Note: This page has been translated by MathWorks. Please click here

To view all translated materials including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materials including this page, select Japan from the country navigator on the bottom of this page.

Displaced phase center array (DPCA) pulse canceller for a uniform linear array

Space-Time Adaptive Processing

`phasedstaplib`

The DPCA Canceller block filters clutter for a uniform linear array using a displaced phase center array (DPCA) pulse canceller.

**Signal Propagation speed (m/s)**Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can use the function

`physconst`

to specify the speed of light.**Operating frequency (Hz)**Specify the operating frequency of the system, in hertz, as a positive scalar.

**Pulse repetition frequency (Hz)**Specify the pulse repetition frequency, PRF, as a scalar. Units for PRF are Hertz. This parameter should be set to the same value as used in any

`Waveforms`

library block.**Specify direction as**Specify whether the targeting direction for this STAP processor block comes from a block parameter or via an input port. Values of this parameter are

`Property`

These parameters appear only when theFor the ADPCA Canceller and DPCA Canceller blocks, targeting direction is specified using

**Receiving mainlobe direction (deg)**.For the SMI Beamformer block, targeting direction is specified using

**Targeting direction**.

**Specify direction as**parameter is set to`Property`

.`Input port`

Enter the targeting directions using the `Ang`

port. This port appears only when**Specify direction as**is set to`Input port`

.**Receiving mainlobe direction (deg)**Specify the mainlobe direction in degrees of the receiving sensor array as a 2-by-1 vector. The direction is specified in the format of

`[AzimuthAngle; ElevationAngle]`

. The azimuth angle should be between –180° and 180° and the elevation angle should be between –90° and 90°. This parameter appears only when you set**Specify direction as**to`Property`

.**Number of bits in phase shifters**The number of bits used to quantize the phase shift component of beamformer or steering vector weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no quantization is performed.

**Specify targeting Doppler as**Specify whether targeting Doppler values for the STAP processor comes from the

**Targeting Doppler (Hz)**parameter of this block or via an input port. For the ADPCA Cancellerand DPCA Canceller blocks, this parameter appears only when the**Output pre-Doppler result**check box is cleared. Values of this parameter are`Property`

Targeting Doppler values are specified by the **Targeting Doppler**parameter of the block. The**Targeting Doppler**parameter appears only when**Specify targeting Doppler as**is set to`Property`

.`Input port`

Targeting Doppler values are entered using the `Dop`

port. This port appears only when**Specify targeting Doppler as**is set to`Input port`

.**Targeting Doppler (Hz)**Specify the targeting Doppler of the STAP processor as a scalar. This parameter appears only when you set

**Specify targeting Doppler as**to`Property`

and when, for the ADPCA Cancellerand DPCA Canceller blocks only, the**Output pre-Doppler result**check box is cleared.**Enable weights output**Select this check box to obtain the weights used in the STAP processor via the output port

`W`

. The output port`W`

only appears when you select this check box.**Output pre-Doppler result**Select this check box to output the processing results before applying Doppler filtering. Clear this check box to output the processing result after Doppler filtering. Selecting this check box will remove the

**Specify targeting Doppler as**and**Targeting Doppler (Hz)**parameters.**Simulate using**Block simulation method, specified as

`Interpreted Execution`

or`Code Generation`

. If you want your block to use the MATLAB^{®}interpreter, choose`Interpreted Execution`

. If you want your block to run as compiled code, choose`Code Generation`

. Compiled code requires time to compile but usually runs faster.Interpreted execution is useful when you are developing and tuning a model. The block runs the underlying System object™ in MATLAB. You can change and execute your model quickly. When you are satisfied with your results, you can then run the block using

`Code Generation`

. Long simulations run faster than they would in interpreted execution. You can run repeated executions without recompiling. However, if you change any block parameters, then the block automatically recompiles before execution.When setting this parameter, you must take into account the overall model simulation mode. The table shows how the

**Simulate using**parameter interacts with the overall simulation mode.When the Simulink

^{®}model is in`Accelerator`

mode, the block mode specified using**Simulate using**overrides the simulation mode.For more information, see Choosing a Simulation Mode (Simulink) from the Simulink documentation.**Acceleration Modes**Block Simulation Simulation Behavior `Normal`

`Accelerator`

`Rapid Accelerator`

`Interpreted Execution`

The block executes using the MATLAB interpreter. The block executes using the MATLAB interpreter. Creates a standalone executable from the model. `Code Generation`

The block is compiled. All blocks in the model are compiled.

**Specify sensor array as**Specify a ULA sensor array directly or by using a MATLAB expression.

**Types**`Array (no subarrays)`

`MATLAB expression`

**Number of elements**Specifies the number of elements in the array as an integer.

**Element spacing**Specify the spacing, in meters, between two adjacent elements in the array.

**Array axis**This parameter appears when the

**Geometry**parameter is set to`ULA`

or when the block only supports a ULA array geometry. Specify the array axis as`x`

,`y`

, or`z`

. All ULA array elements are uniformly spaced along this axis in the local array coordinate system.**Taper**Tapers, also known as

*element weights*, are applied to sensor elements in the array. Tapers are used to modify both the amplitude and phase of the transmitted or received data.Specify element tapering as a complex-valued scalar or a complex-valued 1-by-

*N*row vector. In this vector,*N*represents the number of elements in the array. If**Taper**is a scalar, the same weight is applied to each element. If**Taper**is a vector, a weight from the vector is applied to the corresponding sensor element. A weight must be applied to each element in the sensor array.**Expression**A valid MATLAB expression containing a constructor for a uniform linear array, for example,

`phased.ULA`

.

**Element type**Specify antenna or microphone type as

`Isotropic Antenna`

`Cosine Antenna`

`Custom Antenna`

`Omni Microphone`

`Custom Microphone`

**Exponent of cosine pattern**This parameter appears when you set

**Element type**to`Cosine Antenna`

.Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all values as non-negative real numbers. When you set

**Exponent of cosine pattern**to a scalar, both the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the specified value. When you set**Exponent of cosine pattern**to a 1-by-2 vector, the first element is the exponent for the azimuth direction cosine pattern and the second element is the exponent for the elevation direction cosine pattern.**Operating frequency range (Hz)**This parameter appears when

**Element type**is set to`Isotropic Antenna`

,`Cosine Antenna`

, or`Omni Microphone`

.Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in the form

`[LowerBound,UpperBound]`

. The antenna element has no response outside the specified frequency range.**Operating frequency vector (Hz)**This parameter appears when

**Element type**is set to`Custom Antenna`

or`Custom Microphone`

.Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses as a 1-by-

*L*row vector of increasing values. Use**Frequency responses**to set the frequency responses. The antenna or microphone element has no response outside the frequency range specified by the minimum and maximum elements of**Operating frequency vector (Hz)**.**Frequency responses (dB)**This parameter appears when

**Element type**is set to`Custom Antenna`

or`Custom Microphone`

.Specify this parameter as the frequency response of an antenna or microphone, in decibels, for the frequencies defined by

**Operating frequency vector (Hz)**. Specify**Frequency responses (dB)**as a 1-by-*L*vector matching the dimensions of the vector specified in**Operating frequency vector (Hz)**.**Azimuth angles (deg)**This parameter appears when

**Element type**is set to`Custom Antenna`

.Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-

*P*row vector.*P*must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –180° and 180° and be in strictly increasing order.**Elevation angles (deg)**This parameter appears when the

**Element type**is set to`Custom Antenna`

.Specify the elevation angles at which to compute the radiation pattern as a 1-by-

*Q*vector.*Q*must be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and be in strictly increasing order.**Radiation pattern (dB)**This parameter appears when the

**Element type**is set to`Custom Antenna`

.The magnitude in db of the combined polarized antenna radiation pattern specified as a

*Q*-by-*P*matrix or a*Q*-by-*P*-by-*L*array. The value of*Q*must match the value of*Q*specified by**Elevation angles (deg)**. The value of*P*must match the value of*P*specified by**Azimuth angles (deg_**. The value of*L*must match the value of*L*specified by**Operating frequency vector (Hz)**.**Polar pattern frequencies (Hz)**This parameter appears when the

**Element type**is set to`Custom Microphone`

.Specify the measuring frequencies of the polar patterns as a 1-by-

*M*vector. The measuring frequencies lie within the frequency range specified by**Operating frequency vector (Hz)**. Frequency units are in Hz.**Polar pattern angles (deg)**This parameter appears when

**Element type**is set to`Custom Microphone`

.Specify the measuring angles of the polar patterns, as a 1-by-

*N*vector. The angles are measured from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.**Polar pattern (dB)**This parameter appears when

**Element type**is set to`Custom Microphone`

.Specify the magnitude of the microphone element polar pattern as an

*M*-by-*N*matrix.*M*is the number of measuring frequencies specified in**Polar pattern frequencies (Hz)**.*N*is the number of measuring angles specified in**Polar pattern angles (deg)**. Each row of the matrix represents the magnitude of the polar pattern measured at the corresponding frequency specified in**Polar pattern frequencies (Hz)**and all angles specified in**Polar pattern angles (deg)**. Assume that the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar pattern is symmetric around the central axis. You can construct the microphone’s response pattern in 3-D space from the polar pattern.**Baffle the back of the element**This check box appears only when the

**Element type**parameter is set to`Isotropic Antenna`

or`Omni Microphone`

.Select this check box to baffle the back of the antenna element. In this case, the antenna responses to all azimuth angles beyond ±90° from

*broadside*are set to zero. Define the broadside direction as 0° azimuth angle and 0° elevation angle.

The block input and output ports correspond to the input and
output parameters described in the `step`

method of
the underlying System
object. See link at the bottom of this page.

Port | Description | Supported Data Types |
---|---|---|

`X` | Input signal The size of the first dimension of this input matrix can vary to simulate a changing signal length, such as a pulse waveform with variable pulse repetition frequency. | Double-precision floating point |

`Ang` | Targeting direction | Double-precision floating point |

`Dop` | Targeting Doppler frequency | Double-precision floating point |

`Idx` | Range cell index | Double-precision floating point |

`W` | Processing weights | Double-precision floating point |

`Y` | Doppler output | Double-precision floating point |

Was this topic helpful?