Note: This page has been translated by MathWorks. Please click here

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Range response

**Library:**Phased Array System Toolbox / Detection

The Range Response block performs range filtering on fast-time (range) data, using either a matched filter or an FFT-based algorithm. The output is typically used as input to a detector. Matched filtering improves the SNR of pulsed waveforms. For continuous FM signals, FFT processing extracts the beat frequency of FMCW waveforms. Beat frequency is directly related to range.

The input to the block is a radar data cube. The organization of the data cube follows the Phased Array System Toolbox™ convention. The first dimension of the cube represents the fast time samples or ranges of the received signals. The second dimension represents multiple spatial channels such as different sensors or beams. The third dimension, slow time, represent pulses. Range filtering operates along the fast-time dimension of the cube. Processing along the other dimensions is not performed. If the data contains only one channel or pulse, the data cube can contain fewer than three dimensions. Because this object performs no Doppler processing, you can use it to process noncoherent radar pulses.

The output of the block is also a data cube with the same number of dimensions as the input. Its first dimension contains range-processed data but its length can differ from the first dimension of the input data cube.

[1] Richards, M. *Fundamentals of Radar Signal
Processing, 2nd ed*. McGraw-Hill Professional Engineering,
2014.

[2] Richards, M., J. Scheer, and W. Holm, * Principles
of Modern Radar: Basic Principles*. SciTech Publishing,
2010.

Was this topic helpful?