System object: phased.MVDREstimator
Package: phased

Perform spatial spectrum estimation


Y = step(H,X)
[Y,ANG] = step(H,X)


Y = step(H,X) estimates the spatial spectrum from X using the estimator H. X is a matrix whose columns correspond to channels. Y is a column vector representing the magnitude of the estimated spatial spectrum.

[Y,ANG] = step(H,X) returns additional output ANG as the signal's direction of arrival (DOA) when the DOAOutputPort property is true. ANG is a row vector of the estimated broadside angles (in degrees).

    Note:   The object performs an initialization the first time the step method is executed. This initialization locks nontunable properties and input specifications, such as dimensions, complexity, and data type of the input data. If you change a nontunable property or an input specification, the System object™ issues an error. To change nontunable properties or inputs, you must first call the release method to unlock the object.


Estimate the DOAs of two signals received by a standard 10-element ULA with element spacing of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the second signal is 60 degrees in azimuth and –5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR estimator object
hdoa = phased.MVDREstimator('SensorArray',ha,...
% use the MVDREstimator step method to obtain the DOA estimates
[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);
Was this topic helpful?