This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.


System object: phased.CosineAntennaElement
Package: phased

Output response of antenna element





Starting in R2016b, instead of using the step method to perform the operation defined by the System object™, you can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response RESP at operating frequencies specified in FREQ and directions specified in ANG.


The object performs an initialization the first time the step method is executed. This initialization locks nontunable properties (MATLAB) and input specifications, such as dimensions, complexity, and data type of the input data. If you change a nontunable property or an input specification, the System object issues an error. To change nontunable properties or inputs, you must first call the release method to unlock the object.

Input Arguments


Antenna element object.


Operating frequencies of antenna in hertz. FREQ is a row vector of length L.


Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case, the corresponding elevation angle is assumed to be 0.

Output Arguments


Voltage response of antenna element specified as an M-by-L, complex-valued matrix. In this matrix, M represents the number of angles specified in ANG while L represents the number of frequencies specified in FREQ.


expand all

Construct a cosine antenna element. The cosine response is raised to a power of 1.5 in both azimuth and elevation. The antenna frequency range lies in the X band (from 8 to 12 GHz) at 10 GHz. Obtain the antenna's response for an incident angle of 30° azimuth and 5° elevation.

antenna = phased.CosineAntennaElement('FrequencyRange',[8e9 12e9], ...
fc = 10.0e9;
ang = [30;5];
resp = antenna(fc,ang)
resp = 0.8013


expand all

Was this topic helpful?