
```

```matlab
vars =
 y(t)
 Dyt(t)
```

Set initial conditions for `y(t)` and its derivative `Dy(t)`. For example, set the initial value of the variable to 2 and the initial value of its first derivative to 0.

```matlab
initConditions = [2,0];
```

Find the mass matrix `M` of the system and a vector `F` containing the right sides of equations.

```matlab
[M,F] = massMatrixForm(eqs,vars)
```

```matlab
M =
 [0, 1]
 [-1, 0]
```

```matlab
F =
 - y(t) - Dyt(t)*(y(t)^2 - 1)
 -Dyt(t)
```

`M` and `F` refer to the form \( M(t,x(t)) \dot{x}(t) = F(t,x(t)) \). To simplify further computations, rewrite the system in the form \( \dot{x}(t) = f(t,x(t)) \).

```matlab
f = M\F
f =
 Dyt(t)
 Dyt(t) - y(t) - Dyt(t)*y(t)^2
```

Convert `f` to a MATLAB function handle by using `odeFunction`. The resulting function handle serves as an input argument to the MATLAB ODE solver `ode15s`.

```matlab
odefun = odeFunction(f,vars);
```
ode15s(odefun, [0 10], initConditions)

Function Handles for System Containing Symbolic Parameters

Convert a system of symbolic differential equations containing both state variables and symbolic parameters to a function handle suitable for the MATLAB ODE solvers.

Create the system of differential algebraic equations. Here, the symbolic functions $x_1(t)$ and $x_2(t)$ represent the state variables of the system. The system also contains constant symbolic parameters $a$, $b$, and the parameter function $r(t)$. These parameters do not represent state variables. Specify the equations and state variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.
syms x1(t) x2(t) a b r(t)
eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...
      x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t), x2(t)];

Find the mass matrix \( M \) and vector of the right side \( F \) for this system. \( M \) and \( F \) refer to the form \( M(t, x(t)) \dot{x}(t) = F(t, x(t)) \).

\[
[M, F] = \text{massMatrixForm}(eqs, vars)
\]

\[
M = \\
\begin{bmatrix}
  1 & 0 \\
  0 & 0 \\
\end{bmatrix}
\]

\[
F = \\
b*x2(t)^2 + a*x1(t) \\
r(t)^2 - x1(t)^2 - x2(t)^2
\]

Use \texttt{odeFunction} to generate MATLAB function handles from \( M \) and \( F \). The function handle \( F \) contains symbolic parameters.

\[
M = \text{odeFunction}(M, vars) \\
F = \text{odeFunction}(F, vars, a, b, r(t))
\]

\[
M = \\
@(t,in2)reshape([1.0,0.0,0.0,0.0],[2,2])
\]

\[
F = \\
@(t,in2,param1,param2,param3)[param1.*in2(1,:)+... \\
param2.*in2(2,:).^2;param3.^2-in2(1,:).^2-in2(2,:).^2]
\]

Specify the parameter values.

\[
a = -0.6; \\
b = -0.1; \\
r = @(t) \cos(t)/(1 + t^2);
\]

Create the reduced function handle \( F \) as follows.

\[
F = @(t, Y) F(t, Y, a, b, r(t));
\]

Specify consistent initial conditions for the DAE system.

\[
t0 = 0; \\
y0 = [-r(t0)*sin(0.1); r(t0)*cos(0.1)]; \\
yp0= [a*y0(1) + b*y0(2)^2; 1.234];
\]
Create an option set that contains the mass matrix \( M \) of the system and vector \( \mathbf{y}_0 \) of initial conditions for the derivatives.

```matlab
opt = odeset('mass', M, 'InitialSlope', yp0);
```

Now, use `ode15s` to solve the system of equations.

```matlab
ode15s(F, [t0, 1], y0, opt)
```

---

**File Instead of Function Handle**

From a system of symbolic differential equations, generate code suitable for the MATLAB ODE solvers and write it to a file.
Create the following system of differential algebraic equations. Here, the functions \( x(t) \) and \( y(t) \) represent state variables of the system.

\[
\begin{align*}
\text{syms } & x(t) \ y(t) \\
\text{eqs} = & [\text{diff}(x(t), t) + 2*\text{diff}(y(t), t) == 0.1*y(t), \ldots \\\n& x(t) - y(t) == \cos(t) - 0.2*t*sin(x(t))]; \\
\text{vars} = & [x(t), y(t)]; \\
\end{align*}
\]

Find the mass matrix \( M \) and vector of the right side \( F \) for this system. \( M \) and \( F \) refer to the form \( M(t,x(t))\dot{x}(t) = F(t,x(t)) \).

\[
[M, F] = \text{massMatrixForm(eqs, vars)}
\]

\[
\begin{align*}
M &= \\
& \begin{bmatrix} 1 & 2 \\
& 0 & 0 \end{bmatrix} \\
F &= \\
& y(t)/10 \\
& \cos(t) - x(t) + y(t) - (t*sin(x(t)))/5 \\
\end{align*}
\]

Use \texttt{odeFunction} to generate MATLAB code from \( M \) and \( F \), and to write that code to \texttt{myfileM.m} and \texttt{myfileF.m}. If the files \texttt{myfileM.m} and \texttt{myfileF.m} already exist in the current folder, \texttt{odeFunction} overwrites the contents of the existing files. You can open and edit the resulting files.

\[
\begin{align*}
M &= \text{odeFunction}(M, \text{vars}, 'File', 'myfileM'); \\
\text{function expr = myfileM(t,in2)} \\
\%MYFILEM \\
\% \quad \text{EXPR = MYFILEM(T,IN2)} \\
expr &= \text{reshape}([1.0,0.0,2.0,0.0],[2, 2]); \\
F &= \text{odeFunction}(F, \text{vars}, 'File', 'myfileF'); \\
\text{function expr = myfileF(t,in2)} \\
\%MYFILEF \\
\% \quad \text{EXPR = MYFILEF(T,IN2)} \\
x &= \text{in2}(1,:); \\
y &= \text{in2}(2,:); \\
expr &= \lfloor y.*(1.0./1.0e1);-x+y+cos(t)-t.*sin(x).*(1.0./5.0)\rfloor;
\end{align*}
\]
Specify consistent initial values for \( x(t) \) and \( y(t) \) and their first derivatives. Here, the vector \( xy0 \) specifies initial values for \( x(t) \) and \( y(t) \), and the vector \( xyp0 \) specifies initial values for their derivatives.

\[
xy0 = [2; 1];
\]

\[
xyp0 = [0; 0.05*xy0(2)];
\]

Create an option set that contains the mass matrix \( M \) of the system, vector \( xyp0 \) of initial conditions for the derivatives, and numerical tolerances for the numerical search.

\[
\text{opt} = \text{odeset}('\text{mass}', M, '\text{RelTol}', 10^{-6}, '\text{AbsTol}', 10^{-6}, '\text{InitialSlope}', xyp0);
\]

Now, use \texttt{ode15s} to solve the system of equations.

\[
\text{ode15s}(F, [0 7], xy0, \text{opt});
\]
**Sparse Matrices**

Use the name-value pair argument `'Sparse',true` when converting sparse symbolic matrices to MATLAB function handles.

Create the system of differential algebraic equations. Here, the symbolic functions $x_1(t)$ and $x_2(t)$ represent the state variables of the system. Specify the equations and state variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```matlab
syms x1(t) x2(t)

a = -0.6;
b = -0.1;
r = @(t) cos(t)/(1 + t^2);
eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...
x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t), x2(t)];

[M, F] = massMatrixForm(eqs, vars)

M =
[1, 0]
[0, 0]

F =
- (3*x1(t))/5 - x2(t)^2/10
 cos(t)^2/(t^2 + 1)^2 - x1(t)^2 - x2(t)^2

Generate MATLAB function handles from M and F. Because most of the elements of the mass matrix M are zeros, use the `Sparse` argument when converting M.

$M = \text{odeFunction}(M, vars, 'Sparse', true)$
$F = \text{odeFunction}(F, vars)$

$M = @(t,in2)sparse([1],[1],[1.0],2,2)$
Functions — Alphabetical List

\[F = @(t,in2)\left[\text{in2}(1,:).*(-3.0./5.0)-\text{in2}(2,:).^2.*(1.0./1.0e1);... \right. \\
\left. \cos(t).^2.*1.0./(t.^2+1.0).^2-\text{in2}(1,:).^2-\text{in2}(2,:).^2 \right] \]

Specify consistent initial conditions for the DAE system.

\[
t0 = 0; \\
y0 = [-r(t0)*\sin(0.1); r(t0)*\cos(0.1)]; \\
yp0 = [a*y0(1) + b*y0(2).^2; 1.234];
\]

Create an option set that contains the mass matrix \(M \) of the system and vector \(yp0 \) of initial conditions for the derivatives.

\[
\text{opt} = \text{odeset}('mass', M, 'InitialSlope', yp0);
\]

Now, use \texttt{ode15s} to solve the system of equations.

\[
\text{ode15s}(F, [t0, 1], y0, \text{opt})
\]
Input Arguments

expr — System of algebraic expressions

vector of symbolic expressions

System of algebraic expressions, specified as a vector of symbolic expressions.

vars — State variables

vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as \(x(t) \).

Example: \([x(t), y(t)]\) or \([x(t); y(t)]\)
p₁, ..., pₙ — Parameters of system
symbolic variables | symbolic functions | symbolic function calls | symbolic vector | symbolic matrix

Parameters of the system, specified as symbolic variables, functions, or function calls, such as \(f(t) \). You can also specify parameters of the system as a vector or matrix of symbolic variables, functions, or function calls. If \(\text{expr} \) contains symbolic parameters other than the variables specified in \(\text{vars} \), you must specify these additional parameters as \(p₁, ..., pₙ \).

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside single quotes (" "). You can specify several name and value pair arguments in any order as **Name1**, **Value1**, ..., **NameN**, **ValueN**.

Example: \(\text{odeFunction}(\text{expr}, \text{vars},'\text{File}', '\text{myfile}') \)

'\text{File}' — Path to file containing generated code
string

Path to the file containing generated code, specified as a string. The generated file accepts arguments of type **double**, and can be used without Symbolic Math Toolbox. If the value is an empty string, \(\text{odeFunction} \) generates an anonymous function. If the string does not end in .m, the function appends .m.

By default, \(\text{odeFunction} \) with the **File** argument generates a file containing optimized code. Optimized means intermediate variables are automatically generated to simplify or speed up the code. MATLAB generates intermediate variables as a lowercase letter \(t \) followed by an automatically generated number, for example \(t32 \). To disable code optimization, use the **Optimize** argument.

'\text{Optimize}' — Flag preventing optimization of code written to function file
true (default) | false

Flag preventing optimization of code written to a function file, specified as **false** or **true**.

By default, \(\text{odeFunction} \) with the **File** argument generates a file containing optimized code. Optimized means intermediate variables are automatically generated to simplify
or speed up the code. MATLAB generates intermediate variables as a lowercase letter t followed by an automatically generated number, for example t32.

odeFunction without the File argument (or with a file path specified by an empty string) creates a function handle. In this case, the code is not optimized. If you try to enforce code optimization by setting Optimize to true, then odeFunction throws an error.

'Sparse' — Flag that switches between sparse and dense matrix generation
false (default) | true

Flag that switches between sparse and dense matrix generation, specified as true or false. When you specify 'Sparse', true, the generated function represents symbolic matrices by sparse numeric matrices. Use 'Sparse', true when you convert symbolic matrices containing many zero elements. Often, operations on sparse matrices are more efficient than the same operations on dense matrices. See “Sparse Matrices” on page 4-899.

Output Arguments

f — Function handle that can serve as input argument to all numerical MATLAB ODE solvers, except for ode15i
MATLAB function handle

Function handle that can serve as input argument to all numerical MATLAB ODE solvers, except for ode15i, returned as a MATLAB function handle.

odeFunction returns a function handle suitable for the ODE solvers such as ode45, ode15s, ode23t, and others. The only ODE solver that does not accept this function handle is the solver for fully implicit differential equations, ode15i. To convert the system of equations to a function handle suitable for ode15i, use daeFunction.

See Also
daefunction | decic | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE | massMatrixForm | matlabFunction | ode15i | ode15s | ode23t | ode45 | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies

Introduced in R2015a
odeToVectorField

Convert higher-order differential equations to systems of first-order differential equations

Syntax

\[
V = odeToVectorField(eqn1,\ldots,eqnN)
\]
\[
[V,Y] = odeToVectorField(eqn1,\ldots,eqnN)
\]

Description

\[
V = odeToVectorField(eqn1,\ldots,eqnN)
\] converts higher-order differential equations \(eqn1,\ldots,eqnN\) to a system of first-order differential equations. This syntax returns a symbolic vector representing the resulting system of first-order differential equations.

\[
[V,Y] = odeToVectorField(eqn1,\ldots,eqnN)
\] converts higher-order differential equations \(eqn1,\ldots,eqnN\) to a system of first-order differential equations. This syntax returns two symbolic vectors. The first vector represents the resulting system of first-order differential equations. The second vector shows the substitutions made during conversion.

Input Arguments

\[
eqn1,\ldots,eqnN
\]

Symbolic equations, strings separated by commas and representing a system of ordinary differential equations, or array of symbolic equations or strings. Each equation or string represents an ordinary differential equation.

When representing \(eqn\) as a symbolic equation, you must create a symbolic function, for example \(y(x)\). Here \(x\) is an independent variable for which you solve an ordinary differential equation. Use the \(==\) operator to create an equation. Use the \texttt{diff} function to indicate differentiation. For example, to convert \(d^2y(x)/dt^2 = x*y(x)\), use:
syms y(x)
V = odeToVectorField(diff(y, 2) == x*y)

When representing eqn as a string, use the letter D to indicate differentiation. By default, **odeToVectorField** assumes that the independent variable is t. Thus, Dy means dy/dt. You can specify the independent variable. The letter D followed by a digit indicates repeated differentiation. Any character immediately following a differentiation operator is a dependent variable. For example, to convert \(d^2y(x) / dt^2 = x*y(x) \), enter:

\[V = \text{odeToVectorField}('D2y = x*y','x') \]

or

\[V = \text{odeToVectorField}('D2y == x*y','x') \]

Output Arguments

V

Symbolic vector representing the system of first-order differential equations. Each element of this vector is the right side of the first-order differential equation \(Y[i]' = V[i] \).

Y

Symbolic vector representing the substitutions made when converting the input equations eqn1,...,eqnN to the elements of V.

Examples

Convert this fifth-order differential equation to a system of first-order differential equations:

```matlab
syms y(t)
V = odeToVectorField(t^3*diff(y, 5) + 2*t*diff(y, 4) + diff(y, 2) + y^2 == -3*t)
```

Convert this system of first- and second-order differential equations to a system of first-order differential equations. To see the substitutions that \texttt{odeToVectorField} makes for this conversion, use two output arguments:

```matlab
syms f(t) g(t)
[V,Y] = odeToVectorField(diff(f, 2) == f + g, diff(g) == -f + g)
```

\[V = \begin{align*}
Y[3] \\
\end{align*} \]

\[Y = \begin{align*}
g \\
f \\
Df
\end{align*} \]

Convert this second-order differential equation to a system of first-order differential equations:

```matlab
syms y(t)
V = odeToVectorField(diff(y, 2) == (1 - y^2)*diff(y) - y)
```

\[V = \begin{align*}
Y[2] \\
\end{align*} \]

Generate a MATLAB function from this system of first-order differential equations using \texttt{matlabFunction} with \(V \) as an input:

```matlab
M = matlabFunction(V,'vars', {'t','Y'});
```

\[M = @(t,Y)[Y(2);-(Y(1).^2-1.0).*Y(2)-Y(1)] \]

To solve this system, call the MATLAB \texttt{ode45} numerical solver using the generated MATLAB function as an input:

```matlab
sol = ode45(M,[0 20],[2 0]);
```

Plot the solution using \texttt{linspace} to generate 100 points in the interval [0,20] and \texttt{deval} to evaluate the solution for each point:

```matlab
x = linspace(0,20,100);
y = deval(sol,x,1);
plot(x,y)
```
Convert the second-order differential equation $y''(x) = x$ with the initial condition $y(0) = t$ to a system. Specify the differential equation and initial condition as strings. Also specify that x is an independent variable:

```matlab
V = odeToVectorField('D2y = x', 'y(0) = t', 'x')
```

```
V =
Y[2]
x
```

If you define equations by strings and do not specify the independent variable, `odeToVectorField` assumes that the independent variable is t. This assumption makes the equation $y''(t) = x$ inconsistent with the initial condition $y(0) = t$. In this case, $y''(t) = \frac{d^2t}{dt^2} = 0$, and `odeToVectorField` errors.
More About

Tips

• The names of symbolic variables used in differential equations should not contain the
 letter D because odeToVectorField assumes that D is a differential operator and
 any character immediately following D is a dependent variable.

• To generate a MATLAB function for the resulting system of first-order differential
 equations, use matlabFunction with V as an input. Then, you can use the generated
 MATLAB function as an input for the MATLAB numerical solvers ode23 and ode45.

• The highest-order derivatives must appear in eqn1,...,eqnN linearly. For example,
 odeToVectorField can convert these equations:

 • \(y''(t) = -t^2 \)
 • \(y^*y''(t) = -t^2 \).
 odeToVectorField can convert this equation because it can be
 rewritten as \(y''(t) = -t^2/y \).

However, it cannot convert these equations:

• \(y''(t)^2 = -t^2 \)
• \(\sin(y''(t)) = -t^2 \)

Algorithms

To convert an nth-order differential equation

\[
a_n(t)y^{(n)} + a_{n-1}(t)y^{(n-1)} + a_{n-2}(t)y^{(n-2)} + \ldots + a_2(t)y'' + a_1(t)y' + a_0(t)y + r(t) = 0
\]

into a system of first-order differential equations, make these substitutions:

\[
Y_1 = y \\
Y_2 = y' \\
Y_3 = y^* \\
\ldots \\
Y_{n-1} = y^{(n-2)} \\
Y_n = y^{(n-1)}
\]
Using the new variables, you can rewrite the equation as a system of \(n \) first-order differential equations:

\[
\begin{align*}
Y_1' &= y' = Y_2 \\
Y_2' &= y'' = Y_3 \\
&\vdots \\
Y_{n-1}' &= y^{(n-1)} = Y_n \\
Y_n' &= -\frac{a_{n-1}(t)}{a_n(t)} Y_n - \frac{a_{n-2}(t)}{a_n(t)} Y_{n-1} - \ldots - \frac{a_1(t)}{a_n(t)} Y_2 - \frac{a_0(t)}{a_n(t)} Y_1 + r(t)
\end{align*}
\]

\texttt{odeToVectorField} returns the right sides of these equations as the elements of vector \(V \).

When you convert a system of higher-order differential equations to a system of first-order differential equations, it can be helpful to see the substitutions that \texttt{odeToVectorField} made during the conversion. These substitutions are listed as elements of vector \(Y \).

\textbf{See Also}
\texttt{dsolve} | \texttt{matlabFunction} | \texttt{ode23} | \texttt{ode45} | \texttt{syms}

\textbf{Introduced in R2012a}
openmn

Open MuPAD notebook

Syntax

h = openmn(file)

Description

h = openmn(file) opens the MuPAD notebook file named file, and returns a handle to the file in h. The file name must be a full path unless the file is in the current folder. The command h = mupad(file) accomplishes the same task.

Examples

To open a notebook named e-e-x.mn in the folder \Documents\Notes of drive H:, enter:

h = openmn('H:\Documents\Notes\e-e-x.mn');

More About

• “Create MuPAD Notebooks” on page 3-3
• “Open MuPAD Notebooks” on page 3-6

See Also

mupad | open | openmu | openxvc | openxvz

Introduced in R2008b
openmu

Open MuPAD program file

Syntax

openmu(file)

Description

openmu(file) opens the MuPAD program file named file in the MATLAB Editor. The command open(file) accomplishes the same task.

Examples

To open a program file named yyx.mu located in the folder \Documents\Notes on drive H:, enter:

openmu('H:\Documents\Notes\yyx.mu')

This command opens yyx.mu in the MATLAB Editor.

More About

• “Open MuPAD Notebooks” on page 3-6

See Also

mupad | open | openmn | openxvc | openxvz

Introduced in R2008b
openxvc

Open MuPAD uncompressed graphics file (XVC)

Syntax

`openxvc(file)`

Description

`openxvc(file)` opens the MuPAD XVC graphics file named `file`. The file name must be a full path unless the file is in the current folder.

Input Arguments

`file`

MuPAD XVC graphics file.

Examples

To open a graphics file named `image1.xvc` in the folder `\Documents\Notes` of drive H:, enter:

`openxvc('H:\Documents\Notes\image1.xvc')`

More About

- “Open MuPAD Notebooks” on page 3-6

See Also

`mupad` | `open` | `openmn` | `openmu` | `openxvz`

Introduced in R2008b
openxvz

Open MuPAD compressed graphics file (XVZ)

Syntax

`openxvz(file)`

Description

`openxvz(file)` opens the MuPAD XVZ graphics file named `file`. The file name must be a full path unless the file is in the current folder.

Input Arguments

`file`

MuPAD XVZ graphics file.

Examples

To open a graphics file named `image1.xvz` in the folder `\Documents\Notes` of drive `H:`, enter:

```matlab
openxvz('H:\Documents\Notes\image1.xvz')
```

More About

- “Open MuPAD Notebooks” on page 3-6

See Also

`mupad` | `open` | `openmn` | `openmu` | `openxvc`

Introduced in R2008b
or

Logical OR for symbolic expressions

Syntax

\[\text{A} | \text{B} \]
\[\text{or(A,B)} \]

Description

\[\text{A} | \text{B} \]
represents the logical disjunction. \[\text{A} | \text{B} \]
is true when either \(\text{A} \) or \(\text{B} \) or both are true.

\[\text{or(A,B)} \]
is equivalent to \[\text{A} | \text{B} \].

Input Arguments

A

Symbolic equation, inequality, or logical expression that contains symbolic subexpressions.

B

Symbolic equation, inequality, or logical expression that contains symbolic subexpressions.

Examples

Combine these symbolic inequalities into the logical expression using |:

syms x y
xy = x >= 0 | y >= 0;

Set the corresponding assumptions on variables \(x \) and \(y \) using assume:
assume(xy)

Verify that the assumptions are set:

assumptions

ans =
0 <= x | 0 <= y

Combine two symbolic inequalities into the logical expression using |

range = x < -1 | x > 1;

Replace variable x with these numeric values. If you replace x with 10, one inequality is valid. If you replace x with 0, both inequalities are invalid. Note that subs does not evaluate these inequalities to logical 1 or 0.

x1 = subs(range, x, 10)
x2 = subs(range, x, 0)

x1 =
1 < 10 | 10 < -1
x2 =
0 < -1 | 1 < 0

To evaluate these inequalities to logical 1 or 0, use isAlways:

isAlways(x1)
isAlways(x2)

ans =
1

ans =
0

Note that simplify does not simplify these logical expressions to logical 1 or 0. Instead, they return symbolic values TRUE or FALSE.

s1 = simplify(x1)
s2 = simplify(x2)

s1 =
TRUE

s2 =
FALSE

Convert symbolic TRUE or FALSE to logical values using isAlways:

isAlways(s1)
ans =
 1
isAlways(s2)
ans =
 0

More About

Tips

• If you call simplify for a logical expression containing symbolic subexpressions, you can get symbolic values TRUE or FALSE. These values are not the same as logical 1 (true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use isAlways.

See Also

call | and | any | isAlways | not | xor

Introduced in R2012a
orth

Orthonormal basis for range of symbolic matrix

Syntax

\[
\begin{align*}
B &= \text{orth}(A) \\
B &= \text{orth}(A,'\text{real}') \\
B &= \text{orth}(A,'\text{skipnormalization}') \\
B &= \text{orth}(A,'\text{real}','\text{skipnormalization}')
\end{align*}
\]

Description

- \(B = \text{orth}(A)\) computes an orthonormal basis for the range of \(A\).

- \(B = \text{orth}(A,'\text{real}')\) computes an orthonormal basis using a real scalar product in the orthogonalization process.

- \(B = \text{orth}(A,'\text{skipnormalization}')\) computes a non-normalized orthogonal basis. In this case, the vectors forming the columns of \(B\) do not necessarily have length 1.

- \(B = \text{orth}(A,'\text{real}','\text{skipnormalization}')\) computes a non-normalized orthogonal basis using a real scalar product in the orthogonalization process.

Input Arguments

A

Symbolic matrix.

'real'

Flag that prompts `orth` to avoid using a complex scalar product in the orthogonalization process.
'skipnormalization'

Flag that prompts orth to skip normalization and compute an orthogonal basis instead of an orthonormal basis. If you use this flag, lengths of the resulting vectors (the columns of matrix B) are not required to be 1.

Output Arguments

B

Symbolic matrix.

Examples

Compute an orthonormal basis of the range of this matrix. Because these numbers are not symbolic objects, you get floating-point results.

\[
A = \begin{bmatrix} 2 & -3 & -1; 1 & 1 & -1; 0 & 1 & -1 \end{bmatrix}; \]
\[
B = \text{orth}(A)
\]

\[
B = \begin{bmatrix} -0.9859 & -0.1195 & 0.1168 \\
0.0290 & -0.8108 & -0.5846 \\
0.1646 & -0.5729 & 0.8029 \end{bmatrix}
\]

Now, convert this matrix to a symbolic object, and compute an orthonormal basis:

\[
A = \text{sym}(\begin{bmatrix} 2 & -3 & -1; 1 & 1 & -1; 0 & 1 & -1 \end{bmatrix}); \\
B = \text{orth}(A)
\]

\[
B = \begin{bmatrix} \frac{2 \cdot 5^{1/2}}{5}, -\frac{6^{1/2}}{6}, -\frac{(2^{1/2} \cdot 15^{1/2})}{30} \\
\frac{5^{1/2}}{5}, \frac{6^{1/2}}{3}, \frac{(2^{1/2} \cdot 15^{1/2})}{15} \\
0, \frac{6^{1/2}}{6}, -\frac{(2^{1/2} \cdot 15^{1/2})}{6} \end{bmatrix}
\]

You can use double to convert this result to the double-precision numeric form. The resulting matrix differs from the matrix returned by the MATLAB orth function because these functions use different versions of the Gram-Schmidt orthogonalization algorithm:

\[
\text{double(B)}
\]
ans =
0.8944 -0.4082 -0.1826
0.4472 0.8165 0.3651
0 0.4082 -0.9129

Verify that \(B' \cdot B = I \), where \(I \) is the identity matrix:

\[
B' \cdot B
\]

\[
\text{ans =
}\begin{bmatrix}
1, & 0, & 0
\end{bmatrix}
\begin{bmatrix}
0, & 1, & 0
\end{bmatrix}
\begin{bmatrix}
0, & 0, & 1
\end{bmatrix}
\]

Now, verify that the 2-norm of each column of \(B \) is 1:

\[
\text{norm}(B(:, 1))
\]
\[
\text{norm}(B(:, 2))
\]
\[
\text{norm}(B(:, 3))
\]

\[
\text{ans =}
1
\]

\[
\text{ans =}
1
\]

\[
\text{ans =}
1
\]

Compute an orthonormal basis of this matrix using 'real' to avoid complex conjugates:

\[
s\text{yms } a
A = [a \ 1; \ 1 \ a];
B = \text{orth}(A,'real')
\]

\[
B =
\begin{bmatrix}
\frac{a}{(a^2 + 1)^{(1/2)}}, & -(a^2 - 1)/(a^2 + 1) * ((a^2 - ... \\
1)^{(2/(a^2 + 1)^{(1/2)} + (a^2 * (a^2 - 1)^{(2)/(a^2 + 1)^{(1/2)}}) \\
1)^{(2/(a^2 + 1)^{(1/2)} + (a^2 * (a^2 - 1)^{(2)/(a^2 + 1)^{(1/2)}})
\end{bmatrix}
\]

Compute an orthogonal basis of this matrix using 'skipnormalization':

\[
s\text{yms } a
A = [a \ 1; \ 1 \ a];
\]
B = orth(A,'skipnormalization')

B =
[a, -(a^2 - 1)/(a*conj(a) + 1)]
[1, -(conj(a) - a^2*conj(a))/(a*conj(a) + 1)]

Compute an orthogonal basis of this matrix using 'skipnormalization' and 'real':

syms a
A = [a 1; 1 a];
B = orth(A,'skipnormalization','real')

B =
[a, -(a^2 - 1)/(a^2 + 1)]
[1, (a*(a^2 - 1))/(a^2 + 1)]

More About

Orthonormal Basis

An orthonormal basis for the range of matrix A is matrix B, such that:

• B' * B = I, where I is the identity matrix.
• The columns of B span the same space as the columns of A.
• The number of columns of B is the rank of A.

Tips

• Calling orth for numeric arguments that are not symbolic objects invokes the MATLAB orth function. Results returned by MATLAB orth can differ from results returned by orth because these two functions use different algorithms to compute an orthonormal basis. The Symbolic Math Toolbox orth function uses the classic Gram-Schmidt orthogonalization algorithm. The MATLAB orth function uses the modified Gram-Schmidt algorithm because the classic algorithm is numerically unstable.
• Using 'skipnormalization' to compute an orthogonal basis instead of an orthonormal basis can speed up your computations.

Algorithms

orth uses the classic Gram-Schmidt orthogonalization algorithm.
See Also
norm | null | orth | rank | svd

Introduced in R2013a
pade

Pade approximant

Syntax

pade(f, var)
pade(f, var, a)
pade(___, Name, Value)

Description

pade(f, var) returns the third-order Padé approximant of the expression f at var = 0.
For details, see “Padé Approximant” on page 4-928.

If you do not specify var, then pade uses the default variable determined by
symvar(f, 1).

pade(f, var, a) returns the third-order Padé approximant of expression f at the point
var = a.

pade(___, Name, Value) uses additional options specified by one or more Name, Value
pair arguments. You can specify Name, Value after the input arguments in any of the
previous syntaxes.

Examples

Find Padé Approximant for Symbolic Expressions

Find the Padé approximant of sin(x). By default, pade returns a third-order Padé
approximant.

syms x
pade(sin(x))
ans =
-((x*(7*x^2 - 60))/(3*(x^2 + 20)))

Specify Expansion Variable

If you do not specify the expansion variable, symvar selects it. Find the Padé approximant of \(\sin(x) + \cos(y) \). The symvar function chooses \(x \) as the expansion variable.

```matlab
syms x y
pade(sin(x) + cos(y))
```

ans =
\((-7*x^3 + 3*cos(y)*x^2 + 60*x + 60*cos(y))/(3*(x^2 + 20))\)

Specify the expansion variable as \(y \). The pade function returns the Padé approximant with respect to \(y \).

```matlab
pade(sin(x) + cos(y),y)
```

ans =
\((12*sin(x) + y^2*sin(x) - 5*y^2 + 12)/(y^2 + 12)\)

Approximate Value of Function at Particular Point

Find the value of \(\tan(3\pi/4) \). Use pade to find the Padé approximant for \(\tan(x) \) and substitute into it using subs to find \(\tan(3\pi/4) \).

```matlab
syms x
f = tan(x);
P = pade(f);
y = subs(P,x,3*pi/4)
```

\(y = (pi*((9*pi^2)/16 - 15))/(4*((9*pi^2)/8 - 5)) \)

Use vpa to convert \(y \) into a numeric value.

```matlab
vpa(y)
```

ans =
Increase Accuracy of Padé Approximant

You can increase the accuracy of the Padé approximant by increasing the order. If the expansion point is a pole or a zero, the accuracy can also be increased by setting OrderMode to relative. The OrderMode option has no effect if the expansion point is not a pole or zero.

Find the Padé approximant of \(\tan(x) \) using `pade` with an expansion point of 0 and Order of \([1 1]\). Find the value of \(\tan(1/5) \) by substituting into the Padé approximant using `subs`, and use `vpa` to convert \(1/5 \) into a numeric value.

```matlab
syms x
p11 = pade(tan(x),x,0,'Order',[1 1])
p11 = subs(p11,x,vpa(1/5))
```

Find the approximation error by subtracting `p11` from the actual value of \(\tan(1/5) \).

```matlab
y = tan(vpa(1/5));
error = y - p11
```

Increase the accuracy of the Padé approximant by increasing the order using `Order`. Set `Order` to \([2 2]\), and find the error.

```matlab
p22 = pade(tan(x),x,0,'Order',[2 2])
p22 = subs(p22,x,vpa(1/5));
error = y - p22
```

The accuracy increases with increasing order.
If the expansion point is a pole or zero, the accuracy of the Padé approximant decreases. Setting the OrderMode option to relative compensates for the decreased accuracy. For details, see “Padé Approximant” on page 4-928. Because the tan function has a zero at 0, setting OrderMode to relative increases accuracy. This option has no effect if the expansion point is not a pole or zero.

\[
p_{22Rel} = \text{pade}(\tan(x), x, 0, 'Order', [2 2], 'OrderMode', 'relative')
\]

\[
p_{22Rel} = \text{subs}(p_{22Rel}, x, \text{vpa}(1/5));
\]

\[
\text{error} = y - p_{22Rel}
\]

\[
p_{22Rel} = \frac{x(x^2 - 15)}{3(2x^2 - 5)}
\]

\[
\text{error} = 0.0000000084084014806113311713765317725998
\]

The accuracy increases if the expansion point is a pole or zero and OrderMode is set to relative.

Plot Accuracy of Padé Approximant

Plot the difference between exp(x) and its Padé approximants of orders [1,1] through [4,4]. Use axis to focus on the region of interest. The plot shows that accuracy increases with increasing order of the Padé approximant.

```
syms x
expr = exp(x);
hold on
grid on
for i = 1:4
    ezplot(expr - pade(expr,'Order',i))
end
axis([-4 4 -4 4])
legend('Order [1,1]','Order [2,2]','Order [3,3]','Order [4,4]',...
       'Location','Best');
title('Difference Between exp(x) and its Padé Approximant',...
     'interpreter','latex')
ylabel('Error')
```
Input Arguments

f — Input to approximate
symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input to approximate, specified as a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

var — Expansion variable
symbolic variable
Expansion variable, specified as a symbolic variable. If you do not specify `var`, then `pade` uses the default variable determined by `symvar(f,1)`.

a — Expansion point

| number | symbolic number | symbolic variable | symbolic function | symbolic expression |

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable. You can also specify the expansion point as a `Name,Value` pair argument. If you specify the expansion point both ways, then the `Name,Value` pair argument takes precedence.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside single quotes (`' '`). You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `pade(f,'Order',[2 2])` returns the Padé approximant of `f` of order `m = 2` and `n = 2`.

'ExpansionPoint' — Expansion point

| number | symbolic number | symbolic variable | symbolic function | symbolic expression |

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable. You can also specify the expansion point using the input argument `a`. If you specify the expansion point both ways, then the `Name,Value` pair argument takes precedence.

'Order' — Order of Padé approximant

| integer | vector of two integers | symbolic integer | symbolic vector of two integers |

Order of the Padé approximant, specified as an integer, a vector of two integers, or a symbolic integer, or vector of two integers. If you specify a single integer, then the integer specifies both the numerator order `m` and denominator order `n` producing a Padé approximant with `m = n`. If you specify a vector of two integers, then the first integer specifies `m` and the second integer specifies `n`. By default, `pade` returns a Padé approximant with `m = n = 3`.
'OrderMode' — Flag that selects absolute or relative order for Padé approximant

Flag that selects absolute or relative order for Padé approximant, specified as a string. The default value of absolute uses the standard definition of the Padé approximant. If you set OrderMode to relative, it only has an effect when there is a pole or a zero at the expansion point a. In this case, to increase accuracy, pade multiplies the numerator by $(\text{var} - a)^p$ where p is the multiplicity of the zero or pole at the expansion point. For details, see “Padé Approximant” on page 4-928.

More About

Padé Approximant

By default, pade approximates the function $f(x)$ using the standard form of the Padé approximant of order $[m, n]$ around $x = x_0$ which is

$$
\frac{a_0 + a_1(x - x_0) + ... + a_m (x - x_0)^m}{1 + b_1(x - x_0) + ... + b_n (x - x_0)^n}.
$$

When OrderMode is relative, and a pole or zero exists at the expansion point $x = x_0$, the pade function uses this form of the Padé approximant

$$
\frac{(x - x_0)^p \left(a_0 + a_1(x - x_0) + ... + a_m (x - x_0)^m \right)}{1 + b_1(x - x_0) + ... + b_n (x - x_0)^n}.
$$

The parameters p and a_0 are given by the leading order term $f = a_0 (x - x_0)^p + O((x - x_0)^{p+1})$ of the series expansion of f around $x = x_0$. Thus, p is the multiplicity of the pole or zero at x_0.

Tips

- If you use both the third argument a and ExpansionPoint to specify the expansion point, the value specified via ExpansionPoint prevails.
Algorithms

- The parameters a_1, \ldots, b_n are chosen such that the series expansion of the Padé approximant coincides with the series expansion of f to the maximal possible order.
- The expansion points $\pm \infty$ and $\pm i \infty$ are not allowed.
- When `pade` cannot find the Padé approximant, it returns the function call.
- For `pade` to return the Padé approximant, a Taylor or Laurent series expansion of f must exist at the expansion point.

See Also

`series | taylor`

Introduced in R2014b
partfrac

Partial fraction decomposition

Syntax

partfrac(expr,var)
partfrac(expr,var,Name,Value)

Description

partfrac(expr,var) finds the partial fraction decomposition of expr with respect to var. If you do not specify var, then partfrac uses the variable determined by symvar.

partfrac(expr,var,Name,Value) finds the partial fraction decomposition using additional options specified by one or more Name,Value pair arguments.

Examples

Partial Fraction Decomposition

Find partial fraction decomposition of univariate and multivariate expressions.

First, find partial fraction decomposition of univariate expressions. For expressions with one variable, you can omit specifying the variable.

```matlab
syms x
partfrac(x^2/((x^3 - 3*x + 2))
```

ans =
```
5/(9*(x - 1)) + 1/(3*(x - 1)^2) + 4/(9*(x + 2))
```

For some expressions, partfrac returns visibly simpler forms.

```matlab
partfrac((x^6 + 15*x^5 + 94*x^4 + 316*x^3 + 599*x^2 + 602*x + 247)/(x^6 + 14*x^5 + 80*x^4 + 238*x^3 + 387*x^2 + 324*x + 108))
```

ans =
Next, find partial fraction decomposition of a multivariate expression with respect to a particular variable.

```matlab
syms a b
partfrac(a^2/(a^2 - b^2), a)
partfrac(a^2/(a^2 - b^2), b)
```

```matlab
ans =
b/(2*(a - b)) - b/(2*(a + b)) + 1
```

```matlab
ans =
a/(2*(a + b)) + a/(2*(a - b))
```

If you do not specify the variable, then `partfrac` computes partial fraction decomposition with respect to a variable determined by `symvar`.

```matlab
symvar(a^2/(a^2 - b^2), 1)
partfrac(a^2/(a^2 - b^2))
```

```matlab
ans =
b
```

```matlab
ans =
a/(2*(a + b)) + a/(2*(a - b))
```

Factorization Modes

Use the `FactorMode` argument to choose a particular factorization mode.

Find the partial fraction decomposition without specifying the factorization mode. By default, `partfrac` uses factorization over rational numbers. In this mode, `partfrac` keeps numbers in their exact symbolic form.

```matlab
syms x
partfrac(1/(x^3 + 2), x)
```

```matlab
ans =
1/(x^3 + 2)
```

Find the partial fraction decomposition of the same expression, but this time use numeric factorization over real numbers. In this mode, `partfrac` factors the denominator into linear and quadratic irreducible polynomials with real coefficients. This mode converts all numeric values to floating-point numbers.
partfrac(1/(x^3 + 2), x, 'FactorMode', 'real')

ans =
0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) -...
(0.2099868416491455274612017678797*x - 0.52913368398939982491723521309077)/(x^2 -...
1.2599210498948731647672106072782*x + 1.5874010519681994747517056392723)

Find the partial fraction decomposition of this expression using factorization over
complex numbers. In this mode, partfrac reduces quadratic polynomials in the
denominator to linear expressions with complex coefficients. This mode converts all
numeric values to floating-point numbers.

partfrac(1/(x^3 + 2), x, 'FactorMode', 'complex')

ans =
(- 0.10499342082457276373060088393985 + 0.18185393932862023392667876903163i)/(x -...
0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i) +...
0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) +...
(- 0.10499342082457276373060088393985 - 0.18185393932862023392667876903163i)/(x -...
0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i)

Find the partial fraction decomposition of this expression using the full factorization
mode. In this mode, partfrac factors the denominator into linear expressions, reducing
quadratic polynomials to linear expressions with complex coefficients. This mode keeps
numbers in their exact symbolic form.

partfrac(1/(x^3 + 2), x, 'FactorMode', 'full')

ans =
2^(1/3)/(6*(x + 2^(1/3))) +...
(2^(1/3)*((3^(1/2)*1i)/2 - 1/2))/(6*(x + 2^(1/3)*((3^(1/2)*1i)/2 - 1/2))) -...
(2^(1/3)*((3^(1/2)*1i)/2 + 1/2))/(6*(x - 2^(1/3)*((3^(1/2)*1i)/2 + 1/2)))

Approximate the result with floating-point numbers by using vpa. Because the
expression does not contain any symbolic parameters besides the variable x, the result is
the same as in complex factorization mode.

vpa(ans)

ans =
(- 0.10499342082457276373060088393985 + 0.18185393932862023392667876903163i)/(x -...
0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i) +...
0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) +...
(- 0.10499342082457276373060088393985 - 0.18185393932862023392667876903163i)/(x -...
0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i)
Replace 2 in the same expression with a symbolic parameter `a` and find partial fraction decomposition in the complex and full factorization modes. In the complex mode, `partfrac` factors only those expressions in the denominator whose coefficients can be converted to floating-point numbers. Thus, it returns this expression unchanged.

```matlab
syms a
partfrac(1/(x^3 + a), x, 'FactorMode', 'complex')
```

```matlab
ans =
1/(x^3 + a)
```

When you use the full factorization mode, `partfrac` factors expressions in the denominator symbolically. Thus, the partial fraction decomposition of the same expression in the full factorization mode is the following expression.

```matlab
partfrac(1/(x^3 + a), x, 'FactorMode', 'full')
```

```matlab
ans =
1/(3*(-a)^(2/3)*(x - (-a)^(1/3))) -
((3^(1/2)*1i)/2 + 1/2)/(3*(-a)^(2/3)*(x + (-a)^(1/3)*((3^(1/2)*1i)/2 + 1/2))) +
((3^(1/2)*1i)/2 - 1/2)/(3*(-a)^(2/3)*(x - (-a)^(1/3)*((3^(1/2)*1i)/2 - 1/2)))
```

Full Factorization Mode

In the full factorization mode, `partfrac` can also return partial fraction decomposition as a symbolic sum of polynomial roots expressed as `RootOf`.

Find the partial fraction decomposition of this expression.

```matlab
syms x
s = partfrac(1/(x^3 + x - 3), x, 'FactorMode', 'full')
```

```matlab
s =
symsum(-((6*root(z^3 + z - 3, z, k)^2)/247 +
(27*root(z^3 + z - 3, z, k))/247 +
4/247)/(root(z^3 + z - 3, z, k) - x), k, 1, 3)
```

Approximate the result with floating-point numbers by using `vpa`.

```matlab
vpa(s)
```

```matlab
ans =
(- 0.0923002471144627399092288600864302 + 0.11581130283490645120989658654914i)/(x +
0.6067058313811481706606568869074 - 1.450612249188441526515442203395i) +...
```
Functions — Alphabetical List

Find a vector of numerators and a vector of denominators of the partial fraction decomposition.

Find the partial fraction decomposition of this expression.

```matlab
syms x
P = partfrac(x^2/(x^3 - 3*x + 2), x)
P =
5/(9*(x - 1)) + 1/(3*(x - 1)^2) + 4/(9*(x + 2))
```

Partial fraction decomposition is a sum of fractions. Use the `children` function to return a vector containing the terms of that sum. then use `numden` to extract numerators and denominators of the terms.

```matlab
[N,D] = numden(children(P))
N =
[ 5, 1, 4]
D =
[ 9*x - 9, 3*(x - 1)^2, 9*x + 18]
```

Reconstruct the partial fraction decomposition from the vectors of numerators and denominators.

```matlab
P1 = sum(N./D)
P1 =
1/(3*(x - 1)^2) + 5/(9*x - 9) + 4/(9*x + 18)
```

Verify that the reconstructed expression, `P1`, is equivalent to the original partial fraction decomposition, `P`.

```matlab
isAlways(P1 == P)
ans =
  1
```
Input Arguments

expr — Rational expression
symbolic expression | symbolic function

Rational expression, specified as a symbolic expression or function.

var — Variable of interest
symbolic variable

Variable of interest, specified as a symbolic variable.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes ('). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: partfrac(1/(x^3 - 2),x,'FactorMode','real')

'FactorMode' — Factorization mode
'rational' (default) | 'real' | 'complex' | 'full'

Factorization mode, specified as the comma-separated pair consisting of 'FactorMode' and one of these strings.

<table>
<thead>
<tr>
<th>'rational'</th>
<th>Factorization over rational numbers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'real'</td>
<td>Factorization over real numbers. A real numeric factorization is a factorization into linear and quadratic irreducible polynomials with real coefficients. This factorization mode requires the coefficients of the input to be convertible to real floating-point numbers. All other inputs (for example, those inputs containing symbolic or complex coefficients) are treated as irreducible.</td>
</tr>
<tr>
<td>'complex'</td>
<td>Factorization over complex numbers. A complex numeric factorization is a factorization into linear factors whose coefficients are floating-point numbers. Such factorization is only available if the coefficients of the input are convertible to floating-point numbers, that is, if the roots can be determined numerically. Symbolic inputs are treated as irreducible.</td>
</tr>
</tbody>
</table>


```
'full'
Full factorization. A full factorization is a symbolic factorization into linear factors. The result shows these factors using radicals or as a `symsum` ranging over a `RootOf`.
```

More About

Partial Fraction Decomposition

Partial fraction decomposition of a rational expression

\[
f(x) = g(x) + \frac{p(x)}{q(x)},
\]

where the denominator can be written as \(q(x) = q_1(x)q_2(x) \ldots\), is an expression of the form

\[
f(x) = g(x) + \sum_j \frac{p_j(x)}{q_j(x)}
\]

Here, the denominators \(q_j(x)\) are irreducible polynomials or powers of irreducible polynomials. Also, the numerators \(p_j(x)\) are polynomials of smaller degrees than the corresponding denominators \(q_j(x)\).

Partial fraction decomposition can simplify integration by integrating each term of the returned expression separately.

See Also

- `children`
- `coeffs`
- `collect`
- `combine`
- `compose`
- `divisors`
- `expand`
- `factor`
- `horner`
- `numden`
- `rewrite`
- `simplify`
- `simplifyFraction`

Introduced in R2015a
pinv
Moore-Penrose inverse (pseudoinverse) of symbolic matrix

Syntax

\[X = \text{pinv}(A) \]

Description

\(X = \text{pinv}(A) \) returns the pseudoinverse of \(A \). Pseudoinverse is also called the Moore-Penrose inverse.

Input Arguments

\(A \)
Symbolic \(m \)-by-\(n \) matrix.

Output Arguments

\(X \)
Symbolic \(n \)-by-\(m \) matrix, such that \(A*X*A = A \) and \(X*A*X = X \).

Examples

Compute the pseudoinverse of this matrix. Because these numbers are not symbolic objects, you get floating-point results.

\[A = [1 \ 1i \ 3; \ 1 \ 3 \ 2]; \]
\[X = \text{pinv}(A) \]
\[X = \]
\[0.0729 + 0.0312i \quad 0.0417 - 0.0312i \]
-0.2187 - 0.0521i 0.3125 + 0.0729i \\
0.2917 + 0.0625i 0.0104 - 0.0937i \\

Now, convert this matrix to a symbolic object, and compute the pseudoinverse.

A = sym([1 1i 3; 1 3 2]); \\
X = pinv(A) \\

X =
[7/96 + 1i/32, 1/24 - 1i/32] \\
[- 7/32 - 5i/96, 5/16 + 7i/96] \\
[7/24 + 1i/16, 1/96 - 3i/32] \\

Check that A*X*A = A and X*A*X = X.

isAlways(A*X*A == A) \\
ans =
1 1 1 \\
1 1 1 \\

isAlways(X*A*X == X) \\
ans =
1 1 \\
1 1
1 1

Now, verify that A*X and X*A are Hermitian matrices.

isAlways(A*X == (A*X)') \\
ans =
1 1 \\
1 1

isAlways(X*A == (X*A)') \\
ans =
1 1 1 \\
1 1 1
1 1 1

Compute the pseudoinverse of this matrix.

syms a \\
A = [1 a; -a 1];
Now, compute the pseudoinverse of A assuming that a is real.

```matlab
assume(a,'real')
A = [1 a; -a 1]
X = pinv(A)
```

```plaintext
X =
[ 1/(a^2 + 1), -a/(a^2 + 1)]
[ a/(a^2 + 1),  1/(a^2 + 1)]
```

For further computations, remove the assumption.

```matlab
syms a clear
```

More About

Moore-Penrose Pseudoinverse

The pseudoinverse of an m-by-n matrix A is an n-by-m matrix X, such that $A*X*A = A$ and $X*A*X = X$. The matrices $A*X$ and $X*A$ must be Hermitian.

Tips

- Calling `pinv` for numeric arguments that are not symbolic objects invokes the MATLAB `pinv` function.
- For an invertible matrix A, the Moore-Penrose inverse X of A coincides with the inverse of A.

See Also

`inv` | `linalg::pseudoInverse` | `pinv` | `rank` | `svd`
Introduced in R2013a
plus, +

Symbolic addition

Syntax

\[A + B \]
\[\text{plus}(A,B) \]

Description

A + B adds A and B.

\text{plus}(A,B) \text{ is equivalent to } A + B.

Examples

Add Scalar to Array

\text{plus} \text{ adds x to each element of the array.}

\text{syms} x
\text{A} = [x \sin(x) 3];
\text{A + x}
\text{ans} =
\begin{bmatrix}
 2x \\
 x + \sin(x) \\
 x + 3
\end{bmatrix}

Add Two Matrices

Add the identity matrix to matrix M.

\text{syms} x
\text{M} = [x x^2; \text{Inf} 0];
\text{M + eye(2)}
\text{ans} =
Alternatively, use \texttt{plus(M,eye(2))}.

\begin{verbatim}
plus(M,eye(2))
ans =
[x + 1, x^2]
[Inf, 1]
\end{verbatim}

Add Symbolic Functions

\begin{verbatim}
syms f(x) g(x)
f(x) = x^2 + 5*x + 6;
g(x) = 3*x - 2;
h = f + g
h(x) = x^2 + 8*x + 4
\end{verbatim}

Add Expression to Symbolic Function

Add expression \texttt{expr} to function \texttt{f}.

\begin{verbatim}
syms f(x)
f(x) = x^2 + 3*x + 2;
expr = x^2 - 2;
f(x) = f(x) + expr
f(x) =
2*x^2 + 3*x
\end{verbatim}

Input Arguments

\texttt{A — Input}

symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
| symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression.
Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression.

More About

Tips

- All nonscalar arguments must be the same size. If one input argument is nonscalar, then `plus` expands the scalar into an array of the same size as the nonscalar argument, with all elements equal to the scalar.

See Also

`ctranspose` | `ldivide` | `minus` | `mldivide` | `mpower` | `mrdivide` | `mtimes` | `power` | `rdivide` | `times` | `transpose`
pochhammer
Pochhammer symbol

Syntax
pochhammer(x,n)

Description
pochhammer(x,n) returns the “Pochhammer Symbol” on page 4-948 (x)_n.

Examples

Find Pochhammer Symbol for Numeric and Symbolic Inputs

Find the Pochhammer symbol for the numeric inputs x = 3 at n = 2.

pochhammer(3,2)
ans =
 12

Find the Pochhammer symbol for the symbolic input x at n = 3. The pochhammer function does not automatically return the expanded form of the expression. Use expand to force pochhammer to return the form of the expanded expression.

syms x
P = pochhammer(x, 3)
P = expand(P)

P =
pochhammer(x, 3)
P =
x^3 + 3*x^2 + 2*x

Rewrite and Factor Outputs of Pochhammer

If conditions are satisfied, expand rewrites the solution using gamma.
syms n x
assume(x>0)
assume(n>0)
P = pochhammer(x, n);
P = expand(P)

P =
gamma(n + x)/gamma(x)

Clear assumptions on n and x to use them in further computations.
syms n x clear

To convert expanded output of pochhammer into its factors, use factor.
P = expand(pochhammer(x, 4));
P = factor(P)
P =
[x, x + 3, x + 2, x + 1]

Differentiate Pochhammer Symbol

Differentiate pochhammer once with respect to x.
syms n x
diff(pochhammer(x,n),x)

ans =
pochhammer(x, n)*(psi(n + x) - psi(x))

Differentiate pochhammer twice with respect to n.
diff(pochhammer(x,n),n,2)

ans =
pochhammer(x, n)*psi(n + x)^2 + pochhammer(x, n)*psi(1, n + x)

Taylor Series Expansion of Pochhammer Symbol

Use taylor to find the Taylor series expansion of pochhammer with n = 3 around the expansion point x = 2.
syms x
taylor(pochhammer(x,3),x,2)

ans =
26*x + 9*(x - 2)^2 + (x - 2)^3 - 28

Plot Pochhammer Symbol

Plot the Pochhammer symbol from \(n = 0 \) to \(n = 4 \) for \(x \). Use `axis` to display the region of interest.

```python
syms x
hold on
for n = 0:4
    ezplot(pochhammer(x,n))
end
axis([-4 4 -4 4])
grid on
legend('n = 0','n = 1','n = 2','n = 3','n = 4','Location','Best')
title('Pochhammer symbol \((x)_n\) for n=0 to n=4')
```
Input Arguments

\(x \) — Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.
\textbf{n — Input}

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

\section*{More About}

\textbf{Pochhammer Symbol}

Pochhammer’s symbol is defined as

\[(x)_n = \frac{\Gamma(x + n)}{\Gamma(x)},\]

where \(\Gamma\) is the Gamma function.

If \(n\) is a positive integer, Pochhammer’s symbol is

\[(x)_n = x(x+1)\ldots(x+n-1)\]

\section*{Algorithms}

- If \(x\) and \(n\) are numerical values, then an explicit numerical result is returned. Otherwise, a symbolic function call is returned.
- If both \(x\) and \(x + n\) are nonpositive integers, then

\[(x)_n = (-1)^n \frac{\Gamma(1-x)}{\Gamma(1-x-n)}.

- The following special cases are implemented.
\[(x)_0 = 1\]
\[(x)_1 = x\]
\[(x)_{-1} = \frac{1}{x - 1}\]
\[(1)_n = \Gamma(n + 1)\]
\[(2)_n = \Gamma(n + 2)\]

• If \(n\) is a positive integer, then \(\text{expand} (\text{pochhammer}(x, n))\) returns the expanded polynomial \(x(x + 1)...(x + n - 1)\).

• If \(n\) is not an integer, then \(\text{expand} (\text{pochhammer}(x, n))\) returns a representation in terms of \(\Gamma\).

See Also

factorial | gamma

Introduced in R2014b
poles

Poles of expression or function

Syntax

```matlab
poles(f,var)
P = poles(f,var)
[P,N] = poles(f,var)
[P,N,R] = poles(f,var)
poles(f,var,a,b)
P = poles(f,var,a,b)
[P,N] = poles(f,var,a,b)
[P,N,R] = poles(f,var,a,b)
```

Description

`poles(f,var)` finds nonremovable singularities of `f`. These singularities are called the poles of `f`. Here, `f` is a function of the variable `var`.

`P = poles(f,var)` finds the poles of `f` and assigns them to vector `P`.

`[P,N] = poles(f,var)` finds the poles of `f` and their orders. This syntax assigns the poles to vector `P` and their orders to vector `N`.

`[P,N,R] = poles(f,var)` finds the poles of `f` and their orders and residues. This syntax assigns the poles to vector `P`, their orders to vector `N`, and their residues to vector `R`.

`poles(f,var,a,b)` finds the poles in the interval `(a,b)`.

`P = poles(f,var,a,b)` finds the poles of `f` in the interval `(a,b)` and assigns them to vector `P`.

`[P,N] = poles(f,var,a,b)` finds the poles of `f` in the interval `(a,b)` and their orders. This syntax assigns the poles to vector `P` and their orders to vector `N`.
[P,N,R] = poles(f,var,a,b) finds the poles of f in the interval (a,b) and their orders and residues. This syntax assigns the poles to vector P, their orders to vector N, and their residues to vector R.

Input Arguments

f

Symbolic expression or function.

var

Symbolic variable.

Default: Variable determined by symvar.

a,b

Real numbers (including infinities) that specify the search interval for function poles.

Default: Entire complex plane.

Output Arguments

P

Symbolic vector containing the values of poles.

N

Symbolic vector containing the orders of poles.

R

Symbolic vector containing the residues of poles.

Examples

Find the poles of these expressions:
Find the poles of this expression. If you do not specify a variable, `poles` uses the default variable determined by `symvar`:

```
syms x a
poles(1/((x - 1)*(a - 2)))
```

```
ans =
1
```

To find the poles of this expression as a function of variable `a`, specify `a` as the second argument:

```
syms x a
poles(1/((x - 1)*(a - 2)), a)
```

```
ans =
2
```

Find the poles of the tangent function in the interval `(-pi, pi)`:
```
syms x
poles(tan(x), x, -pi, pi)
```

```
ans =
-pi/2
 pi/2
```

The tangent function has an infinite number of poles. If you do not specify the interval, `poles` cannot find all of them. It issues a warning and returns an empty symbolic object:

```
syms x
poles(tan(x))
```

```
Warning: Cannot determine the poles.
```
ans =
Empty sym: 0-by-1

If poles can prove that the expression or function does not have any poles in the specified interval, it returns an empty symbolic object without issuing a warning:

```matlab
syms x
poles(tan(x), x, -1, 1)
```

ans =
Empty sym: 0-by-1

Use two output vectors to find the poles of this expression and their orders. Restrict the search interval to (-pi, 10*pi):

```matlab
syms x
[Poles, Orders] = poles(tan(x)/(x - 1)^3, x, -pi, pi)
```

Poles =
-\pi/2
\pi/2
1

Orders =
1
1
3

Use three output vectors to find the poles of this expression and their orders and residues:

```matlab
syms x a
[Poles, Orders, Residues] = poles(a/x^2/(x - 1), x)
```

Poles =
1
0

Orders =
1
2

Residues =
a
-a
More About

Tips

• If `poles` cannot find all nonremovable singularities and cannot prove that they do not exist, it issues a warning and returns an empty symbolic object.

• If `poles` can prove that f has no poles (either in the specified interval (a, b) or in the complex plane), it returns an empty symbolic object without issuing a warning.

• a and b must be real numbers or infinities. If you provide complex numbers, `poles` uses an empty interval and returns an empty symbolic object.

See Also
`limit` | `solve` | `symvar` | `vpasolve`

Introduced in R2012b
poly2sym

Create symbolic polynomial from vector of coefficients

Compatibility

poly2sym will not accept character strings as a second input argument in a future release. Instead, create symbolic variables with syms.

Syntax

p = poly2sym(c)
p = poly2sym(c,var)

Description

p = poly2sym(c) creates the symbolic polynomial expression p from the vector of coefficients c. The polynomial variable is x. If c = [c1,c2,...,cn], then p = poly2sym(c) returns $c_1x^{n-1} + c_2x^{n-2} + ... + c_n$.

This syntax does not create the symbolic variable x in the MATLAB Workspace.

p = poly2sym(c,var) uses var as a polynomial variable when creating the symbolic polynomial expression p from the vector of coefficients c.

Examples

Create Polynomial Expression

Create a polynomial expression from a symbolic vector of coefficients. If you do not specify a polynomial variable, poly2sym uses x.

syms a b c d
\[
p = \text{poly2sym}([a, b, c, d])
\]
\[
p = a \times x^3 + b \times x^2 + c \times x + d
\]
Create a polynomial expression from a symbolic vector of rational coefficients.

\[
p = \text{poly2sym}(\text{sym}([1/2, -1/3, 1/4]))
\]
\[
p = x^2/2 - x/3 + 1/4
\]
Create a polynomial expression from a numeric vector of floating-point coefficients. The toolbox converts floating-point coefficients to rational numbers before creating a polynomial expression.

\[
p = \text{poly2sym}([0.75, -0.5, 0.25])
\]
\[
p = (3\times x^2)/4 - x/2 + 1/4
\]

Specify Polynomial Variable

Create a polynomial expression from a symbolic vector of coefficients. Use \(t \) as a polynomial variable.

\[
syms a \ b \ c \ d \ t
p = \text{poly2sym}([a, b, c, d], t)
\]
\[
p = a \times t^3 + b \times t^2 + c \times t + d
\]
To use a symbolic expression, such as \(t^2 + 1 \) or \(\exp(t) \), instead of a polynomial variable, substitute the variable using \text{subs}.

\[
p1 = \text{subs}(p, t, t^2 + 1)
p2 = \text{subs}(p, t, \exp(t))
\]
\[
p1 = d + a \times (t^2 + 1)^3 + b \times (t^2 + 1)^2 + c \times (t^2 + 1)
p2 = d + c \times \exp(t) + a \times \exp(3\times t) + b \times \exp(2\times t)
\]
Input Arguments

c — Polynomial coefficients
nenumeric vector | symbolic vector

Polynomial coefficients, specified as a numeric or symbolic vector. Argument c can be a
column or row vector.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

p — Polynomial
symbolic expression

Polynomial, returned as a symbolic expression.

More About

Tips

• When you call poly2sym for a numeric vector c, the toolbox converts the numeric
 vector to a vector of symbolic numbers using the default (rational) conversion mode of
 sym.

See Also

coeffs | sym | sym2poly

Introduced before R2006a
polylog
Polylogarithm

Syntax
polylog(n,x)

Description
polylog(n,x) returns the polylogarithm of the order n and the argument x.

Examples
Polylogarithm for Numeric and Symbolic Arguments
Depending on its arguments, polylog returns floating-point or exact symbolic results.

Compute polylogarithms for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

A = [polylog(3,-1/2), polylog(4,1/3), polylog(5,3/4)]
A =
 -0.4726 0.3408 0.7697

Compute polylogarithms for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, polylog returns unresolved symbolic calls.

symA = [polylog(3,sym(-1/2)), polylog(sym(4),1/3), polylog(5,sym(3/4))]
symA =
 [polylog(3, -1/2), polylog(4, 1/3), polylog(5, 3/4)]

Use vpa to approximate symbolic results with the required number of digits.

vpa(symA)
Explicit Expressions for Polylogarithms

If the order of the polylogarithm is 0, 1, or a negative integer, then polylog returns an explicit expression.

The polylogarithm of \(n = 1 \) is a logarithm function.

```plaintext
syms x
polylog(1,x)
```

\[
\text{ans} = \ -\log(1-x)
\]

The polylogarithms of \(n < 1 \) are rational expressions.

```plaintext
polylog(0,x)
```

\[
\text{ans} = \ -\frac{x}{x-1}
\]

```plaintext
polylog(-1,x)
```

\[
\text{ans} = \ \frac{x}{(x-1)^2}
\]

```plaintext
polylog(-2,x)
```

\[
\text{ans} = \ -\frac{(x^2+x)}{(x-1)^3}
\]

```plaintext
polylog(-3,x)
```

\[
\text{ans} = \ \frac{(x^3 + 4x^2 + x)}{(x-1)^4}
\]

```plaintext
polylog(-10,x)
```

\[
\text{ans} = \ -\frac{(x^{10} + 1013x^9 + 47840x^8 + 455192x^7 + \ldots}{1310354x^6 + 1310354x^5 + 455192x^4 + \ldots}
\]
More Special Values

The polylog function has special values for some parameters.

If the second argument is 0, then the polylogarithm equals 0 for any integer value of the first argument. If the second argument is 1, then the polylogarithm is the Riemann zeta function of the first argument.

\[
\text{syms } n \\
[polylog(n,0), polylog(n,1)]
\]

\[
\text{ans} = \\
[0, \zeta(n)]
\]

If the second argument is -1, then the polylogarithm has a special value for any integer value of the first argument except 1.

\[
\text{assume}(n ~= 1) \\
\text{polylog}(n,-1)
\]

\[
\text{ans} = \\
\zeta(n)*(2^(1 - n) - 1)
\]

For further computations, clear the assumption.

\[
\text{syms } n \text{ clear}
\]

Other special values of the polylogarithm include the following.

\[
[polylog(4,sym(1)), polylog(sym(5),-1), polylog(2,sym(i))]
\]

\[
\text{ans} = \\
[\pi^4/90, -(15*\zeta(5))/16, \text{catalan}*\text{i} - \pi^2/48]
\]

Plot Polylogarithm

Plot the polylogarithms of the orders from -3 to 1.

\[
\text{syms } x \\
\text{for } n = -3:1 \\
\quad \text{ezplot}(polylog(n,x),[-5 1]) \\
\text{hold on}
\]
Handle Expressions Containing Polylogarithms

Many functions, such as `diff` and `int`, can handle expressions containing `polylog`.

Differentiate these expressions containing polylogarithms.

```matlab
syms n x
diff(polylog(n, x), x)
diff(x*polylog(n, x), x)
```


ans =
polylog(n - 1, x)/x

ans =
polylog(n, x) + polylog(n - 1, x)

Compute integrals of these expressions containing polylogarithms.

int(polylog(n, x)/x, x)
int(polylog(n, x) + polylog(n - 1, x), x)

ans =
polylog(n + 1, x)

ans =
x*polylog(n, x)

Input Arguments

n — Index of polylogarithm
integer

Index of the polylogarithm, specified as an integer.

x — Argument of polylogarithm
number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Argument of the polylogarithm, specified as a number, symbolic variable, expression,
function, vector, or matrix.

More About

Polylogarithm

For a complex number \(z \) of modulus \(|z| < 1 \), the polylogarithm of order \(n \) is defined as follows.

\[
\text{Li}_n(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n}
\]
This function is extended to the whole complex plane by analytic continuation, with a branch cut along the real interval \([1, \infty)\) for \(n \geq 1\).

Tips

- \(\text{polylog}(2, x)\) is equivalent to \(\text{dilog}(1 - x)\).
- The logarithmic integral function (the integral logarithm) uses the same notation, \(\text{Li}(x)\), but without an index. The toolbox provides the \text{logint} function for the integral logarithm.

See Also

dilog | log | log10 | log2 | logint | zeta

Introduced in R2014b
potential
Potential of vector field

Syntax
potential(V,X)
potential(V,X,Y)

Description
potential(V,X) computes the potential of the vector field V with respect to the vector X in Cartesian coordinates. The vector field V must be a gradient field.

potential(V,X,Y) computes the potential of vector field V with respect to X using Y as base point for the integration.

Input Arguments

V
Vector of symbolic expressions or functions.

X
Vector of symbolic variables with respect to which you compute the potential.

Y
Vector of symbolic variables, expressions, or numbers that you want to use as a base point for the integration. If you use this argument, potential returns P(X) such that P(Y) = 0. Otherwise, the potential is only defined up to some additive constant.

Examples

Compute the potential of this vector field with respect to the vector [x, y, z]:

4-964
syms x y z
P = potential([x, y, z*exp(z)], [x y z])

\[P = \frac{x^2}{2} + \frac{y^2}{2} + \exp(z)(z - 1) \]

Use the `gradient` function to verify the result:

\[
\text{simplify}(\text{gradient}(P, [x y z]))
\]

\[\text{ans} = x \quad y \quad z*\exp(z) \]

Compute the potential of this vector field specifying the integration base point as \([0 \ 0 \ 0]\):

syms x y z
P = potential([x, y, z*exp(z)], [x y z], [0 0 0])

\[P = \frac{x^2}{2} + \frac{y^2}{2} + \exp(z)(z - 1) + 1 \]

Verify that \(P([0 \ 0 \ 0]) = 0\):

\[
\text{subs}(P, [x y z], [0 0 0])
\]

\[\text{ans} = 0 \]

If a vector field is not gradient, `potential` returns `NaN`:

\[
\text{potential}([x*y, y], [x y])
\]

\[\text{ans} = \text{NaN} \]

More About

Scalar Potential of Gradient Vector Field

The potential of a gradient vector field \(V(X) = [v_1(x_1,x_2,...), v_2(x_1,x_2,...),...]\) is the scalar \(P(X)\) such that \(V(X) = \nabla P(X)\).
The vector field is gradient if and only if the corresponding Jacobian is symmetrical:

\[
\left(\frac{\partial v_i}{\partial x_j} \right) = \left(\frac{\partial v_j}{\partial x_i} \right)
\]

The **potential** function represents the potential in its integral form:

\[
P(X) = \int_{0}^{1} (X-Y) \cdot V(Y + \lambda (X-Y)) \, d\lambda
\]

Tips

- If **potential** cannot verify that \(V \) is a gradient field, it returns NaN.
- Returning NaN does not prove that \(V \) is not a gradient field. For performance reasons, **potential** sometimes does not sufficiently simplify partial derivatives, and therefore, it cannot verify that the field is gradient.
- If \(Y \) is a scalar, then **potential** expands it into a vector of the same length as \(X \) with all elements equal to \(Y \).

See Also

curl | diff | divergence | gradient | hessian | jacobian | laplacian | vectorPotential

Introduced in R2012a
power, .^
Symbolic array power

Syntax

A.^B
power(A,B)

Description

A.^B computes A to the B power and is an elementwise operation.
power(A,B) is equivalent to A.^B.

Examples

Square Each Matrix Element
Create a 2-by-3 matrix.

A = sym('a', [2 3])
A =
[a1_1, a1_2, a1_3]
[a2_1, a2_2, a2_3]
Square each element of the matrix.

A.^2
ans =
[a1_1^2, a1_2^2, a1_3^2]
[a2_1^2, a2_2^2, a2_3^2]

Use Matrices for Base and Exponent
Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.
$$H = \text{sym(hilb}(3))$$
$$d = \text{diag}(\text{sym}([1 \ 2 \ 3]))$$

$$H =$$
$$\begin{bmatrix}
1, & 1/2, & 1/3 \\
1/2, & 1/3, & 1/4 \\
1/3, & 1/4, & 1/5
\end{bmatrix}$$

$$d =$$
$$\begin{bmatrix}
1, & 0, & 0 \\
0, & 2, & 0 \\
0, & 0, & 3
\end{bmatrix}$$

Raise the elements of the Hilbert matrix to the powers of the diagonal matrix. The base and the exponent must be matrices of the same size.

$$H.^d$$

$$\text{ans} =$$
$$\begin{bmatrix}
1, & 1, & 1 \\
1, & 1/9, & 1 \\
1, & 1/125 \\
1, & 1/125
\end{bmatrix}$$

Input Arguments

A — Input

number | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

B — Input

number | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.
See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus |
| rdivide | times | transpose

Introduced before R2006a
pretty

Prettyprint symbolic expressions

Syntax

pretty(X)

Description

pretty(X) prints symbolic output of X in a format that resembles typeset mathematics.

Examples

The following statements:

A = sym(pascal(2))
B = eig(A)
pretty(B)

return:

A =
[1, 1]
[1, 2]

B =

3/2 - 5^(1/2)/2
5^(1/2)/2 + 3/2

/ 3 sqrt(5) \
| - - ------ | 2 2
| 2 2 |
| sqrt(5) 3 |
| ------- + - |
\ 2 2 /
Solve this equation, and then use `pretty` to represent the solutions in the format similar to typeset mathematics:

```matlab
syms x
s = solve(x^4 + 2*x + 1, x,'MaxDegree',3);
pretty(s)
```

For better readability, `pretty` uses abbreviations when representing long expressions:

```
\[
\begin{array}{c}
-1 \\
\begin{array}{c}
\frac{2}{9^{2/3}} - \frac{1}{3} + \\
\frac{1}{9^{2/3}} - \frac{1}{3} + \\
\frac{1}{9^{2/3}} - \frac{1}{3} + \\
\frac{1}{9^{2/3}} - \frac{1}{3} + \\
\end{array}
\end{array}
\]
```

where

```
\[
\begin{array}{c}
\frac{\sqrt{3}}{2} + \frac{\sqrt{11} \sqrt{27}}{27} - \frac{17}{27}^{1/3}
\end{array}
\]
```

`#1 == \frac{1}{2}`

`#2 == \frac{\sqrt{3}}{2} + \frac{\sqrt{11} \sqrt{27}}{27} - \frac{17}{27}^{1/3}`

Introduced before R2006a
psi

Digamma function

Syntax

\(\psi(x) \)
\(\psi(k,x) \)

Description

\(\psi(x) \) computes the digamma function of \(x \).

\(\psi(k,x) \) computes the polygamma function of \(x \), which is the \(k \)th derivative of the digamma function at \(x \).

Input Arguments

\(x \)
Symbolic number, variable, expression, or a vector, matrix, or multidimensional array of these.

\(k \)
Nonnegative integer or vector, matrix or multidimensional array of nonnegative integers. If \(x \) is nonscalar and \(k \) is scalar, then \(k \) is expanded into a nonscalar of the same dimensions as \(x \) with each element being equal to \(k \). If both \(x \) and \(k \) are nonscalars, they must have the same dimensions.

Examples

Compute the digamma and polygamma functions for these numbers. Because these numbers are not symbolic objects, you get the floating-point results.

\[
[\psi(1/2) \ \psi(2, 1/2) \ \psi(1.34) \ \psi(1, \sin(pi/3))]\]
ans =
 -1.9635 -16.8288 -0.1248 2.0372

Compute the digamma and polygamma functions for the numbers converted to symbolic objects.

[psi(sym(1/2)), psi(1, sym(1/2)), psi(sym(1/4))]

ans =
 [- eulergamma - 2*log(2), pi^2/2, - eulergamma - pi/2 - 3*log(2)]

For some symbolic (exact) numbers, psi returns unresolved symbolic calls.

psi(sym(sqrt(2)))

ans =
 psi(2^(1/2))

Compute the derivatives of these expressions containing the digamma and polygamma functions.

syms x
diff(psi(1, x^3 + 1), x)

ans =
 3*x^2*psi(2, x^3 + 1)

diff(psi(sin(x)), x)

ans =
 cos(x)*psi(1, sin(x))

Expand the expressions containing the digamma functions.

syms x
expand(psi(2*x + 3))

ans =
 psi(x + 1/2)/2 + log(2) + psi(x)/2 +...
 1/(2*x + 1) + 1/(2*x + 2) + 1/(2*x)

expand(psi(x + 2)*psi(x))

ans =
 psi(x)/x + psi(x)^2 + psi(x)/(x + 1)

Compute the limits for expressions containing the digamma and polygamma functions.

syms x
limit(x*psi(x), x, 0)
limit(psi(3, x), x, inf)

ans =
-1

ans =
0

Compute the digamma function for elements of matrix \(M \) and vector \(V \).

\[
M = \text{sym}([0 \ inf; 1/3 1/2]);
V = \text{sym}([1, inf]);
psi(M)
\]

\[
\text{psi}(V)
\]

\[
\begin{bmatrix}
\infty & \infty \\
-\text{eulergamma} - (3\log(3))/2 - (\pi^3(1/2))/6 & -\text{eulergamma} - 2\log(2)
\end{bmatrix}
\]

\[
\begin{bmatrix}
-\text{eulergamma} & \infty
\end{bmatrix}
\]

Compute the polygamma function for elements of matrix \(M \) and vector \(V \). The \(\text{psi} \) function acts elementwise on nonscalar inputs.

\[
M = \text{sym}([0 \ inf; 1/3 1/2]);
polyGammaM = [1 3; 2 2];
V = \text{sym}([1, inf]);
polyGammaV = [6 6];
psi(polyGammaM,M)
psi(polyGammaV,V)
\]

\[
\begin{bmatrix}
\infty & 0 \\
-26\zeta(3) - (4\pi^3(1/2)/9, -14\zeta(3)
\end{bmatrix}
\]

\[
\begin{bmatrix}
-720\zeta(7), 0
\end{bmatrix}
\]

Because all elements of \(\text{polyGammaV} \) have the same value, you can replace \(\text{polyGammaV} \) by a scalar of that value. \(\text{psi} \) expands the scalar into a nonscalar of the same size as \(V \) and computes the result.

\[
V = \text{sym}([1, inf]);
psi(6,V)
\]

\[
\begin{bmatrix}
-720\zeta(7), 0
\end{bmatrix}
\]
More About

Digamma Function
The digamma function is the first derivative of the logarithm of the gamma function:

\[
\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}
\]

Polygamma Function
The polygamma function of the order \(k\) is the \((k + 1)\)th derivative of the logarithm of the gamma function:

\[
\psi^{(k)}(x) = \frac{d^{k+1}}{dx^{k+1}} \ln \Gamma(x) = \frac{d^k}{dx^k} \psi(x)
\]

Tips
- Calling \texttt{psi} for a number that is not a symbolic object invokes the MATLAB \texttt{psi} function. This function accepts real nonnegative arguments \(x\). If you want to compute the polygamma function for a complex number, use \texttt{sym} to convert that number to a symbolic object, and then call \texttt{psi} for that symbolic object.
- \texttt{psi(0, x)} is equivalent to \texttt{psi(x)}.

See Also
\texttt{beta} | \texttt{gamma} | \texttt{nchoosek} | \texttt{factorial}

Introduced in R2011b
qr

QR factorization

Syntax

R = qr(A)
[Q,R] = qr(A)
[Q,R,P] = qr(A)

[C,R] = qr(A,B)
[C,R,P] = qr(A,B)

[Q,R,p] = qr(A,'vector')
[C,R,p] = qr(A,B,'vector')

___ = qr(___, 'econ')
___ = qr(___, 'real')

Description

R = qr(A) returns the R part of the QR decomposition \(A = Q*R \). Here, A is an \(m\)-by-\(n \) matrix, R is an \(m\)-by-\(n \) upper triangular matrix, and Q is an \(m\)-by-\(m \) unitary matrix.

[Q,R] = qr(A) returns an upper triangular matrix R and a unitary matrix Q, such that \(A = Q*R \).

[Q,R,P] = qr(A) returns an upper triangular matrix R, a unitary matrix Q, and a permutation matrix P, such that \(A*P = Q*R \). If all elements of A can be approximated by the floating-point numbers, then this syntax chooses the column permutation P so that \(\text{abs(diag(R))} \) is decreasing. Otherwise, it returns \(P = \text{eye}(n) \).

[C,R] = qr(A,B) returns an upper triangular matrix R and a matrix C, such that \(C = Q' * B \) and \(A = Q*R \). Here, A and B must have the same number of rows.

C and R represent the solution of the matrix equation \(A*X = B \) as \(X = R\backslash C \).

[Q,R,P] = qr(A,B) returns an upper triangular matrix R, a matrix C, such that \(C = Q'*B \), and a permutation matrix P, such that \(A*P = Q*R \). If all elements of A can be
approximated by the floating-point numbers, then this syntax chooses the permutation
matrix P so that abs(diag(R)) is decreasing. Otherwise, it returns :math:`P = \text{eye}(n)`. Here,
A and B must have the same number of rows.

C, R, and P represent the solution of the matrix equation :math:`A*X = B` as
:math:`X = P*(R\backslash C)`.

:math:`[Q,R,p] = \text{qr}(A, \text{\textquoteleft vector\textquoteleft})` returns the permutation information as a vector p, such that

:math:`[C,R,p] = \text{qr}(A,B, \text{\textquoteleft vector\textquoteleft})` returns the permutation information as a vector p.

C, R, and p represent the solution of the matrix equation :math:`A*X = B` as
:math:`X(p,:) = R\backslash C`.

___ = qr(___,'econ') returns the "economy size" decomposition. If A is an m-by-n
matrix with m > n, then qr computes only the first n columns of Q and the first n rows of
R. For m <= n, the syntaxes with 'econ' are equivalent to the corresponding syntaxes
without 'econ'.

When you use 'econ', qr always returns the permutation information as a vector p.

You can use 0 instead of 'econ'. For example, :math:`[Q,R] = \text{qr}(A,0)` is equivalent to
:math:`[Q,R] = \text{qr}(A,\text{\textquoteleft econ\textquoteleft})`.

___ = qr(___,'real') assumes that input arguments and intermediate results
are real, and therefore, suppresses calls to abs and conj. When you use this flag, qr
assumes that all symbolic variables represent real numbers. When using this flag, ensure
that all numeric arguments are real numbers.

Use 'real' to avoid complex conjugates in the result.

Examples

R part of QR Factorization

Compute the R part of the QR decomposition of the 4-by-4 Wilkinson's eigenvalue test
matrix.

Create the 4-by-4 Wilkinson's eigenvalue test matrix:

A = sym(wilkinson(4))
A =
\[
\begin{bmatrix}
3/2 & 1 & 0 & 0 \\
1 & 1/2 & 1 & 0 \\
0 & 1 & 1/2 & 1 \\
0 & 0 & 1 & 3/2 \\
\end{bmatrix}
\]

Use the syntax with one output argument to return the R part of the QR decomposition without returning the Q part:

\[
R = \text{qr}(A)
\]

\[
R =
\begin{bmatrix}
13^{(1/2)}/2, & (4*13^{(1/2)})/13, & (2*13^{(1/2)})/13, & 0 \\
0, & (13^{(1/2)}*53^{(1/2)})/26, & (10*13^{(1/2)}*53^{(1/2)})/689, & (2*13^{(1/2)}*53^{(1/2)})/53 \\
0, & 0, & (53^{(1/2)}*381^{(1/2)})/106, & (172*53^{(1/2)}*381^{(1/2)})/20193 \\
0, & 0, & 0, & (35*381^{(1/2)})/762 \\
\end{bmatrix}
\]

QR Factorization of Pascal Matrix

Compute the QR decomposition of the 3-by-3 Pascal matrix.

Create the 3-by-3 Pascal matrix:

\[
A = \text{sym}(\text{pascal}(3))
\]

\[
A =
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6 \\
\end{bmatrix}
\]

Find the Q and R matrices representing the QR decomposition of A:

\[
[Q,R] = \text{qr}(A)
\]

\[
Q =
\begin{bmatrix}
3^{(1/2)}/3, & -2^{(1/2)}/2, & 6^{(1/2)}/6 \\
3^{(1/2)}/3, & 0, & -6^{(1/2)}/3 \\
3^{(1/2)}/3, & 2^{(1/2)}/2, & 6^{(1/2)}/6 \\
\end{bmatrix}
\]

\[
R =
\begin{bmatrix}
3^{(1/2)}, & 2*3^{(1/2)}, & (10*3^{(1/2)})/3 \\
0, & 2^{(1/2)}, & (5*2^{(1/2)})/2 \\
0, & 0, & 6^{(1/2)}/6 \\
\end{bmatrix}
\]

Verify that \(A = Q*R\) using isAlways:

\[
isAlways(A == Q*R)
\]
Permutation Information

Using permutations helps increase numerical stability of the QR factorization for floating-point matrices. The qr function returns permutation information either as a matrix or as a vector.

Set the number of significant decimal digits, used for variable-precision arithmetic, to 10. Approximate the 3-by-3 symbolic Hilbert matrix by floating-point numbers:

```matlab
previoussetting = digits(10);
A = vpa(hilb(3))
```

A =

```
[ 1.0, 0.5, 0.3333333333]
[ 0.5, 0.3333333333, 0.25]
[ 0.3333333333, 0.25, 0.2]
```

First, compute the QR decomposition of A without permutations:

```matlab
[Q,R] = qr(A)
```

Q =

```
[ 0.8571428571, -0.5016049166, 0.1170411472]
[ 0.4285714286, 0.5684855721, -0.7022468832]
[ 0.2857142857, 0.6520863915, 0.7022468832]
```

R =

```
[ 1.1666666667, 0.6428571429, 0.45]
[ 0, 0.1017143303, 0.1053370325]
[ 0, 0, 0.003901371573]
```

Compute the difference between A and Q*R. The computed Q and R matrices do not strictly satisfy the equality \(A*P = Q*R \) because of the round-off errors.

```matlab
A - Q*R
```

ans =

```
[ -1.387778781e-16, -3.989863995e-16, -2.064320936e-16]
[ -3.469446952e-18, -8.847089727e-17, -1.084202172e-16]
```
To increase numerical stability of the QR decomposition, use permutations by specifying the syntax with three output arguments. For matrices that do not contain symbolic variables, expressions, or functions, this syntax triggers pivoting, so that \(\text{abs(diag}(R)) \) in the returned matrix \(R \) is decreasing.

\[
[Q, R, P] = \text{qr}(A)
\]

\[
Q =
\begin{bmatrix}
0.8571428571 & -0.4969293466 & -0.1355261854 \\
0.4285714286 & 0.5421047417 & 0.7228063223 \\
0.2857142857 & 0.6776309272 & -0.6776309272
\end{bmatrix}
\]

\[
R =
\begin{bmatrix}
1.166666667 & 0.45 & 0.6428571429 \\
0 & 0.1054092553 & 0.1016446391 \\
0 & 0 & 0.003764616262
\end{bmatrix}
\]

\[
P =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\]

Check the equality \(A*P = Q*R \) again. QR factorization with permutations results in smaller round-off errors.

\[
A*P - Q*R
\]

\[
\text{ans} =
\begin{bmatrix}
-3.469446952e-18 & -4.33680869e-18 & -6.938893904e-18 \\
0 & -8.67361738e-19 & -1.734723476e-18 \\
0 & -4.33680869e-19 & -1.734723476e-18
\end{bmatrix}
\]

Now, return the permutation information as a vector by using the 'vector' argument:

\[
[Q, R, p] = \text{qr}(A, 'vector')
\]

\[
Q =
\begin{bmatrix}
0.8571428571 & -0.4969293466 & -0.1355261854 \\
0.4285714286 & 0.5421047417 & 0.7228063223 \\
0.2857142857 & 0.6776309272 & -0.6776309272
\end{bmatrix}
\]

\[
R =
\begin{bmatrix}
1.166666667 & 0.45 & 0.6428571429 \\
0 & 0.1054092553 & 0.1016446391 \\
0 & 0 & 0.003764616262
\end{bmatrix}
\]

\[
p =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\]
1 3 2

Verify that \(A(:,p) = QR \):

\[
A(:,p) - QR
\]

\[
\text{ans} =
\begin{bmatrix}
-3.469446952e-18, -4.33680869e-18, -6.938893904e-18 \\
0, -8.67361738e-19, -1.734723476e-18 \\
0, -4.33680869e-19, -1.734723476e-18
\end{bmatrix}
\]

Exact symbolic computations let you avoid roundoff errors:

\[
A = \text{sym(hilb}(3));
\]

\[
\left[Q, R \right] = \text{qr}(A);
\]

\[
A - QR
\]

\[
\text{ans} =
\begin{bmatrix}
0, 0, 0 \\
0, 0, 0 \\
0, 0, 0
\end{bmatrix}
\]

Restore the number of significant decimal digits to its default setting:

\[
\text{digits(\text{previous setting})}
\]

Use QR Decomposition to Solve Matrix Equation

You can use `qr` to solve systems of equations in a matrix form.

Suppose you need to solve the system of equations \(AX = b \), where \(A \) and \(b \) are the following matrix and vector:

\[
A = \text{sym(hilb}(5))
\]

\[
b = \text{sym([1:5]'})
\]

\[
A =
\begin{bmatrix}
25, -300, 1050, -1400, 630 \\
-300, 4800, -18900, 26880, -12600 \\
1050, -18900, 79380, -117600, 56700 \\
-1400, 26880, -117600, 179200, -88200 \\
630, -12600, 56700, -88200, 44100
\end{bmatrix}
\]

\[
b =
\begin{bmatrix}
1 \\
2 \\
3 \\
4 \\
5
\end{bmatrix}
\]
Use `qr` to find matrices C and R, such that $C = Q' B$ and $A = Q R$:

$$[C, R] = qr(A, b);$$

Compute the solution X:

$$X = R \backslash C$$

$$X =
\begin{bmatrix}
5 \\
71/20 \\
197/70 \\
657/280 \\
1271/630
\end{bmatrix}$$

Verify that X is the solution of the system $A X = b$ using `isAlways`:

```matlab
isAlways(A*X == b)
```

```
ans =
1
1
1
1
1
```

Use QR Decomposition with Permutation Information to Solve Matrix Equation

When solving systems of equations that contain floating-point numbers, the QR decomposition with the permutation matrix or vector.

Suppose you need to solve the system of equations $A X = b$, where A and b are the following matrix and vector:

```matlab
previoussetting = digits(10);
A = vpa([2 -3 -1; 1 1 -1; 0 1 -1]);
b = vpa([2; 0; -1]);
```
Use `qr` to find matrices C and R, such that $C = Q' * B$ and $A = Q * R$:

$$[C, R, P] = qr(A, b)$$

$C = $

-2.110579412
-0.2132007164
0.7071067812

$R = $

$$[egin{bmatrix}
3.31662479, 0.3015113446, -1.507556723 \\
0, 1.705605731, -1.492405014 \\
0, 0, 0.7071067812
\end{bmatrix}]$$

$P = $

$$\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}$$

Compute the solution X:

$$X = P * (R \backslash C)$$

$X = $

1.0
-0.25
0.75

Alternatively, return the permutation information as a vector:

$$[C, R, p] = qr(A, b, 'vector')$$

$C = $

-2.110579412
-0.2132007164
0.7071067812

$R = $

$$\begin{bmatrix}
3.31662479, 0.3015113446, -1.507556723 \\
0, 1.705605731, -1.492405014 \\
0, 0, 0.7071067812
\end{bmatrix}$$

$p = $

$$\begin{bmatrix}
2 & 3 & 1
\end{bmatrix}$$

In this case, compute the solution X as follows:

$$X(p, :) = R \backslash C$$

$X = $
Restore the number of significant decimal digits to its default setting:

digits(previoussetting)

"Economy Size" Decomposition

Use 'econ' to compute the “economy size” QR decomposition.

Create a matrix that consists of the first two columns of the 4-by-4 Pascal matrix:

\[
A = \text{sym(pascal}(4));
A = A(:,1:2)
\]

\[
A = \\
\begin{bmatrix}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4 \\
\end{bmatrix}
\]

Compute the QR decomposition for this matrix:

\[
[Q,R] = \text{qr}(A)
\]

\[
Q = \\
\begin{bmatrix}
1/2, -(3*5^(1/2))/(10), (3^(1/2)*10^(1/2))/(10), 0 \\
1/2, -5^(1/2)/(10), -(2*3^(1/2)*10^(1/2))/(15), 6^(1/2)/6 \\
1/2, 5^(1/2)/(10), -(3^(1/2)*10^(1/2))/(30), -6^(1/2)/3 \\
1/2, (3*5^(1/2))/(10), (3^(1/2)*10^(1/2))/(15), 6^(1/2)/6 \\
\end{bmatrix}
\]

\[
R = \\
\begin{bmatrix}
2, 5 \\
0, 5^(1/2) \\
0, 0 \\
0, 0 \\
\end{bmatrix}
\]

Now, compute the “economy size” QR decomposition for this matrix. Because the number of rows exceeds the number of columns, qr computes only the first 2 columns of Q and the first 2 rows of R.

\[
[Q,R] = \text{qr}(A, 'econ')
\]
\[Q = \\
\begin{bmatrix}
\frac{1}{2}, -\frac{3\sqrt{5}}{10} \\
\frac{1}{2}, \frac{-\sqrt{5}}{10} \\
\frac{1}{2}, \frac{-5\sqrt{5}}{10} \\
\frac{1}{2}, \frac{3\sqrt{5}}{10}
\end{bmatrix} \\
\]

\[R = \\
\begin{bmatrix}
2, 5 \\
0, \sqrt{5}
\end{bmatrix} \\
\]

Avoid Complex Conjugates

Use the 'real' flag to avoid complex conjugates in the result.

Create a matrix, one of the elements of which is a variable:

```matlab
syms x
A = [1 2; 3 x]
```

\[A = \\
\begin{bmatrix}
1, 2 \\
3, x
\end{bmatrix} \\
\]

Compute the QR factorization of this matrix. By default, `qr` assumes that \(x \) represents a complex number, and therefore, the result contains expressions with the `abs` function.

\[[Q,R] = qr(A) \]

\[Q = \\
\begin{bmatrix}
\frac{\sqrt{10}}{10}, -\frac{(3x/10 - 9/5)/(abs(x/10 - 3/5)^2 + abs((3x/10 - 9/5)^2)^(1/2)}{10} \\
\frac{3\sqrt{10}}{10}, \frac{(x/10 - 3/5)/(abs(x/10 - 3/5)^2 + abs((3x/10 - 9/5)^2)^(1/2)\frac{1}{10}}{10}
\end{bmatrix} \\
\]

\[R = \\
\begin{bmatrix}
\sqrt{10}, \frac{10\sqrt{10}(3x + 2)}{10} \\
0, \frac{(abs(x/10 - 3/5)^2 + abs((3x/10 - 9/5)^2)^(1/2))}{10}
\end{bmatrix} \\
\]

When you use 'real', `qr` assumes that all symbolic variables represent real numbers, and can return shorter results:

\[[Q,R] = qr(A, 'real') \]

\[Q = \\
\begin{bmatrix}
\frac{\sqrt{10}}{10}, (10\sqrt{10}(3x + 2))/10 \\
0, (abs(x/10 - 3/5)^2 + abs((3x/10 - 9/5)^2)^(1/2))\frac{1}{10}
\end{bmatrix} \\
\]
[10^(1/2)/10, -((3*x)/10 - 9/5)/(x^2/10 - (6*x)/5... + 18/5)^(1/2)]
[(3*10^(1/2))/10, (x/10 - 3/5)/(x^2/10 - (6*x)/5... + 18/5)^(1/2)]

R =
[10^(1/2), (10^(1/2)*(3*x + 2))/10]
[0, (x^2/10 - (6*x)/5 + 18/5)^(1/2)]

Input Arguments

A — Input matrix
m-by-n symbolic matrix

Input matrix, specified as an m-by-n symbolic matrix.

B — Input
symbolic vector | symbolic matrix

Input, specified as a symbolic vector or matrix. The number of rows in B must be the same as the number of rows in A.

Output Arguments

R — R part of the QR decomposition
m-by-n upper triangular symbolic matrix

R part of the QR decomposition, returned as an m-by-n upper triangular symbolic matrix.

Q — Q part of the QR decomposition
m-by-m unitary symbolic matrix

Q part of the QR decomposition, returned as an m-by-m unitary symbolic matrix.

P — Permutation information
matrix of double-precision values

Permutation information, returned as a matrix of double-precision values, such that A*P = Q*R.
p — Permutation information
 vector of double-precision values

Permutation information, returned as a vector of double-precision values, such that
A(:,p) = Q*R.

C — Matrix representing solution of matrix equation A*X = B
 symbolic matrix

Matrix representing solution of matrix equation A*X = B, returned as a symbolic matrix,
such that C = Q'*B.

More About

QR Factorization of Matrix

The QR factorization expresses an m-by-n matrix A as A = Q*R. Here, Q is an m-by-m
unitary matrix, and R is an m-by-n upper triangular matrix. If the components of A are
real numbers, then Q is an orthogonal matrix.

Tips

• The upper triangular matrix A satisfies the following condition: R = chol(A'*A).
• The arguments 'econ' and 0 only affect the shape of the returned matrices.
• Calling qr for numeric matrices that are not symbolic objects (not created by sym,
syms, or vpa) invokes the MATLAB qr function.
• If you use 'matrix' instead of 'vector', then qr returns permutation matrices, as
 it does by default. If you use 'matrix' and 'econ', then qr throws an error.

See Also

chol | eig | lu | svd

Introduced in R2014a
quorem

Quotient and remainder

Syntax

\[
\begin{align*}
[Q,R] &= \text{quorem}(A,B,\text{var}) \\
[Q,R] &= \text{quorem}(A,B)
\end{align*}
\]

Description

\[[Q,R] = \text{quorem}(A,B,\text{var}) \] divides \(A \) by \(B \) and returns the quotient \(Q \) and remainder \(R \) of the division, such that \(A = Q*B + R \). This syntax regards \(A \) and \(B \) as polynomials in the variable \(\text{var} \).

If \(A \) and \(B \) are matrices, \text{quorem} performs elements-wise division, using \(\text{var} \) are a variable. It returns the quotient \(Q \) and remainder \(R \) of the division, such that \(A = Q.*B + R \).

\[[Q,R] = \text{quorem}(A,B) \] uses the variable determined by \text{symvar}(A,1). If \text{symvar}(A,1) returns an empty symbolic object \text{sym([])}, then \text{quorem} uses the variable determined by \text{symvar}(B,1).

If both \text{symvar}(A,1) and \text{symvar}(B,1) are empty, then \(A \) and \(B \) must both be integers or matrices with integer elements. In this case, \text{quorem}(A,B) returns symbolic integers \(Q \) and \(R \), such that \(A = Q*B + R \). If \(A \) and \(B \) are matrices, then \(Q \) and \(R \) are symbolic matrices with integer elements, such that \(A = Q.*B + R \), and each element of \(R \) is smaller in absolute value than the corresponding element of \(B \).

Examples

Divide Multivariate Polynomials

Compute the quotient and remainder of the division of these multivariate polynomials with respect to the variable \(y \):
syms x y
p1 = x^3*y^4 - 2*x*y + 5*x + 1;
p2 = x*y;
[q, r] = quorem(p1, p2, y)
q =
x^2*y^3 - 2
r =
5*x + 1

Divide Univariate Polynomials

Compute the quotient and remainder of the division of these univariate polynomials:

syms x
p = x^3 - 2*x + 5;
[q, r] = quorem(x^5, p)
q =
x^2 + 2
r =
- 5*x^2 + 4*x - 10

Divide Integers

Compute the quotient and remainder of the division of these integers:

[q, r] = quorem(sym(10)^5, sym(985))
q =
101
r =
515

Input Arguments

A — Dividend (numerator)
symbolic integer | polynomial | symbolic vector | symbolic matrix
Dividend (numerator), specified as a symbolic integer, polynomial, or a vector or matrix of symbolic integers or polynomials.

\(B \) — Divisor (denominator)
symbolic integer | polynomial | symbolic vector | symbolic matrix

Divisor (denominator), specified as a symbolic integer, polynomial, or a vector or matrix of symbolic integers or polynomials.

\(\text{var} \) — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

\(Q \) — Quotient of the division
symbolic integer | symbolic expression | symbolic vector | symbolic matrix

Quotient of the division, returned as a symbolic integer, expression, or a vector or matrix of symbolic integers or expressions.

\(R \) — Remainder of the division
symbolic integer | symbolic expression | symbolic vector | symbolic matrix

Remainder of the division, returned as a symbolic integer, expression, or a vector or matrix of symbolic integers or expressions.

See Also
deconv | mod

Introduced before R2006a
rank

Find rank of symbolic matrix

Syntax

`rank(A)`

Description

`rank(A)` returns the rank of symbolic matrix `A`.

Examples

Find Rank of Matrix

```matlab
syms a b c d
A = [a b; c d];
rank(A)
```

```matlab
ans =
   2
```

Rank of Symbolic Matrices Is Exact

Symbolic calculations return the exact rank of a matrix while numeric calculations can suffer from round-off errors. This exact calculation is useful for ill-conditioned matrices, such as the Hilbert matrix. The rank of a Hilbert matrix of order `n` is `n`.

Find the rank of the Hilbert matrix of order 15 numerically. Then convert the numeric matrix to a symbolic matrix using `sym` and find the rank symbolically.

```matlab
H = hilb(15);
rank(H)
rank(sym(H))
```
The symbolic calculation returns the correct rank of 15. The numeric calculation returns an incorrect rank of 12 due to round-off errors.

Rank Function Does Not Simplify Symbolic Calculations

Consider this matrix

\[
A = \begin{bmatrix}
1 - \sin^2(x) & \cos^2(x) \\
1 & 1
\end{bmatrix}.
\]

After simplification of \(1 - \sin(x)^2\) to \(\cos(x)^2\), the matrix has a rank of 1. However, \texttt{rank} returns an incorrect rank of 2 because it does not take into account identities satisfied by special functions occurring in the matrix elements. Demonstrate the incorrect result.

```matlab
syms x
A = [1-sin(x) cos(x); cos(x) 1+sin(x)];
rank(A)
```

\texttt{rank} returns an incorrect result because the outputs of intermediate steps are not simplified. While there is no fail-safe workaround, you can simplify symbolic expressions by using numeric substitution and evaluating the substitution using \texttt{vpa}.

Find the correct rank by substituting \(x\) with a number and evaluating the result using \texttt{vpa}.

```matlab
rank(vpa(subs(A,x,1)))
```

\texttt{rank} can return incorrect results due to round-off errors.
Input Arguments

A — Input
number | vector | matrix | symbolic number | symbolic vector | symbolic matrix

Input, specified as a number, vector, or matrix or a symbolic number, vector, or matrix.

See Also
eig | null | rref | size

Introduced before R2006a

\textbf{rdivide, ./}

Symbolic array right division

\textbf{Syntax}

\[A./B \]
\texttt{rdivide(A,B)}

\textbf{Description}

\(A./B \) divides \(A \) by \(B \).

\texttt{rdivide(A,B)} is equivalent to \(A./B \).

\textbf{Examples}

\textbf{Divide Scalar by Matrix}

Create a 2-by-3 matrix.

\[B = \text{sym('b', [2 3])} \]

\[B = \]
\[\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} \]

Divide the symbolic expression \(\sin(a) \) by each element of the matrix \(B \).

\texttt{syms a}
\texttt{sin(a)./B}

\[\text{ans} = \]
\[\begin{bmatrix} \sin(a)/b_{11} & \sin(a)/b_{12} & \sin(a)/b_{13} \\ \sin(a)/b_{21} & \sin(a)/b_{22} & \sin(a)/b_{23} \end{bmatrix} \]
Divide Matrix by Matrix

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

```
H = sym(hilb(3))
d = diag(sym([1 2 3]))

H =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

d =
[ 1, 0, 0]
[ 0, 2, 0]
[ 0, 0, 3]
```

Divide \(d\) by \(H\) by using the elementwise right division operator \(./\). This operator divides each element of the first matrix by the corresponding element of the second matrix. The dimensions of the matrices must be the same.

```
d./H
```

```
ans =
[ 1, 0,  0]
[ 0, 6,  0]
[ 0, 0, 15]
```

Divide Expression by Symbolic Function

Divide a symbolic expression by a symbolic function. The result is a symbolic function.

```
syms f(x)
f(x) = x^2;
f1 = (x^2 + 5*x + 6)./f

f1(x) =
(x^2 + 5*x + 6)/x^2
```

Input Arguments

\(A\) — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression
Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

B — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
| | | | symbolic function |
| | | | symbolic expression |

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus |
| | | | | | | power | times | transpose |

Introduced before R2006a
read

Read MuPAD program file into symbolic engine

Syntax

read(symengine,filename)

Description

`read(symengine,filename)` reads the MuPAD program file `filename` into the symbolic engine. Reading a program file means finding and executing it.

Input Arguments

filename

The name of a MuPAD program file that you want to read. This file must have the extension `.mu` or `.gz`.

Examples

Suppose you wrote the MuPAD procedure `myProc` and saved it in the file `myProcedure.mu`.

4-997
Before you can call this procedure at the MATLAB Command Window, you must read the file `myProcedure.mu` into the symbolic engine. To read a program file into the symbolic engine, use `read`:

```matlab
code = read(symengine, 'myProcedure.mu')
```

If the file is not on the MATLAB path, specify the full path to this file. For example, if `myProcedure.mu` is in the MuPAD folder on disk C, enter:

```matlab
code = read(symengine, 'C:/MuPAD/myProcedure.mu')
```

Now you can access the procedure `myProc` using `evalin` or `feval`. For example, compute the factorial of 10:

```matlab
ans = feval(symengine, 'myProc', 10)
```

```
ans =
3628800
```
Alternatives

You also can use `feval` to call the MuPAD `read` function. The `read` function available from the MATLAB Command Window is equivalent to calling the MuPAD `read` function with the `Plain` option. It ignores any MuPAD aliases defined in the program file:

```matlab
feval(symengine, 'read', 'myProcedure.mu', 'Plain')
```

If your program file contains aliases or uses the aliases predefined by MATLAB, do not use `Plain`:

```matlab
feval(symengine, 'read', 'myProcedure.mu')
```

More About

Tips

• If you do not specify the file extension, `read` searches for the file `filename.mu`.

• If `filename` is a GNU® zip file with the extension `.gz`, `read` uncompressed it upon reading.

• `filename` can include full or relative path information. If `filename` does not have a path component, `read` uses the MATLAB function `which` to search for the file on the MATLAB path.

• `read` ignores any MuPAD aliases defined in the program file. If your program file contains aliases or uses the aliases predefined by MATLAB, see “Alternatives” on page 4-999.

• “Use Your Own MuPAD Procedures” on page 3-38

See Also

evalin | feval | symengine

Introduced in R2011b
real

Real part of complex number

Syntax

real(z)
real(A)

Description

real(z) returns the real part of z.

real(A) returns the real part of each element of A.

Input Arguments

z
Symbolic number, variable, or expression.

A
Vector or matrix of symbolic numbers, variables, or expressions.

Examples

Find the real parts of these numbers. Because these numbers are not symbolic objects, you get floating-point results.

\[\text{real}(2 + 3/2\times i), \text{real}(\sin(5\times i)), \text{real}(2\times \exp(1 + i)) \]

ans =

2.0000 0 2.9374

Compute the real parts of the numbers converted to symbolic objects:
[\text{real}(\text{sym}(2) + 3/2i), \text{real}(4/(\text{sym}(1) + 3i)), \text{real}(\sin(\text{sym}(5)i))]$

\text{ans} =
[2, 2/5, 0]$

\text{Compute the real part of this symbolic expression:}

\text{real}(2*\exp(1 + \text{sym}(i)))$

\text{ans} =
2*\cos(1)*\exp(1)$

In general, \text{real} cannot extract the entire real parts from symbolic expressions containing variables. However, \text{real} can rewrite and sometimes simplify the input expression:

\text{syms} a x y
\text{real}(a + 2)
\text{real}(x + y*i)$

\text{ans} =
\text{real}(a) + 2
\text{ans} =
\text{real}(x) - \text{imag}(y)$

If you assign numeric values to these variables or specify that these variables are real, \text{real} can extract the real part of the expression:

\text{syms} a
a = 5 + 3*i;
\text{real}(a + 2)$

\text{ans} =
7
\text{syms} x y \text{real}
\text{real}(x + y*i)$

\text{ans} =
x$

Clear the assumption that \text{x} and \text{y} are real:

\text{syms} x y \text{clear}
Find the real parts of the elements of matrix A:

```matlab
syms x
A = [-1 + sym(i), sinh(x); exp(10 + sym(7)*i), exp(sym(pi)*i)];
real(A)
```

```matlab
ans =
[            -1, real(sinh(x))]
[ cos(7)*exp(10),            -1]
```

Alternatives

You can compute the real part of \(z \) via the conjugate: \(\text{real}(z) = (z + \text{conj}(z))/2 \).

More About

Tips

- Calling \texttt{real} for a number that is not a symbolic object invokes the MATLAB \texttt{real} function.

See Also

\texttt{conj} | \texttt{imag} | \texttt{in} | \texttt{sign} | \texttt{signIm}

Introduced before R2006a
rectangularPulse

Rectangular pulse function

Syntax

rectangularPulse(a,b,x)
rectangularPulse(x)

Description

rectangularPulse(a,b,x) returns the rectangular pulse function.
rectangularPulse(x) is a shortcut for rectangularPulse(-1/2,1/2,x).

Input Arguments

a

Number (including infinities and symbolic numbers), symbolic variable, or symbolic expression. This argument specifies the rising edge of the rectangular pulse function.

Default: -1/2

b

Number (including infinities and symbolic numbers), symbolic variable, or symbolic expression. This argument specifies the falling edge of the rectangular pulse function.

Default: 1/2

x

Number (including infinities and symbolic numbers), symbolic variable, or symbolic expression.
Examples

Compute the rectangular pulse function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:

\[
\text{rectangularPulse}(-1, 1, -2) \\
\text{rectangularPulse}(-1, 1, -1) \\
\text{rectangularPulse}(-1, 1, 0) \\
\text{rectangularPulse}(-1, 1, 1) \\
\text{rectangularPulse}(-1, 1, 2)
\]

\[
\begin{array}{c}
0 \\
0.5000 \\
1.0000 \\
0.5000 \\
0
\end{array}
\]

Compute the rectangular pulse function for the numbers converted to symbolic objects:

\[
\text{rectangularPulse}(\text{sym}(-1), 1, -2) \\
\text{rectangularPulse}(-1, \text{sym}(1), -1) \\
\text{rectangularPulse}(-1, 1, \text{sym}(0)) \\
\text{rectangularPulse}(\text{sym}(-1), 1, 1) \\
\text{rectangularPulse}(\text{sym}(-1), 1, 2)
\]

\[
\begin{array}{c}
0 \\
1/2 \\
1 \\
1/2 \\
0
\end{array}
\]

If \(a < b\), the rectangular pulse function for \(x = a\) and \(x = b\) equals 1/2:

\[
syms a b x \\
\text{assume}(a < b) \\
\text{rectangularPulse}(a, b, a) \\
\text{rectangularPulse}(a, b, b)
\]

\[
\begin{array}{c}
\text{ans} = \\
1/2 \\
\text{ans} =
\end{array}
\]
1/2

For further computations, remove the assumption:

syms a b clear

For $a = b$, the rectangular pulse function returns 0:

syms a x
rectangularPulse(a, a, x)

ans =
0

Use `rectangularPulse` with one input argument as a shortcut for computing `rectangularPulse(-1/2, 1/2, x):

syms x
rectangularPulse(x)

ans =
rectangularPulse(-1/2, 1/2, x)

[rectangularPulse(sym(-1))
rectangularPulse(sym(-1/2))
rectangularPulse(sym(0))
rectangularPulse(sym(1/2))
rectangularPulse(sym(1))]

ans =
0
1/2
1
1/2
0

Plot the rectangular pulse function:

syms x
ezplot(rectangularPulse(x), [-1, 1])
Call `rectangularPulse` with infinities as its rising and falling edges:

```matlab
syms x
rectangularPulse(-inf, 0, x)
rectangularPulse(0, inf, x)
rectangularPulse(-inf, inf, x)
```

```
ans =
heaviside(-x)

ans =
heaviside(x)
ans =
```
More About

Rectangular Pulse Function

The rectangular pulse function is defined as follows:

If \(a < x < b \), then the rectangular pulse function equals 1. If \(x = a \) or \(x = b \) and \(a <> b \), then the rectangular pulse function equals 1/2. Otherwise, it equals 0.

The rectangular pulse function is also called the rectangle function, box function, \(\Pi \)-function, or gate function.

Tips

- If \(a \) and \(b \) are variables or expressions with variables, \texttt{rectangularPulse} assumes that \(a < b \). If \(a \) and \(b \) are numerical values, such that \(a > b \), \texttt{rectangularPulse} throws an error.
- If \(a = b \), \texttt{rectangularPulse} returns 0.

See Also

dirac | heaviside | triangularPulse

Introduced in R2012b
reduceDAEIndex

Convert system of first-order differential algebraic equations to equivalent system of differential index 1

Syntax

\[
\begin{align*}
\text{[newEqs,newVars]} &= \text{reduceDAEIndex(eqs,vars)} \\
\text{[newEqs,newVars,R]} &= \text{reduceDAEIndex(eqs,vars)} \\
\text{[newEqs,newVars,R,oldIndex]} &= \text{reduceDAEIndex(eqs,vars)}
\end{align*}
\]

Description

\[
\text{[newEqs,newVars]} = \text{reduceDAEIndex(eqs,vars)} \text{ converts a high-index system of first-order differential algebraic equations eqs to an equivalent system newEqs of differential index 1.}
\]

reduceDAEIndex keeps the original equations and variables and introduces new variables and equations. After conversion, reduceDAEIndex checks the differential index of the new system by calling isLowIndexDAE. If the index of newEqs is 2 or higher, then reduceDAEIndex issues a warning.

\[
\text{[newEqs,newVars,R]} = \text{reduceDAEIndex(eqs,vars)} \text{ returns matrix R that expresses the new variables in newVars as derivatives of the original variables vars.}
\]

\[
\text{[newEqs,newVars,R,oldIndex]} = \text{reduceDAEIndex(eqs,vars)} \text{ returns the differential index, oldIndex, of the original system of DAEs, eqs.}
\]

Examples

Reduce Differential Index of DAE System

Check if the following DAE system has a low (0 or 1) or high (>1) differential index. If the index is higher than 1, then use reduceDAEIndex to reduce it.

Create the following system of two differential algebraic equations. Here, the symbolic functions \(x(t), y(t),\) and \(z(t)\) represent the state variables of the system. Specify
the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```matlab
syms x(t) y(t) z(t) f(t)
eqs = [diff(x) == x + z, diff(y) == f(t), x == y];
vars = [x(t), y(t), z(t)];
```

Use `isLowIndexDAE` to check the differential index of the system. For this system, `isLowIndexDAE` returns 0 (false). This means that the differential index of the system is 2 or higher.

```matlab
isLowIndexDAE(eqs, vars)
an = 0
```

Use `reduceDAEIndex` to rewrite the system so that the differential index is 1. The new system has one additional state variable, `Dyt(t)`.

```matlab
[newEqs, newVars] = reduceDAEIndex(eqs, vars)
newEqs =
diff(x(t), t) - z(t) - x(t)
    Dyt(t) - f(t)
    x(t) - y(t)
    diff(x(t), t) - Dyt(t)
newVars =
    x(t)
    y(t)
    z(t)
    Dyt(t)
```

Check if the differential order of the new system is lower than 2.

```matlab
isLowIndexDAE(newEqs, newVars)
an = 1
```

Reduce the Index and Return More Details

Reduce the differential index of a system that contains two second-order differential algebraic equation. Because the equations are second-order equations, first use `reduceDifferentialOrder` to rewrite the system to a system of first-order DAEs.
Create the following system of two second-order DAEs. Here, \(x(t), y(t),\) and \(F(t)\) are the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```matlab
syms t x(t) y(t) F(t) r g
eqs = [diff(x(t), t, t) == -F(t)*x(t),
       diff(y(t), t, t) == -F(t)*y(t) - g,
       x(t)^2 + y(t)^2 == r^2 ];
vars = [x(t), y(t), F(t)];
```

Rewrite this system so that all equations become first-order differential equations. The `reduceDifferentialOrder` function replaces the second-order DAE by two first-order expressions by introducing the new variables \(Dxt(t)\) and \(Dyt(t)\). It also replaces the first-order equations by symbolic expressions.

```matlab
[eqs, vars] = reduceDifferentialOrder(eqs, vars)
```

Use `reduceDAEIndex` to rewrite the system so that the differential index is 1.

```matlab
[eqs, vars, R, originalIndex] = reduceDAEIndex(eqs, vars)
```
Dytt(t) - diff(Dyt1(t), t)
Dyt1(t) - diff(y(t), t)

vars =
 x(t)
 y(t)
 F(t)
 Dxt(t)
 Dytt(t)
 Dytt(t)
 Dxt1(t)
 Dytt(t)
 Dyt1(t)
 Dxt1t(t)

R =
[Dytt(t), diff(Dyt(t), t)]
[Dxtt(t), diff(Dxt(t), t)]
[Dxt1(t), diff(x(t), t)]
[Dytt(t), diff(y(t), t)]
[Dxt1t(t), diff(x(t), t, t)]

originalIndex =
 3

Use reduceRedundancies to shorten the system.

[eqs, vars] = reduceRedundancies(eqs, vars)

eqs =
 Dxtt(t) + F(t)*x(t)
g + Dytt(t) + F(t)*y(t)
x(t)^2 + y(t)^2 - r^2
2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)
2*Dxtt(t)*x(t) + 2*Dxt(t)^2 + 2*Dyt(t)^2 + 2*y(t)*diff(Dyt(t), t)
2* Dytt(t) - diff(Dyt(t), t)
 Dyt(t) - diff(y(t), t)

vars =
 x(t)
 y(t)
 F(t)
 Dxt(t)
 Dytt(t)
Input Arguments

eqs — System of first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order DAEs, specified as a vector of symbolic equations or expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as \(x(t) \).

Example: \([x(t), y(t)]\)

Output Arguments

newEqs — System of first-order DAEs of differential index 1
column vector of symbolic expressions

System of first-order DAEs of differential index 1, returned as a column vector of symbolic expressions.

newVars — Extended set of variables
column vector of symbolic function calls

Extended set of variables, returned as a column vector of symbolic function calls. This vector includes the original state variables \(vars \) followed by the generated variables that replace the second- and higher-order derivatives in \(eqs \).

R — Relations between new and original variables
symbolic matrix

Relations between new and original variables, returned as a symbolic matrix with two columns. The first column contains the new variables. The second column contains their definitions as derivatives of the original variables \(vars \).

oldIndex — Differential index of original DAE system
integer
Differential index of original DAE system, returned as an integer or NaN.

More About

Algorithms

The implementation of reduceDAEIndex uses the Pantelides algorithm. This algorithm reduces higher-index systems to lower-index systems by selectively adding differentiated forms of the original equations. The Pantelides algorithm can underestimate the differential index of a new system, and therefore, can fail to reduce the differential index to 1. In this case, reduceDAEIndex issues a warning and, for the syntax with four output arguments, returns the value of oldIndex as NaN. The reduceDAEToODE function uses more reliable, but slower Gaussian elimination. Note that reduceDAEToODE requires the DAE system to be semilinear.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies

Introduced in R2014b
reduceDAEToODE

Convert system of first-order semilinear differential algebraic equations to equivalent system of differential index 0

Syntax

newEqs = reduceDAEToODE(eqs,vars)

[newEqs,constraintEqs] = reduceDAEToODE(eqs,vars)

[newEqs,constraintEqs,oldIndex] = reduceDAEToODE(eqs,vars)

Description

newEqs = reduceDAEToODE(eqs,vars) converts a high-index system of first-order semilinear algebraic equations eqs to an equivalent system of ordinary differential equations, newEqs. The differential index of the new system is 0, that is, the Jacobian of newEqs with respect to the derivatives of the variables in vars is invertible.

[newEqs,constraintEqs] = reduceDAEToODE(eqs,vars) returns a vector of constraint equations.

[newEqs,constraintEqs,oldIndex] = reduceDAEToODE(eqs,vars) returns the differential index oldIndex of the original system of semilinear DAEs, eqs.

Examples

Convert DAE System to Implicit ODE System

Convert a system of differential algebraic equations (DAEs) to a system of implicit ordinary differential equations (ODEs).

Create the following system of two differential algebraic equations. Here, the symbolic functions \(x(t)\), \(y(t)\), and \(z(t)\) represent the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```matlab
syms x(t) y(t) z(t)
```
eqs = \[\text{diff}(x,t)+x\times\text{diff}(y,t) == y,...
 x\times\text{diff}(x,t)+x^2\times\text{diff}(y) == \sin(x),...
 x^2 + y^2 == t\times z\];
vars = \{x(t), y(t), z(t)\};

Use \text{reduceDAEToODE} to rewrite the system so that the differential index is 0.
newEqs = \text{reduceDAEToODE}(eqs, vars)

newEqs =
 x(t)\times\text{diff}(y(t), t) - y(t) + \text{diff}(x(t), t)
 \text{diff}(x(t), t)\times(\cos(x(t)) - y(t)) - x(t)\times\text{diff}(y(t), t)
 z(t) - 2\times x(t)\times\text{diff}(x(t), t) - 2\times y(t)\times\text{diff}(y(t), t) + t\times \text{diff}(z(t), t)

\textbf{Reduce System and Return More Details}

Check if the following DAE system has a low (0 or 1) or high (>1) differential index. If the index is higher than 1, first try to reduce the index by using \text{reduceDAEIndex} and then by using \text{reduceDAEToODE}.

Create the system of differential algebraic equations. Here, the functions \(x_1(t)\), \(x_2(t)\), and \(x_3(t)\) represent the state variables of the system. The system also contains the functions \(q_1(t)\), \(q_2(t)\), and \(q_3(t)\). These functions do not represent state variables. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

\text{syms} \ x1(t) \ x2(t) \ x3(t) \ q1(t) \ q2(t) \ q3(t)
\eqs = \[\text{diff}(x2) == q1 - x1,
 \text{diff}(x3) == q2 - 2\times x2 - t\times(q1-x1),
 q3 - t\times x2 - x3\];
\vars = \{x1(t), x2(t), x3(t)\};

Use \text{isLowIndexDAE} to check the differential index of the system. For this system, \text{isLowIndexDAE} returns 0 (false). This means that the differential index of the system is 2 or higher.

\text{isLowIndexDAE}(eqs, vars)

\text{ans} =
 0

Use \text{reduceDAEIndex} as your first attempt to rewrite the system so that the differential index is 1. For this system, \text{reduceDAEIndex} issues a warning because it cannot reduce the differential index of the system to 0 or 1.
[newEqs, newVars] = reduceDAEIndex(eqs, vars)

Warning: The index of the reduced DAEs is larger than 1.

newEqs =
 x1(t) - q1(t) + diff(x2(t), t)
 Dx3t(t) - q2(t) + 2*x2(t) + t*(q1(t) - x1(t))
 q3(t) - x3(t) - t*x2(t)
 diff(q3(t), t) - x2(t) - t*diff(x2(t), t) - Dx3t(t)

newVars =
 x1(t)
 x2(t)
 x3(t)
 Dx3t(t)

If reduceDAEIndex cannot reduce the semilinear system so that the index is 0 or 1, try using reduceDAEToODE. This function can be much slower, therefore it is not recommended as a first choice. Use the syntax with two output arguments to also return the constraint equations.

[newEqs, constraintEqs] = reduceDAEToODE(eqs, vars)

newEqs =
 x1(t) - q1(t) + diff(x2(t), t)
 2*x2(t) - q2(t) + t*q1(t) - t*x1(t) + diff(x3(t), t)
 diff(x1(t), t) - diff(q1(t), t) + diff(q2(t), t, t) - diff(q3(t), t, t, t)

constraintEqs =
 x1(t) - q1(t) + diff(q2(t), t) - diff(q3(t), t, t)
 x3(t) - q3(t) + t*x2(t)
 x2(t) - q2(t) + diff(q3(t), t)

Use the syntax with three output arguments to return the new equations, constraint equations, and the differential index of the original system, eqs.

[newEqs, constraintEqs, oldIndex] = reduceDAEToODE(eqs, vars)

newEqs =
 x1(t) - q1(t) + diff(x2(t), t)
 2*x2(t) - q2(t) + t*q1(t) - t*x1(t) + diff(x3(t), t)
 diff(x1(t), t) - diff(q1(t), t) + diff(q2(t), t, t) - diff(q3(t), t, t, t)

constraintEqs =
 x1(t) - q1(t) + diff(q2(t), t) - diff(q3(t), t, t)
\[
\begin{align*}
 x_3(t) &= q_3(t) + t x_2(t) \\
 x_2(t) &= q_2(t) + \text{diff}(q_3(t), t)
\end{align*}
\]

\[
\text{oldIndex} = 3
\]

Input Arguments

eqs — System of first-order semilinear DAEs

vector of symbolic equations | vector of symbolic expressions

System of first-order semilinear DAEs, specified as a vector of symbolic equations or expressions.

vars — State variables

vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as \(x(t)\).

Example: \([x(t), y(t)]\) or \([x(t); y(t)]\)

Output Arguments

newEqs — System of implicit ordinary differential equations

column vector of symbolic expressions

System of implicit ordinary differential equations, returned as a column vector of symbolic expressions. The differential index of this system is 0.

constraintEqs — Constraint equations encountered during system reduction

column vector of symbolic expressions

Constraint equations encountered during system reduction, returned as a column vector of symbolic expressions. These expressions depend on the variables \(\text{vars}\), but not on their derivatives. The constraints are conserved quantities of the differential equations in \(\text{newEqs}\), meaning that the time derivative of each constraint vanishes modulo the equations in \(\text{newEqs}\).

You can use these equations to determine consistent initial conditions for the DAE system.
oldIndex — Differential index of original DAE system eqs

integer

Differential index of original DAE system eqs, returned as an integer.

More About

Algorithms

The implementation of `reduceDAEToODE` is based on Gaussian elimination. This algorithm is more reliable than the Pantelides algorithm used by `reduceDAEIndex`, but it can be much slower.

See Also

daeFunction | decic | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex | reduceDifferentialOrder | reduceRedundancies

Introduced in R2014b
reduceDifferentialOrder

Reduce system of higher-order differential equations to equivalent system of first-order differential equations

Syntax

```matlab
[newEqs,newVars] = reduceDifferentialOrder(eqs,vars)
[newEqs,newVars,R] = reduceDifferentialOrder(eqs,vars)
```

Description

`[newEqs,newVars] = reduceDifferentialOrder(eqs,vars)` rewrites a system of higher-order differential equations `eqs` as a system of first-order differential equations `newEqs` by substituting derivatives in `eqs` with new variables. Here, `newVars` consists of the original variables `vars` augmented with these new variables.

`[newEqs,newVars,R] = reduceDifferentialOrder(eqs,vars)` returns the matrix `R` that expresses the new variables in `newVars` as derivatives of the original variables `vars`.

Examples

Reduce Differential Order of DAE System

Reduce a system containing higher-order DAEs to a system containing only first-order DAEs.

Create the system of differential equations, which includes a second-order expression. Here, `x(t)` and `y(t)` are the state variables of the system, and `c1` and `c2` are parameters. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```matlab
syms x(t) y(t) c1 c2
eqs = [diff(x(t), t, t) + sin(x(t)) + y(t) == c1*cos(t),...]
```
\[\text{diff}(y(t), t) == c2 \cdot x(t) \];

\[\text{vars = [x(t), y(t)]]; } \]

\[[\text{newEqs, newVars}] = \text{reduceDifferentialOrder}(\text{eqs, vars}) \]

Rewrite this system so that all equations become first-order differential equations. The \text{reduceDifferentialOrder} function replaces the higher-order DAE by first-order expressions by introducing the new variable \(Dxt(t) \). It also represents all equations as symbolic expressions.

\[[\text{newEqs, newVars}] = \text{reduceDifferentialOrder}(\text{eqs, vars}) \]

\[\text{newEqs} = \]
\[\sin(x(t)) + y(t) + \text{diff}(Dxt(t), t) - c1 \cdot \cos(t) \]
\[\text{diff}(y(t), t) - c2 \cdot x(t) \]
\[Dxt(t) - \text{diff}(x(t), t) \]

\[\text{newVars} = \]
\[x(t) \]
\[y(t) \]
\[Dxt(t) \]

Show Relations Between Generated and Original Variables

Reduce a system containing a second- and a third-order expression to a system containing only first-order DAEs. In addition, return a matrix that expresses the variables generated by \text{reduceDifferentialOrder} via the original variables of this system.

Create a system of differential equations, which includes a second- and a third-order expression. Here, \(x(t) \) and \(y(t) \) are the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

\[\text{syms x(t) y(t) f(t)} \]
\[\text{eqs} = [\text{diff}(x(t), t, t) == \text{diff}(f(t), t, t), \text{diff}(y(t), t, t) == \text{diff}(f(t), t, t)]; \]
\[\text{vars} = [x(t), y(t)]; \]

Call \text{reduceDifferentialOrder} with three output arguments. This syntax returns matrix \(R \) with two columns: the first column contains the new variables, and the second column expresses the new variables as derivatives of the original variables, \(x(t) \) and \(y(t) \).
[newEqs, newVars, R] = reduceDifferentialOrder(eqs, vars)

newEqs =
 diff(Dxt(t), t) - diff(f(t), t, t, t)
 diff(Dytt(t), t) - diff(f(t), t, t)
 Dxt(t) - diff(x(t), t)
 Dyt(t) - diff(y(t), t)
 Dytt(t) - diff(Dyt(t), t)

newVars =
 x(t)
 y(t)
 Dxt(t)
 Dyt(t)
 Dytt(t)

R =
[Dxt(t), diff(x(t), t)]
[Dyt(t), diff(y(t), t)]
[Dytt(t), diff(y(t), t, t)]

Input Arguments

eqs — System containing higher-order differential equations
vector of symbolic equations | vector of symbolic expressions

System containing higher-order differential equations, specified as a vector of symbolic equations or expressions.

vars — Variables of original differential equations
vector of symbolic functions | vector of symbolic function calls

Variables of original differential equations, specified as a vector of symbolic functions, or function calls, such as x(t).
Example: [x(t), y(t)]

Output Arguments

newEqs — System of first-order differential equations
column vector of symbolic expressions
System of first-order differential equations, returned as a column vector of symbolic expressions.

newVars — Extended set of variables
column vector of symbolic function calls

Extended set of variables, returned as a column vector of symbolic function calls. This vector includes the original state variables `vars` followed by the generated variables that replace the higher-order derivatives in `eqs`.

R — Relations between new and original variables
symbolic matrix

Relations between new and original variables, returned as a symbolic matrix with two columns. The first column contains the new variables `newVars`. The second column contains their definition as derivatives of the original variables `vars`.

See Also
daefunction | decic | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE | reduceRedundancies

Introduced in R2014b
reduceRedundancies

Simplify system of first-order differential algebraic equations by eliminating redundant equations and variables

Syntax

[newEqs,newVars] = reduceRedundancies(eqs,vars)
[newEqs,newVars,R] = reduceRedundancies(eqs,vars)

Description

[newEqs,newVars] = reduceRedundancies(eqs,vars) eliminates simple equations from the system of first-order differential algebraic equations eqs. It returns a column vector newEqs of symbolic expressions and a column vector newVars of those variables that remain in the new DAE system newEqs. The expressions in newEqs represent equations with a zero right side.

[newEqs,newVars,R] = reduceRedundancies(eqs,vars) returns a structure array R containing information on the eliminated equations and variables.

Examples

Shorten DAE System by Removing Redundant Equations

Use reduceRedundancies to simplify a system of five differential algebraic equations in four variables to a system of two equations in two variables.

Create the following system of five differential algebraic equations in four state variables x1(t), x2(t), x3(t), and x4(t). The system also contains symbolic parameters a1, a2, a3, a4, b, c, and the function f(t) that is not a state variable.

```matlab
syms x1(t) x2(t) x3(t) x4(t) a1 a2 a3 a4 b c f(t)
eqs = [a1*diff(x1(t),t)+a2*diff(x2(t),t) == b*x4(t),...
a3*diff(x2(t),t)+a4*diff(x3(t),t) == c*x4(t),...
x1(t) == 2*x2(t),...]
```
Use `reduceRedundancies` to eliminate redundant equations and corresponding state variables.

```
[newEqs, newVars] = reduceRedundancies(eqs, vars)
```

```
newEqs =
a1*diff(x1(t), t) + (a2*diff(x1(t), t))/2 - b*f(t)
(a3*diff(x1(t), t))/2 + a4*diff(x3(t), t) - c*f(t)
```

```
newVars =
x1(t)
x3(t)
```

Obtain Information About Eliminated Equations

Call `reduceRedundancies` with three output arguments to simplify a system and return information about eliminated equations.

Create the following system of five differential algebraic equations in four state variables \(x_1(t), x_2(t), x_3(t), \) and \(x_4(t) \). The system also contains symbolic parameters \(a_1, a_2, a_3, a_4, b, c \), and the function \(f(t) \) that is not a state variable.

```
syms x1(t) x2(t) x3(t) x4(t) a1 a2 a3 a4 b c f(t)
eqs = [a1*diff(x1(t), t)+a2*diff(x1(t), t))/2 - b*f(t)
(a3*diff(x2(t), t))/2 + a4*diff(x3(t), t) - c*f(t)
```

```
newEqs =
a1*diff(x1(t), t) + (a2*diff(x1(t), t))/2 - b*f(t)
(a3*diff(x2(t), t))/2 + a4*diff(x3(t), t) - c*f(t)
```

```
newVars =
x1(t)
```
Here, R is a structure array with four fields. The **solvedEquations** field contains equations that **reduceRedundancies** used to replace those state variables from **vars** that do not appear in **newEqs**.

R.solvedEquations

ans =
\[
x1(t) - 2*x2(t)
\]
\[
x4(t) - f(t)
\]

The **constantVariables** field contains a matrix with the following two columns. The first column contains those state variables from **vars** that **reduceRedundancies** replaced by constant values. The second column contains the corresponding constant values.

R.constantVariables

ans =
\[
\begin{bmatrix}
x4(t) \\
f(t)
\end{bmatrix}
\]

The **replacedVariables** field contains a matrix with the following two columns. The first column contains those state variables from **vars** that **reduceRedundancies** replaced by expressions in terms of other variables. The second column contains the corresponding values of the eliminated variables.

R.replacedVariables

ans =
\[
\begin{bmatrix}
x2(t) \\
x1(t)/2
\end{bmatrix}
\]

The **otherEquations** field contains those equations from **eqs** that do not contain any of the state variables **vars**.

R.otherEquations

ans =
\[f(t) = \sin(t) \]

Input Arguments

eqs — System of first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order DAEs, specified as a vector of symbolic equations or expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as \(x(t) \).
Example: \([x(t), y(t)]\)

Output Arguments

newEqs — System of first-order DAEs
column vector of symbolic expressions

System of first-order DAEs, returned as a column vector of symbolic expressions

newVars — Reduced set of variables
column vector of symbolic function calls

Reduced set of variables, returned as a column vector of symbolic function calls.

R — Information about eliminated variables
structure array

Information about eliminated variables, returned as a structure array. To access this information, use:

- \(R.solvedEquations \) to return a symbolic column vector of all equations that \(\text{reduceRedundancies} \) used to replace those state variables that do not appear in \(\text{newEqs} \).
- \(R.constantVariables \) to return a matrix with the following two columns. The first column contains those original state variables of the vector \(\text{vars} \) that were eliminated
and replaced by constant values. The second column contains the corresponding constant values.

- `R.replacedVariables` to return a matrix with the following two columns. The first column contains those original state variables of the vector `vars` that were eliminated and replaced in terms of other variables. The second column contains the corresponding values of the eliminated variables.

- `R.otherEquations` to return a column vector containing all original equations `eqs` that do not contain any of the input variables `vars`.

See Also

daeFunction | decic | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder

Introduced in R2014b
rem

Remainder after division

Syntax

rem(a,b)

Description

rem(a,b) finds the remainder after division. If b <> 0, then rem(a,b) = a - fix(a/b)*b. If b = 0 or b = Inf or b = -Inf, then rem returns NaN.

The rem function does not support complex numbers: all values must be real numbers.

To find the remainder after division of polynomials, use quorem.

Examples

Divide Integers by Integers

Find the remainder after division in case both the dividend and divisor are integers.

Find the modulus after division for these numbers.

[rem(sym(27), 4), rem(sym(27), -4), rem(sym(-27), 4), rem(sym(-27), -4)]

ans =
[3, 3, -3, -3]

Divide Rationals by Integers

Find the remainder after division in case the dividend is a rational number, and the divisor is an integer.

Find the remainder after division for these numbers.
\[
\text{rem}\left(\text{sym}\left(\frac{22}{3}, 5\right), \text{sym}\left(\frac{1}{2}, -7\right), \text{sym}\left(\frac{27}{6}, -11\right)\right)
\]
\[
\text{ans} =
[\frac{7}{3}, \frac{1}{2}, \frac{9}{2}]
\]

Divide Elements of Matrices

For vectors and matrices, `rem` finds the remainder after division element-wise. Non scalar arguments must be the same size.

Find the remainder after division for the elements of these two matrices.

\[
A = \text{sym}\left([27, 28; 29, 30]\right);
B = \text{sym}\left([2, 3; 4, 5]\right);
\text{rem}(A,B)
\]
\[
\text{ans} =
[1, 1]
[1, 0]
\]

Find the remainder after division for the elements of matrix A and the value 9. Here, `rem` expands 9 into the 2-by-2 matrix with all elements equal to 9.

\[
\text{rem}(A,9)
\]
\[
\text{ans} =
[0, 1]
[2, 3]
\]

Input Arguments

- **a** — **Dividend (numerator)**
 number | symbolic number | vector | matrix

 Dividend (numerator), specified as a number, symbolic number, or a vector or matrix of numbers or symbolic numbers.

- **b** — **Divisor (denominator)**
 number | symbolic number | vector | matrix

 Divisor (denominator), specified as a number, symbolic number, or a vector or matrix of numbers or symbolic numbers.
More About

Tips

• Calling \texttt{rem} for numbers that are not symbolic objects invokes the MATLAB \texttt{rem} function.

• All nonscalar arguments must be the same size. If one input arguments is nonscalar, then \texttt{mod} expands the scalar into a vector or matrix of the same size as the nonscalar argument, with all elements equal to the corresponding scalar.

See Also
\texttt{mod} | \texttt{quorem}

Introduced before R2006a
reset

Close MuPAD engine

Syntax

reset(symengine)

Description

reset(symengine) closes the MuPAD engine associated with the MATLAB workspace, and resets all its assumptions. Immediately before or after executing reset(symengine) you should clear all symbolic objects in the MATLAB workspace.

See Also

symengine

Introduced in R2008b
reshape

Reshape symbolic array

Syntax

\[
\text{reshape}(A,n1,n2) \\
\text{reshape}(A,n1,\ldots,nM) \\
\text{reshape}(A,\ldots,[\],\ldots) \\
\text{reshape}(A,sz)
\]

Description

\text{reshape}(A,n1,n2) returns the \(n1\)-by-\(n2\) matrix, which has the same elements as \(A\). The elements are taken column-wise from \(A\) to fill in the elements of the \(n1\)-by-\(n2\) matrix.

\text{reshape}(A,n1,\ldots,nM) returns the \(n1\)-by-\ldots-by-\(nM\) array, which has the same elements as \(A\). The elements are taken column-wise from \(A\) to fill in the elements of the \(n1\)-by-\ldots-by-\(nM\) array.

\text{reshape}(A,\ldots,[\],\ldots) lets you represent a size value with the placeholder [] while calculating the magnitude of that size value automatically. For example, if \(A\) has size 2-by-6, then \text{reshape}(A,4,[]) returns a 4-by-3 array.

\text{reshape}(A,sz) reshapes \(A\) into an array with size specified by \(sz\), where \(sz\) is a vector.

Examples

Reshape Symbolic Row Vector into Column Vector

Reshape \(V\), which is a 1-by-4 row vector, into the 4-by-1 column vector \(Y\). Here, \(V\) and \(Y\) must have the same number of elements.

Create the vector \(V\).
syms f(x) y
V = [3 f(x) -4 y]

V =
[3, f(x), -4, y]

Reshape V into Y.
Y = reshape(V,4,1)

Y =
 3
f(x)
 -4
 y

Alternatively, use Y = V.' where .’ is the nonconjugate transpose.

Reshape Symbolic Matrix

Reshape the 2-by-6 symbolic matrix M into a 4-by-3 matrix.

M = sym([1 9 4 3 0 1; 3 9 5 1 9 2])
N = reshape(M,4,3)

M =
[1, 9, 4, 3, 0, 1]
[3, 9, 5, 1, 9, 2]

N =
[1, 4, 0]
[3, 5, 9]
[9, 3, 1]
[9, 1, 2]

M and N must have the same number of elements. reshape reads M column-wise to fill in the elements of N column-wise.

Alternatively, use a size vector to specify the dimensions of the reshaped matrix.

sz = [4 3];
N = reshape(M,sz)

N =
Automatically Set Dimension of Reshaped Matrix

When you replace a dimension with the placeholder [], \texttt{reshape} calculates the required magnitude of that dimension to reshape the matrix.

Create the matrix \(M \).

\[
M = \text{sym}([1 \ 9 \ 4 \ 3 \ 0 \ 1; 3 \ 9 \ 5 \ 1 \ 9 \ 2])
\]

\[
M =
\begin{bmatrix}
1 & 9 & 4 & 3 & 0 & 1 \\
3 & 9 & 5 & 1 & 9 & 2
\end{bmatrix}
\]

Reshape \(M \) into a matrix with three columns.

\[
\text{reshape}(M,[],3)
\]

\[
\text{ans} =
\begin{bmatrix}
1 & 4 & 0 \\
3 & 5 & 9 \\
9 & 3 & 1 \\
9 & 1 & 2
\end{bmatrix}
\]

\texttt{reshape} calculates that a reshaped matrix of three columns needs four rows.

Reshape Matrix Row-wise

Reshape a matrix row-wise by transposing the result.

Create matrix \(M \).

\[
syms x \\
M = \text{sym}([1 \ 9 \ 0 \ \sin(x) \ 2 \ 2; NaN \ x \ 5 \ 1 \ 4 \ 7])
\]

\[
M =
\begin{bmatrix}
1 & 9 & 0 & \sin(x) & 2 & 2 \\
\text{NaN} & x & 5 & 1 & 4 & 7
\end{bmatrix}
\]
Reshape M row-wise by transposing the result.

\[\text{reshape}(M, 4, 3).' \]

\[
\begin{bmatrix}
1 & \text{NaN} & 9 & x \\
0 & 5 & \sin(x) & 1 \\
2 & 4 & 2 & 7
\end{bmatrix}
\]

Note that .\(^t\) returns the non-conjugate transpose while .\('\) returns the conjugate transpose.

Reshape 3-D Array into 2-D Matrix

Reshape the 3-by-3-by-2 array \(M \) into a 9-by-2 matrix.

\(M \) has 18 elements. Because a 9-by-2 matrix also has 18 elements, \(M \) can be reshaped into it. Construct \(M \).

```matlab
syms x
M = [\sin(x) \ x \ 4; 3 \ 2 \ 9; 8 \ x \ x];
M(:,:,2) = M';

M(:,:,1) =
[ \sin(x), x, 4 ]
[ 3, 2, 9 ]
[ 8, x, x ]
M(:,:,2) =
[ \sin(\text{conj}(x)), 3, 8 ]
[ \text{conj}(x), 2, \text{conj}(x) ]
[ 4, 9, \text{conj}(x) ]
```

Reshape \(M \) into a 9-by-2 matrix.

\(N = \text{reshape}(M, 9, 2) \)

\[
\begin{bmatrix}
\sin(x) & \sin(\text{conj}(x)) \\
3 & \text{conj}(x) \\
8 & 4 \\
x & 3 \\
2 & 2 \\
x & 9 \\
4 & 8 \\
9 & \text{conj}(x)
\end{bmatrix}
\]
Use reshape to Break Up Arrays

Use `reshape` instead of loops to break up arrays for further computation. Use `reshape` to break up the vector `V` to find the product of every three elements.

Create vector `V`.

```matlab
syms x
V = [exp(x) 1 3 9 x 2 7 7 1 8 x^2 3 4 sin(x) x]
```

Specify 3 for the number of rows. Use the placeholder `[]` for the number of columns. This lets `reshape` automatically calculate the number of columns required for three rows.

```matlab
M = prod( reshape(V,3,[]) )
```

`reshape` calculates that five columns are required for a matrix of three rows. `prod` then multiples the elements of each column to return the result.

Input Arguments

- **A** — Input array
 - symbolic vector | symbolic matrix | symbolic multidimensional array

Input array, specified as a symbolic vector, matrix, or multidimensional array.

- **n1, n2** — Dimensions of reshaped matrix
 - comma-separated scalars

Dimensions of reshaped matrix, specified as comma-separated scalars. For example, `reshape(A,3,2)` returns a 3-by-2 matrix. The number of elements in the output array specified by `n1, n2` must be equal to `numel(A)`.

- **n1, . . . , nM** — Dimensions of reshaped array
 - comma-separated scalars
Dimensions of reshaped array, specified as comma-separated scalars. For example, \(\text{reshape}(A,3,2,2) \) returns a 3-by-2-by-2 matrix. The number of elements in the output array specified by \(n_1, \ldots, n_M \) must be equal to \(\text{numel}(A) \).

sz — Size of reshaped array
numeric vector

Size of reshaped array, specified as a numeric vector. For example, \(\text{reshape}(A,[3 \ 2]) \) returns a 3-by-2 matrix. The number of elements in the output array specified by \(sz \) must be equal to \(\text{numel}(A) \).

See Also
colon | numel | transpose

Introduced before R2006a
rewrite

Rewrite expression in new terms

Syntax

```plaintext
rewrite(expr,target)
rewrite(A,target)
```

Description

`rewrite(expr,target)` rewrites the symbolic expression `expr` in terms of `target`. The returned expression is mathematically equivalent to the original expression.

`rewrite(A,target)` rewrites each element of `A` in terms of `target`.

Input Arguments

`expr`
Symbolic expression.

`A`
Vector or matrix of symbolic expressions.

`target`
One of these strings: `exp`, `log`, `sincos`, `sin`, `cos`, `tan`, `sqrt`, or `heaviside`.

Examples

Rewrite these trigonometric functions in terms of the exponential function:

```plaintext
syms x
rewrite(sin(x), 'exp')
rewrite(cos(x), 'exp')
```
rewrite(tan(x), 'exp')
ans =
(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2

ans =
exp(-x*1i)/2 + exp(x*1i)/2

ans =
-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)

Rewrite the tangent function in terms of the sine function:

syms x
rewrite(tan(x), 'sin')
ans =
-sin(x)/(2*sin(x/2)^2 - 1)

Rewrite the hyperbolic tangent function in terms of the sine function:

syms x
rewrite(tanh(x), 'sin')
ans =
(sinx*1i*1i)/(2*sin((x*1i)/2)^2 - 1)

Rewrite these inverse trigonometric functions in terms of the natural logarithm:

syms x
rewrite(acos(x), 'log')
rewrite(acot(x), 'log')
ans =
-log(x + (1 - x^2)^^(1/2)*1i)*1i

ans =
(log(1 - 1i/x)*1i)/2 - (log(1i/x + 1)*1i)/2

Rewrite the rectangular pulse function in terms of the Heaviside step function:

syms a b x
rewrite(rectangularPulse(a, b, x), 'heaviside')
ans =
heaviside(x - a) - heaviside(x - b)
Rewrite the triangular pulse function in terms of the Heaviside step function:

```matlab
syms a b c x
rewrite(triangularPulse(a, b, c, x), 'heaviside')
```

```matlab
ans =
(heaviside(x - a)*(a - x))/(a - b) - (heaviside(x - b)*(a - x))/(a - b)... - (heaviside(x - b)*(c - x))/(b - c) + (heaviside(x - c)*(c - x))/(b - c)
```

Call `rewrite` to rewrite each element of this matrix of symbolic expressions in terms of the exponential function:

```matlab
syms x
A = [sin(x) cos(x); sinh(x) cosh(x)];
rewrite(A, 'exp')
```

```matlab
ans =
[ (exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2, exp(-x*1i)/2 + exp(x*1i)/2]
[ exp(x)/2 - exp(-x)/2, exp(-x)/2 + exp(x)/2]
```

Rewrite the cosine function in terms of sine function. Here `rewrite` replaces the cosine function using the identity \(\cos(2x) = 1 - 2\sin(x)^2\) which is valid for any \(x\):

```matlab
syms x
rewrite(cos(x),'sin')
```

```matlab
ans =
1 - 2*sin(x/2)^2
```

`rewrite` does not replace the sine function with either \(-\sqrt{1-\cos^2(x)}\) or \(\sqrt{1-\cos^2(x)}\) because these expressions are only valid for \(x\) within particular intervals:

```matlab
syms x
rewrite(sin(x),'cos')
```

```matlab
ans =
sin(x)
```

More About

Tips

- `rewrite` replaces symbolic function calls in `expr` with the target function only if such replacement is mathematically valid. Otherwise, it keeps the original function calls.
• “Choose Function to Rearrange Expression” on page 2-61

See Also
collect | combine | expand | factor | horner | numden | simplify | simplifyFraction

Introduced in R2012a
root

Represent roots of polynomial

Syntax

\[
\text{root}(p, x) \\
\text{root}(p, x, k)
\]

Description

\(\text{root}(p, x) \) returns a column vector of numbered roots of symbolic polynomial \(p \) with respect to \(x \). Symbolically solving a high-degree polynomial for its roots can be complex or mathematically impossible. In this case, the Symbolic Math Toolbox uses the \text{root} function to represent the roots of the polynomial.

\(\text{root}(p, x, k) \) represents the \(k \)th root of symbolic polynomial \(p \) with respect to \(x \).

Examples

Represent Roots of High-Degree Polynomial

Represent the roots of the polynomial \(x^3 + 1 \) using \text{root}. The \text{root} function returns a column vector. The elements of this vector represent the three roots of the polynomial.

\begin{verbatim}
syms x
p = x^3 + 1;
root(p, x)
\end{verbatim}

\text{ans} =

\[
\begin{align*}
\text{root}(x^3 + 1, x, 1) \\
\text{root}(x^3 + 1, x, 2) \\
\text{root}(x^3 + 1, x, 3)
\end{align*}
\]

\text{root}(x^3 + 1, x, 1) represents the first root of \(p \), while \text{root}(x^3 + 1, x, 2) represents the second root, and so on. Use this syntax to conveniently represent roots of high-degree polynomials.
Find Roots of High-Degree Polynomial

Solve for the roots of a high-degree polynomial. The `solve` function represents the roots with `root`.

```matlab
syms x
p = x^5 + x^4 - 3;
S = solve(p,x)
```

```matlab
S =
    root(z^5 + z^4 - 3, z, 1)
    root(z^5 + z^4 - 3, z, 2)
    root(z^5 + z^4 - 3, z, 3)
    root(z^5 + z^4 - 3, z, 4)
    root(z^5 + z^4 - 3, z, 5)
```

When the `root` function is returned in output, you can use the `root` function as input in subsequent symbolic calculations. However, if a numerical result is required, convert the `root` function to a high-precision numeric result using `vpa`.

Find the roots of `p` by converting `S` to numeric form using `vpa`.

```matlab
S_vpa = vpa(S)
```

```matlab
S_vpa =
    1.0940419373839833208629604782883
    -1.2635458567287355027456460225178 + 0.66843435297180629866904635857054i
    0.21652488803674384231416578337365 - 1.13802045471085059542369880451351i
    -1.2635458567287355027456460225178 - 0.66843435297180629866904635857054i
    0.21652488803674384231416578337365 + 1.13802045471085059542369880451351i
```

If the call to `root` contains parameters, substitute the parameters with numbers using `subs` before calling `vpa`.

Use `root` in Symbolic Computations

You can use the `root` function as input to Symbolic Math Toolbox functions such as `simplify`, `subs`, and `diff`.

Simplify an expression containing `root` using the `simplify` function.

```matlab
syms x
r = root(x^6 + x, x, 1);
```
simplify(sin(r)^2 + cos(r)^2)
ans =
1

Substitute for parameters in root with numbers using subs.

syms b
subs(root(x^2 + b*x, x, 1), b, 5)
ans =
root(x^2 + 5*x, x, 1)

Substituting for parameters using subs is necessary before converting root to numeric form using vpa.

Differentiate an expression containing root with respect to a parameter using diff.

diff(root(x^2 + b*x, x, 1), b)
ans =
root(b^2*x^2 + b^2*x, x, 1)

Find Inverse Laplace Transform of Ratio of Polynomials

Find the inverse Laplace transform of a ratio of two polynomials using ilaplace. The inverse Laplace transform is returned in terms of root.

syms s
G = (s^3 + 1)/(s^6 + s^5 + s^2);
H = ilaplace(G)

H =
t - symsum(exp(root(s3^4 + s3^3 + 1, s3, k)*t)/...
(4*root(s3^4 + s3^3 + 1, s3, k) + 3), k, 1, 4)

When you get the root function in output, you can use the root function as input in subsequent symbolic calculations. However, if a numerical result is required, convert the root function to a high-precision numeric result using vpa.

Convert the inverse Laplace transform to numeric form using vpa and simplify the result using simplify.

H_vpa = simplify(vpa(H))
H_vpa =
t - 0.30881178580997278695808136329347*exp(0.51891279438515584478645795886366*t)*...
cos(0.666609844932018579153758800733*t) - 0.162230988262445944590304019473*...
exp(0.51891279438515584478645795886366*t)*sin(0.666609844932018579153758800733*t) +...
0.30881178580997278695808136329347*exp(-1.01891279438515584478645795886366*t)*...
cos(0.60256541999859902604398442197193*t) - 0.69196894793554437794633555813596*...
exp(-1.01891279438515584478645795886366*t)*sin(0.60256541999859902604398442197193*t)

Input Arguments

p — Symbolic polynomial
symbolic expression

Symbolic polynomial, specified as a symbolic expression.

x — Variable
symbolic variable

Variable, specified as a symbolic variable.

k — Number of polynomial root
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
| symbolic matrix | symbolic multidimensional array

Number of polynomial root, specified as a number, vector, matrix, multidimensional
array, or a symbolic number, vector, matrix, or multidimensional array. When k is a
nonscalar, root acts elementwise on k.

Example: root(f, x, 3) represents the third root of f.

See Also
solve | vpa

Introduced in R2015b
round
Symbolic matrix element-wise round

Syntax

\[Y = \text{round}(X) \]

Description

\[Y = \text{round}(X) \] rounds the elements of \(X \) to the nearest integers. Values halfway between two integers are rounded away from zero.

Examples

\[x = \text{sym}(-5/2); \]
\[[\text{fix}(x) \ \text{floor}(x) \ \text{round}(x) \ \text{ceil}(x) \ \text{frac}(x)] \]
\[\text{ans} = \]
\[[-2, -3, -3, -2, -1/2] \]

See Also

floor | ceil | fix | frac

Introduced before R2006a
rref

Reduced row echelon form of matrix (Gauss-Jordan elimination)

Syntax

rref(A)

Description

rref(A) computes the reduced row echelon form of the symbolic matrix A. If the elements of a matrix contain free symbolic variables, rref regards the matrix as nonzero.

To solve a system of linear equations, use linsolve.

Examples

Compute the reduced row echelon form of the magic square matrix:

rref(sym(magic(4)))

ans =
[1, 0, 0, 1]
[0, 1, 0, 3]
[0, 0, 1, -3]
[0, 0, 0, 0]

Compute the reduced row echelon form of the following symbolic matrix:

sym a b c
A = [a b c; b c a; a + b, b + c, c + a];
rref(A)

ans =
[1, 0, -(- c^2 + a*b)/(- b^2 + a*c)]
[0, 1, -(- a^2 + b*c)/(- b^2 + a*c)]
[0, 0, 0]
See Also
eig | jordan | rank | size | linsolve

Introduced before R2006a
rsums

Interactive evaluation of Riemann sums

Syntax

rsums(f)
rsums(f,a,b)
rsums(f,[a,b])

Description

rsums(f) interactively approximates the integral of \(f(x) \) by Middle Riemann sums for \(x \) from 0 to 1. rsums(f) displays a graph of \(f(x) \) using 10 terms (rectangles). You can adjust the number of terms taken in the Middle Riemann sum by using the slider below the graph. The number of terms available ranges from 2 to 128. \(f \) can be a string or a symbolic expression. The height of each rectangle is determined by the value of the function in the middle of each interval.

rsums(f,a,b) and rsums(f,[a,b]) approximates the integral for \(x \) from \(a \) to \(b \).

Examples

Visualize Riemann Sums

Use rsums('exp(-5*x^2)') or rsums exp(-5*x^2) to create the following plot.

rsums exp(-5*x^2)
Introduced before R2006a
sec

Symbolic secant function

Syntax

sec(X)

Description

sec(X) returns the secant function of X.

Examples

Secant Function for Numeric and Symbolic Arguments

Depending on its arguments, sec returns floating-point or exact symbolic results.

Compute the secant function for these numbers. Because these numbers are not symbolic objects, sec returns floating-point results.

A = sec([-2, -pi, pi/6, 5*pi/7, 11])

A =
-2.4030 -1.0000 1.1547 -1.6039 225.9531

Compute the secant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, sec returns unresolved symbolic calls.

symA = sec(sym([-2, -pi, pi/6, 5*pi/7, 11]))

symA =
[1/cos(2), -1, (2*3^(1/2))/3, -1/cos((2*pi)/7), 1/cos(11)]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-2.4029979617223809897546004014201,...
-1.0,...
1.1547005383792515290182975610039,...
-1.6038754716096765049444092780298,...
225.95305931402493269037542703557]

Plot Secant Function

Plot the secant function on the interval from -4π to 4π.

```matlab
syms x
ezplot(sec(x), [-4*pi, 4*pi])
grid on
```
Handle Expressions Containing Secant Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `sec`.

Find the first and second derivatives of the secant function:

```matlab
syms x
diff(sec(x), x)
diff(sec(x), x, x)
```

```matlab
ans =
    sin(x)/cos(x)^2
```
Find the indefinite integral of the secant function:
\[
\text{int}(\sec(x), \ x) \\
\text{ans} = \log(1/\cos(x)) + \log(\sin(x) + 1)
\]
Find the Taylor series expansion of \(\sec(x)\):
\[
\text{taylor}(\sec(x), \ x) \\
\text{ans} = (5x^4)/24 + x^2/2 + 1
\]
Rewrite the secant function in terms of the exponential function:
\[
\text{rewrite}(\sec(x), \ 'exp') \\
\text{ans} = 1/(\exp(-x\cdot\text{i})/2 + \exp(x\cdot\text{i})/2)
\]

Input Arguments

X — Input

- symbolic number
- symbolic variable
- symbolic expression
- symbolic function
- symbolic vector
- symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Secant Function

The secant of an angle, \(\alpha\), defined with reference to a right angled triangle is
\[
\sec(\alpha) = \frac{1}{\cos(\alpha)} = \frac{\text{hypotenuse}}{\text{adjacent side}} = \frac{h}{b}.
\]
The secant of a complex angle, α, is

$$\sec(\alpha) = \frac{2}{e^{i\alpha} + e^{-i\alpha}}.$$

See Also

acos | acot | acsc | asec | asin | atan | cos | cot | csc | sin | tan

Introduced before R2006a
sech
Symbolic hyperbolic secant function

Syntax
sech(X)

Description
sech(X) returns the hyperbolic secant function of X.

Examples

Hyperbolic Secant Function for Numeric and Symbolic Arguments

Depending on its arguments, sech returns floating-point or exact symbolic results.

Compute the hyperbolic secant function for these numbers. Because these numbers are not symbolic objects, sech returns floating-point results.

A = sech([-2, -pi*i, pi*i/6, 0, pi*i/3, 5*pi*i/7, 1])
A =
0.2658 -1.0000 1.1547 1.0000 2.0000 -1.6039 0.6481

Compute the hyperbolic secant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, sech returns unresolved symbolic calls.

symA = sech(sym([-2, -pi*i, pi*i/6, 0, pi*i/3, 5*pi*i/7, 1]))
symA =
[1/cosh(2), -1, (2*3^(1/2))/3, 1, 2, -1/cosh((pi*2i)/7), 1/cosh(1)]

Use vpa to approximate symbolic results with floating-point numbers:
Plot Hyperbolic Secant Function

Plot the hyperbolic secant function on the interval from -10 to 10.

```plaintext
syms x
ezplot(sech(x), [-10, 10])
grid on
```
Handle Expressions Containing Hyperbolic Secant Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `sech`.

Find the first and second derivatives of the hyperbolic secant function:

```matlab
syms x
diff(sech(x), x)
diff(sech(x), x, x)
```

```matlab
ans =
-sinh(x)/cosh(x)^2
```
\[
\text{ans} = \\
\frac{2\sinh(x)^2}{\cosh(x)^3} - \frac{1}{\cosh(x)}
\]

Find the indefinite integral of the hyperbolic secant function:

\[
\text{int}(\text{sech}(x), x)
\]

\[
\text{ans} = \\
2\text{atan}(\exp(x))
\]

Find the Taylor series expansion of \text{sech}(x):

\[
\text{taylor}(\text{sech}(x), x)
\]

\[
\text{ans} = \\
\frac{5x^4}{24} - \frac{x^2}{2} + 1
\]

Rewrite the hyperbolic secant function in terms of the exponential function:

\[
\text{rewrite}(\text{sech}(x), '\exp')
\]

\[
\text{ans} = \\
\frac{1}{\left(\exp(-x)/2 + \exp(x)/2\right)}
\]

Input Arguments

\(X\) — Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sinh | tanh

Introduced before R2006a
series

Puiseux series

Syntax

series(f,var)
series(f,var,a)
series(____,Name,Value)

Description

series(f,var) approximates f with the Puiseux series expansion of f up to the fifth order at the point var = 0. If you do not specify var, then series uses the default variable determined by symvar(f,1).

series(f,var,a) approximates f with the Puiseux series expansion of f at the point var = a.

series(____,Name,Value) uses additional options specified by one or more Name,Value pair arguments. You can specify Name,Value after the input arguments in any of the previous syntaxes.

Examples

Find Puiseux Series Expansion

Find the Puiseux series expansions of univariate and multivariate expressions.

Find the Puiseux series expansion of this expression at the point x = 0.

syms x
series(1/sin(x), x)

ans =
Find the Puiseux series expansion of this multivariate expression. If you do not specify
the expansion variable, `series` uses the default variable determined by `symvar(f, 1)`.

```matlab
sym s t
f = sin(s)/sin(t);
symvar(f, 1)
series(f)
```

```matlab
ans =
t
```

```matlab
ans =
sin(s)/t + (7*t^3*sin(s))/360 + (t*sin(s))/6
```

To use another expansion variable, specify it explicitly.

```matlab
sym s t
f = sin(s)/sin(t);
series(f, s)
```

```matlab
ans =
s^5/(120*sin(t)) - s^3/(6*sin(t)) + s/sin(t)
```

Specify Expansion Point

Find the Puiseux series expansion of `psi(x)` around `x = Inf`. The default expansion
point is 0. To specify a different expansion point, use the `ExpansionPoint` name-value
pair.

```matlab
series(psi(x), x, 'ExpansionPoint', Inf)
```

```matlab
ans =
log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4)
```

Alternatively, specify the expansion point as the third argument of `series`.

```matlab
sym x
series(psi(x), x, Inf)
```

```matlab
ans =
log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4)
```
Specify Truncation Order

Find the Puiseux series expansion of \(\exp(x)/x \) using different truncation orders.

Find the series expansion up to the default truncation order 6.

```matlab
syms x
f = exp(x)/x;
s6 = series(f, x)

s6 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + 1

Use Order to control the truncation order. For example, approximate the same expression up to the orders 7 and 8.

s7 = series(f, x, 'Order', 7)
s8 = series(f, x, 'Order', 8)

s7 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + x^5/720 + 1

s8 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + x^5/720 + x^6/5040 + 1

Plot the original expression \( f \) and its approximations \( s6, s7, \) and \( s8 \). Note how the accuracy of the approximation depends on the truncation order.

```matlab
ezplot(s6)
hold on
dezplot(s7)
dezplot(s8)
dezplot(f)
exlim([-5 5])

legend('approximation up to O(x^6)',...'
'approximation up to O(x^7)',...
'approximation up to O(x^8)',...
'exp(x)/x',...
'Location', 'Best');

title('Puiseux Series Expansion')
hold off
Specify Direction of Expansion

Find the Puiseux series approximations using the Direction argument. This argument lets you change the convergence area, which is the area where series tries to find converging Puiseux series expansion approximating the original expression.

Find the Puiseux series approximation of this expression. By default, series finds the approximation that is valid in a small open circle in the complex plane around the expansion point.

```matlab
syms x
series(sin(sqrt(-x)), x)
```
ans =
(-x)^(1/2) - (-x)^(3/2)/6 + (-x)^(5/2)/120

Find the Puiseux series approximation of the same expression that is valid in a small interval to the left of the expansion point. Then, find an approximation that is valid in a small interval to the right of the expansion point.

syms x
series(sin(sqrt(-x)), x)
series(sin(sqrt(-x)), x, 'Direction', 'left')
series(sin(sqrt(-x)), x, 'Direction', 'right')

ans =
(-x)^(1/2) - (-x)^(3/2)/6 + (-x)^(5/2)/120

ans =
-x^(1/2)*1i - (x^(3/2)*1i)/6 - (x^(5/2)*1i)/120

ans =
x^(1/2)*1i + (x^(3/2)*1i)/6 + (x^(5/2)*1i)/120

Try computing the Puiseux series approximation of this expression. By default, series tries to find an approximation that is valid in the complex plane around the expansion point. For this expression, such approximation does not exist.

series(real(sin(x)), x)

Error using sym/series>scalarSeries (line 90)
Cannot compute a series expansion of the input.

However, the approximation exists along the real axis, to both sides of \(x = 0 \).

series(real(sin(x)), x, 'Direction', 'realAxis')

ans =
x^5/120 - x^3/6 + x

Input Arguments

- **f** — Input to approximate
 symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic multidimensional array
Input to approximate, specified as a symbolic expression or function. It also can be a vector, matrix, or multidimensional array of symbolic expressions or functions.

var — Expansion variable

symbolic variable

Expansion variable, specified as a symbolic variable. If you do not specify var, then `series` uses the default variable determined by `symvar(f,1)`.

a — Expansion point

0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable.

You also can specify the expansion point as a Name,Value pair argument. If you specify the expansion point both ways, then the Name,Value pair argument takes precedence.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes ('). You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `series(psi(x),x,'ExpansionPoint',Inf,'Order',9)`

'ExpansionPoint' — Expansion point

0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable.

You can also specify the expansion point using the input argument a. If you specify the expansion point both ways, then the Name,Value pair argument takes precedence.

'Order' — Truncation order of Puiseux series expansion

6 (default) | positive integer | symbolic positive integer

Truncation order of Puiseux series expansion, specified as a positive integer or a symbolic positive integer.
series computes the Puiseux series approximation with the order $n - 1$. The truncation order n is the exponent in the O-term: $O(var^n)$.

'Direction' — Direction for area of convergence of Puiseux series expansion

'default' | 'left' | 'right' | 'realAxis'

Direction for area of convergence of Puiseux series expansion, specified as one of the following strings:

- 'left' — Find a Puiseux series approximation that is valid in a small interval to the left of the expansion point.
- 'right' — Find a Puiseux series approximation that is valid in a small interval to the right of the expansion point.
- 'realAxis' — Find a Puiseux series approximation that is valid in a small interval on the both sides of the expansion point.
- 'complexPlane' — Find a Puiseux series approximation that is valid in a small open circle in the complex plane around the expansion point. This is the default value.

More About

Tips

- If you use both the third argument `a` and the `ExpansionPoint` name-value pair to specify the expansion point, the value specified via `ExpansionPoint` prevails.

See Also

pade | taylor

Introduced in R2015b
setVar

Assign variable in MuPAD notebook

Compatibility

setvar(nb,MATLABvar) has been removed. Use the three argument version setvar(nb,'MuPADvar',MATLABexpr) instead.

Syntax

setVar(nb,MATLABvar)
setVar(nb,'MuPADvar',MATLABexpr)

Description

setVar(nb,MATLABvar) copies the symbolic variable MATLABvar and its value in the MATLAB workspace to the variable MATLABvar in the MuPAD notebook nb.

setVar(nb,'MuPADvar',MATLABexpr) assigns the symbolic expression MATLABexpr in the MATLAB workspace to the variable MuPADvar in the MuPAD notebook nb.

Examples

Copy Variable and Its Value from MATLAB to MuPAD

Copy a variable y with a value \(\exp(-x) \) assigned to it from the MATLAB workspace to a MuPAD notebook. Do all three steps in the MATLAB Command Window.

Create the symbolic variable \(x \) and assign the expression \(\exp(-x) \) to \(y \):

```plaintext
syms x
y = exp(-x);
```

Create a new MuPAD notebook and specify a handle mpnb to that notebook:
mpnb = mupad;

Copy the variable \(y \) and its value \(\exp(-x) \) to the MuPAD notebook \(\text{mpnb} \):

```plaintext```
setVar(mpnb, 'y', y)
```

After executing this statement, the MuPAD engine associated with the \(\text{mpnb} \) notebook contains the variable \(y \), with its value \(\exp(-x) \).

Assign MATLAB Symbolic Expression to Variable in MuPAD

Working in the MATLAB Command Window, assign an expression \(t^2 + 1 \) to a variable \(g \) in a MuPAD notebook. Do all three steps in the MATLAB Command Window.

Create the symbolic variable \(t \):

```plaintext```
syms t
```

Create a new MuPAD notebook and specify a handle \(\text{mpnb} \) to that notebook:

```plaintext```
mpnb = mupad;
```

Assign the value \(t^2 + 1 \) to the variable \(g \) in the MuPAD notebook \(\text{mpnb} \):

```plaintext```
setVar(mpnb, 'g', t^2 + 1)
```

After executing this statement, the MuPAD engine associated with the \(\text{mpnb} \) notebook contains the variable \(g \), with its value \(t^2 + 1 \).

• “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-25

Input Arguments

\(nb \) — Pointer to MuPAD notebook

handle to notebook | vector of handles to notebooks

Pointer to a MuPAD notebook, specified as a MuPAD notebook handle or a vector of handles. You create the notebook handle when opening a notebook with the \(\text{mupad} \) or \(\text{openmn} \) function.

\(\text{MuPADVar} \) — Variable in MuPAD notebook

variable
Variable in a MuPAD notebook, specified as a variable.

MATLABvar — Variable in MATLAB workspace
symbolic variable

Variable in the MATLAB workspace, specified as a symbolic variable.

MATLABexpr — Expression in MATLAB workspace
symbolic expression

Expression in the MATLAB workspace, specified as a symbolic expression.

See Also
getVar | mupad | openmu

Introduced in R2008b
sign

Sign of real or complex value

Syntax

sign(z)

Description

sign(z) returns the sign of real or complex value z. The sign of a complex number z is defined as z/abs(z). If z is a vector or a matrix, sign(z) returns the sign of each element of z.

Examples

Signs of Real Numbers

Find the signs of these symbolic real numbers:

[sign(sym(1/2)), sign(sym(0)), sign(sym(pi) - 4)]

ans =
[1, 0, -1]

Signs of Matrix Elements

Find the signs of the real and complex elements of matrix A:

A = sym([(1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2]);

sign(A)

ans =
[5^(1/2)*(1/5 + 2i/5), -1]
[2^(1/2)*(-1/2 + 1i/2), 5^(1/2)*18^(1/2)*(1/30 - 1i/10)]
Sign of Symbolic Expression

Find the sign of this expression assuming that the value \(x \) is negative:

```matlab
syms x
assume(x < 0)
sign(5*x^3)
```

```
ans =
-1
```

For further computations, clear the assumption:

```matlab
syms x clear
```

Input Arguments

\(z \) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix.

More About

Sign Function

The sign function of any number \(z \) is defined via the absolute value of \(z \):

\[
\text{sign}(z) = \frac{z}{|z|}
\]

Thus, the sign function of a real number \(z \) can be defined as follows:

\[
\text{sign}(z) = \begin{cases}
-1 & \text{if } x < 0 \\
0 & \text{if } x = 0 \\
1 & \text{if } x > 0
\end{cases}
\]
Tips

- Calling `sign` for a number that is not a symbolic object invokes the MATLAB `sign` function.

See Also

`abs` | `angle` | `imag` | `real` | `signIm`

Introduced in R2013a
signIm

Sign of the imaginary part of complex number

Syntax

\[
\text{signIm}(z)
\]

Description

\[
\text{signIm}(z) \text{ returns the sign of the imaginary part of a complex number } z. \text{ For all complex numbers with a nonzero imaginary part, } \text{signIm}(z) = \text{sign(}\text{imag}(z))\text{. For real numbers, signIm}(z) = -sign(z).}
\]

\[
\text{signIm}(z) = \begin{cases}
1 & \text{if } \text{Im}(z) > 0 \text{ or } \text{Im}(z) = 0 \text{ and } z < 0 \\
0 & \text{if } z = 0 \\
-1 & \text{otherwise}
\end{cases}
\]

Examples

Symbolic Results Including signIm

Results of symbolic computations, especially symbolic integration, can include the signIm function.

Integrate this expression. For complex values \(a\) and \(x\), this integral includes \text{signIm}.

\[
\text{syms a x} \\
f = 1/(a^2 + x^2); \\
F = \text{int}(f, x, -\infty, \infty)
\]

\[
F =
\]
Function — Alphabetical List

\[(\pi \cdot \text{signIm}(1i/a))/a\]

Signs of Imaginary Parts of Numbers

Find the signs of imaginary parts of complex numbers with nonzero imaginary parts and of real numbers.

Use `signIm` to find the signs of imaginary parts of these numbers. For complex numbers with nonzero imaginary parts, `signIm` returns the sign of the imaginary part of the number.

\[\text{signIm}(-18 + 3i), \text{signIm}(-18 - 3i), \ldots\]
\[\text{signIm}(10 + 3i), \text{signIm}(10 - 3i), \ldots\]
\[\text{signIm}(\text{Inf}i), \text{signIm}(-\text{Inf}i)\]

\[\text{ans} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 \end{bmatrix}\]

For real positive numbers, `signIm` returns -1.

\[\text{signIm}(2/3), \text{signIm}(1), \text{signIm}(100), \text{signIm}(\text{Inf})\]

\[\text{ans} = \begin{bmatrix} -1 & -1 & -1 & -1 \end{bmatrix}\]

For real negative numbers, `signIm` returns 1.

\[\text{signIm}(-2/3), \text{signIm}(-1), \text{signIm}(-100), \text{signIm}(-\text{Inf})\]

\[\text{ans} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}\]

`signIm(0)` is 0.

\[\text{signIm}(0), \text{signIm}(0 + 0i), \text{signIm}(0 - 0i)\]

\[\text{ans} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}\]

Signs of Imaginary Parts of Symbolic Expressions

Find the signs of imaginary parts of symbolic expressions that represent complex numbers.
Call `signIm` for these symbolic expressions without additional assumptions. Because `signIm` cannot determine if the imaginary part of a symbolic expression is positive, negative, or zero, it returns unresolved symbolic calls.

```matlab
syms x y z
[signIm(z), signIm(x + y*i), signIm(x - 3*i)]
```

```matlab
class = class(ans)
class =
```

Assume that `x`, `y`, and `z` are positive values. Find the signs of imaginary parts of the same symbolic expressions.

```matlab
syms x y z positive
[signIm(z), signIm(x + y*i), signIm(x - 3*i)]
```

```matlab
class = class(ans)
class =
```

For further computations, clear the assumptions.

```matlab
syms x y z clear
```

Find the first derivative of the `signIm` function. `signIm` is a constant function, except for the jump discontinuities along the real axis. The `diff` function ignores these discontinuities.

```matlab
syms z
diff(signIm(z), z)
```

```matlab
class = class(ans)
class =
```

Signs of Imaginary Parts of Matrix Elements

`signIm` accepts vectors and matrices as its input argument. This lets you find the signs of imaginary parts of several numbers in one function call.

Find the signs of imaginary parts of the real and complex elements of matrix `A`.

```matlab
A = sym([((1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2)];
signIm(A)
```

```matlab
class = class(ans)
class =
```
[1, 1]
[1, -1]

Input Arguments

\(z \) — Input representing complex number

number | symbolic number | symbolic variable | symbolic expression | vector | matrix

Input representing complex number, specified as a number, symbolic number, symbolic variable, expression, vector, or matrix.

More About

Tips

- \(\text{signIm}(\text{NaN}) \) returns NaN.

See Also

conj | imag | real | sign

Introduced in R2014b
simplify

Algebraic simplification

Syntax

simplify(S)
simplify(S,Name,Value)

Description

simplify(S) performs algebraic simplification of S. If S is a symbolic vector or matrix, this function simplifies each element of S.

simplify(S,Name,Value) performs algebraic simplification of S using additional options specified by one or more Name,Value pair arguments.

Examples

Simplify Expressions

Simplify these symbolic expressions:

syms x a b c
simplify(sin(x)^2 + cos(x)^2)
simplify(exp(c*log(sqrt(a+b))))

ans =
1

ans =
(a + b)^(c/2)

Simplify Matrix Elements

Call simplify for this symbolic matrix. When the input argument is a vector or matrix, simplify tries to find a simpler form of each element of the vector or matrix.
syms x
simplify([(x^2 + 5*x + 6)/(x + 2),...
 sin(x)*sin(2*x) + cos(x)*cos(2*x);
 (exp(-x*i)*i)/2 - (exp(x*i)*i)/2, sqrt(16)])

ans =
 [x + 3, cos(x)]
 [sin(x), 4]

Get Simpler Results Using IgnoreAnalyticConstraints

Try to simplify this expression. By default, simplify does not combine powers and logarithms because combining them is not valid for generic complex values.

syms x
s = (log(x^2 + 2*x + 1) - log(x + 1))*sqrt(x^2);
simplify(s)

ans =
 -(log(x + 1) - log((x + 1)^2))*(x^2)^(1/2)

To apply the simplification rules that let the simplify function combine powers and logarithms, set IgnoreAnalyticConstraints to true:

simplify(s, 'IgnoreAnalyticConstraints', true)

ans =
 x*log(x + 1)

Get Simpler Results Using Steps

Simplify this expression:

syms x
f = ((exp(-x*i)*i)/2 - (exp(x*i)*i)/2)/(exp(-x*i)/2 + ...
 exp(x*i)/2);
simplify(f)

ans =
 -(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)

By default, simplify uses one internal simplification step. You can get different, often shorter, simplification results by increasing the number of simplification steps:

simplify(f, 'Steps', 10)
simplify(f, 'Steps', 30)
simplify(f, 'Steps', 50)
ans =
2i/(exp(x*2i) + 1) - 1i

ans =
((cos(x) - sin(x)*1i)*1i)/cos(x) - 1i

ans =
tan(x)

Simplify Favoring Real Numbers

To force `simplify` favor real values over complex values, set the value of `Criterion` to `preferReal`:

```
syms x
f = (exp(x + exp(-x*i)/2 - exp(x*i)/2)*i)/2 - ...
    (exp(- x - exp(-x*i)/2 + exp(x*i)/2)*i)/2;
simplify(f, 'Criterion', 'preferReal', 'Steps', 100)
ans =
sin(sin(x))*cosh(x) + cos(sin(x))*sinh(x)*1i
```

If `x` is a real value, then this form of expression explicitly shows the real and imaginary parts.

Although the result returned by `simplify` with the default setting for `Criterion` is shorter, here the complex value is a parameter of the sine function:

```
simplify(f, 'Steps', 100)
ans =
sin(sin(x) + x*1i)
```

When you set `Criterion` to `preferReal`, the simplifier disfavors expression forms where complex values appear inside subexpressions. In case of nested subexpressions, the deeper the complex value appears inside an expression, the least preference this form of an expression gets.

Simplify Expressions with Complex Arguments in Exponents

Setting `Criterion` to `preferReal` helps you avoid complex arguments in exponents.

Simplify these symbolic expressions:
simplify(sym(i)^i, 'Steps', 100)
simplify(sym(i)^(i+1), 'Steps', 100)

ans =
exxp(-pi/2)

ans =
(-1)^(1/2 + 1i/2)

Now, simplify the second expression with the Criterion set to preferReal:
simplify(sym(i)^(i+1), 'Criterion', 'preferReal', 'Steps', 100)

ans =
exxp(-pi/2)*1i

Input Arguments

S — Input expression
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input expression, specified as a symbolic expression, function, vector, or matrix.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes ('). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Seconds',60 limits the simplification process to 60 seconds.

'Criterion' — Simplification criterion
'default' (default) | 'preferReal'

Simplification criterion, specified as the comma-separated pair consisting of 'Criterion' and one of these strings.

| 'default' | Use the default (internal) simplification criteria. |
| 'preferReal' | Favor the forms of S containing real values over the forms containing complex values. If any form of S contains complex |

4-1080
values, the simplifier disfavors the forms where complex values appear inside subexpressions. In case of nested subexpressions, the deeper the complex value appears inside an expression, the least preference this form of an expression gets.

IgnoreAnalyticConstraints — Simplification rules
false (default) | true

Simplification rules, specified as the comma-separated pair consisting of 'IgnoreAnalyticConstraints' and one of these values.

| false | Use strict simplification rules. simplify always returns results equivalent to the initial expression. |
| true | Apply purely algebraic simplifications to an expression. simplify can return simpler results for expressions for which it would return more complicated results otherwise. Setting IgnoreAnalyticConstraints to true can lead to results that are not equivalent to the initial expression. |

Seconds — Time limit for the simplification process
Inf (default) | positive number

Time limit for the simplification process, specified as the comma-separated pair consisting of 'Seconds' and a positive value that denotes the maximal time in seconds.

Steps — Number of simplification steps
1 (default) | positive number

Number of simplification steps, specified as the comma-separated pair consisting of 'Steps' and a positive value that denotes the maximal number of internal simplification steps. Note that increasing the number of simplification steps can slow down your computations.

simplify(S,'Steps',n) is equivalent to simplify(S,n), where n is the number of simplification steps.

Alternative Functionality

Besides the general simplification function (simplify), the toolbox provides a set of functions for transforming mathematical expressions to particular forms. For example,
you can use particular functions to expand or factor expressions, collect terms with
the same powers, find a nested (Horner) representation of an expression, or quickly
simplify fractions. If the problem that you want to solve requires a particular form of an
expression, the best approach is to choose the appropriate simplification function. These
simplification functions are often faster than `simplify`.

More About

Tips

• Simplification of mathematical expression is not a clearly defined subject. There
 is no universal idea as to which form of an expression is simplest. The form of a
 mathematical expression that is simplest for one problem might be complicated or
even unsuitable for another problem.

Algorithms

When you use `IgnoreAnalyticConstraints`, `simplify` follows these rules:

• \(\log(a) + \log(b) = \log(a \cdot b) \) for all values of \(a \) and \(b \). In particular, the following equality
 is valid for all values of \(a, b, \) and \(c \):

 \[(a \cdot b)^c = a^c \cdot b^c.\]

• \(\log(a^b) = b \log(a) \) for all values of \(a \) and \(b \). In particular, the following equality is valid
 for all values of \(a, b, \) and \(c \):

 \[(a^b)^c = a^{b \cdot c}.\]

• If \(f \) and \(g \) are standard mathematical functions and \(f(g(x)) = x \) for all small positive
 numbers, \(f(g(x)) = x \) is assumed to be valid for all complex values of \(x \). In particular:

 • \(\log(e^x) = x \)
 • \(\text{asin}(\sin(x)) = x \), \(\text{acos}(\cos(x)) = x \), \(\text{atan}(\tan(x)) = x \)
 • \(\text{asinh}(\sinh(x)) = x \), \(\text{acosh}(\cosh(x)) = x \), \(\text{atanh}(\tanh(x)) = x \)
 • \(W_k(x \cdot e^x) = x \) for all values of \(k \)

See Also

`collect` | `combine` | `expand` | `factor` | `horner` | `numden` | `rewrite` | `simplifyFraction`
Introduced before R2006a
simplifyFraction

Symbolic simplification of fractions

Syntax

simplifyFraction(expr)
simplifyFraction(expr,Name,Value)

Description

simplifyFraction(expr) represents the expression expr as a fraction where both the numerator and denominator are polynomials whose greatest common divisor is 1.

simplifyFraction(expr,Name,Value) uses additional options specified by one or more Name,Value pair arguments.

Input Arguments

expr
Symbolic expression or matrix (or vector) of symbolic expressions.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes ('). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

'Expand'

Expand the numerator and denominator of the resulting fraction

Default: false
Examples

Simplify these fractions:

```matlab
syms x y
simplifyFraction((x^2 - 1)/(x + 1))
simplifyFraction(((y + 1)^3*x)/((x^3 - x*(x + 1)*(x - 1))*y))
```

ans =

\(x - 1\)

ans =

\((y + 1)^3/y\)

Use `Expand` to expand the numerator and denominator in the resulting fraction:

```matlab
syms x y
simplifyFraction(((y + 1)^3*x)/((x^3 - x*(x + 1)*(x - 1))*y), 'Expand', true)
```

ans =

\((y^3 + 3*y^2 + 3*y + 1)/y\)

Use `simplifyFraction` to simplify rational subexpressions of irrational expressions:

```matlab
syms x
simplifyFraction(((x^2 + 2*x + 1)/(x + 1))^(1/2))
```

ans =

\((x + 1)^(1/2)\)

Also, use `simplifyFraction` to simplify rational expressions containing irrational subexpressions:

```matlab
simplifyFraction((1 - sin(x)^2)/(1 - sin(x)))
```

ans =

\(sin(x) + 1\)

When you call `simplifyFraction` for an expression that contains irrational subexpressions, the function ignores algebraic dependencies of irrational subexpressions:
\[-(\cos(x)^2 - 1)/\sin(x)\]

Alternatives

You also can simplify fractions using the general simplification function `simplify`. Note that in terms of performance, `simplifyFraction` is significantly more efficient for simplifying fractions than `simplify`.

More About

Tips

- `expr` can contain irrational subexpressions, such as `\sin(x)`, `x^(-1/3)`, and so on. As a first step, `simplifyFraction` replaces these subexpressions with auxiliary variables. Before returning results, `simplifyFraction` replaces these variables with the original subexpressions.
- `simplifyFraction` ignores algebraic dependencies of irrational subexpressions.
- “Simplify Symbolic Expressions” on page 2-53
- “Choose Function to Rearrange Expression” on page 2-61

See Also

`collect` | `combine` | `expand` | `factor` | `horner` | `numden` | `rewrite` | `simplify`

Introduced in R2011b
simscapeEquation

Convert symbolic expressions to Simscape language equations

Syntax

simscapeEquation(f)
simscapeEquation(LHS,RHS)

Description

simscapeEquation(f) converts the symbolic expression \(f \) to a Simscape language equation. This function call converts any derivative with respect to the variable \(t \) to the Simscape notation \(X.der \). Here \(X \) is the time-dependent variable. In the resulting Simscape equation, the variable \(time \) replaces all instances of the variable \(t \) except for derivatives with respect to \(t \).

simscapeEquation converts expressions with the second and higher-order derivatives to a system of first-order equations, introducing new variables, such as \(x1, x2, \) and so on.

simscapeEquation(LHS,RHS) returns a Simscape equation \(LHS == RHS \).

Examples

Convert the following expressions to Simscape language equations.

```matlab
syms t x(t) y(t)
phi = diff(x) + 5*y + sin(t);
simscapeEquation(phi)
simscapeEquation(diff(y),phi)
```

```matlab
ans = 
phi == sin(time)+y*5.0+x.der;
```

```matlab
ans = 
y.der == sin(time)+y*5.0+x.der;
```

Convert this expression containing the second derivative.

```matlab
```
syms x(t)
eqn1 = diff(x,2) - diff(x) + sin(t);
simscapeEquation(eqn1)

ans =
x.der == x1;
eqn1 == sin(time) - x1 + x1.der;

Convert this expression containing the fourth and second derivatives.
eqn2 = diff(x,4) + diff(x,2) - diff(x) + sin(t);
simscapeEquation(eqn2)

ans =
x.der == x1;
x1.der == x2;
x2.der == x3;
eqn2 == sin(time) - x1 + x2 + x3.der;

More About

Tips

The equation section of a Simscape component file supports a limited number of functions. For details and the list of supported functions, see Simscape equations. If a symbolic equation contains the functions that are not available in the equation section of a Simscape component file, `simscapeEquation` cannot correctly convert these equations to Simscape equations. Such expressions do not trigger an error message. The following types of expressions are prone to invalid conversion:

- Expressions with infinities
- Expressions returned by `evalin` and `feval`.

If you perform symbolic computations in the MuPAD Notebook app and want to convert the results to Simscape equations, use the `generate::Simscape` function in MuPAD.

- “Generate Simscape Equations” on page 2-241

See Also

`matlabFunctionBlock` | `matlabFunction` | `ccode` | `fortran`

Introduced in R2010a
\textbf{sin}

Symbolic sine function

\textbf{Syntax}

\texttt{sin(X)}

\textbf{Description}

\texttt{sin(X)} returns the sine function of \texttt{X}.

\textbf{Examples}

\textbf{Sine Function for Numeric and Symbolic Arguments}

Depending on its arguments, \texttt{sin} returns floating-point or exact symbolic results.

Compute the sine function for these numbers. Because these numbers are not symbolic objects, \texttt{sin} returns floating-point results.

\begin{verbatim}
A = sin([-2, -pi, pi/6, 5*pi/7, 11])
A =
 -0.9093 -0.0000 0.5000 0.7818 -1.0000
\end{verbatim}

Compute the sine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, \texttt{sin} returns unresolved symbolic calls.

\begin{verbatim}
symA = sin(sym([-2, -pi, pi/6, 5*pi/7, 11]))
symA =
[-sin(2), 0, 1/2, sin((2*pi)/7), sin(11)]
\end{verbatim}

Use \texttt{vpa} to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-0.90929742682568169539601986591174,...
0,...
0.5,...
0.78183148246802980870844452667406,...
-0.999990206550703457051564899902552]

Plot Sine Function

Plot the sine function on the interval from -4π to 4π.

syms x
ezplot(sin(x), [-4*pi, 4*pi])
grid on
Handle Expressions Containing Sine Function

Many functions, such as \texttt{diff}, \texttt{int}, \texttt{taylor}, and \texttt{rewrite}, can handle expressions containing \texttt{sin}.

Find the first and second derivatives of the sine function:

```matlab
syms x
diff(sin(x), x)
diff(sin(x), x, x)
```

\texttt{ans =}
\texttt{cos(x)}
\begin{verbatim}
ans = -sin(x)

Find the indefinite integral of the sine function:

\texttt{int(sin(x), x)}

ans = -cos(x)

Find the Taylor series expansion of $\sin(x)$:

\texttt{taylor(sin(x), x)}

ans = $x^5/120 - x^3/6 + x$

Rewrite the sine function in terms of the exponential function:

\texttt{rewrite(sin(x), 'exp')}

ans = $(\exp(-x*1i)*1i)/2 - (\exp(x*1i)*1i)/2$
\end{verbatim}

Input Arguments

\textbf{X} — Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Sine Function

The sine of an angle, a, defined with reference to a right angled triangle is

\[\sin(\alpha) = \frac{\text{opposite side}}{\text{hypotenuse}} = \frac{a}{h}. \]
The sine of a complex angle, α, is

$$\sin(\alpha) = \frac{e^{i\alpha} - e^{-i\alpha}}{2i}.$$

See Also
acos | acot | acsc | asec | asin | atan | cos | cot | csc | sec | tan

Introduced before R2006a
single

Convert symbolic matrix to single precision

Syntax

```
single(S)
```

Description

`single(S)` converts the symbolic matrix `S` to a matrix of single-precision floating-point numbers. `S` must not contain any symbolic variables, except `'eps'`.

See Also

`sym` | `vpa` | `double`

Introduced before R2006a
sinh

Symbolic hyperbolic sine function

Syntax

sinh(X)

Description

sinh(X) returns the hyperbolic sine function of X.

Examples

Hyperbolic Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, sinh returns floating-point or exact symbolic results.

Compute the hyperbolic sine function for these numbers. Because these numbers are not symbolic objects, sinh returns floating-point results.

A = sinh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A =
-3.6269 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.5000i...
0.0000 + 0.7818i 0.0000 - 1.0000i

Compute the hyperbolic sine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, sinh returns unresolved symbolic calls.

symA = sinh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))

symA =
[-sinh(2), 0, 1i/2, sinh((pi*2i)/7), -1i]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-3.6268604078470187676682139828013,...
0,...
0.5i,...
0.78183148246802980870844452667406i,...
-1.0i]

Plot Hyperbolic Sine Function

Plot the hyperbolic sine function on the interval from \(-\pi\) to \(\pi\).

```matlab
syms x
ezplot(sinh(x), [-pi, pi])
grid on
```
Handle Expressions Containing Hyperbolic Sine Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `sinh`.

Find the first and second derivatives of the hyperbolic sine function:

```matlab
syms x
diff(sinh(x), x)
diff(sinh(x), x, x)
```

```
ans =
cosh(x)
```
ans = sinh(x)

Find the indefinite integral of the hyperbolic sine function:
int(sinh(x), x)
ans = cosh(x)

Find the Taylor series expansion of sinh(x):
taylor(sinh(x), x)
ans = x^5/120 + x^3/6 + x

Rewrite the hyperbolic sine function in terms of the exponential function:
rewrite(sinh(x), 'exp')
ans = exp(x)/2 - exp(-x)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech | tanh

Introduced before R2006a
sinhint

Hyperbolic sine integral function

Syntax

`sinhint(X)`

Description

`sinhint(X)` returns the hyperbolic sine integral function of `X`.

Examples

Hyperbolic Sine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, `sinhint` returns floating-point or exact symbolic results.

Compute the hyperbolic sine integral function for these numbers. Because these numbers are not symbolic objects, `sinhint` returns floating-point results.

```matlab
A = sinhint([-pi, -1, 0, pi/2, 2*pi])
```

```matlab
A =
    -5.4696    -1.0573         0    1.8027   53.7368
```

Compute the hyperbolic sine integral function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, `sinhint` returns unresolved symbolic calls.

```matlab
symA = sinhint(sym([-pi, -1, 0, pi/2, 2*pi]))
```

```matlab
symA =
    [ -sinhint(pi), -sinhint(1), 0, sinhint(pi/2), sinhint(2*pi)]
```

Use `vpa` to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-5.4696403451153421506369580091277,...
-1.0572508753757285145718423548959,...
0,...
1.802743198288293882089794577617,...
53.736750620859153990408011863262]

Plot Hyperbolic Sine Integral Function

Plot the hyperbolic sine integral function on the interval from \(-2\pi\) to \(2\pi\).

```matlab
syms x
ezplot(sinhint(x), [-2*pi, 2*pi])
grid on
```
Handle Expressions Containing Hyperbolic Sine Integral Function

Many functions, such as `diff`, `int`, and `taylor`, can handle expressions containing `sinhint`.

Find the first and second derivatives of the hyperbolic sine integral function:

```matlab
syms x
diff(sinhint(x), x)
diff(sinhint(x), x, x)
ans =
    sinh(x)/x
```
Find the indefinite integral of the hyperbolic sine integral function:
\[
\text{int}(\text{sinhint}(x), x)
\]
\[
\text{ans} = x \text{sinhint}(x) - \cosh(x)
\]

Find the Taylor series expansion of \(\text{sinhint}(x) \):
\[
\text{taylor}(\text{sinhint}(x), x)
\]
\[
\text{ans} = x^5/600 + x^3/18 + x
\]

Input Arguments

\(X \) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Hyperbolic Sine Integral Function

The hyperbolic sine integral function is defined as follows:

\[
\text{Shi}(x) = \int_0^x \frac{\sinh(t)}{t} \, dt
\]

References

Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
See Also

\texttt{coshint} | \texttt{cosint} | \texttt{eulergamma} | \texttt{int} | \texttt{sin} | \texttt{sinint} | \texttt{ssinint}

Introduced in R2014a
\textbf{sinint}

Sine integral function

\textbf{Syntax}

\texttt{sinint(X)}

\textbf{Description}

\texttt{sinint(X)} returns the sine integral function of \(X\).

\textbf{Examples}

\textbf{Sine Integral Function for Numeric and Symbolic Arguments}

Depending on its arguments, \texttt{sinint} returns floating-point or exact symbolic results.

Compute the sine integral function for these numbers. Because these numbers are not symbolic objects, \texttt{sinint} returns floating-point results.

\[
\text{A} = \text{sinint([-pi, 0, pi/2, pi, 1])}
\]

\[
\text{A} = \begin{bmatrix}
-1.8519 & 0 & 1.3708 & 1.8519 & 0.9461
\end{bmatrix}
\]

Compute the sine integral function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, \texttt{sinint} returns unresolved symbolic calls.

\[
\text{symA} = \text{sinint(sym([-pi, 0, pi/2, pi, 1]))}
\]

\[
\text{symA} = \begin{bmatrix}
\text{-sinint(pi)} & 0 & \text{sinint(pi/2)} & \text{sinint(pi)} & \text{sinint(1)}
\end{bmatrix}
\]

Use \texttt{vpa} to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-1.851937051982466170361053370158,...
0,...
1.3707621681544884800696782883816,...
1.851937051982466170361053370158,...
0.94608307036718301494135331382318]

Plot Sine Integral Function

Plot the sine integral function on the interval from -4π to 4π.

```matlab
syms x
ezplot(sinint(x), [-4*pi, 4*pi])
grid on
```
Handle Expressions Containing Sine Integral Function

Many functions, such as `diff`, `int`, and `taylor`, can handle expressions containing `sinint`.

Find the first and second derivatives of the sine integral function:

```matlab
syms x
diff(sinint(x), x)
diff(sinint(x), x, x)
```

```plaintext
ans =
sin(x)/x
```
\[\text{ans} = \frac{\cos(x)}{x} - \frac{\sin(x)}{x^2} \]

Find the indefinite integral of the sine integral function:
\[\text{int}(\text{sinint}(x), x) \]
\[\text{ans} = \cos(x) + x \cdot \text{sinint}(x) \]

Find the Taylor series expansion of \(\text{sinint}(x) \):
\[\text{taylor}(\text{sinint}(x), x) \]
\[\text{ans} = \frac{x^5}{600} - \frac{x^3}{18} + x \]

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Sine Integral Function

The sine integral function is defined as follows:
\[\text{Si}(x) = \int_{0}^{x} \frac{\sin(t)}{t} \, dt \]

References

See Also
coshint | cosint | eulergamma | int | sin | sinhint | ssinint

Introduced before R2006a
size

Symbolic matrix dimensions

Syntax

d = size(A)
[m, n] = size(A)
d = size(A, n)

Description

Suppose A is an m-by-n symbolic or numeric matrix. The statement \(d = \text{size}(A) \) returns a numeric vector with two integer components, \(d = [m, n] \).

The multiple assignment statement \([m, n] = \text{size}(A)\) returns the two integers in two separate variables.

The statement \(d = \text{size}(A, n) \) returns the length of the dimension specified by the scalar \(n \). For example, \(\text{size}(A, 1) \) is the number of rows of \(A \) and \(\text{size}(A, 2) \) is the number of columns of \(A \).

Examples

The statements

```matlab
syms a b c d
A = [a b c; a b d; d c b; c b a];
d = size(A)
r = size(A, 2)
return
```

return

\[
d = \begin{bmatrix}
4 & 3
\end{bmatrix}
\]

\[
r = \begin{bmatrix}
\end{bmatrix}
\]
See Also
length | ndims

Introduced before R2006a
Smith Form of Matrix

Syntax

\[S = \text{smithForm}(A) \]
\[[U,V,S] = \text{smithForm}(A) \]
\[____ = \text{smithForm}(A,\text{var}) \]

Description

\(S = \text{smithForm}(A) \) returns the Smith normal form of a square invertible matrix \(A \). The elements of \(A \) must be integers or polynomials in a variable determined by \(\text{symvar}(A,1) \). The Smith form \(S \) is a diagonal matrix.

\[[U,V,S] = \text{smithForm}(A) \] returns the Smith normal form of \(A \) and unimodular transformation matrices \(U \) and \(V \), such that \(S = U*A*V \).

\[____ = \text{smithForm}(A,\text{var}) \] assumes that the elements of \(A \) are univariate polynomials in the specified variable \(\text{var} \). If \(A \) contains other variables, \text{smithForm} \ treats those variables as symbolic parameters.

You can use the input argument \(\text{var} \) in any of the previous syntaxes.

If \(A \) does not contain \(\text{var} \), then \text{smithForm}(A) and \text{smithForm}(A,\text{var}) \ return different results.

Examples

Smith Form for Matrix of Integers

Find the Smith form of an inverse Hilbert matrix.

\[A = \text{sym} (\text{invhilb}(5)) \]
\[S = \text{smithForm}(A) \]
A =
[25, -300, 1050, -1400, 630]
[-300, 4800, -18900, 26880, -12600]
[1050, -18900, 79380, -117600, 56700]
[-1400, 26880, -117600, 179200, -88200]
[630, -12600, 56700, -88200, 44100]

S =
[5, 0, 0, 0, 0]
[0, 60, 0, 0, 0]
[0, 0, 420, 0, 0]
[0, 0, 0, 840, 0]
[0, 0, 0, 0, 2520]

Smith Form for Matrix of Univariate Polynomials

Create a 2-by-2 matrix, the elements of which are polynomials in the variable x.

syms x
A = [x^2 + 3, (2*x - 1)^2; (x + 2)^2, 3*x^2 + 5]
A =
[x^2 + 3, (2*x - 1)^2]
[(x + 2)^2, 3*x^2 + 5]

Find the Smith form of this matrix.
S = smithForm(A)
S =
[1, 0]
[0, x^4 + 12*x^3 - 13*x^2 - 12*x - 11]

Smith Form for Matrix of Multivariate Polynomials

Create a 2-by-2 matrix containing two variables: x and y.

syms x y
A = [2/x + y, x^2 - y^2; 3*sin(x) + y, x]
A =
[y + 2/x, x^2 - y^2]
[y + 3*sin(x), x]
Find the Smith form of this matrix. If you do not specify the polynomial variable, `smithForm` uses `symvar(A,1)` and thus determines that the polynomial variable is x. Because $3\sin(x) + y$ is not a polynomial in x, `smithForm` throws an error.

```
S = smithForm(A)
```

> Error using mupadengine/feval (line 163)
> Cannot convert the matrix entries to integers or univariate polynomials.

Find the Smith form of A specifying that all elements of A are polynomials in the variable y.

```
S = smithForm(A,y)
```

```
S =
[ 1, 0]
[ 0, 3*y^2*sin(x) - 3*x^2*sin(x) + y^3 + y*(- x^2 + x) + 2]
```

Smith Form and Transformation Matrices

Find the Smith form and transformation matrices for an inverse Hilbert matrix.

```
A = sym(invhilb(3));
[U,V,S] = smithForm(A)
```

```
U =
[ 1, 1, 1]
[ -4, -1, 0]
[ 10, 5, 3]

V =
[ 1, -2, 0]
[ 0, 1, 5]
[ 0, 1, 4]

S =
[ 3, 0, 0]
[ 0, 12, 0]
[ 0, 0, 60]
```

Verify that $S = U*A*V$.

```
isAlways(S == U*A*V)
```

```
an =
```
Find the Smith form and transformation matrices for a matrix of polynomials.

```
syms x y
A = [2*(x - y), 3*(x^2 - y^2); 4*(x^3 - y^3), 5*(x^4 - y^4)];
[U,V,S] = smithForm(A,x)
```

```
U =
[ 0, 1]
[ 1, - x/(10*y^3) - 3/(5*y^2)]
```

```
V =
[ -x/(4*y^3), -(5*x*y^2)/2 - (5*x^2*y)/2 - (5*x^3)/2 - (5*y^3)/2]
[ 1/(5*y^3), 2*x^2 + 2*x*y + 2*y^2]
```

```
S =
[ x - y, 0]
[ 0, x^4 + 6*x^3*y - 6*x*y^3 - y^4]
```

Verify that $S = U*A*V$.

```
isAlways(S == U*A*V)
```

ans =
```
1 1
1 1
```

If You Specify Variable for Integer Matrix

If a matrix does not contain a particular variable, and you call `smithForm` specifying that variable as the second argument, then the result differs from what you get without specifying that variable. For example, create a matrix that does not contain any variables.

```
A = [9 -36 30; -36 192 -180; 30 -180 180]
```

```
A =
9  -36   30
-36  192  -180
30  -180  180
```
Call `smithForm` specifying variable `x` as the second argument. In this case, `smithForm` assumes that the elements of `A` are univariate polynomials in `x`.

```matlab
syms x
smithForm(A,x)
```

```
ans =
  1  0  0
  0  1  0
  0  0  1
```

Call `smithForm` without specifying variables. In this case, `smithForm` treats `A` as a matrix of integers.

```matlab
smithForm(A)
```

```
ans =
  3  0  0
  0 12  0
  0  0 60
```

Input Arguments

A — Input matrix

square invertible symbolic matrix

Input matrix, specified as a square invertible symbolic matrix, the elements of which are integers or univariate polynomials. If the elements of `A` contain more than one variable, use the `var` argument to specify a polynomial variable, and treat all other variables as symbolic parameters. If `A` is multivariate, and you do not specify `var`, then `smithForm` uses `symvar(A,1)` to determine a polynomial variable.

var — Polynomial variable

symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

S — Smith normal form of input matrix

symbolic diagonal matrix
Smith normal form of input matrix, returned as a symbolic diagonal matrix. The first diagonal element divides the second, the second divides the third, and so on.

U — Transformation matrix
unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A are integers, then elements of U are also integers, and $\det(U) = 1$ or $\det(U) = -1$. If elements of A are polynomials, then elements of U are univariate polynomials, and $\det(U)$ is a constant.

V — Transformation matrix
unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A are integers, then elements of V are also integers, and $\det(V) = 1$ or $\det(V) = -1$. If elements of A are polynomials, then elements of V are univariate polynomials, and $\det(V)$ is a constant.

More About

Smith Normal Form

Smith normal form of a an n-by-n matrix A is an n-by-n diagonal matrix S, such that $S_{i,i}$ divides $S_{i+1,i+1}$ for all $i < n$.

See Also

hermiteForm | jordan

Introduced in R2015b
solve

Equations and systems solver

Compatibility

String inputs will be removed in a future release. Instead, use `syms` to declare variables and replace inputs such as `solve('2*x == 1', 'x')` with `solve(2*x == 1, x)`.

Syntax

\[
S = \text{solve}(\text{eqn}, \text{var})
\]

\[
S = \text{solve}(\text{eqn}, \text{var}, \text{Name}, \text{Value})
\]

\[
Y = \text{solve}(\text{eqns}, \text{vars})
\]

\[
Y = \text{solve}(\text{eqns}, \text{vars}, \text{Name}, \text{Value})
\]

\[
[y_1, \ldots, y_N] = \text{solve}(\text{eqns}, \text{vars})
\]

\[
[y_1, \ldots, y_N] = \text{solve}(\text{eqns}, \text{vars}, \text{Name}, \text{Value})
\]

\[
[y_1, \ldots, y_N, \text{parameters}, \text{conditions}] = \text{solve}(\text{eqns}, \text{vars}, '\text{ReturnConditions}', \text{true})
\]

Description

\[
S = \text{solve}(\text{eqn}, \text{var})\]

solves the equation `eqn` for the variable `var`. If you do not specify `var`, the `symvar` function determines the variable to solve for. For example, `solve(x + 1 == 2, x)` solves the equation `x + 1 = 2` for `x`.

\[
S = \text{solve}(\text{eqn}, \text{var}, \text{Name}, \text{Value})\]

uses additional options specified by one or more `Name,Value` pair arguments.

\[
Y = \text{solve}(\text{eqns}, \text{vars})\]

solves the system of equations `eqns` for the variables `vars` and returns a structure that contains the solutions. If you do not specify `vars`, `solve` uses `symvar` to find the variables to solve for. In this case, the number of variables that `symvar` finds is equal to the number of equations `eqns`.

\[
Y = \text{solve}(\text{eqns}, \text{vars}, \text{Name}, \text{Value})\]

uses additional options specified by one or more `Name,Value` pair arguments.
[y1,...,yN] = solve(eqns,vars) solves the system of equations eqns for the variables vars. The solutions are assigned to the variables y1,...,yN. If you do not specify the variables, solve uses symvar to find the variables to solve for. In this case, the number of variables that symvar finds is equal to the number of output arguments N.

[y1,...,yN] = solve(eqns,vars,Name,Value) uses additional options specified by one or more Name,Value pair arguments.

[y1,...,yN,parameters,conditions] = solve(eqns,vars,'ReturnConditions',true) returns the additional arguments parameters and conditions that specify the parameters in the solution and the conditions on the solution.

Examples

Solve an Equation

Use the == operator to specify the equation \(\sin(x) = 1 \) and solve it.

```matlab
syms x
eqn = sin(x) == 1;
solx = solve(eqn,x)
```

solx =
pi/2

Find the complete solution of the same equation by specifying the ReturnConditions option as true. Specify output variables for the solution, the parameters in the solution, and the conditions on the solution.

```matlab
[solx, params, conds] = solve(eqn, x, 'ReturnConditions', true)
```

solx =
pi/2 + 2*pi*k

params =
k

conds =
in(k, 'integer')
The solution $\pi/2 + 2\pi k$ contains the parameter k which is valid under the condition $\text{in}(k, 'integer')$. This condition means the parameter k must be an integer.

If \texttt{solve} returns an empty object, then no solutions exist. If \texttt{solve} returns an empty object with a warning, solutions might exist but \texttt{solve} did not find any solutions.

\begin{verbatim}
solve(3*x+2, 3*x+1, x)
ans =
Empty sym: 0-by-1
\end{verbatim}

Use Parameters and Conditions Returned by \texttt{solve} to Refine Solution

Return the complete solution of an equation with parameters and conditions of the solution by specifying \texttt{ReturnConditions} as \texttt{true}.

Solve the equation $\sin(x) = 0$. Provide two additional output variables for output arguments \texttt{parameters} and \texttt{conditions}.

```matlab
syms x
[solx, param, cond] = solve(sin(x) == 0, x, 'ReturnConditions', true)
solx = pi*k
param = k
cond = in(k, 'integer')
```

The solution πk contains the parameter k and is valid under the condition $\text{in}(k, 'integer')$. This condition means the parameter k must be an integer. k does not exist in the MATLAB workspace and must be accessed using \texttt{param}.

Find a valid value of k for $0 < x < 2\pi$ by assuming the condition, \texttt{cond}, and using \texttt{solve} to solve these conditions for k. Substitute the value of k found into the solution for x.

```matlab
assume(cond)
solk = solve([solx > 0, solx < 2*pi], param)
valx = subs(solx, param, solk)
solk =
1
valx =
pi

A valid value of \( k \) for \( 0 < x < 2\pi \) is 1. This produces the value \( x = \pi \).

Alternatively, find a solution for \( x \) by choosing a value of \( k \). Check if the value chosen satisfies the condition on \( k \) using isAlways.

Check if \( k = 4 \) satisfies the condition on \( k \).

\[
isAlways(subs(cond, param, 4))
\]

\[
\text{ans} = 1
\]

isAlways returns logical 1 (true), meaning 4 is a valid value for \( k \). Substitute \( k \) with 4 to obtain a solution for \( x \). Use vpa to obtain a numeric approximation.

\[
\text{valx} = subs(solx, param, 4)
\]

\[
\text{vpa(valx)}
\]

\[
\text{valx} = 4\pi
\]

\[
\text{ans} = 12.566370614359172953850573533118
\]

**Solve Multivariate Equations and Assign Outputs to Variables**

Avoid ambiguities when solving equations with symbolic parameters by specifying the variable for which you want to solve an equation. If you do not specify the variable, solve chooses a variable using symvar. First, solve the quadratic equation without specifying a variable. solve chooses \( x \) to return the familiar solution. Then solve the quadratic equation for \( a \) to return the solution for \( a \).

\[
syms a b c x
\]

\[
sol = solve(a*x^2 + b*x + c == 0)
\]

\[
sola = solve(a*x^2 + b*x + c == 0, a)
\]

\[
sol =
- \frac{b + (b^2 - 4*a*c)^{1/2}}{2*a}
- \frac{b - (b^2 - 4*a*c)^{1/2}}{2*a}
\]

\[
sola =
- \frac{c + b*x}{x^2}
\]

When solving for more than one variable, the order in which you specify the variables defines the order in which the solver returns the solutions.
Solve this system of equations and assign the solutions to variables solv and solu by specifying the variables explicitly. The solver returns an array of solutions for each variable.

```matlab
syms u v
[solv, solu] = solve([2*u^2 + v^2 == 0, u - v == 1], [v, u])
solv =
 - (2^(1/2)*1i)/3 - 2/3
 (2^(1/2)*1i)/3 - 2/3
solu =
1/3 - (2^(1/2)*1i)/3
(2^(1/2)*1i)/3 + 1/3
```

Entries with the same index form the solutions of a system.

```matlab
solutions = [solv, solu]
solutions =
[- (2^(1/2)*1i)/3 - 2/3, 1/3 - (2^(1/2)*1i)/3]
[(2^(1/2)*1i)/3 - 2/3, (2^(1/2)*1i)/3 + 1/3]
```

A solution of the system is \( v = - \frac{2^{1/2}i}{3} - \frac{2}{3} \), and \( u = \frac{1}{3} - \frac{2^{1/2}i}{3} \).

**Solve Multivariate Equations and Assign Outputs to Structure**

When solving for multiple variables, it can be more convenient to store the outputs in a structure array than in separate variables. The `solve` function returns a structure when you specify a single output argument and multiple outputs exist.

Solve a system of equations to return the solutions in a structure array.

```matlab
syms u v
S = solve([2*u + v == 0, u - v == 1], [u, v])
S =
 u: [1x1 sym]
 v: [1x1 sym]
```

Access the solutions by addressing the elements of the structure.

```matlab
S.u
S.v
ans =
Using a structure array allows you to conveniently substitute solutions into expressions. The `subs` function substitutes the correct values irrespective of which variables you substitute.

Substitute solutions into expressions using the structure `S`.

```
subs(u^2, S)
subs(3*v+u, S)
```

```
ans = 
1/9
ans = 
-5/3
```

Return Complete Solution of System of Equations Using Structure

Return the complete solution of a system of equations with parameters and conditions of the solution by specifying `ReturnConditions` as `true`.

```
syms x y
S = solve([sin(x)^2 == cos(y), 2*x == y],
    [x, y], 'ReturnConditions', true);
S.x
S.y
S.conditions
S.parameters
```

```
ans = 
pi*k - asin(3^(1/2)/3)
asin(3^(1/2)/3) + pi*k
ans = 
2*pi*k - 2*asin(3^(1/2)/3)
2*asin(3^(1/2)/3) + 2*pi*k
ans = 
in(k, 'integer')
in(k, 'integer')
ans = 
k
```

A solution is formed by the elements of the same index in `S.x`, `S.y`, and `S.conditions`. Any element of `S.parameters` can appear in any solution. For example, a solution is `x`
\[y = \pi k - \arcsin\left(\frac{3^{1/2}}{3}\right) \]

and

\[y = 2\pi k - 2\arcsin\left(\frac{3^{1/2}}{3}\right) \]

with the parameter \(k \) under the condition \(\text{in}(k, \text{integer}) \). This condition means \(k \) must be an integer for the solution to be valid. \(k \) does not exist in the MATLAB workspace and must be accessed with \textit{S.parameters}.

For the first solution, find a valid value of \(k \) for \(0 < x < \pi \) by assuming the condition \textit{S.conditions(1)} and using \textit{solve} to solve these conditions for \(k \). Substitute the value of \(k \) found into the solution for \(x \).

\begin{verbatim}
assume(S.conditions(1))
solk = solve([S.x(1) > 0, S.x(1) < pi], S.parameters)
solx = subs(S.x(1), S.parameters, solk)
\end{verbatim}

\(\text{solk} = 1 \)

\(\text{solx} = \pi - \arcsin\left(\frac{3^{1/2}}{3}\right) \)

A valid value of \(k \) for \(0 < x < \pi \) is 1. This produces the value \(x = \pi - \arcsin\left(\frac{3^{1/2}}{3}\right) \).

Alternatively, find a solution for \(x \) by choosing a value of \(k \). Check if the value chosen satisfies the condition on \(k \) using \textit{isAlways}.

Check if \(k = 4 \) satisfies the condition on \(k \).

\begin{verbatim}
isAlways(subs(S.conditions(1), S.parameters, 4))
\end{verbatim}

\(\text{ans} = 1 \)

\textit{isAlways} returns logical 1 (true) meaning 4 is a valid value for \(k \). Substitute \(k \) with 4 to obtain a solution for \(x \). Use \textit{vpa} to obtain a numeric approximation.

\begin{verbatim}
valx = subs(S.x(1), S.parameters, 4)
vpa(valx)
\end{verbatim}

\(\text{valx} = 4\pi - \arcsin\left(\frac{3^{1/2}}{3}\right) \)

\(\text{ans} = 11.950890905688785612783108943994 \)
Return Numeric Solutions

Try solving the following equation. The symbolic solver cannot find an exact symbolic solution for this equation, and therefore issues a warning before calling the numeric solver. Because the equation is not polynomial, an attempt to find all possible solutions can take a long time. The numeric solver does not try to find all numeric solutions for this equation. Instead, it returns only the first solution it finds.

```matlab
syms x
solve(sin(x) == x^2 - 1, x)
```

Warning: Cannot solve symbolically. Returning a numeric approximation instead.
> In solve at 301
ans =
-0.63673265080528201088799090383828

Plot the left and the right sides of the equation in one graph. The graph shows that the equation also has a positive solution.

```matlab
ezplot(sin(x), -2, 2)
hold on
ezplot(x^2 - 1, -2, 2)
hold off
```
Find this solution by calling the numeric solver `vpasolve` directly and specifying the interval where this solution can be found.

```
vpasolve(sin(x) == x^2 - 1, x, [0 2])
```

```
ans =
1.4096240040025962492355939705895
```

Solve Inequalities

`solve` can solve inequalities to find a solution that satisfies the inequalities.

Solve the following inequalities. Set `ReturnConditions` to `true` to return any parameters in the solution and conditions on the solution.
\[x > 0 \]
\[y > 0 \]
\[x^2 + y^2 + xy < 1 \]

syms x y
S = solve(x^2 + y^2 + x*y < 1, x > 0, y > 0,
[x, y], 'ReturnConditions', true);

solx = S.x
soly = S.y
params = S.parameters
conditions = S.conditions

solx =
\[-3v^2 + u\]^{(1/2)}/2 - v/2

soly =
v

params =
[u, v]

conditions =
4v^2 < u & u < 4 & 0 < v

The parameters \(u \) and \(v \) do not exist in the MATLAB workspace and must be accessed using \(S.parameters \).

Check if the values \(u = 7/2 \) and \(v = 1/2 \) satisfy the condition using \(\text{subs} \) and \(\text{isAlways} \).

\(\text{isAlways}(\text{subs}(S.\text{conditions}, S.\text{parameters}, [7/2,1/2])) \)

\(\text{ans} = 1 \)

\(\text{isAlways} \) returns logical 1 (true) indicating that these values satisfy the condition.
Substitute these parameter values into \(S.x \) and \(S.y \) to find a solution for \(x \) and \(y \).

\(\text{solx} = \text{subs}(S.x, S.\text{parameters}, [7/2,1/2]) \)
\(\text{soly} = \text{subs}(S.y, S.\text{parameters}, [7/2,1/2]) \)
\[\frac{\sqrt{11}}{4} - \frac{1}{4} \]

\[
\text{soly} = \\
\frac{1}{2}
\]

Convert the solution into numeric form by using \text{vpa}.

\[
\text{vpa(solx)} \\
\text{vpa(soly)}
\]

\[
\text{ans} = \\
0.57915619758884996227873318416767
\]

\[
\text{ans} = \\
0.5
\]

Return Real Solutions

Solve this equation. It has five solutions.

\[
\text{syms } x \\
\text{solve}(x^5 == 3125, x)
\]

\[
\text{ans} = \\
- \frac{(2^{1/2} (5 - 5^{1/2}) (1/2) + 5^{1/2})^5}{4} - \frac{(5^{5/2} (1/2))}{4} - \frac{5}{4}
\]

Return only real solutions by setting argument \text{Real} to \text{true}. The only real solution of this equation is 5.

\[
\text{solve}(x^5 == 3125, x, \ '\text{Real}', \ \text{true})
\]

\[
\text{ans} = \\
5
\]

Return One Solution

Solve this equation. Instead of returning an infinite set of periodic solutions, the solver picks these three solutions that it considers to be most practical.

\[
\text{syms } x \\
\text{solve}(\sin(x) + \cos(2x) == 1, x)
\]
Pick only one solution using PrincipalValue.

\[
solve(\sin(x) + \cos(2x) == 1, x, 'PrincipalValue', true)
\]

\[
\text{ans} = 0
\]

Shorten Result with Simplification Rules

Try to solve this equation. By default, `solve` does not apply simplifications that are not always mathematically correct. As a result, `solve` cannot solve this equation symbolically.

\[
syms x
solve(\exp(\log(x)\cdot\log(3x)) == 4, x)
\]

Warning: Cannot solve symbolically.
Returning a numeric approximation instead.

\[
\text{ans} = -14.009379052523370038369334703094 - 2.925531005211119036668717988769i
\]

Set `IgnoreAnalyticConstraints` to `true` to apply simplifications that might allow `solve` to find a result. For details, see “Algorithms” on page 4-1136.

\[
S = solve(\exp(\log(x)\cdot\log(3x)) == 4, x, 'IgnoreAnalyticConstraints', true)
\]

\[
S = (3^{(1/2)}\cdot\exp(-(\log(256) + \log(3)^2)^{(1/2)/2)}/3
+ (3^{(1/2)}\cdot\exp((\log(256) + \log(3)^2)^{(1/2)/2)))/3
\]

`solve` applies simplifications that allow it to find a solution. The simplifications applied do not always hold. Thus, the solutions in this mode might not be correct or complete, and need verification.

Ignore Assumptions on Variables

The `sym` and `syms` functions let you set assumptions for symbolic variables.
Assume that the variable x can have only positive values.

```plaintext
syms x positive
```

When you solve an equation or a system of equations for a variable under assumptions, the solver only returns solutions consistent with the assumptions. Solve this equation for x.

```plaintext
solve(x^2 + 5*x - 6 == 0, x)
```

```plaintext
ans = 
1
```

Allow solutions that do not satisfy the assumptions by setting `IgnoreProperties` to `true`.

```plaintext
solve(x^2 + 5*x - 6 == 0, x, 'IgnoreProperties', true)
```

```plaintext
ans = 
-6
1
```

For further computations, clear the assumption that you set on the variable x.

```plaintext
syms x clear
```

Numerically Approximating Symbolic Solutions That Contain `RootOf`

When solving polynomials, `solve` might return solutions containing `RootOf`. To numerically approximate these solutions, use `vpa`. Consider the following equation and solution.

```plaintext
syms x
s = solve(x^4 + x^3 + 1 == 0, x)
```

```plaintext
s = 
root(z^4 + z^3 + 1, z, 1)
root(z^4 + z^3 + 1, z, 2)
root(z^4 + z^3 + 1, z, 3)
root(z^4 + z^3 + 1, z, 4)
```

Because there are no parameters in this solution, use `vpa` to approximate it numerically.

```plaintext
vpa(s)
```
Solve Polynomial Equations of High Degree

When you solve a higher order polynomial equation, the solver might use RootOf to return the results. Solve an equation of order 4.

```matlab
syms x a
solve(x^4 + x^3 + a == 0, x)
```

```
ans =
root(z^4 + z^3 + a, z, 1)
root(z^4 + z^3 + a, z, 2)
root(z^4 + z^3 + a, z, 3)
root(z^4 + z^3 + a, z, 4)
```

Try to get an explicit solution for such equations by calling the solver with MaxDegree. The option specifies the maximum degree of polynomials for which the solver tries to return explicit solutions. The default value is 2. Increasing this value, you can get explicit solutions for higher order polynomials.

Solve a third order polynomial by increasing the value of MaxDegree to 3 to return explicit solutions instead of RootOf.

```matlab
S = solve(x^3 + x + a == 0, x, 'MaxDegree', 3);
pretty(S)
```

```
\[
\begin{aligned}
\frac{\sqrt{3} \cdot 1 + \#1}{6 \cdot \#1} & \quad \frac{\sqrt{3} \cdot \#1}{2} \\
\frac{\#1}{3 \cdot \#1} & \quad \frac{1}{1}
\end{aligned}
\]
```

where
\[
\begin{array}{c}
\frac{1}{\sqrt{\frac{a}{4}} + \frac{1}{\sqrt{27}}} = 1/3
\end{array}
\]

Input Arguments

eqn — Equation to solve
symbolic expression | symbolic equation

Equation to solve, specified as a symbolic expression or symbolic equation. The relation operator \(==\) defines symbolic equations. If \(eqn\) is a symbolic expression (without the right side), the solver assumes that the right side is 0, and solves the equation \(eqn == 0\).

var — Variable for which you solve equation
symbolic variable

Variable for which you solve an equation, specified as a symbolic variable. By default, \(\text{solve}\) uses the variable determined by \(\text{symvar}\).

eqns — System of equations
symbolic expressions | symbolic equations

System of equations, specified as symbolic expressions or symbolic equations. If any elements of \(eqns\) are symbolic expressions (without the right side), \(\text{solve}\) equates the element to 0.

vars — Variables for which you solve an equation or system of equations
symbolic variables

Variables for which you solve an equation or system of equations, specified as symbolic variables. By default, \(\text{solve}\) uses the variables determined by \(\text{symvar}\).

The order in which you specify these variables defines the order in which the solver returns the solutions.

Name-Value Pair Arguments

Note: \(\text{solve}\) changed the default MaxDegree value from 3 to 2.
Example: 'Real',true specifies that the solver returns real solutions.

'ReturnConditions' — Flag for returning parameters conditions
false (default) | true

Flag for returning parameters in solution and conditions under which the solution is true, specified as the comma-separated pair consisting of 'ReturnConditions' and one of these values.

<table>
<thead>
<tr>
<th>false</th>
<th>Do not return parameterized solutions. Do not return the conditions under which the solution holds. The solve function replaces parameters with appropriate values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Return the parameters in the solution and the conditions under which the solution holds. For a call with a single output variable, solve returns a structure with the fields parameters and conditions. For multiple output variables, solve assigns the parameters and conditions to the last two output variables. This behavior means that the number of output variables must be equal to the number of variables to solve for plus two.</td>
</tr>
</tbody>
</table>

Example: [v1, v2, params, conditions] = solve(sin(x) + y == 0,y^2 == 3,'ReturnConditions',true) returns the parameters in params and conditions in conditions.

'IgnoreAnalyticConstraints' — Simplification rules applied to expressions and equations
false (default) | true

Simplification rules applied to expressions and equations, specified as the comma-separated pair consisting of 'IgnoreAnalyticConstraints' and one of these values.

<table>
<thead>
<tr>
<th>false</th>
<th>Use strict simplification rules.</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Apply purely algebraic simplifications to expressions and equations. Setting IgnoreAnalyticConstraints to true can give you simple solutions for the equations for which the direct use of the solver returns complicated results. In some cases, it also enables solve to solve equations and systems that cannot be solved otherwise. Setting IgnoreAnalyticConstraints to true can lead to wrong or incomplete results.</td>
</tr>
</tbody>
</table>
'IgnoreProperties' — Flag for returning solutions inconsistent with properties of variables
false (default) | true

Flag for returning solutions inconsistent with the properties of variables, specified as the comma-separated pair consisting of 'IgnoreProperties' and one of these values.

<table>
<thead>
<tr>
<th>false</th>
<th>Do not exclude solutions inconsistent with the properties of variables.</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Exclude solutions inconsistent with the properties of variables.</td>
</tr>
</tbody>
</table>

'MaxDegree' — Maximum degree of polynomial equations for which solver uses explicit formulas
2 (default) | positive integer smaller than 5

Maximum degree of polynomial equations for which solver uses explicit formulas, specified as a positive integer smaller than 2. The solver does not use explicit formulas that involve radicals when solving polynomial equations of a degree larger than the specified value.

'PrincipalValue' — Flag for returning one solution
false (default) | true

Flag for returning one solution, specified as the comma-separated pair consisting of 'PrincipalValue' and one of these values.

<table>
<thead>
<tr>
<th>false</th>
<th>Return all solutions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Return only one solution. If an equation or a system of equations does not have a solution, the solver returns an empty symbolic object.</td>
</tr>
</tbody>
</table>

'Real' — Flag for returning only real solutions
false (default) | true

Flag for returning only real solutions, specified as the comma-separated pair consisting of 'Real' and one of these values.

<table>
<thead>
<tr>
<th>false</th>
<th>Return all solutions.</th>
</tr>
</thead>
</table>
true | Return only those solutions for which every subexpression of the original equation represents a real number. Also, assume that all symbolic parameters of an equation represent real numbers.

Output Arguments

S — Solutions of equation

symbolic array

Solutions of an equation, returned as a symbolic array. The size of a symbolic array corresponds to the number of the solutions.

Y — Solutions of system of equations

structure

Solutions of a system of equations, returned as a structure. The number of fields in the structure correspond to the number of independent variables in a system. If `ReturnConditions` is set to `true`, the `solve` function returns two additional fields that contain the parameters in the solution, and the conditions under which the solution is true.

y1,...,yN — Solutions of system of equations

symbolic variables

Solutions of a system of equations, returned as symbolic variables. The number of output variables or symbolic arrays must be equal to the number of independent variables in a system. If you explicitly specify independent variables `vars`, then the solver uses the same order to return the solutions. If you do not specify `vars`, the toolbox sorts independent variables alphabetically, and then assigns the solutions for these variables to the output variables.

parameters — Parameters in solution

vector of generated parameters

Parameters in a solution, returned as a vector of generated parameters. This output argument is only returned if `ReturnConditions` is `true`. If a single output argument is provided, `parameters` is returned as a field of a structure. If multiple output arguments are provided, `parameters` is returned as the second-to-last output argument. The generated parameters do not appear in the MATLAB workspace. They must be accessed using `parameters`.
Example: \([\text{solx, params, conditions}] = \text{solve}(\sin(x) == 0, \text{'}ReturnConditions\text{'}\text{'}, \text{true})\) returns the parameter \(k\) in the argument \(\text{params}\).

\textbf{conditions — Conditions under which solutions are valid}

vector of symbolic expressions

Conditions under which solutions are valid, returned as a vector of symbolic expressions. This output argument is only returned if \text{ReturnConditions} is \text{true}. If a single output argument is provided, \text{conditions} is returned as a field of a structure. If multiple output arguments are provided, \text{conditions} is returned as the last output argument.

Example: \([\text{solx, params, conditions}] = \text{solve}(\sin(x) == 0, \text{'}ReturnConditions\text{'}\text{'}, \text{true})\) returns the condition \(\text{in}(k, \text{'}\text{integer}\text{'})\) in \text{conditions}. The solution in \text{solx} is valid only under this condition.

\section*{More About}

\textbf{Tips}

- If \text{solve} cannot find a solution and \text{ReturnConditions} is \text{false}, the \text{solve} function internally calls the numeric solver \text{vpasolve} that tries to find a numeric solution. If \text{solve} cannot find a solution and \text{ReturnConditions} is \text{true}, \text{solve} returns an empty solution with a warning. If no solutions exist, \text{solve} returns an empty solution without a warning. For polynomial equations and systems without symbolic parameters, the numeric solver returns all solutions. For nonpolynomial equations and systems without symbolic parameters, the numeric solver returns only one solution (if a solution exists).

- If the solution contains parameters and \text{ReturnConditions} is \text{true}, \text{solve} returns the parameters in the solution and the conditions under which the solutions are true. If \text{ReturnConditions} is \text{false}, the \text{solve} function either chooses values of the parameters and returns the corresponding results, or returns parameterized solutions without choosing particular values. In the latter case, \text{solve} also issues a warning indicating the values of parameters in the returned solutions.

- If a parameter does not appear in any condition, it means the parameter can take any complex value.

- The output of \text{solve} can contain parameters from the input equations in addition to parameters introduced by \text{solve}.

- Parameters introduced by \text{solve} do not appear in the MATLAB workspace. They must be accessed using the output argument that contains them. Alternatively, to use
the parameters in the MATLAB workspace use `syms` to initialize the parameter. For example, if the parameter is \(k \), use `syms k`.

- The variable names `parameters` and `conditions` are not allowed as inputs to `solve`.
- The syntax `S = solve(eqn,var,'ReturnConditions',true)` returns `S` as a structure instead of a symbolic array.
- To solve differential equations, use the `dsolve` function.
- When solving a system of equations, always assign the result to output arguments. Output arguments let you access the values of the solutions of a system.
- `MaxDegree` only accepts positive integers smaller than 5 because, in general, there are no explicit expressions for the roots of polynomials of degrees higher than 4.
- The output variables \(y_1, \ldots, y_N \) do not specify the variables for which `solve` solves equations or systems. If \(y_1, \ldots, y_N \) are the variables that appear in `eqns`, that does not guarantee that `solve(eqns)` will assign the solutions to \(y_1, \ldots, y_N \) using the correct order. Thus, when you run `[b,a] = solve(eqns)`, you might get the solutions for \(a \) assigned to \(b \) and vice versa.

To ensure the order of the returned solutions, specify the variables `vars`. For example, the call `[b,a] = solve(eqns,b,a)` assigns the solutions for \(a \) to \(a \) and the solutions for \(b \) to \(b \).

Algorithms

When you use `IgnoreAnalyticConstraints`, the solver applies these rules to the expressions on both sides of an equation.

- \(\log(a) + \log(b) = \log(a \cdot b) \) for all values of \(a \) and \(b \). In particular, the following equality is valid for all values of \(a, b, \) and \(c \):

 \[
 (a \cdot b)^c = a^c \cdot b^c.
 \]

- \(\log(a^b) = b \cdot \log(a) \) for all values of \(a \) and \(b \). In particular, the following equality is valid for all values of \(a, b, \) and \(c \):

 \[
 (a^b)^c = a^{b \cdot c}.
 \]

- If \(f \) and \(g \) are standard mathematical functions and \(f(g(x)) = x \) for all small positive numbers, \(f(g(x)) = x \) is assumed to be valid for all complex values \(x \). In particular:

 - \(\log(e^x) = x \)
• \(\arcsin(\sin(x)) = x, \arccos(\cos(x)) = x, \arctan(\tan(x)) = x \)

• \(\text{asinh}(\sinh(x)) = x, \text{acosh}(\cosh(x)) = x, \text{atanh}(\tanh(x)) = x \)

• \(W_k(x e^x) = x \) for all values of \(k \)

• The solver can multiply both sides of an equation by any expression except 0.

• The solutions of polynomial equations must be complete.

• “Select Numeric or Symbolic Solver” on page 2-121

See Also

dsolve | linsolve | root | subs | symvar | vpasolve

Introduced before R2006a
sort

Sort elements of symbolic vectors or matrices

Syntax

\[
\begin{align*}
Y &= \text{sort}(X) \\
[Y,I] &= \text{sort}(____) \\
____ &= \text{sort}(X,dim) \\
____ &= \text{sort}(___, 'descend')
\end{align*}
\]

Description

\(Y = \text{sort}(X) \) sorts the elements of a symbolic vector or matrix in ascending order. If \(X \) is a vector, \(\text{sort}(X) \) sorts the elements of \(X \) in lexicographic order. If \(X \) is a matrix, \(\text{sort}(X) \) sorts each column of \(X \).

\[[Y,I] = \text{sort}(____) \] shows the indices that each element of \(Y \) had in the original vector or matrix \(X \).

If \(X \) is an \(m \)-by-\(n \) matrix and you sort elements of each column (\(\text{dim} = 2 \)), then each column of \(I \) is a permutation vector of the corresponding column of \(X \), such that

\[
\text{for } j = 1:n \\
\quad Y(:,j) = X(I(:,j),j);
\text{end}
\]

If \(X \) is a two-dimensional matrix, and you sort the elements of each column, the array \(I \) shows the row indices that the elements of \(Y \) had in the original matrix \(X \). If you sort the elements of each row, \(I \) shows the original column indices.

\[____ = \text{sort}(X,dim) \] sorts the elements of \(X \) along the dimension \(\text{dim} \). Thus, if \(X \) is a two-dimensional matrix, then \(\text{sort}(X,1) \) sorts elements of each column of \(X \), and \(\text{sort}(X,2) \) sorts elements of each row.

\[____ = \text{sort}(___, 'descend') \] sorts \(X \) in descending order. By default, \(\text{sort} \) uses ascending order.
Examples

Sort Vector Elements

By default, `sort` sorts the element of a vector or a matrix in ascending order.

Sort the elements of the following symbolic vector:

```matlab
syms a b c d e
sort([7 e 1 c 5 d a b])
```

```matlab
ans =
[ 1, 5, 7, a, b, c, d, e]
```

Find Indices That Elements of Sorted Matrix Had in Original Matrix

To find the indices that each element of a new vector or matrix \(Y \) had in the original vector or matrix \(X \), call `sort` with two output arguments.

Sort the matrix \(X \) returning the matrix of indices that each element of the sorted matrix had in \(X \):

```matlab
X = sym(magic(3));
[Y, I] = sort(X)
```

```matlab
Y =
[ 3, 1, 2]
[ 4, 5, 6]
[ 8, 9, 7]
```

```matlab
I =
2     1     3
3     2     1
1     3     2
```

Sort Matrix Along Its Columns and Rows

When sorting elements of a matrix, `sort` can work along the columns or rows of that matrix.

Sort the elements of the following symbolic matrix:
\[
X = \text{sym(magic(3))}
\]
\[
X =
\begin{bmatrix}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{bmatrix}
\]

By default, the \texttt{sort} command sorts elements of each column:

\[
\text{sort}(X)
\]
\[
\text{ans} =
\begin{bmatrix}
3 & 1 & 2 \\
4 & 5 & 6 \\
8 & 9 & 7
\end{bmatrix}
\]

To sort the elements of each row, use set the value of the \texttt{dim} option to 2:

\[
\text{sort}(X,2)
\]
\[
\text{ans} =
\begin{bmatrix}
1 & 6 & 8 \\
3 & 5 & 7 \\
2 & 4 & 9
\end{bmatrix}
\]

Sort in Descending Order

\texttt{sort} can sort the elements of a vector or a matrix in descending order.

Sort the elements of this vector in descending order:

\[
\text{syms } a \ b \ c \ d \ e
\text{sort}([7 \ e \ 1 \ c \ 5 \ d \ a \ b], 'descend')
\]
\[
\text{ans} =
\begin{bmatrix}
e & d & c & b & a & 7 & 5 & 1
\end{bmatrix}
\]

Sort the elements of each column of this matrix \(X\) in descending order:

\[
X = \text{sym(magic(3))}
\text{sort}(X,'\text{descend}')
\]
\[
X =
\begin{bmatrix}
8 & 1 & 6
\end{bmatrix}
\]
Now, sort the elements of each row of X in descending order:

\[
\text{sort}(X, 2, 'descend')
\]

\[
\begin{bmatrix}
8 & 9 & 7 \\
4 & 5 & 6 \\
3 & 1 & 2 \\
\end{bmatrix}
\]

Input Arguments

X — Input that needs to be sorted
symbolic vector | symbolic matrix

Input that needs to be sorted, specified as a symbolic vector or matrix.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1. If `dim` exceeds the number of dimensions of `X`, then `sort(X,dim)` returns `X`, and `[Y,I] = sort(X,dim)` returns `Y = X` and `I = ones(size(X))`.

Output Arguments

Y — Sorted output
symbolic vector | symbolic matrix

Sorted output, returned as a symbolic vector or matrix.

I — Indices that elements of Y had in X
symbolic vector | symbolic matrix

Indices that elements of `Y` had in `X`.
Indices that elements of \(Y \) had in \(X \), returned as a symbolic vector or matrix. \([Y,I] = \text{sort}(X,\text{dim})\) also returns matrix \(I = \text{ones}(\text{size}(X)) \) if the value \(\text{dim} \) exceeds the number of dimensions of \(X \).

More About

Tips

- Calling \texttt{sort} for vectors or matrices of numbers that are not symbolic objects invokes the MATLAB \texttt{sort} function.
- For complex input \(X \), \texttt{sort} compares elements by their magnitudes (complex moduli), computed with \texttt{abs}(X). If complex numbers have the same complex modulus, \texttt{sort} compares their phase angles, \texttt{angle}(X).
- If you use ‘\texttt{ascend}’ instead of ‘\texttt{descend}’, then \texttt{sort} returns elements in ascending order, as it does by default.
- \texttt{sort} uses the following rules:
 - It sorts symbolic numbers and floating-point numbers numerically.
 - It sorts symbolic variables alphabetically.
 - In all other cases, including symbolic expressions and functions, \texttt{sort} relies on the internal order that MuPAD uses to store these objects.

See Also

\texttt{max} | \texttt{min}

Introduced before R2006a
Matrix square root

Syntax

`X = sqrtm(A)`
`[X,resnorm] = sqrtm(A)`

Description

`X = sqrtm(A)` returns a matrix X, such that $X^2 = A$ and the eigenvalues of X are the square roots of the eigenvalues of A.

`[X,resnorm] = sqrtm(A)` returns a matrix X and the residual $\frac{\text{norm}(A-X^2,'fro')}{\text{norm}(A,'fro')}$.

Input Arguments

`A`
Symbolic matrix.

Output Arguments

`X`
Matrix, such that $X^2 = A$.

`resnorm`
Residual computed as $\frac{\text{norm}(A-X^2,'fro')}{\text{norm}(A,'fro')}$.
Examples

Compute the square root of this matrix. Because these numbers are not symbolic objects, you get floating-point results.

\[
A = \begin{bmatrix} 2 & -2 & 0 \\ -1 & 3 & 0 \\ -1/3 & 5/3 & 2 \end{bmatrix}; \\
X = \text{sqrtm}(A)
\]

\[
X =
\begin{bmatrix}
1.3333 & -0.6667 & 0.0000 \\
-0.3333 & 1.6667 & -0.0000 \\
-0.0572 & 0.5286 & 1.4142 \\
\end{bmatrix}
\]

Now, convert this matrix to a symbolic object, and compute its square root again:

\[
A = \text{sym}([2 -2 0; -1 3 0; -1/3 5/3 2]); \\
X = \text{sqrtm}(A)
\]

\[
X =
\begin{bmatrix}
\frac{4}{3}, & -\frac{2}{3}, & 0 \\
-\frac{1}{3}, & \frac{5}{3}, & 0 \\
\frac{(2*2^{(1/2)})/3 - 1}{1}, & 1 - 2^{(1/2)/3}, & 2^{(1/2)} \\
\end{bmatrix}
\]

Check the correctness of the result:

\[
\text{isAlways}(X^2 == A)
\]

\[
\text{ans} =
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

Use the syntax with two output arguments to return the square root of a matrix and the residual:

\[
A = \text{vpa}(%s); \\
[X,\text{resnorm}] = \text{sqrtm}(A)
\]

\[
X =
\begin{bmatrix}
0, & 0 \\
0, & 1.2909944487358056283930884665941 \\
0, & 2.9387358770557187699218413430556e-40 \\
\end{bmatrix}
\]

resnorm = 2.9387358770557187699218413430556e-40
More About

Square Root of Matrix

The square root of a matrix A is a matrix X, such that $X^2 = A$ and the eigenvalues of X are the square roots of the eigenvalues of A.

Tips

- Calling `sqrtm` for a matrix that is not a symbolic object invokes the MATLAB `sqrtm` function.
- If A has an eigenvalue 0 of algebraic multiplicity larger than its geometric multiplicity, the square root of A does not exist.

See Also
`cond` | `eig` | `expm` | `funm` | `jordan` | `logm` | `norm`

Introduced in R2013a
\textbf{ssinint}

Shifted sine integral function

\textbf{Syntax}

\texttt{ssinint(X)}

\textbf{Description}

\texttt{ssinint(X)} returns the shifted sine integral function \texttt{ssinint(X) = sinint(X) - pi/2}.

\textbf{Examples}

\textbf{Shifted Sine Integral Function for Numeric and Symbolic Arguments}

Depending on its arguments, \texttt{ssinint} returns floating-point or exact symbolic results.

Compute the shifted sine integral function for these numbers. Because these numbers are not symbolic objects, \texttt{ssinint} returns floating-point results.

\begin{verbatim}
A = ssinint([- pi, 0, pi/2, pi, 1])
A =
 -3.4227 -1.5708 -0.2000 0.2811 -0.6247
\end{verbatim}

Compute the shifted sine integral function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, \texttt{ssinint} returns unresolved symbolic calls.

\begin{verbatim}
symA = ssinint(sym([- pi, 0, pi/2, pi, 1]))
symA =
[- pi - ssinint(pi), -pi/2, ssinint(pi/2), ssinint(pi), ssinint(1)]
\end{verbatim}

Use \texttt{vpa} to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[-3.422733787773627895923750617977,...
 -1.5707963267948966192313216916398,...
 -0.20003415864040813916164340325818,...
 0.2811407251875695511297316751824,...
 -0.62471325642771360428996837781657]

Plot Shifted Sine Integral Function

Plot the shifted sine integral function on the interval from \(-4\pi\) to \(4\pi\).

```matlab
syms x
ezplot(ssint(x), [-4*pi, 4*pi])
grid on
```
Handle Expressions Containing Shifted Sine Integral Function

Many functions, such as `diff`, `int`, and `taylor`, can handle expressions containing `ssinint`.

Find the first and second derivatives of the shifted sine integral function:

```matlab
syms x
diff(ssinint(x), x)
diff(ssinint(x), x, x)
```

```matlab
ans =
sin(x)/x
```
ans = cos(x)/x - sin(x)/x^2

Find the indefinite integral of the shifted sine integral function:
int(ssinint(x), x)

ans = cos(x) + x*ssinint(x)

Find the Taylor series expansion of ssinint(x):
taylor(ssinint(x), x)

ans = x^5/600 - x^3/18 + x - pi/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

More About

Sine Integral Function

The sine integral function is defined as follows:

$$ \text{Si}(x) = \int_{0}^{x} \frac{\sin(t)}{t} dt $$

Shifted Sine Integral Function

The sine integral function is defined as Ssi(x) = Si(x) - \pi/2.
References

See Also
coshint | cosint | eulergamma | int | sin | sinhint | sinhint | sinint

Introduced in R2014a
subexpr

Rewrite symbolic expression in terms of common subexpressions

Syntax

[r,sigma] = subexpr(expr)
[r,var] = subexpr(expr,'var')
[r,var] = subexpr(expr,var)

Description

[r,sigma] = subexpr(expr) rewrites the symbolic expression expr in terms of a common subexpression, substituting this common subexpression with the symbolic variable sigma. The input expression expr cannot contain the variable sigma.

[r,var] = subexpr(expr,'var') substitutes the common subexpression by var. The input expression expr cannot contain the symbolic variable var.

[r,var] = subexpr(expr,var) is equivalent to [r,var] = subexpr(expr,'var'), except that the symbolic variable var must already exist in the MATLAB workspace.

This syntax overwrites the value of the variable var with the common subexpression found in expr. To avoid overwriting the value of var, use another variable name as the second output argument. For example, use [r,var1] = subexpr(expr,var).

Examples

Rewrite Expression Using Abbreviations

Solve the following equation. The solutions are very long expressions. To see them, remove the semicolon at the end of the solve command.

syms a b c d x
solutions = solve(a*x^3 + b*x^2 + c*x + d == 0, x, 'MaxDegree', 3);

These long expressions have common subexpressions. To shorten the expressions, abbreviate the common subexpression by using subexpr. If you do not specify the variable to use for abbreviations as the second input argument of subexpr, then subexpr uses the variable sigma.

[r, sigma] = subexpr(solutions)

\[
\begin{align*}
r &= \sigma^{1/3} - \frac{b}{3a} - \frac{(-b^2/(9a^2) + c/(3a))}{\sigma^{1/3}} \\
&\quad - \frac{(-b^2/(9a^2) + c/(3a))/(2\sigma^{1/3})}{2} - \frac{\sigma^{1/3}/2}{2} - \frac{(3^{1/2}(\sigma^{1/3} + (-b^2/(9a^2) + c/(3a))/\sigma^{1/3}))*1i}{2} - \frac{b}{3a} \\
&\quad (-b^2/(9a^2) + c/(3a))/(2\sigma^{1/3}) - \frac{\sigma^{1/3}/2}{2} + \frac{(3^{1/2}(\sigma^{1/3} + (-b^2/(9a^2) + c/(3a))/\sigma^{1/3}))*1i}{2} - \frac{b}{3a}
\end{align*}
\]

\[
\sigma = \left(\frac{d/(2a) + b^3/(27a^3) - (b^2/(9a^2))}{(b^2 - 4a*c)/(6a^2)^2} + \frac{(-b^2/(9a^2))}{(b^2 - 4a*c)/(6a^2)}
\right) + \frac{(b^3/(27a^3) - d/(2a) + (b*c)/(6a^2))}{(b^3/(27a^3) - d/(2a) + (b*c)/(6a^2))^{1/2}}
\]

Customize Abbreviation Variables

Solve a quadratic equation.

\[
s \text{yms} \ a \ b \ c \ x
\]

\[
solutions = \text{solve}(a*x^2 + b*x + c == 0, x)
\]

\[
solutions = \\
\quad -(b + (b^2 - 4*a*c)^{1/2})/(2*a) \\
\quad -(b - (b^2 - 4*a*c)^{1/2})/(2*a)
\]

Use syms to create the symbolic variable \(s \), and then replace common subexpressions in the result with this variable.

\[
s \text{yms} \ s
\]

\[
[\text{abbrSolutions},s] = \text{subexpr}(\text{solutions},s)
\]

\[
\begin{align*}
\text{abbrSolutions} &= \\
&\quad -(b + s)/(2*a) \\
&\quad -(b - s)/(2*a)
\end{align*}
\]

\[
s = \left(b^2 - 4a*c\right)^{1/2}
\]

Alternatively, use the string \(s \) to specify the abbreviation variable.

\[
[\text{abbrSolutions},s] = \text{subexpr}(\text{solutions},'s')
\]

\[
\text{abbrSolutions} =
\]
\[-(b + s)/(2*a)\]
\[-(b - s)/(2*a)\]

\[s = \]
\[(b^2 - 4*a*c)^{(1/2)}\]

Both syntaxes overwrite the value of the variable \(s\) with the common subexpression. Therefore, you cannot, for example, substitute \(s\) with some value.

\[\text{subs(abbrSolutions,} s \text{,} 0)\]
\[\text{ans = }\]
\[-(b + s)/(2*a)\]
\[-(b - s)/(2*a)\]

To avoid overwriting the value of the variable \(s\), use another variable name for the second output argument.

\[\text{syms } s\]
\[[\text{abbrSolutions,} t] = \text{subexpr(solutions,}'s'\text{'})\]
\[\text{abbrSolutions = }\]
\[-(b + s)/(2*a)\]
\[-(b - s)/(2*a)\]
\[t = \]
\[(b^2 - 4*a*c)^{(1/2)}\]

\[\text{subs(abbrSolutions,} s \text{,} 0)\]
\[\text{ans = }\]
\[-b/(2*a)\]
\[-b/(2*a)\]

Input Arguments

- **`expr`** — Long expression containing common subexpressions
 symbolic expression | symbolic function

Long expression containing common subexpressions, specified as a symbolic expression or function.

- **`var`** — Variable to use for substituting common subexpressions
 string | symbolic variable

Variable to use for substituting common subexpressions, specified as a string or symbolic variable.

`subexpr` throws an error if the input expression `expr` already contains `var`.
Output Arguments

\(r \) — Expression with common subexpressions replaced by abbreviations
symbolic expression | symbolic function

Expression with common subexpressions replaced by abbreviations, returned as a symbolic expression or function.

\(\text{var} \) — Variable used for abbreviations
symbolic variable

Variable used for abbreviations, returned as a symbolic variable.

See Also
pretty | simplify | subs

Introduced before R2006a
subs
Symbolic substitution

Syntax

subs(s,old,new)
subs(s,new)
subs(s)

Description

subs(s,old,new) returns a copy of s replacing all occurrences of old with new, and then evaluating s.

subs(s,new) returns a copy of s replacing all occurrences of the default variable in s with new, and then evaluating s. The default variable is defined by symvar.

subs(s) returns a copy of s replacing symbolic variables in s with their values obtained from the calling function and the MATLAB workspace, and then evaluating s. Variables with no assigned values remain as variables.

Examples

Single Substitution

Replace a with 4 in this expression.

syms a b
subs(a + b, a, 4)

ans =
b + 4

Replace a*b with 5 in this expression.

subs(a*b^2, a*b, 5)
ans =
5*b

Value That Gets Substituted by Default

Substitute the default value in this expression with \(a \). If you do not specify which variable or expression that you want to replace, \(\text{subs} \) uses \(\text{symvar} \) to find the default variable. For \(x + y \), the default variable is \(x \).

```matlab
syms x y a
symvar(x + y, 1)
```

ans =
\(x \)

Therefore, \(\text{subs} \) replaces \(x \) with \(a \).

```matlab
subs(x + y, a)
```

ans =
\(a + y \)

Single Input

Solve this ordinary differential equation.

```matlab
syms a y(t)
y = dsolve(diff(y) == -a*y)
```

\(y = C3*exp(-a*t) \)

Now, specify the values of the symbolic parameters \(a \) and \(C2 \).

```matlab
a = 980;
C2 = 3;
```

Although the values \(a \) and \(C2 \) are now in the MATLAB workspace, \(y \) is not evaluated with the account of these values.

```matlab
y
y =
C3*exp(-a*t)```
To evaluate \( y \) taking into account the new values of \( a \) and \( C_2 \), use `subs`.

```matlab
subs(y)
```

```
ans =
C3*exp(-980*t)
```

**Multiple Substitutions**

Make multiple substitutions by specifying the old and new values as vectors.

```matlab
syms a b
subs(cos(a) + sin(b), [a, b], [sym('alpha'), 2])
```

```
ans =
sin(2) + cos(alpha)
```

You also can use cell arrays for that purpose.

```matlab
subs(cos(a) + sin(b), {a, b}, {sym('alpha'), 2})
```

```
ans =
sin(2) + cos(alpha)
```

**Scalar and Matrix Expansion**

Replace variable \( a \) in this expression with the 3-by-3 magic square matrix. Note that the constant 1 expands to the 3-by-3 matrix with all its elements equal to 1.

```matlab
syms a t
subs(exp(a*t) + 1, a, -magic(3))
```

```
ans =
[exp(-8*t) + 1, exp(-t) + 1, exp(-6*t) + 1]
[exp(-3*t) + 1, exp(-5*t) + 1, exp(-7*t) + 1]
[exp(-4*t) + 1, exp(-9*t) + 1, exp(-2*t) + 1]
```

You can also replace an element of a vector, matrix, or array with a nonscalar value. For example, create these 2-by-2 matrices.

```matlab
A = sym('A', [2,2])
B = sym('B', [2,2])
```

```
A =
```

```matlab
B =
```

```
```
Functions — Alphabetical List

Replace the first element of the matrix A with the matrix B. While making this substitution, \texttt{subs} expands the 2-by-2 matrix A into this 4-by-4 matrix.

\begin{verbatim}
A44 = subs(A, A(1,1), B)
\end{verbatim}

\begin{verbatim}
A44 =
[A1_1, A1_2, A1_2, A1_2]
[A2_1, A2_2, A1_2, A1_2]
[A2_1, A2_1, A2_2, A2_2]
[A2_1, A2_1, A2_2, A2_2]
\end{verbatim}

\texttt{subs} does not let you replace a nonscalar with a scalar.

**Multiple Scalar Expansion**

Replace variables x and y with these 2-by-2 matrices. When you make multiple substitutions involving vectors or matrices, use cell arrays to specify the old and new values.

\begin{verbatim}
syms x y
subs(x*y, {x, y}, {[0 1; -1 0], [1 -1; -2 1]})
\end{verbatim}

\begin{verbatim}
ans =
[0, -1]
[2, 0]
\end{verbatim}

Note that these substitutions are elementwise.

\begin{verbatim}
[0 1; -1 0].*[1 -1; -2 1]
\end{verbatim}

\begin{verbatim}
ans =
0 -1
2 0
\end{verbatim}

**Substitutions in Equations**

Replace \texttt{sin(x + 1)} with a in this equation.
syms x a
subs(sin(x + 1) + 1 == x, sin(x + 1), a)

ans =
a + 1 == x

**Substitutions in Functions**

Replace x with a in this symbolic function.

syms x y a
syms f(x, y)
f(x, y) = x + y;
f = subs(f, x, a)

f(x, y) =
a + y

`subs` replaces the values in the symbolic function formula, but does not replace input arguments of the function.

formula(f)
argnames(f)

ans =
a + y
ans =
[ x, y]

You can replace the arguments of a symbolic function explicitly.

syms x y
f(x, y) = x + y;
f(a, y) = subs(f, x, a);
f

f(a, y) =
a + y

**Original Expression**

Assign the expression x + y to s.
syms x y
s = x + y;

Replace y in this expression with the value 1. Here, s itself does not change.

subs(s, y, 1);
s

s =
x + y

To replace the value of s with the new expression, assign the result returned by subs to s.

s = subs(s, y, 1);
s

s =
x + 1

**Structure Array**

Suppose you want to verify the solutions of this system of equations.

syms x y
eqs = [x^2 + y^2 == 1, x == y];
S = solve(eqs, x, y);
S.x
S.y

ans =
-2^(1/2)/2
 2^(1/2)/2
ans =
-2^(1/2)/2
 2^(1/2)/2

To verify the correctness of the returned solutions, substitute the solutions into the original system.

isAlways(subs(eqs, S))

ans =
1 1
1 1
Input Arguments

**s — Input**
symbolic variable | symbolic expression | symbolic equation | symbolic function | symbolic array | symbolic vector | symbolic matrix

Input specified as a symbolic variable, expression, equation, function, array, vector, or matrix.

**old — Existing element that needs to be replaced**
symbolic variable | symbolic expression | string representing variable or expression | symbolic array | symbolic vector | symbolic matrix | array of strings | vector of strings | matrix of strings

Existing element that needs to be replaced specified as a symbolic variable, expression, string, array, vector, or matrix.

**new — New element**
number | symbolic variable | symbolic expression | string representing variable or expression | symbolic array | symbolic vector | symbolic matrix | array of strings | vector of strings | matrix of strings | structure array

New element specified as a number, variable, expression, string, array, vector, matrix, or structure array.

More About

**Tips**

- `subs(s,old,new)` does not modify `s`. To modify `s`, use `s = subs(s,old,new)`.
- If `old` and `new` are both vectors or cell arrays of the same size, `subs` replaces each element of `old` by the corresponding element of `new`.
- If `old` is a scalar, and `new` is a vector or matrix, then `subs(s,old,new)` replaces all instances of `old` in `s` with `new`, performing all operations elementwise. All constant terms in `s` are replaced with the constant times a vector or matrix of all 1s.
- If `s` is a univariate polynomial and `new` is a numeric matrix, use `polyvalm(sym2poly(s), new)` to evaluate `s` in the matrix sense. All constant terms are replaced with the constant times an identity matrix.
See Also
double | eval | simplify | subexpr | vpa

Introduced before R2006a
svd

Singular value decomposition of symbolic matrix

Syntax

sigma = svd(X)
[U,S,V] = svd(X)
[U,S,V] = svd(X,0)
[U,S,V] = svd(X,'econ')

Description

sigma = svd(X) returns a vector sigma containing the singular values of a symbolic matrix A.

[U,S,V] = svd(X) returns numeric unitary matrices U and V with the columns containing the singular vectors, and a diagonal matrix S containing the singular values. The matrices satisfy the condition A = U*S*V', where V' is the Hermitian transpose (the complex conjugate of the transpose) of V. The singular vector computation uses variable-precision arithmetic. svd does not compute symbolic singular vectors. Therefore, the input matrix X must be convertible to floating-point numbers. For example, it can be a matrix of symbolic numbers.

[U,S,V] = svd(X,0) produces the "economy size" decomposition. If X is an m-by-n matrix with m > n, then svd computes only the first n columns of U. In this case, S is an n-by-n matrix. For m <= n, this syntax is equivalent to svd(X).

[U,S,V] = svd(X,'econ') also produces the "economy size" decomposition. If X is an m-by-n matrix with m >= n, then this syntax is equivalent to svd(X,0). For m < n, svd computes only the first m columns of V. In this case, S is an m-by-m matrix.

Examples

Symbolic Singular Values

Compute the singular values of the symbolic 4-by-4 magic square:
A = sym(magic(4));
sigma = svd(A)

sigma = 
    34
    8*5^(1/2)
    2*5^(1/2)
    0

Now, compute singular values of the matrix whose elements are symbolic expressions:

syms t real
A = [0 1; -1 0];
E = expm(t*A)
sigma = svd(E)

E =
[ cos(t), sin(t)]
[ -sin(t), cos(t)]

sigma =
(cos(t)^2 + sin(t)^2)^(1/2)
(cos(t)^2 + sin(t)^2)^(1/2)

Simplify the result:

sigma = simplify(sigma)

sigma =
1
1

For further computations, remove the assumption:

syms t clear

Floating-Point Singular Values

Convert the elements of the symbolic 4-by-4 magic square to floating-point numbers, and compute the singular values of the matrix:

A = sym(magic(4));
sigma = svd(vpa(A))

sigma =
34.0
Singular Values and Singular Vectors

Compute the singular values and singular vectors of the 4-by-4 magic square:

```matlab
c = digits(10);
A = sym(magic(4))
[U, S, V] = svd(A)
digits(c)
```

```
A =
[16, 2, 3, 13]
[5, 11, 10, 8]
[9, 7, 6, 12]
[4, 14, 15, 1]
```

```
U =
[0.5, 0.6708203932, 0.5, -0.2236067977]
[0.5, -0.2236067977, -0.5, -0.6708203932]
[0.5, 0.2236067977, -0.5, 0.6708203932]
[0.5, -0.6708203932, 0.5, 0.2236067977]
```

```
S =
[34.0, 0, 0, 0]
[0, 17.88543819, 0, 0]
[0, 0, 4.721359549, 0]
[0, 0, 0, 1.108401846e-15]
```

```
V =
[0.5, 0.5, 0.6708203932, 0.2236067977]
[0.5, -0.5, -0.2236067977, 0.6708203932]
[0.5, -0.5, 0.2236067977, -0.6708203932]
[0.5, 0.5, -0.6708203932, -0.2236067977]
```

Compute the product of U, S, and the Hermitian transpose of V with the 10-digit accuracy. The result is the original matrix A with all its elements converted to floating-point numbers:

```matlab
vpa(U*S*V',10)
```

ans =
"Economy Size" Decomposition

Use the second input argument 0 to compute the "economy size" decomposition of this 2-by-3 matrix:

```matlab
old = digits(10);
A = sym([1 1; 2 2; 2 2]);
[U, S, V] = svd(A, 0)
```

```
U =
[0.3333333333, -0.6666666667]
[0.6666666667, 0.6666666667]
[0.6666666667, -0.3333333333]
S =
[4.242640687, 0]
[0, 0]
V =
[0.7071067812, 0.7071067812]
[0.7071067812, -0.7071067812]
```

Now, use the second input argument 'econ' to compute the "economy size" decomposition of matrix B. Here, the 3-by-2 matrix B is the transpose of A.

```matlab
B = A';
[U, S, V] = svd(B, 'econ')
digits(old)
```

```
U =
[0.7071067812, -0.7071067812]
[0.7071067812, 0.7071067812]
S =
[4.242640687, 0]
[0, 0]
V =
[0.3333333333, 0.6666666667]
```
Input Arguments

X — Input matrix
symbolic matrix

Input matrix specified as a symbolic matrix. For syntaxes with one output argument, the elements of X can be symbolic numbers, variables, expressions, or functions. For syntaxes with three output arguments, the elements of X must be convertible to floating-point numbers.

Output Arguments

sigma — Singular values
symbolic vector  |  vector of symbolic numbers

Singular values of a matrix, returned as a vector. If sigma is a vector of numbers, then its elements are sorted in descending order.

U — Singular vectors
matrix of symbolic numbers

Singular vectors, returned as a unitary matrix. Each column of this matrix is a singular vector.

S — Singular values
matrix of symbolic numbers

Singular values, returned as a diagonal matrix. Diagonal elements of this matrix appear in descending order.

V — Singular vectors
matrix of symbolic numbers

Singular vectors, returned as a unitary matrix. Each column of this matrix is a singular vector.

[ 0.6666666667, -0.6666666667]
[ 0.6666666667,  0.3333333333]
More About

Tips

- The second arguments 0 and 'econ' only affect the shape of the returned matrices. These arguments do not affect the performance of the computations.
- Calling svd for numeric matrices that are not symbolic objects invokes the MATLAB svd function.

See Also
chol | digits | eig | inv | lu | qr | svd | vpa

Introduced before R2006a
sym

Create symbolic variables, expressions, functions, matrices

Compatibility

The syntaxes `sym(A,set)` and `sym(A,'clear')` for a symbolic object A that already exists in the MATLAB workspace will be removed in a future release. Use `assume(A,set)` and `assume(A,'clear')` instead.

In previous releases, `sym` treated i in string input as an imaginary number. Now, it is treated as a variable i. For details, see “Input Arguments” on page 4-1176.

Support of strings that are not valid variable names and do not define a number will be removed in a future release. To create symbolic expressions, first create symbolic variables, and then use operations on them. For example, use `syms x; x + 1` instead of `sym('x + 1')`, `exp(sym(pi))` instead of `sym('exp(pi)')`, and `syms f(var1,...varN)` instead of `f(var1,...varN) = sym('f(var1,...varN)').`

Syntax

```
var = sym('var')
symexpr = sym(h)
A = sym('a',[m,n])
A = sym('a',n)
sym(___,'clear')
sym(___,'clear')
sym(N)
sym(N,flag)
```

Description

```
var = sym('var') creates a symbolic variable var. For example, create variable x by entering x = sym('x')..
```
symexpr = sym(h) creates a symbolic expression or matrix symexpr from an anonymous MATLAB function associated with the function handle h.

A = sym('a', [m, n]) creates an m-by-n symbolic matrix filled with automatically generated elements. The generated elements do not appear in the MATLAB workspace.

When you use this syntax to create a vector, it generates the elements by using the prefix a and attaching the numbers from 1 to m or n to it. For example, A = sym('a', [1, 3]) creates a row vector A = [a1, a2, a3].

When you use this syntax to create a matrix, it generates the elements of the form ai_j, where i = 1:m and j = 1:n. For example, A = sym('a', [2 2]) generates the 2-by-2 symbolic matrix A = [a1_1, a1_2; a2_1, a2_2].

To specify another form for generated names of matrix elements, use combinations of '%d' and the prefix a. For example, A = sym('a_%d', [1 3]) generates a row vector A = [a_1, a_2, a_3], and AB = sym('a%db%d', [2 2]) generates the 2-by-2 symbolic matrix AB = [a1b1, a1b2; a2b1, a2b2].

A = sym('a', n) creates an n-by-n symbolic matrix filled with automatically generated elements.

sym(___, set) creates a symbolic variable or matrix and sets an assumption that the variable or all matrix elements belong to a set. Here, the set can be 'real', 'positive', 'integer', or 'rational'. You can specify set after the input arguments in any of the previous syntaxes.

sym(___, 'clear') clears assumptions set on a symbolic variable or matrix. You can specify 'clear' after the input arguments in any of the previous syntaxes, except combining 'clear' and set. You cannot set and clear an assumption in the same function call to sym.

sym(N) converts a number or numeric matrix to a symbolic number or symbolic matrix.

sym(N, flag) uses the technique specified by flag for converting floating-point numbers to symbolic numbers.
Examples

Create Variables

Create the symbolic variables $x$ and $y$.

```matlab
x = sym('x');
y = sym('y');
```

Create Symbolic Expressions from Function Handles

Create a symbolic expression and a symbolic matrix from anonymous functions associated with MATLAB handles.

```matlab
h_expr = @(x)(sin(x) + cos(x));
sym_expr = sym(h_expr)

sym_expr =
 cos(x) + sin(x)

h_matrix = @(x)(x*pascal(3));
sym_matrix = sym(h_matrix)

sym_matrix =
 [x, x, x]
 [x, 2*x, 3*x]
 [x, 3*x, 6*x]
```

Create Matrices with Automatically Generated Elements

Create a 3-by-4 symbolic matrix with automatically generated elements $A_{1,1}, \ldots, A_{3,4}$.

```matlab
A = sym('A', [3 4])
```

```matlab
A =
 [A_{1,1}, A_{1,2}, A_{1,3}, A_{1,4}]
 [A_{2,1}, A_{2,2}, A_{2,3}, A_{2,4}]
 [A_{3,1}, A_{3,2}, A_{3,3}, A_{3,4}]
```

Create a 4-by-4 matrix with the elements $x_{1,1}, \ldots, x_{4,4}$. For square matrices, you can use one integer to specify matrix dimensions.
\( B = \text{sym('x\_%d\_%d',4)} \)

\[
B = \\
\begin{bmatrix}
  x\_1\_1, x\_1\_2, x\_1\_3, x\_1\_4 \\
  x\_2\_1, x\_2\_2, x\_2\_3, x\_2\_4 \\
  x\_3\_1, x\_3\_2, x\_3\_3, x\_3\_4 \\
  x\_4\_1, x\_4\_2, x\_4\_3, x\_4\_4 \\
\end{bmatrix}
\]

This syntax does not create symbolic variables \( A1\_1, \ldots, A3\_4, x\_1\_1, \ldots, x\_4\_4 \) in the MATLAB workspace. To access an element of a matrix, use parentheses.

\[
A(2,3) \\
B(4,2)
\]

\[
\text{ans} = \\
A2\_3
\]

\[
\text{ans} = \\
x\_4\_2
\]

**Create Diagonal Matrix**

Use symbolic matrices and vectors generated by `\text{sym}` to define other matrices.

\[
A = \text{diag(\text{sym('A',[1 4]))})
\]

\[
A = \\
\begin{bmatrix}
  A1, 0, 0, 0 \\
  0, A2, 0, 0 \\
  0, 0, A3, 0 \\
  0, 0, 0, A4 \\
\end{bmatrix}
\]

Perform operations on symbolic matrices by using the operators that you use for numeric matrices. For example, find the determinant and the trace of the matrix \( A \).

\[
\text{det}(A)
\]

\[
\text{ans} = \\
A1*A2*A3*A4
\]

\[
\text{trace}(A)
\]

\[
\text{ans} = \\
\]
Set Assumptions While Creating Variables

Create the symbolic variables \( x, y, z, \) and \( t \) simultaneously assuming that \( x \) is real, \( y \) is positive, \( z \) integer, and \( t \) is rational.

\[
x = \text{sym('x','real');}
y = \text{sym('y','positive');}
z = \text{sym('z','integer');}
t = \text{sym('t','rational');}
\]

Check the assumptions on \( x, y, \) and \( z \) using \texttt{assumptions}.

\[
\text{assumptions}
\]
\[
\begin{align*}
\text{ans} &= \quad [ \text{in}(t, 'rational'), \text{in}(x, 'real'), 0 < y, \text{in}(z, 'integer')] \\
\end{align*}
\]

For further computations, clear the assumptions using \texttt{assume}.

\[
\text{assume([x,y,z,t],'clear')} \\
\text{assumptions}
\]
\[
\begin{align*}
\text{ans} &= \\
\text{Empty sym: 1-by-0}
\end{align*}
\]

Set Assumptions on Matrix Elements

Create a symbolic matrix and set assumptions on each element of that matrix.

\[
A = \text{sym('A%d%d',[2 2],'positive')}
\]
\[
A = \\
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\]

Solve an equation involving the first element of \( A \). MATLAB assumes that this element is positive.

\[
solve(A(1, 1)^2 - 1, A(1, 1))
\]
\[
\begin{align*}
\text{ans} &= \\
\end{align*}
\]
Check the assumptions set on the elements of \( A \) by using `assumptions`.

```
assumptions(A)
```

```
ans =
[0 < A21, 0 < A11, 0 < A22, 0 < A12]
```

Clear all previously set assumptions on elements of a symbolic matrix by using `assume`.

```
assume(A,'clear');
assumptions(A)
```

```
ans =
Empty sym: 1-by-0
```

Solve the same equation again.

```
solve(A(1, 1)^2 - 1, A(1, 1))
```

```
ans =
-1
 1
```

### Create Symbolic Numbers

Convert numeric values to symbolic numbers or expressions. When converting rational numbers or expressions with special values, such as \( \pi \), \( \sqrt{2} \), and so on, use `sym` subexpressions instead of using `sym` on an entire expression. This approach is more accurate. If you apply `sym` to an expression, then MATLAB evaluates the entire expression to a floating-point number, and then the `sym` command converts that floating-point number to a symbolic number.

```
sym(1/1234567)
sym(sqrt(1234567))
sym(exp(pi))
```

```
ans =
7650239286923505/9444732965739290427392
```

```
ans =
4886716562018589/4398046511104
```
ans =
6513525919879993/281474976710656

1/sym(1234567)
sqrt(sym(1234567))
exp(sym(pi))

ans =
1/1234567

ans =
1234567^(1/2)

ans =
exp(pi)

Use quotation marks when creating symbolic numbers with 15 or more digits.
sym(11223344556666778899)

ans =
11223344556666779648

sym('11223344556666778899')

ans =
11223344556666778899

When you use quotation marks to create symbolic complex numbers, specify the imaginary part of a number as 1i, 2i, and so on.
sym('1234567 + 1i')
sym('1234567 - 2i')

ans =
1234567 + 1i

ans =
1234567 - 2i

**Choose Conversion Technique for Floating-Point Values**

Convert pi to a symbolic value.
Choose the conversion technique by specifying the optional second argument, which can be 'r', 'f', 'd', or 'e'. The default is 'r'. See the Input Arguments section for the details about conversion techniques.

\[ \begin{align*}
  r &= \text{sym}(\pi) \\
  f &= \text{sym}(\pi,'f') \\
  d &= \text{sym}(\pi,'d') \\
  e &= \text{sym}(\pi,'e')
\end{align*} \]

\[ \begin{align*}
  r &= \pi \\
  f &= \frac{884279719003555}{281474976710656} \\
  d &= 3.1415926535897931159979634685442 \\
  e &= \pi - \frac{(198*\text{eps})}{359}
\end{align*} \]

### Input Arguments

**Note:** In previous releases, in string input arguments to `sym`, \texttt{i} signified an imaginary unit. Now, it is treated as a symbolic variable. For example, \texttt{sym('1 + i')^2} returns the symbolic expression \((i + 1)^2\). To obtain the same results as in previous releases, omit quotation marks for expressions involving only numbers. For example, \texttt{sym(1 + i)^2} returns 2i. If you use quotation marks (for example, when you convert a number with 15 or more digits), specify the imaginary part as \texttt{1i}, \texttt{1i/2}, \texttt{2i}, and so on. For example, use \texttt{sym('(1 + 11223344556666778899i)')}.

**var — Variable name**

\texttt{string}

Variable name, specified as a string. Argument \texttt{var} must a valid variable name. That is, \texttt{var} must begin with a letter and can contain only alphanumeric characters and underscores. To verify that the name is a valid variable name, use \texttt{isvarname}.

Example: \texttt{x, y123, z_1}
**h — Anonymous function**
MATLAB function handle

Anonymous function, specified as a MATLAB function handle

Example: \( h = @(x)\sin(x) \); \( \text{symexpr} = \text{sym}(h) \)

**a — Prefix for automatically generated matrix elements**
string

Prefix for automatically generated matrix elements, specified as a string. Argument \( a \) must a valid variable name. That is, \( a \) must begin with a letter and can contain only alphanumeric characters and underscores. To verify that the name is a valid variable name, use \( \text{isvarname} \).

Example: \( a, b, a_{bc} \)

**[m, n] — Vector or matrix dimensions**
vector of two integers

Vector or matrix dimensions, specified as a row or column vector of two integers. As a shortcut, you also can use one integer to create a square matrix. For example, \( A = \text{sym}('A', 3) \) creates a square 3-by-3 matrix.

Example: \([2 \ 3], [2,3], [2;3]\)

**set — Assumptions on symbolic variable or matrix**
'\text{real}' | 'positive' | 'integer' | 'rational'

Assumptions on a symbolic variable or matrix, specified as one of these strings: '\text{real}', 'positive', 'integer', or 'rational'.

**N — Numeric value to be converted to symbolic number or matrix**
number | matrix of numbers

Numeric value to be converted to symbolic number or matrix, specified as a number or a matrix of numbers.

Example: \(10, \pi, \text{hilb}(3)\)

**flag — Conversion technique**
'r' (default) | 'd' | 'e' | 'f'

Conversion technique, specified as one of the strings listed in this table.
When \texttt{sym} uses the \textit{rational} mode, it converts floating-point numbers obtained by evaluating expressions of the form $p/q$, $p\times\pi/q$, $\sqrt{p}$, $2^q$, and $10^q$ for modest sized integers $p$ and $q$ to the corresponding symbolic form. This effectively compensates for the round-off error involved in the original evaluation, but might not represent the floating-point value precisely. If \texttt{sym} cannot find simple rational approximation, then it uses the same technique as it would use with the flag \texttt{'}f\texttt{'}.

When \texttt{sym} uses the \textit{decimal} mode, it takes the number of digits from the current setting of \texttt{digits}. Conversions with fewer than 16 digits lose some accuracy, while more than 16 digits might not be warranted. For example, \texttt{sym(4/3,'d')} with the 10-digit accuracy returns 1.333333333, while with the 20-digit accuracy it returns 1.3333333333333332593. The latter does not end in a string of 3s, but it is an accurate decimal representation of the floating-point number nearest to $4/3$.

When \texttt{sym} uses the \textit{estimate error} mode, it supplements a result obtained in the rational mode by a term involving the variable \texttt{eps}. This term estimates the difference between the theoretical rational expression and its actual floating-point value. For example, \texttt{sym(3*\pi/4,'e')} returns $(3\times\pi)/4 - (103\times\texttt{eps})/249$.

When \texttt{sym} uses the \textit{floating-point} mode, it represents all values in the form $N\times2^e$ or $-N\times2^e$, where $N \geq 0$ and $e$ are integers. For example, \texttt{sym(1/10,'f')} returns $3602879701896397/36028797018963968$. The returned rational value is the exact value of the floating-point number that you convert to a symbolic number.

**Output Arguments**

\texttt{var} — Variable
symbolic variable

Variable, returned as a symbolic variable.

\texttt{symexpr} — Expression or matrix generated from anonymous MATLAB function
symbolic expression | symbolic matrix

Expression or matrix generated from an anonymous MATLAB function, returned as a symbolic expression or matrix.
A — Vector or matrix with automatically generated elements
symbolic vector | symbolic matrix

Vector or matrix with automatically generated elements, returned as a symbolic vector or matrix. The elements of this vector or matrix do not appear in the MATLAB workspace.

Alternative Functionality

Alternative Approaches for Creating Symbolic Variables

To create several symbolic variables in one function call, use `syms`.

More About

Tips

• Statements like `pi = sym('pi')` and `delta = sym('1/10')` create symbolic numbers that avoid the floating-point approximations inherent in the values of `pi` and `1/10`. The `pi` created in this way temporarily replaces the built-in numeric function with the same name.

• `sym` always treats `i` in string input as an identifier. To input the imaginary number `i`, use `1i` instead.

• `clear x` does not clear the symbolic object of its assumptions, such as real, positive, or any assumptions set by `assume`, `sym`, or `syms`. To remove assumptions, use one of these options:
  • `assume(x,'clear')` removes all assumptions affecting `x`.
  • `clear all` clears all objects in the MATLAB workspace and resets the symbolic engine.
  • `assume` and `assumeAlso` provide more flexibility for setting assumptions on variable.

• When you replace one or more elements of a numeric vector or matrix with a symbolic number, MATLAB converts that number to a double-precision number.

```matlab
A = eye(3);
A(1,1) = sym('pi')
```
You cannot replace elements of a numeric vector or matrix with a symbolic variable, expression, or function because these elements cannot be converted to double-precision numbers. For example, \( A(1,1) = \text{sym('a')} \) throws an error.

See Also
assume | assumeAlso | assumptions | clear | clear all | double | eps | reset | symfun | syms | symvar

Introduced before R2006a
**sym2poly**

Extract vector of all numeric coefficients, including zeros, from symbolic polynomial

**Syntax**

\[ c = \text{sym2poly}(p) \]

**Description**

\[ c = \text{sym2poly}(p) \] returns the numeric vector of coefficients \( c \) of the symbolic polynomial \( p \). The returned vector \( c \) includes all coefficients, including those equal 0.

\text{sym2poly} \text{ returns coefficients in order of descending powers of the polynomial variable. If } \sum_{n=0}^{\text{order}} c_n x^n, \text{ then } c = \text{sym2poly}(p) \text{ returns } c = [c_1, c_2, \ldots, c_n].

**Examples**

**Extract Numeric Coefficients of Polynomial**

Create row vectors of coefficients of symbolic polynomials.

Extract integer coefficients of a symbolic polynomial into a numeric row vector.

```matlab
syms x
C = sym2poly(x^3 - 2*x - 5)
C =
 1 0 -2 -5
```

Extract rational and integer coefficients of a symbolic polynomial into a vector. Because \text{sym2poly} \text{ returns numeric double-precision results, it approximates exact rational coefficients with double-precision numbers.}

```matlab
C = sym2poly(1/2*x^3 - 2/3*x - 5)
C =
 0.5000 0.0000 -0.6667 0.0000
```
Input Arguments

p — Polynomial
symbolic expression

Polynomial, specified as a symbolic expression.

Output Arguments

c — Polynomial coefficients
numeric row vector

Polynomial coefficients, returned as a numeric row vector.

More About

Tips

To extract symbolic coefficients of a polynomial, use \texttt{coeffs}. This function returns a symbolic vector of coefficients and omits all zeros. For example, \texttt{syms a b x; c = coeffs(a*x^3 - 5*b, x)} returns \texttt{c = [ -5*b, a]}. 

See Also

coeffs | poly2sym

Introduced before R2006a
symengine

Return symbolic engine

Syntax

s = symengine

Description

s = symengine returns the currently active symbolic engine.

Examples

To see which symbolic computation engine is currently active, enter:

s = symengine

s =
MuPAD symbolic engine

Now you can use the variable s in function calls that require symbolic engine:

syms a b c x
p = a*x^2 + b*x + c;
feval(s,'polylib::discrim', p, x)

ans =
b^2 - 4*a*c

See Also

evalin | feval | read

Introduced in R2008b
symfun
Create symbolic functions

Syntax

\[ f = \text{symfun}(\text{formula}, \text{inputs}) \]

Description

\[ f = \text{symfun}(\text{formula}, \text{inputs}) \]
creates the symbolic function \( f \). The symbolic variables \( \text{inputs} \) represent its input arguments. The symbolic expression \( \text{formula} \) defines the body of the function \( f \).

Examples

Create Symbolic Functions

Use \text{syms} to create symbolic variables. Then use \text{symfun} to create a symbolic function with these variables as its input arguments.

\begin{verbatim}
syms x y
f = symfun(x + y, [x y])
\end{verbatim}

\[ f(x, y) = \]
\[ x + y \]

Call the function for \( x = 1 \) and \( y = 2 \).

\[ f(1,2) \]
\[ \text{ans} = \]
\[ 3 \]

Input Arguments

\texttt{formula} — Function body
symbolic expression | vector of symbolic expressions | matrix of symbolic expressions
Function body, specified as a symbolic expression, vector of symbolic expressions, or matrix of symbolic expressions.

Example: \( x + y \)

**inputs** — Input argument or arguments of function

symbolic variable | array of symbolic variables

Input argument or arguments of a function, specified as a symbolic variable or an array of symbolic variables, respectively.

Example: \([x, y]\)

**Output Arguments**

\( f \) — Function

symbolic function (symfun data type)

Function, returned as a symbolic function (symfun data type).

**Alternative Functionality**

**Alternative Approaches for Creating Symbolic Functions**

- Use the assignment operation to simultaneously create a symbolic function and define its body. The arguments \( x \) and \( y \) must be symbolic variables in the MATLAB workspace, and the body of the function must be a symbolic number, variable, or expression. Assigning a number, such as \( f(x, y) = 1 \), causes an error.

```matlab
syms x y
f(x,y) = x + y
```

- Use `syms` to create an abstract symbolic function \( f(x, y) \) and its arguments. The following command creates the symbolic function \( f \) and the symbolic variables \( x \) and \( y \). Using `syms`, you also can create multiple symbolic functions in one function call.

```matlab
syms f(x,y)
```
More About

Tips

• When you replace one or more elements of a numeric vector or matrix with a symbolic number, MATLAB converts that number to a double-precision number.

```matlab
A = eye(3);
A(1,1) = sym('pi')
A =
 3.1416 0 0
 0 1.0000 0
 0 0 1.0000
```

You cannot replace elements of a numeric vector or matrix with a symbolic variable, expression, or function because these elements cannot be converted to double-precision numbers. For example, `syms f(t); A(1,1) = f` throws an error.

• Symbolic functions are always scalars, therefore, you cannot index into a function. To access $x^2$ and $x^4$ in this example, use `formula` to get the expression that defines $f$, and then index into that expression.

```matlab
syms x
f = symfun([x^2, x^4], x);
expr = formula(f);
expr(1)
expr(2)
an =
x^2
an =
x^4
```

See Also

`argnames` | `dsolve` | `formula` | `matlabFunction` | `odeToVectorField` | `sym` | `syms` | `symvar`
sympref

Set symbolic preferences

Syntax

sympref(pref, value)
sympref(pref, 'default')
sympref(pref)

sympref() 
sympref('default')
sympref(allPref)

Description

sympref(pref, value) sets the symbolic preference pref to value and returns the previous value of pref. Symbolic preferences can affect the functions fourier, ifourier, and heaviside. These preferences persist between successive MATLAB sessions.

sympref(pref, 'default') sets pref to its default value and returns the previous value of pref.

sympref(pref) returns the value of symbolic preference pref.

sympref() returns the values of all symbolic preferences in a structure.

sympref('default') sets all symbolic preferences to their default values and returns the previous values in a structure.

sympref(allPref) restores all symbolic preferences to the values in structure allPref and returns the previous values in a structure. allPref is the structure returned by a previous call to sympref.
Examples

Change Parameter Values of Fourier Transform

Note: Symbolic preferences persist between successive MATLAB sessions. MATLAB does not restore them for a new session.

The Fourier transform \( F(w) \) of \( f = f(t) \) is

\[
F(w) = c \int_{\infty}^{\infty} f(t) e^{iswt} dt,
\]

where \( c \) and \( s \) are parameters with default values 1 and -1. Other common values for \( c \) are \( 1/2\pi \) and \( 1/\sqrt{2\pi} \), and for \( s \) are 1, -2\( \pi \), and 2\( \pi \).

Find the Fourier transform of \( \sin(t) \) with default values of \( c \) and \( s \).

```matlab
syms t w
fourier(sin(t),t,w)
```

\[
\text{ans} = -\pi \cdot (\text{dirac}(w - 1) - \text{dirac}(w + 1)) \cdot 1i
\]

Find the same Fourier transform for \( c = 1/(2\pi) \) and \( s = 1 \). Set these parameter values using the FourierParameter preference of sympref. Represent \( \pi \) exactly using sym. The values of \( c \) and \( s \) are specified as the vector \([1/(2*\text{sym}(\pi)) \ 1]\). Store the previous values returned by sympref to restore them later.

```matlab
oldparam = sympref('FourierParameters',[1/(2*sym(pi)) \ 1])
fourier(sin(t),t,w)
```

\[
\text{oldparam} = \begin{bmatrix}
1 \\
-1
\end{bmatrix}
\]

\[
\text{ans} = \frac{(\text{dirac}(w - 1)*1i)}{2} - \frac{(\text{dirac}(w + 1)*1i)}{2}
\]
The preferences set by `sympref` persist through your current and future MATLAB sessions. Restore the old values of `c` and `s` using the previous parameter values stored in `oldparam`.

```matlab
sympref('FourierParameters',oldparam);
```

Alternatively, you can restore the default values of `c` and `s` by specifying the `'default'` option.

```matlab
sympref('FourierParameters','default');
```

### Change Value of Heaviside at Origin

The default value of the Heaviside function at the origin is 1/2 in the Symbolic Math Toolbox. Return the value of `heaviside(0)`.

```matlab
syms x
heaviside(sym(0))
ztrans(heaviside(x))
```

```
ans =
1/2

ans =
1/(z - 1) + 1/2
```

Other common values for the Heaviside function at the origin are 0 and 1. Set `heaviside(0)` to 1 using the `'HeavisideAtOrigin'` preference of `sympref`. Store the old parameter value returned by `sympref` to restore it later.

```matlab
oldparam = sympref('HeavisideAtOrigin',1)
```

```
oldparam =
1/2
```

Check the new value of `heaviside(0)`.

```matlab
heaviside(sym(0))
ztrans(heaviside(x))
```

```
ans =
```
1
ans =
1/(z - 1) + 1

The new output of \texttt{heaviside(0)} modifies the output of \texttt{ztrans}.

The preferences set by \texttt{sympref} persist throughout your current and future MATLAB sessions. Restore the previous value of \texttt{heaviside(0)} by loading the old parameter stored in \texttt{oldparam}.

\texttt{sympref('HeavisideAtOrigin',oldparam)};

Alternatively, you can restore the default value of 'HeavisideAtOrigin' by specifying the 'default' option.

\texttt{sympref('HeavisideAtOrigin','default')};

\textbf{Saving and Restoring All Symbolic Preferences}

\texttt{sympref} can save and restore all symbolic preferences simultaneously in place of working with individual preferences.

Return the values of all symbolic preferences using \texttt{sympref}. The \texttt{sympref} function returns a structure of values of preferences. Access individual preferences by addressing the fields of the structure.

\texttt{S = sympref;}
\texttt{S.FourierParameters}
\texttt{S.HeavisideAtOrigin}

\texttt{ans =}
\texttt{[ 1, -1]}

\texttt{ans =}
\texttt{1/2}

\texttt{S stores the values of all symbolic preferences.}

Assume that you have changed the preferences. Since the preferences persist through your current and future MATLAB sessions, you want to restore your previous preferences in \texttt{S}. Restore the saved preferences using \texttt{sympref(S)}.

\texttt{sympref(S)};
Alternatively, you can set all symbolic preferences to their defaults by specifying the option 'default'.

```matlab
sympref('default');
```

### Input Arguments

**pref** — Symbolic preference

`'FourierParameters' | 'HeavisideAtOrigin'`

Symbolic preference, specified as `'FourierParameters'` or `'HeavisideAtOrigin'`. Example: `sympref('HeavisideAtOrigin',1)` sets the value returned by `heaviside` at the origin to 1.

**value** — Value of symbolic preference

numeric number | symbolic number

Value of the symbolic preference, specified as a numeric or symbolic number.

**allPref** — Values of all symbolic preferences

structure

Values of all symbolic preferences, specified as a structure. Typically, `allPref` is generated by a previous call to `sympref`.

### More About

**Tips**

- The commands `clear(all)` and `reset(symengine)` do not reset or affect symbolic preferences. Use `sympref` to manipulate symbolic preferences.

**See Also**

`fourier` | `heaviside` | `ifourier`

**Introduced in R2015a**
symprod

Product of series

Syntax

\[ F = \text{symprod}(f, k, a, b) \]
\[ F = \text{symprod}(f, k) \]

Description

\[ F = \text{symprod}(f, k, a, b) \] returns the product of the series with terms that expression \( f \) specifies, which depend on symbolic variable \( k \). The value of \( k \) ranges from \( a \) to \( b \). If you do not specify \( k \), \text{symprod} uses the variable that \text{symvar} determines. If \( f \) is a constant, then the default variable is \( x \).

\[ F = \text{symprod}(f, k) \] returns the product of the series that expression \( f \) specifies, which depend on symbolic variable \( k \). The value of \( k \) starts at 1 with an unspecified upper bound. The product \( F \) is returned in terms of \( k \) where \( k \) represents the upper bound. This product \( F \) differs from the indefinite product. If you do not specify \( k \), \text{symprod} uses the variable that \text{symvar} determines. If \( f \) is a constant, then the default variable is \( x \).

Examples

Find Product of Series Specifying Bounds

Find the following products of series

\[ P_1 = \prod_{k=2}^{\infty} \frac{1 - \frac{1}{k^2}}{k^2}, \]
\[ P_2 = \prod_{k=2}^{\infty} \frac{k^2}{k^2 - 1}. \]
syms k
P1 = symprod(1 - 1/k^2, k, 2, Inf)
P2 = symprod(k^2/(k^2 - 1), k, 2, Inf)

P1 =
1/2
P2 =
2

Alternatively, specify bounds as a row or column vector.

syms k
P1 = symprod(1 - 1/k^2, k, [2 Inf])
P2 = symprod(k^2/(k^2 - 1), k, [2; Inf])

P1 =
1/2
P2 =
2

Find Product of Series Specifying Product Index and Bounds

Find the product of series

\[ P = \prod_{k=1}^{10000} \frac{e^{kx}}{x} \]

syms k x
P = symprod(exp(k*x)/x, k, 1, 10000)

P =
exp(50005000*x)/x^10000

Find Product of Series with Unspecified Bounds

When you do not specify the bounds of a series are unspecified, the variable k starts at 1.
In the returned expression, k itself represents the upper bound.

Find the products of series with an unspecified upper bound
\[ P_1 = \prod_{k} k, \]
\[ P_2 = \prod_{k} \frac{2k-1}{k^2}. \]

```matlab
syms k
P1 = symprod(k, k)
P2 = symprod((2*k - 1)/k^2, k)
```

Input Arguments

\textbf{f} — Expression defining terms of series
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic number

Expression defining terms of series, specified as a symbolic expression, function, constant, or a vector or matrix of symbolic expressions, functions, or constants.

\textbf{k} — Product index
symbolic variable

Product index, specified as a symbolic variable. If you do not specify this variable, \texttt{symprod} uses the default variable that \texttt{symvar(expr,1)} determines. If \texttt{f} is a constant, then the default variable is \texttt{x}.

\textbf{a} — Lower bound of product index
number | symbolic number | symbolic variable | symbolic expression | symbolic function

Lower bound of product index, specified as a number, symbolic number, variable, expression, or function (including expressions and functions with infinities).

\textbf{b} — Upper bound of product index
number | symbolic number | symbolic variable | symbolic expression | symbolic function
Upper bound of product index, specified as a number, symbolic number, variable, expression, or function (including expressions and functions with infinities).

**More About**

**Definite Product**

The definite product of a series is defined as

\[
\prod_{i=a}^{b} x_i = x_a \cdot x_{a+1} \cdot \ldots \cdot x_b
\]

**Indefinite Product**

\[f(i) = \prod_{i} x_i\]

is called the indefinite product of \(x_i\) over \(i\), if the following identity holds for all values of \(i\):

\[
\frac{f(i+1)}{f(i)} = x_i
\]

**Note:** `symprod` does not compute indefinite products.

**See Also**

cumprod | cumsum | int | syms | symsum | symvar

**Introduced in R2011b**
syms

Shortcut for creating symbolic variables and functions

Compatibility

syms does not create variables with the following names: clear, integer, positive, rational, and real. For example, in previous releases syms integer created the symbolic variable integer. To create these variables now, use sym. For example, to create the symbolic variable integer, use integer = sym('integer').

Syntax

syms var1 ... varN
syms var1 ... varN set
syms var1 ... varN clear
syms f(var1,...,varN)
syms

Description

syms var1 ... varN creates symbolic variables var1 ... varN. Separate variables by spaces.

syms var1 ... varN set creates symbolic variables var1 ... varN simultaneously setting an assumption that these variables belong to a set.

syms var1 ... varN clear clears assumptions set on a symbolic variables var1 ... varN.

syms f(var1,...,varN) creates the symbolic function f and symbolic variables var1,...,varN representing the input arguments of f. You can create multiple symbolic functions in one call. For example, syms f(x) g(t) creates two symbolic functions (f and g) and two symbolic variables (x and t).
syms without input arguments lists all symbolic variables, functions, vectors, and matrices currently existing in the MATLAB workspace.

**Examples**

**Create Symbolic Variables**

Create symbolic variables x and y.

```matlab
syms x y
```

**Set Assumptions While Creating Variables**

Create symbolic variables x and y, and assume that they are integer.

```matlab
syms x y integer
```

Check assumptions.

```matlab
assumptions
ans =
[in(x, 'integer'), in(y, 'integer')]
```

Alternatively, check assumptions on each variable. For example, check assumptions set on the variable x.

```matlab
assumptions(x)
ans =
in(x, 'integer')
```

Clear assumptions on x and y.

```matlab
assume([x y],'clear')
assumptions
ans =
Empty sym: 1-by-0
```
Create Symbolic Functions

Create symbolic functions with one and two arguments.

```matlab
syms s(t) f(x,y)
```

Both \( s \) and \( f \) are abstract symbolic functions. They do not have symbolic expressions assigned to them, so the bodies of these functions are \( s(t) \) and \( f(x, y) \), respectively.

Specify the following formula for \( f \).

```matlab
f(x,y) = x + 2*y
```

\( f(x, y) = x + 2*y \)

Compute function value at the point \( x = 1 \) and \( y = 2 \).

```matlab
f(1,2)
```

\( \text{ans} = 5 \)

Create Symbolic Functions with Matrices as Formulas

Create a symbolic function and specify its formula by using a symbolic matrix.

```matlab
syms x
f(x) = [x x^3; x^2 x^4]
```

\( f(x) = [x, x^3; x^2, x^4] \)

Compute the function value at the point \( x = 2 \):

```matlab
f(2)
```

\( \text{ans} = [2, 8; 4, 16] \)

Compute the value of this function for \( x = [1 \ 2 \ 3; \ 4 \ 5 \ 6] \). The result is a cell array of symbolic matrices.
\( y = f([1 \ 2 \ 3; \ 4 \ 5 \ 6]) \)
\[
y = \\
[2x3 \ sym] & [2x3 \ sym] \\
[2x3 \ sym] & [2x3 \ sym]
\]

Access the contents of each cell in a cell array by using braces.

\( y\{1\} \)
\[
\text{ans} = \\
[1, 2, 3] \\
[4, 5, 6]
\]

\( y\{2\} \)
\[
\text{ans} = \\
[1, 4, 9] \\
[16, 25, 36]
\]

\( y\{3\} \)
\[
\text{ans} = \\
[1, 8, 27] \\
[64, 125, 216]
\]

\( y\{4\} \)
\[
\text{ans} = \\
[1, 16, 81] \\
[256, 625, 1296]
\]

**List All Symbolic Variables, Functions, and Matrices**

Create several symbolic variables, functions, and matrices.

\[
syms \ a \ b \ c \ f(x,y) \ g(s,t) \\
A = sym('A',[2,3]); \\
B = sym('B',[1 10]);
\]

Use `syms` without input arguments to print a list of all symbolic objects that currently exist in the MATLAB workspace.

\[
syms \\
'A' \ 'B' \ 'a' \ 'b' \ 'c' \ 'f' \ 'g' \ 's' \ 't' \ 'x' \ 'y'
\]
Input Arguments

var1 ... varN — Symbolic variables
valid variable names separated by spaces

Symbolic variables, specified as valid variable names separated by spaces. Each variable name must begin with a letter and can contain only alphanumeric characters and underscores. To verify that the name is a valid variable name, use isvarname.

Example: x y123 z_1

set — Assumptions on symbolic variables
real | positive | integer | rational

Assumptions on a symbolic variable or matrix, specified as real, positive, integer, or rational.

f(var1,...,varN) — Symbolic function with its input arguments
expression with parentheses

Symbolic function with its input arguments, specified as an expression with parentheses. The function name f and the variable names var1...varN must be valid variable names. That is, they must begin with a letter and can contain only alphanumeric characters and underscores. To verify that the name is a valid variable name, use isvarname.

Example: s(t), f(x,y)

More About

Tips

• syms is a shortcut for sym. This shortcut lets you create several symbolic variables in one function call. Alternatively, you can use sym and create each variable separately. You also can use symfun to create symbolic functions.

• In functions and scripts, do not use syms to create symbolic variables with the same names as MATLAB functions. For these names MATLAB does not create symbolic variables, but keeps the names assigned to the functions. If you want to create a symbolic variable with the same name as a MATLAB function inside a function or a script, use sym. For example, use alpha = sym('alpha').
• The following variable names are invalid with syms: integer, real, rational, positive and clear. To create variables with these names use sym. For example, 
  \text{real} = \text{sym}(\text{\textquotesingle}real\textquotesingle).

• clear x does not clear the symbolic object of its assumptions, such as real, positive, or any assumptions set by assume, sym, or syms. To remove assumptions, use one of these options:
  • assume(x, 'clear') removes all assumptions affecting x.
  • clear all clears all objects in the MATLAB workspace and resets the symbolic engine.
  • assume and assumeAlso provide more flexibility for setting assumptions on variables.

• When you replace one or more elements of a numeric vector or matrix with a symbolic number, MATLAB converts that number to a double-precision number.

\[
A = \text{eye}(3);
A(1,1) = \text{sym}(\text{\textquotesingle}pi\textquotesingle)
\]

\[
A =
\begin{bmatrix}
3.1416 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 1.0000
\end{bmatrix}
\]

You cannot replace elements of a numeric vector or matrix with a symbolic variable, expression, or function because these elements cannot be converted to double-precision numbers. For example, \text{syms} a; A(1,1) = a throws an error.

\textbf{See Also}

assume | assumeAlso | assumptions | clear all | reset | sym | symfun | symvar

Introduced before R2006a
symsum

Sum of series

Syntax

\[ F = \text{symsum}(f,k,a,b) \]
\[ F = \text{symsum}(f,k) \]

Description

\[ F = \text{symsum}(f,k,a,b) \] returns the sum of the series with terms that expression \( f \) specifies, which depend on symbolic variable \( k \). The value of \( k \) ranges from \( a \) to \( b \). If you do not specify the variable, \texttt{symsum} uses the variable that \texttt{symvar} determines. If \( f \) is a constant, then the default variable is \( x \).

\[ F = \text{symsum}(f,k) \] returns the indefinite sum \( F \) of the series with terms that expression \( f \) specifies, which depend on variable \( k \). The \( f \) argument defines the series such that the indefinite sum \( F \) is given by \( F(k+1) - F(k) = f(k) \). If you do not specify the variable, \texttt{symsum} uses the variable that \texttt{symvar} determines. If \( f \) is a constant, then the default variable is \( x \).

Examples

Find Sum of Series Specifying Bounds

Find the following sums of series.

\[
S_1 = \sum_{k=0}^{10} k^2 \\
S_2 = \sum_{k=1}^{\infty} \frac{1}{k^2} \\
S_3 = \sum_{k=1}^{\infty} \frac{x^k}{k!}
\]
syms k x
S1 = symsum(k^2, k, 0, 10)
S2 = symsum(1/k^2, k, 1, Inf)
S3 = symsum(x^k/factorial(k), k, 0, Inf)

S1 =
385
S2 =
pi^2/6
S3 =
exp(x)

Alternatively, specify bounds as a row or column vector.

S1 = symsum(k^2, k, [0 10])
S2 = symsum(1/k^2, k, [1; Inf])
S3 = symsum(x^k/factorial(k), k, [0 Inf])

S1 =
385
S2 =
pi^2/6
S3 =
exp(x)

Find Indefinite Sum of Series

Find the indefinite sum of the series specified by the symbolic expressions k and k^2.

sym k
sym(k, k)
sym(1/k^2, k)

ans =
k^2/2 - k/2

ans =
-psi(1, k)

Difference between symsum and sum

The sum function finds the sum of elements of symbolic vectors and matrices, similar to the MATLAB sum function.
Consider the definite sum
\[ S = \sum_{k=1}^{10} \frac{1}{k^2}. \]

Contrast `symsum` and `sum` by summing this definite sum using both functions.

```matlab
syms k
S_sum = sum(subs(1/k^2, k, 1:10))
S_symsum = symsum(1/k^2, k, 1, 10)
```

\[ S_{\text{sum}} = \frac{1968329}{1270080} \]
\[ S_{\text{symsum}} = \frac{1968329}{1270080} \]

For details on `sum`, see the information on the MATLAB `sum` page.

### Input Arguments

- **f** — Expression defining terms of series
  symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic number

Expression defining terms of series, specified as a symbolic expression, function, or a vector or matrix of symbolic expressions, functions, or constants.

- **k** — Summation index
  symbolic variable

Summation index, specified as a symbolic variable. If you do not specify this variable, `symsum` uses the default variable determined by `symvar(expr,1)`. If \( f \) is a constant, then the default variable is \( x \).

- **a** — Lower bound of summation index
  number | symbolic number | symbolic variable | symbolic expression | symbolic function

Lower bound of summation index, specified as a number, symbolic number, variable, expression, or function (including expressions and functions with infinities).
b — Upper bound of summation index

number | symbolic number | symbolic variable | symbolic expression | symbolic function

Upper bound of summation index, specified as a number, symbolic number, variable, expression, or function (including expressions and functions with infinities).

More About

Definite Sum

The definite sum of series is defined as

\[
\sum_{k=a}^{b} x_k = x_a + x_{a+1} + \ldots + x_b.
\]

Indefinite Sum

The indefinite sum of a series is defined as

\[
F(x) = \sum_{x} f(x),
\]

such that

\[
F(x + 1) - F(x) = f(x).
\]

See Also

cumsum | int | sum | symprod | syms | symvar

Introduced before R2006a
**symvar**

Find symbolic variables in symbolic expression, matrix, or function

**Syntax**

symvar(s)
symvar(s,n)

**Description**

symvar(s) returns a vector containing all the symbolic variables in s in alphabetical order with uppercase letters preceding lowercase letters.

symvar(s,n) returns a vector containing n symbolic variables in s alphabetically closest to x. If s is a symbolic function, symvar(s,n) returns the input arguments of s in front of other free variables in s.

**Input Arguments**

s
Symbolic expression, matrix, or function.

n
Integer or Inf. If n exceeds the number of variables in s, then symvar(s,n) is equivalent to symvar(s,m) where m is the number of variables in s.

**Examples**

Find all symbolic variables in the sum:

symvar(wa + wb + wx + yx + ya + yb + yx)
Find all symbolic variables in this function:

```matlab
syms x y a b
f(a, b) = a*x^2/(sin(3*y - b));
symvar(f)
```

```matlab
ans =
[a, b, x, y]
```

Now find the first three symbolic variables in \( f \). For a symbolic function, `symvar` with two arguments returns the function inputs in front of other variables:

```matlab
symvar(f, 3)
```

```matlab
ans =
[a, b, x]
```

For a symbolic expression or matrix, `symvar` with two arguments returns variables sorted by their proximity to \( x \):

```matlab
symvar(a*x^2/(sin(3*y - b)), 3)
```

```matlab
ans =
[x, y, b]
```

Find the default symbolic variable of these expressions:

```matlab
syms v z
g = v + z;
symvar(g, 1)
```

```matlab
ans =
z
```

```matlab
syms aaa aab
g = aaa + aab;
symvar(g, 1)
```

```matlab
ans =
aaa
```

```matlab
syms X1 x2 xa xb
g = X1 + x2 + xa + xb;
```


```matlab
symvar(g, 1)
ans =
x2
```

**More About**

**Tips**

- `symvar(s)` can return variables in a different order than `symvar(s,n)`.
- `symvar` does treat the constants `pi`, `i`, and `j` as variables.
- If there are no symbolic variables in `s`, `symvar` returns the empty vector.
- When performing differentiation, integration, substitution or solving equations, MATLAB uses the variable returned by `symvar(s,1)` as a default variable. For a symbolic expression or matrix, `symvar(s,1)` returns the variable closest to `x`. For a function, `symvar(s,1)` returns the first input argument of `s`.

**Algorithms**

When sorting the symbolic variables by their proximity to `x`, `symvar` uses this algorithm:

1. The variables are sorted by the first letter in their names. The ordering is `x y w z v u ... a X Y W Z V U ... A`. The name of a symbolic variable cannot begin with a number.
2. For all subsequent letters, the ordering is alphabetical, with all uppercase letters having precedence over lowercase: `0 1 ... 9 A B ... Z a b ... z`.

**See Also**

`sym | symfun | syms`

*Introduced in R2008b*
**tan**

Symbolic tangent function

**Syntax**

\( \tan(X) \)

**Description**

\( \tan(X) \) returns the tangent function of \( X \).

**Examples**

**Tangent Function for Numeric and Symbolic Arguments**

Depending on its arguments, \( \tan \) returns floating-point or exact symbolic results.

Compute the tangent function for these numbers. Because these numbers are not symbolic objects, \( \tan \) returns floating-point results.

\[
A = \tan([-2, -\pi, \pi/6, 5\pi/7, 11])
\]

\[
A = \\
2.1850 \quad 0.0000 \quad 0.5774 \quad -1.2540 \quad -225.9508
\]

Compute the tangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, \( \tan \) returns unresolved symbolic calls.

\[
symA = \tan(sym([-2, -\pi, \pi/6, 5\pi/7, 11]))
\]

\[
symA = \\
[ -\tan(2), 0, 3^{1/2}/3, -\tan((2\pi)/7), \tan(11)]
\]

Use \texttt{vpa} to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ 2.1850398632615189916433061023137,...
  0,...
  0.57735026918962576450914878050196,...
-1.2539603376627038375709109783365,...
-225.95084645419514202579548320345]

**Plot Tangent Function**

Plot the tangent function on the interval from \(-\pi\) to \(\pi\).

```matlab
syms x
ezplot(tan(x), [-pi, pi])
grid on
```
Handle Expressions Containing Tangent Function

Many functions, such as `diff`, `int`, `taylor`, and `rewrite`, can handle expressions containing `tan`.

Find the first and second derivatives of the tangent function:

```matlab
syms x
diff(tan(x), x)
diff(tan(x), x, x)
```

ans =
```
tan(x)^2 + 1
```
ans =
2*tan(x)*(tan(x)^2 + 1)

Find the indefinite integral of the tangent function:
int(tan(x), x)
ans =
-log(cos(x))

Find the Taylor series expansion of \( \tan(x) \):
taylor(tan(x), x)
ans =
(2*x^5)/15 + x^3/3 + x

Rewrite the tangent function in terms of the sine and cosine functions:
rewrite(tan(x), 'sincos')
ans =
sin(x)/cos(x)

Rewrite the tangent function in terms of the exponential function:
rewrite(tan(x), 'exp')
ans =
-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)

### Input Arguments

**X — Input**
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

### More About

**Tangent Function**
The tangent of an angle, \( \alpha \), defined with reference to a right angled triangle is
\[\tan(\alpha) = \frac{\text{opposite side}}{\text{adjacent side}} = \frac{a}{b}.\]

The tangent of a complex angle, \(\alpha\), is

\[\tan(\alpha) = \frac{e^{i\alpha} - e^{-i\alpha}}{i(e^{i\alpha} + e^{-i\alpha})}.\]
See Also
acos | acot | acsc | asec | asin | atan | cos | cot | csc | sec | sin

Introduced before R2006a
**tanh**

Symbolic hyperbolic tangent function

**Syntax**

```
tanh(X)
```

**Description**

`tanh(X)` returns the hyperbolic tangent function of `X`.

**Examples**

**Hyperbolic Tangent Function for Numeric and Symbolic Arguments**

Depending on its arguments, `tanh` returns floating-point or exact symbolic results.

Compute the hyperbolic tangent function for these numbers. Because these numbers are not symbolic objects, `tanh` returns floating-point results.

```
A = tanh([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7])
```

```
A =
 -0.9640 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.5774i...
 0.0000 + 1.7321i 0.0000 - 1.2540i
```

Compute the hyperbolic tangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, `tanh` returns unresolved symbolic calls.

```
symA = tanh(sym([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7]))
```

```
symA =
[-tanh(2), 0, (3^(1/2)*1i)/3, 3^(1/2)*1i, -tanh((pi*2i)/7)]
```

Use `vpa` to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ -0.96402758007581688394641372410092,...
  0,...
  0.57735026918962576450914878050196i,...
  1.7320508075688772935274463415059i,...
 -1.2539603376627038375709109783365i]

**Plot Hyperbolic Tangent Function**

Plot the hyperbolic tangent function on the interval from $-\pi$ to $\pi$.

```matlab
syms x
ezplot(tanh(x), [-pi, pi])
grid on
```
Handle Expressions Containing Hyperbolic Tangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing tanh.

Find the first and second derivatives of the hyperbolic tangent function:

```matlab
syms x
diff(tanh(x), x)
diff(tanh(x), x, x)
```

```matlab
ans =
1 - tanh(x)^2
```
ans = 
2*tanh(x)*(tanh(x)^2 - 1)

Find the indefinite integral of the hyperbolic tangent function:
int(tanh(x), x)
ans =
log(cosh(x))

Find the Taylor series expansion of \( \tanh(x) \): 
taylor(tanh(x), x)
ans =
(2*x^5)/15 - x^3/3 + x

Rewrite the hyperbolic tangent function in terms of the exponential function:
rewrite(tanh(x), 'exp')
ans =
(exp(2*x) - 1)/(exp(2*x) + 1)

**Input Arguments**

\( X \) — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

**See Also**
acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech | sinh

**Introduced before R2006a**
taylor

Taylor series

Syntax

taylor(f, var)
taylor(f, var, a)
taylor(___, Name, Value)

Description

taylor(f, var) approximates \( f \) with the Taylor series expansion of \( f \) up to the fifth order at the point \( var = 0 \). If you do not specify \( var \), then taylor uses the default variable determined by symvar(f,1).

taylor(f, var, a) approximates \( f \) with the Taylor series expansion of \( f \) at the point \( var = a \).

taylor(___, Name, Value) uses additional options specified by one or more Name,Value pair arguments. You can specify Name,Value after the input arguments in any of the previous syntaxes.

Examples

Find Maclaurin Series of Univariate Expressions

Find the Maclaurin series expansions of these functions.

```matlab
syms x
v = vpa(taylor(exp(x)))
v = vpa(taylor(sin(x)))
v = vpa(taylor(cos(x)))
```

ans =
Specify Expansion Point

Find the Taylor series expansions at \( x = 1 \) for these functions. The default expansion point is 0. To specify a different expansion point, use `ExpansionPoint`:

```matlab
syms x
taylor(log(x), x, 'ExpansionPoint', 1)
```

```matlab
ans =
x - (x - 1)^2/2 + (x - 1)^3/3 - (x - 1)^4/4 + (x - 1)^5/5 - 1
```

Alternatively, specify the expansion point as the third argument of `taylor`:

```matlab
taylor(acot(x), x, 1)
```

```matlab
ans =
pi/4 - x/2 + (x - 1)^2/4 - (x - 1)^3/12 + (x - 1)^5/40 + 1/2
```

Specify Truncation Order

Find the Maclaurin series expansion for \( f = \sin(x)/x \). The default truncation order is 6. Taylor series approximation of this expression does not have a fifth-degree term, so `taylor` approximates this expression with the fourth-degree polynomial:

```matlab
syms x
f = sin(x)/x;
t6 = taylor(f, x)
```

```matlab
t6 =
x^4/120 - x^2/6 + 1
```

Use `Order` to control the truncation order. For example, approximate the same expression up to the orders 8 and 10:

```matlab
t8 = taylor(f, x, 'Order', 8)
```
t10 = taylor(f, x, 'Order', 10)

t8 =
- x^6/5040 + x^4/120 - x^2/6 + 1

t10 =
x^8/362880 - x^6/5040 + x^4/120 - x^2/6 + 1

Plot the original expression f and its approximations t6, t8, and t10. Note how the accuracy of the approximation depends on the truncation order.

ezplot(t6)
hold on
ezplot(t8)
ezplot(t10)
ezplot(f)
xlim([-4 4])

legend('approximation of sin(x)/x up to O(x^6)',...
'approximation of sin(x)/x up to O(x^8)',...
'approximation of sin(x)/x up to O(x^{10})',...
'sin(x)/x',...
'Location', 'South');

title('Taylor Series Expansion')
hold off
Specify Order Mode: Relative or Absolute

Find the Taylor series expansion of this expression. By default, `taylor` uses an absolute order, which is the truncation order of the computed series.

```
taylor(1/(exp(x)) - exp(x) + 2*x, x, 'Order', 5)
```

```
ans =
-x^3/3
```

Find the Taylor series expansion with a relative truncation order by using `OrderMode`. For some expressions, a relative truncation order provides more accurate approximations.
taylor(1/(exp(x)) - exp(x) + 2*x, x, 'Order', 5, 'OrderMode', 'relative')

ans =
- x^7/2520 - x^5/60 - x^3/3

**Find Maclaurin Series of Multivariate Expressions**

Find the Maclaurin series expansion of this multivariate expression. If you do not specify the vector of variables, `taylor` treats `f` as a function of one independent variable.

```matlab
syms x y z
f = sin(x) + cos(y) + exp(z);
taylor(f)
```

**ans =**

```
x^5/120 - x^3/6 + x + cos(y) + exp(z)
```

Find the multivariate Maclaurin expansion by specifying the vector of variables.

```matlab
syms x y z
f = sin(x) + cos(y) + exp(z);
taylor(f, [x, y, z])
```

**ans =**

```
x^5/120 - x^3/6 + x + y^4/24 - y^2/2 + z^5/120 + z^4/24 + z^3/6 + z^2/2 + z + 2
```

**Specify Expansion Point for Multivariate Expression**

Find the multivariate Taylor expansion by specifying both the vector of variables and the vector of values defining the expansion point:

```matlab
syms x y
f = y*exp(x - 1) - x*log(y);
taylor(f, [x, y], [1, 1], 'Order', 3)
```

**ans =**

```
x + (x - 1)^2/2 + (y - 1)^2/2
```

If you specify the expansion point as a scalar `a`, `taylor` transforms that scalar into a vector of the same length as the vector of variables. All elements of the expansion vector equal `a`:

```matlab
taylor(f, [x, y], 1, 'Order', 3)
```

**ans =**
\[ x + (x - 1)^2/2 + (y - 1)^2/2 \]

**Input Arguments**

- **f** — Input to approximate  
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic multidimensional array

Input to approximate, specified as a symbolic expression or function. It also can be a vector, matrix, or multidimensional array of symbolic expressions or functions.

- **var** — Expansion variable  
symbolic variable

Expansion variable, specified as a symbolic variable. If you do not specify *var*, then *taylor* uses the default variable determined by `symvar(f,1)`.

- **a** — Expansion point  
0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable. You also can specify the expansion point as a *Name,Value* pair argument. If you specify the expansion point both ways, then the *Name,Value* pair argument takes precedence.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of *Name,Value* arguments. *Name* is the argument name and *Value* is the corresponding value. *Name* must appear inside single quotes ('). You can specify several name and value pair arguments in any order as *Name1,Value1,...,NameN,ValueN*.

Example: `taylor(log(x),x,'ExpansionPoint',1,'Order',9)`

- **'ExpansionPoint'** — Expansion point  
0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable. You can also
specify the expansion point using the input argument \( a \). If you specify the expansion point both ways, then the Name,Value pair argument takes precedence.

**'Order' — Truncation order of Taylor series expansion**
6 (default) | positive integer | symbolic positive integer

Truncation order of Taylor series expansion, specified as a positive integer or a symbolic positive integer. \( \text{taylor} \) computes the Taylor series approximation with the order \( n - 1 \). The truncation order \( n \) is the exponent in the \( O \)-term: \( O(var^n) \).

**'OrderMode' — Order mode indicator**
'absolute' (default) | 'relative'

Order mode indicator, specified as 'absolute' or 'relative'. This indicator specifies whether you want to use absolute or relative order when computing the Taylor polynomial approximation.

**Absolute order** is the truncation order of the computed series. **Relative order** \( n \) means that the exponents of \( var \) in the computed series range from the leading order \( m \) to the highest exponent \( m + n - 1 \). Here \( m + n \) is the exponent of \( var \) in the \( O \)-term: \( O(var^{m+n}) \).

**More About**

**Taylor Series Expansion**

Taylor series expansion represents an analytic function \( f(x) \) as an infinite sum of terms around the expansion point \( x = a \):

\[
f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots = \sum_{m=0}^{\infty} \frac{f^{(m)}(a)}{m!}(x-a)^m
\]

Taylor series expansion requires a function to have derivatives up to an infinite order around the expansion point.

**Maclaurin Series Expansion**

Taylor series expansion around \( x = 0 \) is called Maclaurin series expansion:
\[ f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \ldots = \sum_{m=0}^{\infty} \frac{f^{(m)}(0)}{m!} x^m \]

**Tips**

- If you use both the third argument `a` and `ExpansionPoint` to specify the expansion point, the value specified via `ExpansionPoint` prevails.

- If `var` is a vector, then the expansion point `a` must be a scalar or a vector of the same length as `var`. If `var` is a vector and `a` is a scalar, then `a` is expanded into a vector of the same length as `var` with all elements equal to `a`.

- If the expansion point is infinity or negative infinity, then `taylor` computes the Laurent series expansion, which is a power series in `1/var`.

**See Also**

`pade` | `series` | `symvar`

**Introduced before R2006a**
**taylortool**

Taylor series calculator

**Syntax**

```
taylortool
```

```
taylortool('f')
```

**Description**

`taylortool` initiates a GUI that graphs a function against the Nth partial sum of its Taylor series about a base point \( x = a \). The default function, value of N, base point, and interval of computation for `taylortool` are \( f = x \cdot \cos(x) \), \( N = 7 \), \( a = 0 \), and \([-2\cdot\pi, 2\cdot\pi]\), respectively.

`taylortool('f')` initiates the GUI for the given expression \( f \).

**Examples**

**Open Taylor Series Calculator For Particular Expression**

Open the Taylor series calculator for \( \sin(\tan(x)) - \tan(\sin(x)) \):

```
taylortool('sin(tan(x)) - tan(sin(x))')
```
More About

- “Taylor Series” on page 2-33

See Also
funtool | rsums
Introduced before R2006a
**texlabel**

TeX representation of symbolic expression

**Syntax**

```matlab
texlabel(expr)
texlabel(expr,'literal')
```

**Description**

texlabel(expr) converts the symbolic expression expr into the TeX equivalent for use in text strings. texlabel converts Greek variable names, such as delta, into Greek letters. Annotation functions, such as title, xlabel, and text can use the TeX string as input. To obtain the LaTeX representation, use latex.

texlabel(expr,'literal') interprets Greek variable names literally.

**Examples**

**Generate TeX String**

Use texlabel to generate TeX strings for these symbolic expressions.

```matlab
syms x y lambda12 delta
texlabel(sin(x) + x^3)
texlabel(3*(1-x)^2*exp(-(x^2) - (y+1)^2))
texlabel(lambda12^(3/2)/pi - pi*delta^(2/3))
```

```matlab
ans =
{sin}({x}) + {x}^{3}
ans =
{3} {exp}(- ({y} + {1})^{2} - {x}^{2}) - {x}^{2} - {x}^{2}) ({x} - {1})^{2}
```
ans = 
{\lambda_{12}}^{{3}/{2}}/{\pi} - {\delta}^{{2}/{3}} {\pi}

To make texlabel interpret Greek variable names literally, include the argument 'literal'.

texlabel(lambda12,'literal')

ans = 
{\lambda_{12}}

**Insert TeX String in Figure**

Use texlabel to generate a TeX string that text inserts into a figure.

Plot $y = x^2$.

```matlab
syms alpha
expr = alpha^2;
ezplot(expr)
```
Display the plotted expression on the plot.

```latex
\texttt{expr = texlabel(expr);} \\
\texttt{text(2,30,[y = expr]);}
```
Input Arguments

expr — Expression to be converted
        symbolic expression

Expression to be converted, specified as a symbolic expression.

See Also
latex  |  text  |  title  |  xlabel  |  ylabel  |  zlabel

Introduced before R2006a
functions.*

symbolic array multiplication

syntax

A.*B
times(A,B)

description

A.*B performs elementwise multiplication of A and B.
times(A,B) is equivalent to A.*B.

examples

multiply matrix by scalar

create a 2-by-3 matrix.

A = sym('a', [2 3])

A =
[ a1_1, a1_2, a1_3]
[ a2_1, a2_2, a2_3]

multiply the matrix by the symbolic expression sin(b). multiplying a matrix by a scalar means multiplying each element of the matrix by that scalar.

syms b
A.*sin(b)

ans =
[ a1_1*sin(b), a1_2*sin(b), a1_3*sin(b)]
[ a2_1*sin(b), a2_2*sin(b), a2_3*sin(b)]
Multiply Two Matrices

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

```matlab
H = sym(hilb(3))
d = diag(sym([1 2 3]))
H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]
d =
[1, 0, 0]
[0, 2, 0]
[0, 0, 3]
```

Multiply the matrices by using the elementwise multiplication operator `.*`. This operator multiplies each element of the first matrix by the corresponding element of the second matrix. The dimensions of the matrices must be the same.

```matlab
H.*d
```

```matlab
ans =
[1, 0, 0]
[0, 2/3, 0]
[0, 0, 3/5]
```

Multiply Expression by Symbolic Function

Multiply a symbolic expression by a symbolic function. The result is a symbolic function.

```matlab
syms f(x)
f(x) = x^2;
f1 = (x^2 + 5*x + 6).*f
```

```matlab
f1(x) =
x^2*(x^2 + 5*x + 6)
```

Input Arguments

**A — Input**

number | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression
Input, specified as a number or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

\textbf{B — Input}

number | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

\textbf{See Also}

ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus | power | rdivide | transpose

\textit{Introduced before R2006a}
**toeplitz**

Symbolic Toeplitz matrix

**Syntax**

```plaintext
toeplitz(c,r)
toeplitz(r)
```

**Description**

`toeplitz(c,r)` generates a nonsymmetric Toeplitz matrix having `c` as its first column and `r` as its first row. If the first elements of `c` and `r` are different, `toeplitz` issues a warning and uses the first element of the column.

`toeplitz(r)` generates a symmetric Toeplitz matrix if `r` is real. If `r` is complex, but its first element is real, then this syntax generates the Hermitian Toeplitz matrix formed from `r`. If the first element of `r` is not real, then the resulting matrix is Hermitian off the main diagonal, meaning that $T_{ij} = \text{conjugate}(T_{ji})$ for $i \neq j$.

**Input Arguments**

- `c` Vector specifying the first column of a Toeplitz matrix.
- `r` Vector specifying the first row of a Toeplitz matrix.

**Examples**

Generate the Toeplitz matrix from these vectors. Because these vectors are not symbolic objects, you get floating-point results.
c = [1 2 3 4 5 6];
r = [1 3/2 3 7/2 5];
toeplitz(c,r)

ans =
1.0000  1.5000  3.0000  3.5000  5.0000
2.0000  1.0000  1.5000  3.0000  3.5000
3.0000  2.0000  1.0000  1.5000  3.0000
4.0000  3.0000  2.0000  1.0000  1.5000
5.0000  4.0000  3.0000  2.0000  1.0000
6.0000  5.0000  4.0000  3.0000  2.0000

Now, convert these vectors to a symbolic object, and generate the Toeplitz matrix:

c = sym([1 2 3 4 5 6]);
r = sym([1 3/2 3 7/2 5]);
toeplitz(c,r)

ans =
[ 1, 3/2, 3, 7/2, 5]
[ 2, 1, 3/2, 3, 7/2]
[ 3, 2, 1, 3/2, 3]
[ 4, 3, 2, 1, 3/2]
[ 5, 4, 3, 2, 1]
[ 6, 5, 4, 3, 2]

Generate the Toeplitz matrix from this vector:

syms a b c d
T = toeplitz([a b c d])

T =
[ a, b, c, d]
[ conj(b), a, b, c]
[ conj(c), conj(b), a, b]
[ conj(d), conj(c), conj(b), a]

If you specify that all elements are real, then the resulting Toeplitz matrix is symmetric:

syms a b c d real
T = toeplitz([a b c d])

T =
[ a, b, c, d]
[ b, a, b, c]
[ c, b, a, b]
[ d, c, b, a]

For further computations, clear the assumptions:
syms a b c d clear

Generate the Toeplitz matrix from a vector containing complex numbers:

\[
T = \text{toeplitz}(%s) \\
\text{T =} \\
\begin{bmatrix}
1 & 2 & 1j \\
2 & 1 & 2 \\
-1j & 2 & 1 \\
\end{bmatrix}
\]

If the first element of the vector is real, then the resulting Toeplitz matrix is Hermitian:

\[
isAlways(T == T') \\
\text{ans =} \\
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

If the first element is not real, then the resulting Toeplitz matrix is Hermitian off the main diagonal:

\[
T = \text{toeplitz}(%s) \\
\text{T =} \\
\begin{bmatrix}
1j & 2 & 1 \\
2 & 1j & 2 \\
1 & 2 & 1j \\
\end{bmatrix}
\]

\[
isAlways(T == T') \\
\text{ans =} \\
\begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{bmatrix}
\]

Generate a Toeplitz matrix using these vectors to specify the first column and the first row. Because the first elements of these vectors are different, \texttt{toeplitz} issues a warning and uses the first element of the column:

\[
syms a b c
\]
toeplitz([a b c], [1 b/2 a/2])

Warning: First element of input column does not match first element of input row. Column wins diagonal conflict.

ans =
[ a, b/2, a/2]
[ b, a, b/2]
[ c, b, a]

More About

Toeplitz Matrix

A Toeplitz matrix is a matrix that has constant values along each descending diagonal from left to right. For example, matrix \( T \) is a symmetric Toeplitz matrix:

\[
T = \begin{pmatrix}
t_0 & t_1 & t_2 & \cdots & t_k \\
t_{-1} & t_0 & t_1 & \cdots & \\
t_{-2} & t_{-1} & t_0 & \cdots & \\
& \ddots & \ddots & \ddots & \\
t_{-k} & \cdots & t_{-1} & t_0 & t_1 \\
\end{pmatrix}
\]

Tips

- Calling `toeplitz` for numeric arguments that are not symbolic objects invokes the MATLAB `toeplitz` function.

See Also

toeplitz

Introduced in R2013a
**transpose, .'
Symbolic matrix transpose**

**Syntax**

A.'  
transpose(A)

**Description**

A.' computes the nonconjugate transpose of A.  
transpose(A) is equivalent to A.'.

**Examples**

**Transpose of Real Matrix**

Create a 2-by-3 matrix, the elements of which represent real numbers.

```plaintext
syms x y real
A = [x x x; y y y]
A =
[x, x, x]
[y, y, y]
```

Find the nonconjugate transpose of this matrix.

```plaintext
A.'
ans =
[x, y]
[x, y]
[x, y]
```

If all elements of a matrix represent real numbers, then its complex conjugate transform equals its nonconjugate transform.
isAlways(A' == A."

ans =
      1  1
      1  1
      1  1

**Transpose of Complex Matrix**

Create a 2-by-2 matrix, the elements of which represent complex numbers.

```matlab
syms x y real
A = [x + y*i x - y*i; y + x*i y - x*i]
```

```matlab
A =
 [x + y*1i, x - y*1i]
 [y + x*1i, y - x*1i]
```

Find the nonconjugate transpose of this matrix. The nonconjugate transpose operator, A.′, performs a transpose without conjugation. That is, it does not change the sign of the imaginary parts of the elements.

```matlab
A.'
```

```matlab
ans =
 [x + y*1i, y + x*1i]
 [x - y*1i, y - x*1i]
```

For a matrix of complex numbers with nonzero imaginary parts, the nonconjugate transform is not equal to the complex conjugate transform.

```matlab
isAlways(A.' == A','Unknown','false')
```

```matlab
ans =
 0 0
 0 0
```

**Input Arguments**

- **A — Input**
  - number | symbolic number | symbolic variable | symbolic expression | symbolic vector | symbolic matrix | symbolic multidimensional array
Input, specified as a number or a symbolic number, variable, expression, vector, matrix, multidimensional array.

**More About**

**Nonconjugate Transpose**

The nonconjugate transpose of a matrix interchanges the row and column index for each element, reflecting the elements across the main diagonal. The diagonal elements themselves remain unchanged. This operation does not affect the sign of the imaginary parts of complex elements.

For example, if \( B = A.' \) and \( A(3,2) \) is \( 1+1i \), then the element \( B(2,3) \) is \( 1+1i \).

**See Also**

- ctranspose
- ldivide
- minus
- mldivide
- mpower
- mrdivide
- mtimes
- plus
- power
- rdivide
- times

**Introduced before R2006a**
triangularPulse

Triangular pulse function

**Syntax**

```plaintext
triangularPulse(a,b,c,x)
triangularPulse(a,c,x)
triangularPulse(x)
```

**Description**

*triangularPulse(a,b,c,x)* returns the triangular pulse function.

*triangularPulse(a,c,x)* is a shortcut for *triangularPulse(a, (a + c)/2, c, x)*.

*triangularPulse(x)* is a shortcut for *triangularPulse(-1, 0, 1, x)*.

**Input Arguments**

**a**

Number (including infinities and symbolic numbers), symbolic variable, or symbolic expression. This argument specifies the rising edge of the triangular pulse function.

**Default:** -1

**b**

Number (including infinities and symbolic numbers), symbolic variable, or symbolic expression. This argument specifies the peak of the triangular pulse function.

**Default:** If you specify a and c, then \((a + c)/2\). Otherwise, 0.

**c**

Number (including infinities and symbolic numbers), symbolic variable, or symbolic expression. This argument specifies the falling edge of the triangular pulse function.
Default: 1

\( x \)

Number (including infinities and symbolic numbers), symbolic variable, or symbolic expression.

**Examples**

Compute the triangular pulse function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:

\[
\begin{align*}
\text{triangularPulse}(-2, 0, 2, -3) \\
\text{triangularPulse}(-2, 0, 2, -1/2) \\
\text{triangularPulse}(-2, 0, 2, 0) \\
\text{triangularPulse}(-2, 0, 2, 3/2) \\
\text{triangularPulse}(-2, 0, 2, 3)
\end{align*}
\]

\[
\text{ans} =
\begin{array}{c}
0 \\
0.7500 \\
1.0000 \\
0.2500 \\
0
\end{array}
\]

Compute the triangular pulse function for the numbers converted to symbolic objects:

\[
\begin{align*}
\text{triangularPulse}(\text{sym}(-2), 0, 2, -3) \\
\text{triangularPulse}(-2, 0, 2, \text{sym}(-1/2)) \\
\text{triangularPulse}(-2, \text{sym}(0), 2, 0) \\
\text{triangularPulse}(-2, 0, \text{sym}(3/2)) \\
\text{triangularPulse}(-2, 0, \text{sym}(2), 3)
\end{align*}
\]

\[
\text{ans} =
\begin{array}{c}
0 \\
3/4 \\
1 \\
1/4 \\
0
\end{array}
\]

Compute the triangular pulse function for \( a < x < b \):

\[
\text{syms} \ a \ b \ c \ x
\]
assume(a < x < b)
triangularPulse(a, b, c, x)

ans =
(a - x)/(a - b)

For further computations, remove the assumption:
syms a b x clear

Compute the triangular pulse function for b < x < c:
assume(b < x < c)
triangularPulse(a, b, c, x)

ans =
-(c - x)/(b - c)

For further computations, remove the assumption:
syms b c x clear

Compute the triangular pulse function for a = b:
syms a b c x
assume(b < c)
triangularPulse(b, b, c, x)

ans =
-((c - x)*rectangularPulse(b, c, x))/(b - c)

Compute the triangular pulse function for c = b:
assume(a < b)
triangularPulse(a, b, b, x)

ans =
((a - x)*rectangularPulse(a, b, x))/(a - b)

For further computations, remove all assumptions on a, b, and c:
syms a b c clear

Use triangularPulse with one input argument as a shortcut for computing triangularPulse(-1, 0, 1, x):
triangularPulse

```plaintext
syms x
triangularPulse(x)

ans =
triangularPulse(-1, 0, 1, x)

[triangularPulse(sym(-10))
triangularPulse(sym(-3/4))
triangularPulse(sym(0))
triangularPulse(sym(2/3))
triangularPulse(sym(1))]

ans =
 0
1/4
1
1/3
 0

Use triangularPulse with three input arguments as a shortcut for computing triangularPulse(a, (a + c)/2, c, x):

syms a c x
triangularPulse(a, c, x)

ans =
triangularPulse(a, a/2 + c/2, c, x)

[triangularPulse(sym(-10), 10, 3)
triangularPulse(sym(-1/2), -1/4, -2/3)
triangularPulse(sym(2), 4, 3)
triangularPulse(sym(2), 4, 6)
triangularPulse(sym(-1), 4, 0)]

ans =
 7/10
 0
 1
 0
 2/5

Plot the triangular pulse function:

syms x
```
Call `triangularPulse` with infinities as its rising and falling edges:

```matlab
syms x
triangularPulse(-1, 0, inf, x)
triangularPulse(-inf, 0, 1, x)
triangularPulse(-inf, 0, inf, x)
```

```
ans =
heaviside(x) + (x + 1)*rectangularPulse(-1, 0, x)
```

```
ans =
heaviside(-x) - (x - 1)*rectangularPulse(0, 1, x)
```
More About

Triangular Pulse Function

If $a < x < b$, then the triangular pulse function equals $(x - a)/(b - a)$.

If $b < x < c$, then the triangular pulse function equals $(c - x)/(c - b)$.

If $x <= a$ or $x >= c$, then the triangular pulse function equals 0.

The triangular pulse function is also called the triangle function, hat function, tent function, or sawtooth function.

Tips

• If $a$, $b$, and $c$ are variables or expressions with variables, `triangularPulse` assumes that $a <= b <= c$. If $a$, $b$, and $c$ are numerical values that do not satisfy this condition, `triangularPulse` throws an error.

• If $a = b = c$, `triangularPulse` returns 0.

• If $a = b$ or $b = c$, the triangular function can be expressed in terms of the rectangular function.

See Also
dirac | heaviside | rectangularPulse

Introduced in R2012b


\textbf{tril}

Return lower triangular part of symbolic matrix

\textbf{Syntax}

\begin{verbatim}
tril(A)
tril(A,k)
\end{verbatim}

\textbf{Description}

\texttt{tril(A)} returns a triangular matrix that retains the lower part of the matrix \texttt{A}. The upper triangle of the resulting matrix is padded with zeros.

\texttt{tril(A,k)} returns a matrix that retains the elements of \texttt{A} on and below the \texttt{k}-th diagonal. The elements above the \texttt{k}-th diagonal equal to zero. The values \texttt{k = 0, k > 0,} and \texttt{k < 0} correspond to the main, superdiagonals, and subdiagonals, respectively.

\textbf{Examples}

Display the matrix retaining only the lower triangle of the original symbolic matrix:

\begin{verbatim}
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A)
\end{verbatim}

\begin{verbatim}
ans =
[ a, 0, 0]
[ 1, 2, 0]
[ a + 1, b + 2, c + 3]
\end{verbatim}

Display the matrix that retains the elements of the original symbolic matrix on and below the first superdiagonal:

\begin{verbatim}
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, 1)
\end{verbatim}
ans =
[   a,    b,  0]
[    1,    2,  3]
[ a + 1, b + 2, c + 3]

Display the matrix that retains the elements of the original symbolic matrix on and below the first subdiagonal:

```
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, -1)
```

ans =
[   0,    0,  0]
[    1,    0,  0]
[ a + 1, b + 2,  0]

**See Also**
diag | triu

*Introduced before R2006a*
**triu**

Return upper triangular part of symbolic matrix

**Syntax**

```matlab
triu(A)
triu(A,k)
```

**Description**

`triu(A)` returns a triangular matrix that retains the upper part of the matrix `A`. The lower triangle of the resulting matrix is padded with zeros.

`triu(A,k)` returns a matrix that retains the elements of `A` on and above the `k`-th diagonal. The elements below the `k`-th diagonal equal to zero. The values `k = 0`, `k > 0`, and `k < 0` correspond to the main, superdiagonals, and subdiagonals, respectively.

**Examples**

Display the matrix retaining only the upper triangle of the original symbolic matrix:

```matlab
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A)
```

```
ans =
[a, b, c]
[0, 2, 3]
[0, 0, c + 3]
```

Display the matrix that retains the elements of the original symbolic matrix on and above the first superdiagonal:

```matlab
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, 1)
```
ans =
[ 0, b, c]
[ 0, 0, 3]
[ 0, 0, 0]

Display the matrix that retains the elements of the original symbolic matrix on and above the first subdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, -1)

ans =
[ a, b, c]
[ 1, 2, 3]
[ 0, b + 2, c + 3]

See Also
diag | tril

Introduced before R2006a
**uint8, uint16, uint32, uint64**

Convert symbolic matrix to unsigned integers

### Syntax

- `uint8(S)`
- `uint16(S)`
- `uint32(S)`
- `uint64(S)`

### Description

- `uint8(S)` converts a symbolic matrix `S` to a matrix of unsigned 8-bit integers.
- `uint16(S)` converts `S` to a matrix of unsigned 16-bit integers.
- `uint32(S)` converts `S` to a matrix of unsigned 32-bit integers.
- `uint64(S)` converts `S` to a matrix of unsigned 64-bit integers.

**Note** The output of `uint8, uint16, uint32, and uint64` does not have type `symbolic`.

The following table summarizes the output of these four functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Output Range</th>
<th>Output Type</th>
<th>Bytes per Element</th>
<th>Output Class</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>uint8</code></td>
<td>0 to 255</td>
<td>Unsigned 8-bit integer</td>
<td>1</td>
<td><code>uint8</code></td>
</tr>
<tr>
<td><code>uint16</code></td>
<td>0 to 65,535</td>
<td>Unsigned 16-bit integer</td>
<td>2</td>
<td><code>uint16</code></td>
</tr>
<tr>
<td><code>uint32</code></td>
<td>0 to 4,294,967,295</td>
<td>Unsigned 32-bit integer</td>
<td>4</td>
<td><code>uint32</code></td>
</tr>
<tr>
<td><code>uint64</code></td>
<td>0 to 18,446,744,073,709,551,615</td>
<td>Unsigned 64-bit integer</td>
<td>8</td>
<td><code>uint64</code></td>
</tr>
</tbody>
</table>
See Also
sym | vpa | single | int8 | int16 | int32 | int64 | double

Introduced before R2006a
vectorPotential

Vector potential of vector field

Syntax

vectorPotential(V,X)
vectorPotential(V)

Description

vectorPotential(V,X) computes the vector potential of the vector field V with respect to the vector X in Cartesian coordinates. The vector field V and the vector X are both three-dimensional.

vectorPotential(V) returns the vector potential V with respect to a vector constructed from the first three symbolic variables found in V by symvar.

Input Arguments

V
Three-dimensional vector of symbolic expressions or functions.

x
Three-dimensional vector with respect to which you compute the vector potential.

Examples

Compute the vector potential of this row vector field with respect to the vector [x, y, z]:

syms x y z
vectorPotential([x^2*y, -1/2*y^2*x, -x*y*z], [x y z])
ans =
-(x*y^2*z)/2
-x^2*y*z
0

Compute the vector potential of this column vector field with respect to the vector \([x, y, z]\):

```matlab
syms x y z
f(x,y,z) = 2*y^3 - 4*x*y;
g(x,y,z) = 2*y^2 - 16*z^2+18;
h(x,y,z) = -32*x^2 - 16*x*y^2;
A = vectorPotential([f; g; h], [x y z])
```

\[
A(x, y, z) = 
z*(2*y^2 + 18) - (16*z^3)/3 + (16*x*y*(y^2 + 6*x))/3 
2*y*z*(- y^2 + 2*x) 
0
\]

To check whether the vector potential exists for a particular vector field, compute the divergence of that vector field:

```matlab
syms x y z
V = [x^2 2*y z];
divergence(V, [x y z])
```

ans =
2*x + 3

If the divergence is not equal to 0, the vector potential does not exist. In this case, \texttt{vectorPotential} returns the vector with all three components equal to \texttt{NaN}:

```matlab
vectorPotential(V, [x y z])
```

ans =
NaN
NaN
NaN

\section*{More About}

\textbf{Vector Potential of a Vector Field}

The vector potential of a vector field \(V\) is a vector field \(A\), such that:
\[ V = \nabla \times A = \text{curl}(A) \]

**Tips**

- The vector potential exists if and only if the divergence of a vector field \( V \) with respect to \( X \) equals 0. If `vectorPotential` cannot verify that \( V \) has a vector potential, it returns the vector with all three components equal to `NaN`.

**See Also**

`curl` | `diff` | `divergence` | `gradient` | `hessian` | `jacobian` | `laplacian` | `potential`

**Introduced in R2012a**
**vertcat**

Concatenate symbolic arrays vertically

**Syntax**

\[ \text{vertcat}(A_1, \ldots, A_N) \]
\[ [A_1; \ldots; A_N] \]

**Description**

\text{vertcat}(A_1, \ldots, A_N) \text{ vertically concatenates the symbolic arrays } A_1, \ldots, A_N. \text{ For vectors and matrices, all inputs must have the same number of columns. For multidimensional arrays, } \text{vertcat} \text{ concatenates inputs along the first dimension. The remaining dimensions must match.} \]

\[ [A_1; \ldots; A_N] \text{ is a shortcut for } \text{vertcat}(A_1, \ldots, A_N). \]

**Examples**

**Concatenate Two Symbolic Vectors Vertically**

Concatenate the two symbolic vectors \( A \) and \( B \) to form a symbolic matrix.

\[
A = \text{sym}('a%d',[1 4]);
B = \text{sym}('b%d',[1 4]);
\text{vertcat}(A,B)
\]

\[
\begin{bmatrix}
a1 & a2 & a3 & a4 \\
b1 & b2 & b3 & b4
\end{bmatrix}
\]

Alternatively, you can use the shorthand \([A;B]\) to concatenate \( A \) and \( B \).

\[ [A;B] \]

\[
\begin{bmatrix}
a1 & a2 & a3 & a4 \\
b1 & b2 & b3 & b4
\end{bmatrix}
\]
Concatenate Multiple Symbolic Arrays Vertically

Concatenate multiple symbolic arrays into one symbolic matrix.

\[
A = \text{sym('a%d',[1 3])};
B = \text{sym('b%d%d',[4 3])};
C = \text{sym('c%d%d',[2 3])};
\text{vertcat(C,A,B)}
\]

ans =
\[
\begin{bmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
a_{1} & a_{2} & a_{3} \\
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33} \\
b_{41} & b_{42} & b_{43}
\end{bmatrix}
\]

Concatenate Multidimensional Arrays Vertically

Create the 3-D symbolic arrays A and B.

\[
A = \begin{bmatrix}2 & 4; 1 & 7; 3 & 3\end{bmatrix};
A(:, :, 2) = \begin{bmatrix}8 & 9; 4 & 5; 6 & 2\end{bmatrix};
A = \text{sym(A)}
B = \begin{bmatrix}8 & 3; 0 & 2\end{bmatrix};
B(:, :, 2) = \begin{bmatrix}6 & 2; 3 & 3\end{bmatrix};
B = \text{sym(B)}
\]

\[
A(:, :, 1) =
\begin{bmatrix}2, 4 \\
1, 7 \\
3, 3\end{bmatrix}
\]
\[
A(:, :, 2) =
\begin{bmatrix}8, 9 \\
4, 5 \\
6, 2\end{bmatrix}
\]

\[
B(:, :, 1) =
\begin{bmatrix}8, 3\end{bmatrix}
\]
[ 0, 2]
B(:,:,2) =
[ 6, 2]
[ 3, 3]

Use `vertcat` to concatenate `A` and `B`.

`vertcat(A,B)`

`ans(:,:,1) =
[ 2, 4]
[ 1, 7]
[ 3, 3]
[ 8, 3]
[ 0, 2]

`ans(:,:,2) =
[ 8, 9]
[ 4, 5]
[ 6, 2]
[ 6, 2]
[ 3, 3]

Input Arguments

`A1,...,AN — Input arrays`  
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional arrays.

See Also

cat | horzcat

Introduced before R2006a
vpa

Variable-precision arithmetic

Compatibility

Support of strings that are not valid variable names and do not define a number will be removed in a future release. Instead of strings, use symbolic expressions. To create symbolic expressions, first create symbolic numbers and variables, and then use operations on them. For example, use `vpa((1 + sqrt(sym(5)))/2)` instead of `vpa('(1 + sqrt(5))/2')`.

Syntax

vpa(x)
vpa(x,d)

Description

vpa(x) uses variable-precision floating-point arithmetic (VPA) to evaluate each element of the symbolic input x to at least d significant digits, where d is the value of the digits function. The default value of digits is 32.

vpa(x,d) uses at least d significant digits, instead of the value of digits.

Examples

Evaluate Symbolic Inputs with Variable-Precision Arithmetic

Evaluate symbolic inputs with variable-precision floating-point arithmetic. By default, vpa calculates values to 32 significant digits.

```matlab
a = sym(pi);
```
\[
\begin{align*}
    b &= 1/\text{sym}(3); \\
    \text{vpa}(a) \\
    \text{vpa}(a - \exp(b)) \\
    \text{ans} &= 3.1415926535897932384626433832795 \\
    \text{ans} &= 1.7459802285037037098345180636769
\end{align*}
\]

Evaluate elements of vectors or matrices with variable-precision arithmetic.

\[
\begin{align*}
    \text{V} &= [a \ b]; \\
    \text{M} &= [\sin(a) \ \cos(b); \ \exp(b) \ \log(a)]; \\
    \text{vpa}(\text{V}) \\
    \text{vpa}(\text{M}) \\
    \text{ans} &= \begin{bmatrix}
        3.1415926535897932384626433832795, & 0.33333333333333333333333333333333 \\
        0, & 0.94495694631473766438828400767588 \\
        1.3956124250860895286281253196026, & 1.1447298858494001741434273513531
    \end{bmatrix}
\end{align*}
\]

**Change Precision Used by vpa**

By default, \text{vpa} evaluates inputs to 32 significant digits. You can change the number of significant digits by using the \text{digits} function.

Approximate the expression 100001/10001 with seven significant digits using \text{digits}. Save the old value of \text{digits} returned by \text{digits}(7). The \text{vpa} function returns only five significant digits, which can mean the remaining digits are zeros.

\[
\begin{align*}
    \text{digitsOld} &= \text{digits}(7); \\
    \text{y} &= \text{sym}(100001)/10001; \\
    \text{vpa}(\text{y}) \\
    \text{ans} &= 9.9991
\end{align*}
\]

Check if the remaining digits are zeros by using a higher precision value of 25. The result shows that the remaining digits are in fact a repeating decimal.

\[
\text{digits}(25)
\]
vpa(y)

ans =
9.999100089991000899910009

Alternatively, to override digits for a single vpa call, change the precision by specifying the second argument.

Find π to 100 significant digits by specifying the second argument.

vpa(pi,100)

ans =
3.141592653589793238462643383279502884197169...
39937510582097494459230781640628620899862803...
4825342117068

Restore the original precision value in digitsOld for further calculations.

digits(digitsOld)

**Numerically Approximate Symbolic Results**

While symbolic results are exact, they might not be in a convenient form. You can use vpa to numerically approximate exact symbolic results.

Solve a high-degree polynomial for its roots using solve. The solve function cannot symbolically solve the high-degree polynomial and represents the roots using root.

```matlab
syms x
y = solve(x^4 - x + 1, x)
```

```matlab
y =
root(z^4 - z + 1, z, 1)
root(z^4 - z + 1, z, 2)
root(z^4 - z + 1, z, 3)
root(z^4 - z + 1, z, 4)
```

Use vpa to numerically approximate the roots.

```matlab
yVpa = vpa(y)
```

```matlab
yVpa =
0.72713608449119683997667565867496 + 0.43001428832971577641651985839602i
```
vpa Uses Guard Digits to Maintain Precision

The value of the digits function specifies the minimum number of significant digits used. Internally, vpa can use more digits than digits specifies. These additional digits are called guard digits because they guard against round-off errors in subsequent calculations.

Numerically approximate 1/3 using four significant digits.

```matlab
a = vpa(1/3, 4)
a =
0.3333
```

Approximate the result a using 20 digits. The result shows that the toolbox internally used more than four digits when computing a. The last digits in the result are incorrect because of the round-off error.

```matlab
vpa(a, 20)
ans =
0.33333333333303016843
```

Avoid Hidden Round-off Errors

Hidden round-off errors can cause unexpected results.

Evaluate 1/10 with the default 32-digit precision, and then with the 10 digits precision.

```matlab
a = vpa(1/10, 32)
b = vpa(1/10, 10)
a =
0.1
b =
0.1
```

Superficially, a and b look equal. Check their equality by finding a - b.
The difference is not equal to zero because \( b \) was calculated with only 10 digits of precision and contains a larger round-off error than \( a \). When you find \( a - b \), \texttt{vpa} approximates \( b \) with 32 digits. Demonstrate this behavior.

\[
a - \texttt{vpa}(b, \ 32)
\]

\[
\begin{align*}
\text{ans} &= 0.000000000000000000086736173798840354720600815844403 \\
\end{align*}
\]

\textbf{vpa Restores Precision of Common Double-Precision Inputs}

Unlike exact symbolic values, double-precision values inherently contain round-off errors. When you call \texttt{vpa} on a double-precision input, \texttt{vpa} cannot restore the lost precision, even though it returns more digits than the double-precision value. However, \texttt{vpa} can recognize and restore the precision of expressions of the form \( p/q \), \( p\pi/q \), \( (p/q)^{1/2} \), \( 2^q \), and \( 10^q \), where \( p \) and \( q \) are modest-sized integers.

First, demonstrate that \texttt{vpa} cannot restore precision for a double-precision input. Call \texttt{vpa} on a double-precision result and the same symbolic result.

\[
dp = \log(3);
\]
\[
s = \log(\text{sym}(3));
\]
\[
dpVpa = \texttt{vpa}(dp)
\]
\[
sVpa = \texttt{vpa}(s)
\]
\[
d = sVpa - dpVpa
\]

\[
\begin{align*}
dpVpa &= 1.0986122886681095600636126619065 \\
sVpa &= 1.0986122886681096913952452369225 \\
d &= 0.000000000000013133163257501600766255995767652
\end{align*}
\]

As expected, the double-precision result differs from the exact result at the 16\textsuperscript{th} decimal place.
Demonstrate that \texttt{vpa} restores precision for expressions of the form \( \frac{p}{q}, \frac{\pi}{q}, (\frac{p}{q})^{1/2}, 2^q, \) and \( 10^q \), where \( p \) and \( q \) are modest sized integers, by finding the difference between the \texttt{vpa} call on the double-precision result and on the exact symbolic result. The differences are 0.0 showing that \texttt{vpa} restores lost precision in the double-precision input.

\begin{verbatim}
vpa(1/3) - vpa(1/sym(3))
vpa(pi) - vpa(sym(pi))
vpa(1/sqrt(2)) - vpa(1/sqrt(sym(2)))
vpa(2^66) - vpa(2^sym(66))
vpa(10^25) - vpa(10^sym(25))
\end{verbatim}

\begin{verbatim}
ans = 0.0
\end{verbatim}

**Input Arguments**

- **\texttt{x} — Input to evaluate**

  number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic expression | symbolic function | symbolic string

  Input to evaluate, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, multidimensional array, expression, function, or string.

- **\texttt{d} — Number of significant digits**

  integer

  Number of significant digits, specified as an integer. \( d \) must be greater than 1 and less than \( 2^{29} + 1 \).
More About

Tips

• \texttt{vpa} uses more digits than the number of digits specified by \texttt{digits}. These extra digits guard against round-off errors in subsequent calculations and are called guard digits.

• When you call \texttt{vpa} on a numeric input, such as \(1/3\), \(2^{-5}\), or \(\sin(\pi/4)\), the numeric expression is evaluated to a double-precision number that contains round-off errors. Then, \texttt{vpa} is called on that double-precision number. For accurate results, convert numeric expressions to symbolic expressions with \texttt{sym}. For example, to approximate \(\exp(1)\), use \texttt{vpa(\exp(sym(1)))}.

• If the second argument \(d\) is not an integer, \texttt{vpa} rounds it to the nearest integer with \texttt{round}.

• \texttt{vpa} restores precision for numeric inputs that match the forms \(p/q\), \(pn/q\), \((p/q)^{1/2}\), \(2^q\), and \(10^q\), where \(p\) and \(q\) are modest-sized integers.

See Also
digits | double | root

Introduced before R2006a
vpasolve

Numeric solver

Syntax

S = vpasolve(eqn)
S = vpasolve(eqn,var)
S = vpasolve(eqn,var,init_guess)

Y = vpasolve(eqns)
Y = vpasolve(eqns,vars)
Y = vpasolve(eqns,vars,init_guess)

[y1,...,yN] = vpasolve(eqns)
[y1,...,yN] = vpasolve(eqns,vars)
[y1,...,yN] = vpasolve(eqns,vars,init_guess)

___ = vpasolve(___,Name,Value)

Description

S = vpasolve(eqn) numerically solves the equation eqn for the variable determined by symvar.

S = vpasolve(eqn,var) numerically solves the equation eqn for the variable specified by var.

S = vpasolve(eqn,var,init_guess) numerically solves the equation eqn for the variable specified by var using the starting point or search range specified in init_guess. If you do not specify var, vpasolve solves for variables determined by symvar.

Y = vpasolve(eqns) numerically solves the system of equations eqns for variables determined by symvar. This syntax returns Y as a structure array. You can access the solutions by indexing into the array.

Y = vpasolve(eqns,vars) numerically solves the system of equations eqns for variables specified by vars. This syntax returns a structure array that contains the solutions. The fields in the structure array correspond to the variables specified by vars.
Y = vpasolve(eqns,vars,init_guess) numerically solves the system of equations eqns for the variables vars using the starting values or the search range init_guess.

[y1,...,yN] = vpasolve(eqns) numerically solves the system of equations eqns for variables determined by symvar. This syntax assigns the solutions to variables y1,...,yN.

[y1,...,yN] = vpasolve(eqns,vars) numerically solves the system of equations eqns for the variables specified by vars.

[y1,...,yN] = vpasolve(eqns,vars,init_guess) numerically solves the system of equations eqns for the variables specified by vars using the starting values or the search range init_guess.

___ = vpasolve(___,Name,Value) numerically solves the equation or system of equations for the variable or variables using additional options specified by one or more Name,Value pair arguments.

Examples

Solve Polynomial Equation

For polynomial equations, vpasolve returns all solutions:

syms x
vpasolve(4*x^4 + 3*x^3 + 2*x^2 + x + 5 == 0, x)
ans =
   -0.88011377126068169817875190457835 - 0.76331583387715452512978468102263i
   0.50511377126068169817875190457835 + 0.81598965068946312853227067890656i
   0.50511377126068169817875190457835 - 0.81598965068946312853227067890656i
   -0.88011377126068169817875190457835 + 0.76331583387715452512978468102263i

Solve Nonpolynomial Equation

For nonpolynomial equations, vpasolve returns the first solution that it finds:

syms x
vpasolve(sin(x^2) == 1/2, x)
ans =
   -226.94447241941511682716953887638
Assign Solutions to Structure Array

When solving a system of equations, use one output argument to return the solutions in the form of a structure array:

```matlab
syms x y
S = vpasolve([x^3 + 2*x == y, y^2 == x], [x, y])
S =
 x: [6x1 sym]
 y: [6x1 sym]
```

Display solutions by accessing the elements of the structure array `S`:

```matlab
S.x
ans =
 0.281240653387119686661978954999453 + 1.2348724236470142074859894531946i
 0.16295350624845260578123537890613 + 1.615144650555366917865854179261
 0.16295350624845260578123537890613 - 1.615144650555366917865854179261
 0.2365742942773341617614871521768
 0
 0.281240653387119686661978954999453 - 1.2348724236470142074859894531946i

S.y
ans =
 0.70187356885586188630668751791218 + 0.8796971979298240228702672381769i
 - 0.94506808682313338631496614476119 - 0.85451751443904587692179191887616i
 - 0.94506808682313338631496614476119 + 0.85451751443904587692179191887616i
 0.48638903593454300001655725369801
 0
 0.70187356885586188630668751791218 - 0.8796971979298240228702672381769i
```

Assign Solutions to Variables When Solving System of Equations

When solving a system of equations, use multiple output arguments to assign the solutions directly to output variables. To ensure the correct order of the returned solutions, specify the variables explicitly. The order in which you specify the variables defines the order in which the solver returns the solutions.

```matlab
syms x y
[sol_x, sol_y] = vpasolve([x*sin(10*x) == y^3, y^2 == exp(-2*x/3)], [x, y])
sol_x =
 88.90707209659114864849280774681

sol_y =
 0.000000000000000013470479710676694388973703681918
```
Find Multiple Solutions by Specifying Starting Points

Plot the two sides of the equation, and then use the plot to specify initial guesses for the solutions.

Plot the left and right sides of the equation $200\sin(x) = x^3 - 1$:

```matlab
syms x
ezplot(200*sin(x))
hold on
ezplot(x^3 - 1)
title('200*sin(x) = x^3 - 1')
```

This equation has three solutions. If you do not specify the initial guess (zero-approximation), `vpasolve` returns the first solution that it finds:
vpasolve(200*sin(x) == x^3 - 1, x)
ans =
-0.0050000214585835715725440675982988

Find one of the other solutions by specifying the initial point that is close to that solution:
vpasolve(200*sin(x) == x^3 - 1, x, -4)
ans =
-3.000954677086430679926572924945

vpasolve(200*sin(x) == x^3 - 1, x, 3)
ans =
3.0098746383859522384063444361906

**Specify Ranges for Solutions**

You can specify ranges for solutions of an equation. For example, if you want to restrict your search to only real solutions, you cannot use assumptions because `vpasolve` ignores assumptions. Instead, specify a search interval. For the following equation, if you do not specify ranges, the numeric solver returns all eight solutions of the equation:

syms x
vpasolve(x^8 - x^2 == 3, x)

ans =
-1.205249716379906069588397264341
  1.205249716379906069588397264341
  -0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i
  -0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i
  1.0789046020338265308047436284205i
  -1.0789046020338265308047436284205i
  0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i
  0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i

Suppose you need only real solutions of this equation. You cannot use assumptions on variables because `vpasolve` ignores them.

assume(x, 'real')
vpasolve(x^8 - x^2 == 3, x)

ans =
-1.205249716379906069588397264341
  1.205249716379906069588397264341
  -0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i
  -0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i
  1.0789046020338265308047436284205i
  -1.0789046020338265308047436284205i
Specify the search range to restrict the returned results to particular ranges. For example, to return only real solutions of this equation, specify the search interval as \([-\text{Inf} \ \text{Inf}]\):

\[ \text{vpasolve}(x^8 - x^2 = 3, x, [-\text{Inf} \ \text{Inf}]) \]

\[ \text{ans} = \]
\[ -1.2052497163799060695888397264341 \]
\[ 1.2052497163799060695888397264341 \]

Return only nonnegative solutions:

\[ \text{vpasolve}(x^8 - x^2 = 3, x, [0 \ \text{Inf}]) \]

\[ \text{ans} = \]
\[ 1.2052497163799060695888397264341 \]

The search range can contain complex numbers. In this case, \texttt{vpasolve} uses a rectangular search area in the complex plane:

\[ \text{vpasolve}(x^8 - x^2 = 3, x, [-1, 1 + i]) \]

\[ \text{ans} = \]
\[ -0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i \]
\[ 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i \]

**Find Multiple Solutions for Nonpolynomial Equation**

By default, \texttt{vpasolve} returns the same solution on every call. To find more than one solution for nonpolynomial equations, set \texttt{random} to \texttt{true}. This makes \texttt{vpasolve} use a random starting value which can lead to different solutions on successive calls.

If \texttt{random} is not specified, \texttt{vpasolve} returns the same solution on every call.

\[
\text{syms} \ x \\
\text{f} = x - \tan(x); \\
\text{for} \ n = 1:3 \\
\quad \text{vpasolve}(f, x) \\
\text{end} \\
\text{ans} = \\
0 \\
\text{ans} =
\]
0
ans =
0

When random is set to true, vpasolve returns a distinct solution on every call.

syms x
f = x-tan(x);
for n = 1:3
    vpasolve(f,x,'random',true)
end

ans =
-227.76107684764829218924973598808
ans =
102.0919664649076433652956578441
ans =
61.244730260374400372753016364097

random can be used in conjunction with a search range:

vpasolve(f,x,[10 12],'random',true)

ans =
10.904121659428899827148702790189

**Input Arguments**

eqn — Equation to solve
symbolic equation | symbolic expression

Equation to solve, specified as a symbolic equation or symbolic expression. A symbolic equation is defined by the relation operator ==. If eqn is a symbolic expression (without the right side), the solver assumes that the right side is 0, and solves the equation eqn == 0.

var — Variable to solve equation for
symbolic variable

Variable to solve equation for, specified as a symbolic variable. If var is not specified, symvar determines the variables.

eqns — System of equations or expressions to solve
symbolic vector | symbolic matrix | symbolic N-D array
System of equations or expressions to be solve, specified as a symbolic vector, matrix, or N-D array of equations or expressions. These equations or expressions can also be separated by commas. If an equation is a symbolic expression (without the right side), the solver assumes that the right side of that equation is 0.

**vars** — Variables to solve system of equations for
symbolic vector

Variables to solve system of equations for, specified as a symbolic vector. These variables are specified as a vector or comma-separated list. If `vars` is not specified, `symvar` determines the variables.

**init_guess** — Initial guess for solution
numeric value | vector | matrix with two columns

Initial guess for a solution, specified as a numeric value, vector, or matrix with two columns.

If `init_guess` is a number or, in the case of multivariate equations, a vector of numbers, then the numeric solver uses it as a starting point. If `init_guess` is specified as a scalar while the system of equations is multivariate, then the numeric solver uses the scalar value as a starting point for all variables.

If `init_guess` is a matrix with two columns, then the two entries of the rows specify the bounds of a search range for the corresponding variables. To specify a starting point in a matrix of search ranges, specify both columns as the starting point value.

To omit a search range for a variable, set the search range for that variable to `[NaN, NaN]` in `init_guess`. All other uses of `NaN` in `init_guess` will error.

By default, `vpasolve` uses its own internal choices for starting points and search ranges.

**Name-Value Pair Arguments**

Example: `vpasolve(x^2 - 4 == 0, x, 'random', true)`

`'random'` — Use of random starting point for finding multiple solutions
false (default) | true

Use a random starting point for finding solutions, specified as a comma-separated pair consisting of `random` and a value, which is either `true` or `false`. This is useful when you
solve nonpolynomial equations where there is no general method to find all the solutions. If the value is false, \texttt{vpasolve} uses the same starting value on every call. Hence, multiple calls to \texttt{vpasolve} with the same inputs always find the same solution, even if several solutions exist. If the value is true, however, starting values for the internal search are chosen randomly in the search range. Hence, multiple calls to \texttt{vpasolve} with the same inputs might lead to different solutions. Note that if you specify starting points for all variables, setting \texttt{random} to true has no effect.

**Output Arguments**

\texttt{S — Solutions of univariate equation}

\texttt{symbolic value | symbolic array}

Solutions of univariate equation, returned as symbolic value or symbolic array. The size of a symbolic array corresponds to the number of the solutions.

\texttt{Y — Solutions of system of equations}

\texttt{structure array}

Solutions of system of equations, returned as a structure array. The number of fields in the structure array corresponds to the number of variables to be solved for.

\texttt{y1, \ldots, yN — Variables that are assigned solutions of system of equations}

\texttt{array of numeric variables | array of symbolic variables}

Variables that are assigned solutions of system of equations, returned as an array of numeric or symbolic variables. The number of output variables or symbolic arrays must equal the number of variables to be solved for. If you explicitly specify independent variables \texttt{vars}, then the solver uses the same order to return the solutions. If you do not specify \texttt{vars}, the toolbox sorts independent variables alphabetically, and then assigns the solutions for these variables to the output variables or symbolic arrays.

**More About**

**Tips**

- \texttt{vpasolve} returns all solutions only for polynomial equations. For nonpolynomial equations, there is no general method of finding all solutions. When you look for
numerical solutions of a nonpolynomial equation or system that has several solutions, then, by default, \texttt{vpasolve} returns only one solution, if any. To find more than just one solution, set \texttt{random} to true. Now, calling \texttt{vpasolve} repeatedly might return several different solutions.

- When you solve a system where there are not enough equations to determine all variables uniquely, the behavior of \texttt{vpasolve} behavior depends on whether the system is polynomial or nonpolynomial. If polynomial, \texttt{vpasolve} returns all solutions by introducing an arbitrary parameter. If nonpolynomial, a single numerical solution is returned, if it exists.

- When you solve a system of rational equations, the toolbox transforms it to a polynomial system by multiplying out the denominators. \texttt{vpasolve} returns all solutions of the resulting polynomial system, including those that are also roots of these denominators.

- \texttt{vpasolve} ignores assumptions set on variables. You can restrict the returned results to particular ranges by specifying appropriate search ranges using the argument \texttt{init_guess}.

- If \texttt{init_guess} specifies a search range \([a,b]\), and the values \(a,b\) are complex numbers, then \texttt{vpasolve} searches for the solutions in the rectangular search area in the complex plane. Here, \(a\) specifies the bottom-left corner of the rectangular search area, and \(b\) specifies the top-right corner of that area.

- The output variables \(y_1,\ldots,y_N\) do not specify the variables for which \texttt{vpasolve} solves equations or systems. If \(y_1,\ldots,y_N\) are the variables that appear in \texttt{eqns}, that does not guarantee that \texttt{vpasolve(eqns)} will assign the solutions to \(y_1,\ldots,y_N\) using the correct order. Thus, for the call \([a,b] = \texttt{vpasolve(eqns)}\), you might get the solutions for \(a\) assigned to \(b\) and vice versa.

To ensure the order of the returned solutions, specify the variables \texttt{vars}. For example, the call \([b,a] = \texttt{vpasolve(eqns,b,a)}\) assigns the solutions for \(a\) assigned to \(a\) and the solutions for \(b\) assigned to \(b\).

- Place equations and expressions to the left of the argument list, and the variables to the right. \texttt{vpasolve} checks for variables starting on the right, and on reaching the first equation or expression, assumes everything to the left is an equation or expression.

- If possible, solve equations symbolically using \texttt{solve}, and then approximate the obtained symbolic results numerically using \texttt{vpa}. Using this approach, you get numeric approximations of all solutions found by the symbolic solver. Using the symbolic solver and postprocessing its results requires more time than using the numeric methods directly. This can significantly decrease performance.
Algorithms

• When you set random to true and specify a search range for a variable, random starting points within the search range are chosen using the internal random number generator. The distribution of starting points within finite search ranges is uniform.

• When you set random to true and do not specify a search range for a variable, random starting points are generated using a Cauchy distribution with a half-width of 100. This means the starting points are real valued and have a large spread of values on repeated calls.

See Also
dsolve | equationsToMatrix | fzero | linsolve | solve | symvar | vpa

Introduced in R2012b
**whittakerM**

Whittaker M function

**Syntax**

`whittakerM(a,b,z)`

**Description**

`whittakerM(a,b,z)` returns the value of the Whittaker M function.

**Input Arguments**

- **a**
  
  Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If a is a vector or matrix, `whittakerM` returns the beta function for each element of a.

- **b**
  
  Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If b is a vector or matrix, `whittakerM` returns the beta function for each element of b.

- **z**
  
  Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If x is a vector or matrix, `whittakerM` returns the beta function for each element of z.

**Examples**

Solve this second-order differential equation. The solutions are given in terms of the Whittaker functions.
syms a b w(z)
dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)

ans =
C2*whittakerM(-a,-b,-z) + C3*whittakerW(-a,-b,-z)

Verify that the Whittaker M function is a valid solution of this differential equation:

syms a b z
isAlways(diff(whittakerM(a,b,z), z, 2) +...  
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerM(a,b,z) == 0)

ans =
1

Verify that \( \text{whittakerM}(-a,-b,-z) \) also is a valid solution of this differential equation:

syms a b z
isAlways(diff(whittakerM(-a,-b,-z), z, 2) +...  
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerM(-a,-b,-z) == 0)

ans =
1

Compute the Whittaker M function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

[whittakerM(1, 1, 1), whittakerM(-2, 1, 3/2 + 2*i),...  
whittakerM(2, 2, 2), whittakerM(3, -0.3, 1/101)]

ans =
0.7303            -9.2744 + 5.4705i   2.6328             0.3681

Compute the Whittaker M function for the numbers converted to symbolic objects. For most symbolic (exact) numbers, \( \text{whittakerM} \) returns unresolved symbolic calls.

[whittakerM(sym(1), 1, 1), whittakerM(-2, sym(1), 3/2 + 2*i),...  
whittakerM(2, 2, sym(2)), whittakerM(sym(3), -0.3, 1/101)]

ans =
[ whittakerM(1, 1, 1), whittakerM(-2, 1, 3/2 + 2i),  
whittakerM(2, 2, 2), whittakerM(3, -3/10, 1/101)]

For symbolic variables and expressions, \( \text{whittakerM} \) also returns unresolved symbolic calls:
syms a b x y
[whittakerM(a, b, x), whittakerM(1, x, x^2),...
whittakerM(2, x, y), whittakerM(3, x + y, x*y)]

ans =
[whittakerM(a, b, x), whittakerM(1, x, x^2),...
whittakerM(2, x, y), whittakerM(3, x + y, x*y)]

The Whittaker M function has special values for some parameters:

whittakerM(sym(-3/2), 1, 1)

ans =
exp(1/2)

syms a b x
whittakerM(0, b, x)

ans =
4^b*x^(1/2)*gamma(b + 1)*besseli(b, x/2)

whittakerM(a + 1/2, a, x)

ans =
x^(a + 1/2)*exp(-x/2)

whittakerM(a, a - 5/2, x)

ans =
(2*x^(a - 2)*exp(-x/2)*(2*a^2 - 7*a + x^2/2 -...
x*(2*a - 3) + 6))/pochhammer(2*a - 4, 2)

Differentiate the expression involving the Whittaker M function:

syms a b z
diff(whittakerM(a,b,z), z)

ans =
(whittakerM(a + 1, b, z)*(a + b + 1/2))/z -...
(a/z - 1/2)*whittakerM(a, b, z)

Compute the Whittaker M function for the elements of matrix A:

syms x
A = [-1, x^2; 0, x];
whittakerM(-1/2, 0, A)
More About

Whittaker M Function

The Whittaker functions $M_{a,b}(z)$ and $W_{a,b}(z)$ are linearly independent solutions of this differential equation:

$$
\frac{d^2 w}{dz^2} + \left( -\frac{1}{4} + \frac{a}{z} + \frac{1/4 - b^2}{z^2} \right) w = 0
$$

The Whittaker M function is defined via the confluent hypergeometric functions:

$$
M_{a,b}(z) = e^{-z/2} z^{b+1/2} M \left( b - a + \frac{1}{2}, 1 + 2b, z \right)
$$

Tips

- All non-scalar arguments must have the same size. If one or two input arguments are non-scalar, then `whittakerM` expands the scalars into vectors or matrices of the same size as the non-scalar arguments, with all elements equal to the corresponding scalar.

References


See Also

`hypergeom` | `kummerU` | `whittakerW`

Introduced in R2012a
whittakerW

Whittaker W function

Syntax

whittakerW(a,b,z)

Description

whittakerW(a,b,z) returns the value of the Whittaker W function.

Input Arguments

a
Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If a is a vector or matrix, whittakerW returns the beta function for each element of a.

b
Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If b is a vector or matrix, whittakerW returns the beta function for each element of b.

z
Symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions. If z is a vector or matrix, whittakerW returns the beta function for each element of z.

Examples

Solve this second-order differential equation. The solutions are given in terms of the Whittaker functions.
syms a b w(z)
dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)

ans =
C2*whittakerM(-a, -b, -z) + C3*whittakerW(-a, -b, -z)

Verify that the Whittaker W function is a valid solution of this differential equation:

syms a b z
isAlways(diff(whittakerW(a, b, z), z, 2) +
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(a, b, z) == 0)

ans =
1

Verify that \( \text{whittakerW}(-a, -b, -z) \) also is a valid solution of this differential equation:

syms a b z
isAlways(diff(whittakerW(-a, -b, -z), z, 2) +
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(-a, -b, -z) == 0)

ans =
1

Compute the Whittaker W function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

[whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2*i),...
whittakerW(2, 2, 2), whittakerW(sym(3), -0.3, 1/101)]

ans =
1.1953            -0.0156 - 0.0225i   4.8616            -0.1692

Compute the Whittaker W function for the numbers converted to symbolic objects. For most symbolic (exact) numbers, \text{whittakerW} returns unresolved symbolic calls.

[whittakerW(sym(1), 1, 1), whittakerW(-2, sym(1), 3/2 + 2*i),...
whittakerW(2, 2, sym(2)), whittakerW(sym(3), -0.3, 1/101)]

ans =
[ whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2i),
whittakerW(2, 2, 2), whittakerW(3, -3/10, 1/101)]

For symbolic variables and expressions, \text{whittakerW} also returns unresolved symbolic calls:
syms a b x y
[whittakerW(a, b, x), whittakerW(1, x, x^2),
whittakerW(2, x, y), whittakerW(3, x + y, x*y)]

ans =
[ whittakerW(a, b, x), whittakerW(1, x, x^2),
whittakerW(2, x, y), whittakerW(3, x + y, x*y)]

The Whittaker W function has special values for some parameters:

whittakerW(sym(-3/2), 1/2, 0)
ans =
4/(3*pi^(1/2))

syms a b x
whittakerW(0, b, x)
ans =
(x^(b + 1/2)*besselk(b, x/2))/(x^b*pi^(1/2))

whittakerW(a, -a + 1/2, x)
ans =
x^(1 - a)*x^(2*a - 1)*exp(-x/2)

whittakerW(a - 1/2, a, x)
ans =
(x^(a + 1/2)*exp(-x/2)*exp(x)*igamma(2*a, x))/x^(2*a)

Differentiate the expression involving the Whittaker W function:

syms a b z
diff(whittakerW(a,b,z), z)
ans =
- (a/z - 1/2)*whittakerW(a, b, z) - ...
whittakerW(a + 1, b, z)/z

Compute the Whittaker W function for the elements of matrix A:

syms x
A = [-1, x^2; 0, x];
whittakerW(-1/2, 0, A)
ans =
More About

Whittaker W Function

The Whittaker functions $M_{a,b}(z)$ and $W_{a,b}(z)$ are linearly independent solutions of this differential equation:

$$\frac{d^2w}{dz^2} + \left( -\frac{1}{4} + \frac{a}{z} + \frac{1/4 - b^2}{z^2} \right)w = 0$$

The Whittaker W function is defined via the confluent hypergeometric functions:

$$W_{a,b}(z) = e^{-z/2}z^{b+1/2}U\left(b - a + \frac{1}{2}, 1 + 2b, z\right)$$

Tips

• All non-scalar arguments must have the same size. If one or two input arguments are non-scalar, then `whittakerW` expands the scalars into vectors or matrices of the same size as the non-scalar arguments, with all elements equal to the corresponding scalar.

References


See Also

`hypergeom | kummerU | whittakerM`

Introduced in R2012a
**wrightOmega**

Wright omega function

**Syntax**

wrightOmega(x)
wrightOmega(A)

**Description**

wrightOmega(x) computes the Wright omega function of x.
wrightOmega(A) computes the Wright omega function of each element of A.

**Input Arguments**

x
Number, symbolic variable, or symbolic expression.

A
Vector or matrix of numbers, symbolic variables, or symbolic expressions.

**Examples**

Compute the Wright omega function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:

wrightOmega(1/2)
ans =
0.7662
wrightOmega(pi)
ans =
    2.3061
wrightOmega(-1+i*pi)
ans =
    -1.0000 + 0.0000

Compute the Wright omega function for the numbers converted to symbolic objects. For most symbolic (exact) numbers, `wrightOmega` returns unresolved symbolic calls:

wrightOmega(sym(1/2))
ans =
    wrightOmega(1/2)
wrightOmega(sym(pi))
ans =
    wrightOmega(pi)

For some exact numbers, `wrightOmega` has special values:

wrightOmega(-1+i*sym(pi))
ans =
    -1

Compute the Wright omega function for `x` and `sin(x) + x*exp(x)`. For symbolic variables and expressions, `wrightOmega` returns unresolved symbolic calls:

syms x
wrightOmega(x)
wrightOmega(sin(x) + x*exp(x))
ans =
    wrightOmega(x)
ans =
    wrightOmega(sin(x) + x*exp(x))

Now compute the derivatives of these expressions:

diff(wrightOmega(x), x, 2)
diff(wrightOmega(sin(x) + x*exp(x)), x)
ans =
wrightOmega(x)/(wrightOmega(x) + 1)^2 -...
wrightOmega(x)^2/(wrightOmega(x) + 1)^3
ans =
(wrightOmega(sin(x) + x*exp(x))*(cos(x) +...
exp(x) + x*exp(x)))/(wrightOmega(sin(x) + x*exp(x)) + 1)

Compute the Wright omega function for elements of matrix M and vector V:

M = [0 pi; 1/3 -pi];
V = sym([0; -1+i*pi]);
wrightOmega(M)
wrightOmega(V)
ans =
 0.5671    2.3061
 0.6959    0.0415
ans =
lambertw(0, 1)
    -1

More About

Wright omega Function

The Wright omega function is defined in terms of the Lambert W function:

$$\omega(x) = W_{\text{Im}(x) - \pi} \left( \frac{e^x}{\sqrt{2\pi}} \right)$$

The Wright omega function \(\omega(x)\) is a solution of the equation \(Y + \log(Y) = X\).

References

See Also
lambertW | log

Introduced in R2011b
**xor**

Logical XOR for symbolic expressions

**Syntax**

`xor(A,B)`

**Description**

`xor(A,B)` represents the logical exclusive disjunction. `xor(A,B)` is true when either A or B are true. If both A and B are true or false, `xor(A,B)` is false.

**Input Arguments**

A

Symbolic equation, inequality, or logical expression that contains symbolic subexpressions.

B

Symbolic equation, inequality, or logical expression that contains symbolic subexpressions.

**Examples**

Combine two symbolic inequalities into the logical expression using `xor`:

```matlab
syms x
range = xor(x > -10, x < 10);
```

Replace variable x with these numeric values. If you replace x with 11, then inequality `x > -10` is valid and `x < 10` is invalid. If you replace x with 0, both inequalities are valid. Note that `subs` does not evaluate these inequalities to logical 1 or 0.
\[
x_1 = \text{subs} (\text{range}, x, 11) \\
x_2 = \text{subs} (\text{range}, x, 0)
\]

\[
x_1 = \\
-10 < 11 \text{ xor } 11 < 10
\]

\[
x_2 = \\
-10 < 0 \text{ xor } 0 < 10
\]

To evaluate these inequalities to logical 1 or 0, use isAlways. If only one inequality is valid, the expression with xor evaluates to logical 1. If both inequalities are valid, the expression with xor evaluates to logical 0.

\[
isAlways(x_1) \\
isAlways(x_2)
\]

\[
\text{ans} = \\
1
\]

\[
\text{ans} = \\
0
\]

Note that simplify does not simplify these logical expressions to logical 1 or 0. Instead, they return symbolic values TRUE or FALSE.

\[
s_1 = \text{simplify}(x_1) \\
s_2 = \text{simplify}(x_2)
\]

\[
s_1 = \\
\text{TRUE}
\]

\[
s_2 = \\
\text{FALSE}
\]

Convert symbolic TRUE or FALSE to logical values using isAlways:

\[
isAlways(s_1) \\
isAlways(s_2)
\]

\[
\text{ans} = \\
1
\]

\[
\text{ans} = \\
0
\]
More About

Tips

• If you call simplify for a logical expression containing symbolic subexpressions, you can get symbolic values TRUE or FALSE. These values are not the same as logical 1 (true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use isAlways.
• assume and assumeAlso do not accept assumptions that contain xor.

See Also
all | and | any | isAlways | not | or

Introduced in R2012a
zeta

Riemann zeta function

Syntax

zeta(z)
zeta(n,z)

Description

zeta(z) evaluates the Riemann zeta function at the elements of z, where z is a numeric or symbolic input.

zeta(n,z) returns the nth derivative of zeta(z).

Examples

Find Riemann Zeta Function for Numeric and Symbolic Inputs

Find the Riemann zeta function for numeric inputs.

zeta([0.7 i 4 11/3])

ans =
  -2.7784 + 0.0000i 0.0033 - 0.4182i 1.0823 + 0.0000i 1.1094 + 0.0000i

Find the Riemann zeta function symbolically by converting the inputs to symbolic objects using sym. The zeta function returns exact results.

zeta(sym([0.7 i 4 11/3]))

ans =
[ zeta(7/10), zeta(i), pi^4/90, zeta(11/3)]

zeta returns unevaluated function calls for symbolic inputs that do not have results implemented. The implemented results are listed in “Algorithms” on page 4-1299.
Find the Riemann zeta function for a matrix of symbolic expressions.

```matlab
syms x y
Z = zeta([x sin(x); 8*x/11 x + y])
```

\[
Z =
\begin{bmatrix}
\zeta(x), \zeta(\sin(x)) \\
\zeta((8\times x)/11), \zeta(x + y)
\end{bmatrix}
\]

Find Riemann Zeta Function for Large Inputs

For values of \( |z| > 1000 \), \( \zeta(z) \) might return an unevaluated function call. Use `expand` to force `zeta` to evaluate the function call.

```matlab
zeta(sym(1002))
expand(zeta(sym(1002)))
```

\[
\text{ans} = \\
zeta(1002) \\
\text{ans} = (1087503...312\times\pi^{1002})/15156647...375
\]

Differentiate Riemann Zeta Function

Find the third derivative of the Riemann zeta function at point \( x \).

```matlab
syms x
expr = zeta(3,x)
```

\[
\text{expr} = \\
zeta(3, x)
\]

Find the third derivative at \( x = 4 \) by substituting 4 for \( x \) using `subs`.

```matlab
expr = subs(expr,x,4)
```

\[
\text{expr} = \\
zeta(3, 4)
\]

Evaluate \( expr \) using `vpa`.

```matlab
expr = vpa(expr)
```
expr =
-0.07264084989132137196244616781177

**Plot Zeros of Riemann Zeta Function**

Zeros of the Riemann Zeta function $\zeta(x+i*y)$ are found along the line $x = 1/2$. Plot the absolute value of the function along this line for $0<y<30$ to view the first three zeros.

```matlab
syms y
ezplot(abs(zeta(1/2+1i*y)),[0 30])
grid on
```
Input Arguments

**z — Input**

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function or expression.

**n — Order of derivative**

nonnegative integer
Order of derivative, specified as a nonnegative integer.

More About

Riemann Zeta Function

The Riemann zeta function is defined by

\[ \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} \]

The series converges only if the real part of \( z \) is greater than 1. The definition of the function is extended to the entire complex plane, except for a simple pole \( z = 1 \), by analytic continuation.

Tips

• Floating point evaluation is slow for large values of \( n \).

Algorithms

The following exact values are implemented.

• \( \zeta(0) = -\frac{1}{2} \)

• \( \zeta(0,1) = -\frac{\ln(\pi)}{2} - \frac{\ln(2)}{2} \)

• \( \zeta(\infty) = 1 \)

• If \( z < 0 \) and \( z \) is an even integer, \( \zeta(z) = 0 \).

• If \( z < 0 \) and \( z \) is an odd integer

\[ \zeta(z) = -\frac{\text{bernoulli}(1-z)}{1-z} \]
For $z < -1000$, \( \text{zeta}(z) \) returns an unevaluated function call. To force evaluation, use \( \text{expand}(\text{zeta}(z)) \).

- If $z > 0$ and $z$ is an even integer

\[
\zeta(z) = \frac{(2\pi)^z |\text{bernoulli}(z)|}{2z!}
\]

For $z > 1000$, \( \text{zeta}(z) \) returns an unevaluated function call. To force evaluation, use \( \text{expand}(\text{zeta}(z)) \).

- If $n > 0$, \( \zeta(n, \infty) = 0 \).

- If the argument does not evaluate to a listed special value, \text{zeta} returns the symbolic function call.

**See Also**

bernoulli

*Introduced before R2006a*
**ztrans**

Z-transform

**Syntax**

ztrans(f, trans_index, eval_point)

**Description**

ztrans(f, trans_index, eval_point) computes the Z-transform of \( f \) with respect to the transformation index `trans_index` at the point `eval_point`.

**Input Arguments**

- \( f \)
  
  Symbolic expression, symbolic function, or vector or matrix of symbolic expressions or functions.

- `trans_index`
  
  Symbolic variable representing the transformation index. This variable is often called the “discrete time variable”.

  **Default:** The variable \( n \). If \( f \) does not contain \( n \), then the default variable is determined by `symvar`.

- `eval_point`
  
  Symbolic variable or expression representing the evaluation point. This variable is often called the “complex frequency variable”.

  **Default:** The variable \( z \). If \( z \) is the transformation index of \( f \), then the default evaluation point is the variable \( w \).
Examples

Compute the Z-transform of this expression with respect to the transformation index \( k \) at the evaluation point \( x \):

```matlab
syms k x
f = sin(k);
ztrans(f, k, x)
```

```matlab
ans =
\(\frac{x \cdot \sin(1)}{x^2 - 2 \cdot \cos(1) \cdot x + 1} \)
```

Compute the Z-transform of this expression calling the `ztrans` function with one argument. If you do not specify the transformation index, `ztrans` uses the variable \( n \).

```matlab
syms a n x
f = a^n;
ztrans(f, x)
```

```matlab
ans =
\(\frac{-x}{a - x} \)
```

If you also do not specify the evaluation point, `ztrans` uses the variable \( z \):

```matlab
ztrans(f)
```

```matlab
ans =
\(\frac{-z}{a - z} \)
```

Compute the following Z-transforms that involve the Heaviside function and the binomial coefficient:

```matlab
syms n z
ztrans(heaviside(n - 3), n, z)
```

```matlab
ans =
\(\frac{1/(z - 1) + 1/2}{z^3} \)
```

```matlab
ztrans(nchoosek(n, 2)*heaviside(5 - n), n, z)
```

```matlab
ans =
\(\frac{z/(z - 1)^3 + 5/z^5 + (6z - z^6/(z - 1)^3 + 3z^2 + z^3)/z^5}{z^5} \)
```

If `ztrans` cannot find an explicit representation of the transform, it returns an unevaluated call:
syms f(n) z
F = ztrans(f, n, z)

F =
ztrans(f(n), n, z)

iztrans returns the original expression:
iztrans(F, z, n)

ans =
f(n)

Find the Z-transform of this matrix. Use matrices of the same size to specify the
transformation variable and evaluation point.

syms a b c d w x y z
ztrans([exp(x), 1; sin(y), i*z],[w, x; y, z],[a, b; c, d])

ans =
[ (a*exp(x))/(a - 1),       b/(b - 1)]
[ (c*sin(1))/(c^2 - 2*cos(1)*c + 1), (d*1i)/(d - 1)^2]

When the input arguments are nonscalars, ztrans acts on them element-wise. If
ztrans is called with both scalar and nonscalar arguments, then ztrans expands
the scalar arguments into arrays of the same size as the nonscalar arguments with all
elements of the array equal to the scalar.

syms w x y z a b c d
ztrans(x,[x, w; y, z],[a, b; c, d])

ans =
[   a/(a - 1)^2, (b*x)/(b - 1)]
[ (c*x)/(c - 1), (d*x)/(d - 1)]

Note that nonscalar input arguments must have the same size.

When the first argument is a symbolic function, the second argument must be a scalar.

syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
ztrans([f1, f2],x,[a, b])

ans =
More About

Z-Transform

The Z-transform of the expression $f = f(n)$ is defined as follows:

$$F(z) = \sum_{n=0}^{\infty} \frac{f(n)}{z^n}.$$

Tips

• If you call ztrans with two arguments, it assumes that the second argument is the evaluation point eval_point.
• If $f$ is a matrix, ztrans acts element-wise on all components of the matrix.
• If eval_point is a matrix, ztrans acts element-wise on all components of the matrix.
• To compute the inverse Z-transform, use iztrans.
• “Compute Z-Transforms and Inverse Z-Transforms” on page 2-206

See Also

fourier | ifourier | ilaplace | iztrans | kroneckerDelta | laplace

Introduced before R2006a