Note: This page has been translated by MathWorks. Please click here

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

**MathWorks Machine Translation**

The automated translation of this page is provided by a general purpose third party translator tool.

MathWorks does not warrant, and disclaims all liability for, the accuracy, suitability, or fitness for purpose of the translation.

Scattering MIMO propagation channel

**Library:**Phased Array System Toolbox / Environment and Target

The Scattering MIMO Channel models a 3-D multipath propagation channel in which radiated signals from a transmitting array are reflected from multiple scatters back towards a receiving array. In this channel, propagation paths are direct paths (line-of-sight) from point to point. The block models range-dependent time delay, gain, Doppler shift, phase change, and atmospheric loss due to gases, rain, fog, and clouds. You can optionally propagate a signal via a direct path from transmitter to receiver.

The attenuation models for atmospheric gases and rain are valid for electromagnetic signals in the frequency range 1–1000 GHz but the attenuation model for fog and clouds is valid for only 10–1000 GHz. Outside these frequency ranges, the object uses the nearest valid value.

`X`

— Transmitted narrowband signalThe transmitted narrowband signal, specified as an *M*-by-*N _{t}* complex-valued
matrix. The quantity

**Example: **`[1,1;j,1;0.5,0]`

**Data Types: **`double`

**Complex Number Support: **Yes

`TxPos`

— Position of transmitting antenna array3-by-1 real-valued column vector

Position of transmitting antenna array, specified as a 3-by-1
real-valued column vector taking the form `[x;y;z]`

.
The vector elements correspond to the *x*, *y*,
and *z* positions of the array. Units are in meters.

To enable this port, set the **Source of transmit array
motion** parameter to `Input port`

.

**Data Types: **`double`

`TxVel`

— Velocity of transmitting antenna array3-by-1 real-valued column vector

Velocity of transmitting antenna array, specified as a 3-by-1
real-valued column vector taking the form `[vx;vy;vz]`

.
The vector elements correspond to the *x*, *y*,
and *z* velocities of the array. Units are in meters
per second.

To enable this port, set the **Source of transmit array
motion** parameter to `Input port`

.

**Data Types: **`double`

`TxAxes`

— Axes orientation of transmitting antenna array3-by-3 real orthonormal matrix

Axes orientation of transmitting antenna array, specified as
a 3-by-3 real orthonormal matrix. The matrix defines the orientation
of the array local coordinate system with respect to the global coordinates.
Matrix columns correspond to the directions of the *x*, *y*,
and *z* axes of the local coordinate system. Units
are dimensionless.

To enable this port, set the **Source of transmit array
motion** parameter to `Input port`

.

**Data Types: **`double`

`RxPos`

— Position of receiving antenna array3-by-1 real-valued column vector

Position of receiving antenna array, specified as a 3-by-1 real-valued
column vector taking the form `[x;y;z]`

. The vector
elements correspond to the *x*, *y*,
and *z* positions of the array. Units are in meters.

To enable this port, set the **Source of receive array
motion** parameter to `Input port`

.

**Data Types: **`double`

`RxVel`

— Velocity of receiving antenna array3-by-1 real-valued column vector

Velocity of receiving antenna array, specified as a 3-by-1 real-valued
column vector taking the form `[vx;vy;vz]`

. The vector
elements correspond to the *x*, *y*,
and *z* velocities of the array. Units are in meters
per second.

To enable this port, set the **Source of receive array
motion** parameter to `Input port`

.

**Data Types: **`double`

`RxAxes`

— Axes orientation of receiving antenna array3-by-3 real orthonormal matrix

Axes orientation of receiving antenna array, specified as a
3-by-3 real orthonormal matrix. The matrix defines the orientation
of the array local coordinate system with respect to the global coordinates.
Matrix columns correspond to the directions of the *x*, *y*,
and *z* axes of the local coordinate system. Units
are dimensionless.

To enable this port, set the **Source of receive array
motion** parameter to `Input port`

.

**Data Types: **`double`

`ScatPos`

— Positions of scatterers3-by-

Position of scatterers, specified as a 3-by-*N _{s}* real-valued
matrix. Each column of the matrix takes the form

`[x;y;z]`

,
containing the To enable this port, set the **Scatterer specification** parameter
to `Input port`

.

**Data Types: **`double`

`ScatVel`

— Velocities of scatterers3-by-

Velocities of scatterers, specified as a 3-by-*N _{s}* real-valued
matrix. Each matrix column has the form

`[vx;vy;vz]`

,
containing the To enable this port, set the **Scatterer specification** parameter
to `Input port`

.

**Data Types: **`double`

`ScatCoef`

— Scattering coefficients1-by-

Scattering coefficients, specified as a 1-by-*N _{s}* complex-valued
row vector. Each vector element specifies the scattering coefficient
of the corresponding scatterer. Units are dimensionless.

To enable this port, set the **Scatterer specification** parameter
to `Input port`

.

**Data Types: **`double`

**Complex Number Support: **Yes

`Y`

— Received narrowband signalReceived narrowband signal, returned as an *M*-by-*N _{r}* complex-valued
matrix. The quantity

**Data Types: **`double`

**Complex Number Support: **Yes

`CS`

— Channel responseChannel response, returned as an *N _{t}*-by-

To enable this port, select the **Output channel response** checkbox.

**Data Types: **`double`

**Complex Number Support: **Yes

`Tau`

— Path delays1-by-

Path delays, returned as a 1-by-*N _{s}* real-valued
vector.

To enable this port, select the **Output channel response** checkbox.

**Data Types: **`double`

`Propagation speed (m/s)`

— Signal propagation speed`physconst('LightSpeed')`

(default) | positive scalarSignal propagation speed, specified as a real-valued positive
scalar. The default value of the speed of light is the value returned
by `physconst('LightSpeed')`

.

**Data Types: **`double`

`Signal carrier frequency (Hz)`

— Signal carrier frequency`300e6`

(default) | positive real-valued scalarSignal carrier frequency, specified as a positive real-valued scalar. Units are in hertz.

**Data Types: **`double`

`Specify atmospheric parameters`

— Enable atmospheric attenuation modeloff (default) | on

Select this parameter to enable to add signal attenuation caused
by atmospheric gases, rain, fog, or clouds. When you select this parameter,
the **Temperature (degrees Celsius)**, **Dry
air pressure (Pa)**, **Water vapour density (g/m^3)**, **Liquid
water density (g/m^3)**, and **Rain rate (mm/hr)** parameters
appear in the dialog box.

**Data Types: **`Boolean`

`Temperature (degrees Celsius)`

— Ambient temperature`15`

(default) | real-valued scalarAmbient temperature, specified as a real-valued scalar. Units are in degrees Celsius.

To enable this parameter, select the **Specify atmospheric
parameters** checkbox.

**Data Types: **`double`

`Dry air pressure (Pa)`

— Atmospheric dry air pressure`101.325e3`

(default) | positive real-valued scalarAtmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The default value of this parameter corresponds to one standard atmosphere.

To enable this parameter, select the **Specify atmospheric
parameters** checkbox.

**Data Types: **`double`

`Water vapour density (g/m^3)`

— Atmospheric water vapor density`7.5`

(default) | positive real-valued scalarAtmospheric water vapor density, specified as a positive real-valued
scalar. Units are in g/m^{3}.

To enable this parameter, select the **Specify atmospheric
parameters** checkbox.

**Data Types: **`datetime`

`Liquid water density (g/m^3)`

— Liquid water density`0.0`

(default) | nonnegative real-valued scalarLiquid water density of fog or clouds, specified as a nonnegative
real-valued scalar. Units are in g/m^{3}.
Typical values for liquid water density are 0.05 for medium fog and
0.5 for thick fog.

To enable this parameter, select the **Specify atmospheric
parameters** checkbox.

**Data Types: **`double`

`Rain rate (mm/hr)`

— Rainfall rate`0.0`

(default) | non-negative real-valued scalarRainfall rate, specified as a nonnegative real-valued scalar. Units are in mm/hr.

To enable this parameter, select the **Specify atmospheric
parameters** checkbox.

**Data Types: **`double`

`Inherit sample rate`

— Inherit sample rate from upstream blockson (default) | off

Select this parameter to inherit the sample rate from upstream
blocks. Otherwise, specify the sample rate using the **Sample
rate (Hz)** parameter.

**Data Types: **`Boolean`

`Sample rate (Hz)`

— Sampling rate of signal`1e6`

(default) | positive real-valued scalarSpecify the signal sampling rate as a positive scalar. Units are in Hz.

To enable this parameter, clear the **Inherit sample
rate** parameter.

**Data Types: **`double`

`Simulate direct path propagation`

— Enable propagation along direct pathoff (default) | on

Select this check box to enable signal propagation along the line-of-sight direct path from the transmitting array to the receiving array with no scattering.

**Data Types: **`Boolean`

`Maximum delay (s)`

— Maximum signal delay`10e-6`

(default) | positive scalarThe maximum signal delay, specified as a positive scalar. Delays greater than this value are ignored.

**Data Types: **`double`

`Output channel response`

— Enable output of channel responseoff (default) | on

Select this checkbox to output the channel response and time
delay via the output ports `CS`

and `Tau`

.

**Data Types: **`Boolean`

`Simulate using`

— Block simulation method`Interpreted Execution`

(default) | `Code Generation`

Block simulation, specified as `Interpreted Execution`

or ```
Code
Generation
```

. If you want your block to use the MATLAB interpreter,
choose `Interpreted Execution`

. If you want
your block to run as compiled code, choose `Code Generation`

.
Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and
tuning a model. The block runs the underlying System
object™ in MATLAB.
You can change and execute your model quickly. When you are satisfied
with your results, you can then run the block using ```
Code
Generation
```

. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However,
if you change any block parameters, then the block automatically recompiles
before execution.

When setting this parameter, you must take into account the
overall model simulation mode. The table shows how the **Simulate
using** parameter interacts with the overall simulation mode.

When the Simulink^{®} model is in `Accelerator`

mode,
the block mode specified using **Simulate using** overrides
the simulation mode.

**Acceleration Modes**

Block Simulation | Simulation Behavior | ||

`Normal` | `Accelerator` | `Rapid Accelerator` | |

`Interpreted Execution` | The block executes using the MATLAB interpreter. | The block executes using the MATLAB interpreter. | Creates a standalone executable from the model. |

`Code Generation` | The block is compiled. | All blocks in the model are compiled. |

**Data Types: **`char`

`Specify sensor array as`

— Method to specify array`Array (no subarrays)`

(default) | `MATLAB expression`

Method to specify array, specified as ```
Array (no
subarrays)
```

or `MATLAB expression`

.

`Array (no subarrays)`

— use the block parameters to specify the array.`MATLAB expression`

— create the array using a MATLAB expression.

`Expression`

— MATLAB expression used to create an arrayPhased Array System Toolbox™ array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array System object.

**Example: **`phased.URA('Size',[5,3])`

To enable this parameter, set **Specify sensor array
as** to `MATLAB expression`

.

`Element type`

— Array element types`Isotropic Antenna`

(default) | `Cosine Antenna`

| `Custom Antenna`

| `Omni Microphone`

| `Custom Microphone`

Antenna or microphone type, specified as one of the following:

`Isotropic Antenna`

`Cosine Antenna`

`Custom Antenna`

`Omni Microphone`

`Custom Microphone`

`Operating frequency range (Hz)`

— Operating frequency range of the antenna or microphone element`[0,1.0e20]`

(default) | real-valued 1-by-2 row vectorSpecify the operating frequency range of the antenna or microphone
element as a 1-by-2 row vector in the form `[LowerBound,UpperBound]`

.
The element has no response outside this frequency range. Frequency
units are in Hz.

To enable this parameter, set **Element type** to ```
Isotropic
Antenna
```

, `Cosine Antenna`

, or ```
Omni
Microphone
```

.

`Operating frequency vector (Hz)`

— Operating frequency range of custom antenna or microphone elements`[0,1.0e20]`

(default) | real-valued row vectorSpecify the frequencies at which to set antenna and microphone
frequency responses as a 1-by-*L* row vector of increasing
real values. The antenna or microphone element has no response outside
the frequency range specified by the minimum and maximum elements
of this vector. Frequency units are in Hz.

To enable this parameter, set **Element type** to ```
Custom
Antenna
```

or `Custom Microphone`

. Use **Frequency
responses (dB)** to set the responses at these frequencies.

`Baffle the back of the element`

— Set back response of an `Isotropic Antenna`

element or an `Omni Microphone`

element to zerooff (default) | on

Select this checkbox to baffle the back response of the element. When backbaffled, the responses at all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is 0° azimuth angle and 0° elevation angle.

To enable this checkbox, set **Element type** to ```
Isotropic
Antenna
```

or `Omni Microphone`

.

`Exponent of cosine pattern`

— Exponents of azimuth and elevation cosine patterns`[1.5 1.5]`

(default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative valuesSpecify the exponents of the cosine pattern as a nonnegative
scalar or a real-valued 1-by-2 matrix of nonnegative values. When
you set **Exponent of cosine pattern** to a 1-by-2
vector, the first element is the exponent for the azimuth direction
cosine pattern, and the second element is the exponent for the elevation
direction cosine pattern. When you set this parameter to a scalar,
both the azimuth direction cosine pattern and the elevation direction
cosine pattern are raised to the same power.

To enable this parameter, set **Element type** to ```
Cosine
Antenna
```

.

`Frequency responses (dB)`

— Antenna and microphone frequency response`[0,0]`

(default) | real-valued row vectorFrequency response of a custom antenna or custom microphone
for the frequencies defined by the **Operating frequency vector
(Hz)** parameter. The dimensions of **Frequency responses
(dB)** must match the dimensions of the vector specified
by the **Operating frequency vector (Hz)** parameter.

To enable this parameter , set **Element type** to ```
Custom
Antenna
```

or `Custom Microphone`

.

`Azimuth angles (deg)`

— Azimuth angles of antenna radiation pattern `[-180:180]`

(default) | real-valued row vectorSpecify the azimuth angles at which to calculate the antenna
radiation pattern as a 1-by-*P* row vector. *P* must
be greater than 2. Azimuth angles must lie between –180°
and 180°, inclusive, and be in strictly increasing order.

To enable this parameter, set **Element type** to ```
Custom
Antenna
```

.

`Elevation angles (deg)`

— Elevation angles of antenna radiation pattern`[-90:90]`

(default) | real-valued row vectorSpecify the elevation angles at which to compute the radiation
pattern as a 1-by-*Q* vector. *Q* must
be greater than 2. Angle units are in degrees. Elevation angles must
lie between –90° and 90°, inclusive, and be in strictly
increasing order.

To enable this parameter, set **Element type** to ```
Custom
Antenna
```

.

`Magnitude pattern (dB)`

— Magnitude of combined antenna radiation pattern`zeros(181,361)`

(default) | real-valued Magnitude of the combined antenna radiation pattern, specified
as a *Q*-by-*P* matrix or a *Q*-by-*P*-by-*L* array.
The quantity *Q* equals the length of the vector
specified by **Elevation angles (deg)**. The quantity
*P* equals length of the vector specified by **Azimuth
angles (deg)**. The quantity *L* equal the
length of the **Operating frequency vector (Hz)**.

If this parameter is a

*Q*-by-*P*matrix, the same pattern is applied to*all*frequencies specified in the**Operating frequency vector (Hz)**parameter.If the value is a

*Q*-by-*P*-by-*L*array, each*Q*-by-*P*page of the array specifies a pattern for the*corresponding*frequency specified in the**Operating frequency vector (Hz)**parameter.

To enable this parameter, set **Element type** to ```
Custom
Antenna
```

.

`Phase pattern (deg)`

— Custom antenna radiation phase pattern`zeros(181,361)`

(default) | real-valued Phase of the combined antenna radiation pattern, specified as
a *Q*-by-*P* matrix or a *Q*-by-*P*-by-*L* array.
The quantity *Q* equals the length of the vector
specified by **Elevation angles (deg)**. The quantity
*P* equals length of the vector specified by **Azimuth
angles (deg)**. The quantity *L* equal the
length of the **Operating frequency vector (Hz)**.

If this parameter is a

*Q*-by-*P*matrix, the same pattern is applied to*all*frequencies specified in the**Operating frequency vector (Hz)**parameter.If the value is a

*Q*-by-*P*-by-*L*array, each*Q*-by-*P*page of the array specifies a pattern for the*corresponding*frequency specified in the**Operating frequency vector (Hz)**parameter.

To enable this parameter, set **Element type** to ```
Custom
Antenna
```

.

`Polar pattern frequencies (Hz)`

— Custom microphone response frequencies1e3 (default) | real scalar | real-valued 1-by-

Response frequencies of the custom microphone of the polar pattern,
specified as a real scalar or real-valued 1-by-*L* vector.
The response frequencies lie within the frequency range specified
by the **Operating frequency vector (Hz)** vector.

To enable this parameter, set **Element type** is
set to `Custom Microphone`

.

`Polar pattern angles (deg)`

— Polar pattern response angles`[-180:180]`

(default) | real-valued -by-Specify the polar pattern response angles, as a 1-by-*P* vector.
The angles are measured from the central pickup axis of the microphone
and must be between –180° and 180°, inclusive.

To enable this parameter, set **Element type** to ```
Custom
Microphone
```

.

`Polar pattern (dB)`

— Custom microphone polar response`zeros(1,361)`

(default) | real-valued Specify the magnitude of the custom microphone element polar
patterns as an *L*-by-*P* matrix. *L* is
the number of frequencies specified in **Polar pattern frequencies
(Hz)**. *P* is the number of angles specified
in **Polar pattern angles (deg)**. Each row of the
matrix represents the magnitude of the polar pattern measured at the
corresponding frequency specified in **Polar pattern frequencies
(Hz)** and all angles specified in **Polar pattern
angles (deg)**. Assume that the pattern is measured in the
azimuth plane. In the azimuth plane, the elevation angle is 0°
and the central pickup axis is 0° degrees azimuth and 0°
degrees elevation. Assume also that the polar pattern is symmetric
around the central axis. You can construct the microphone’s
response pattern in 3-D space from the polar pattern.

To enable this parameter, set **Element type** to ```
Custom
Microphone
```

.

`Geometry`

— Array geometry`ULA`

(default) | `URA`

| `UCA`

| `Conformal Array`

Array geometry, specified as one of

`ULA`

— Uniform linear array`URA`

— Uniform rectangular array`UCA`

— Uniform circular array`Conformal Array`

— arbitrary element positions

`Number of elements`

— Number of array elements`2`

for ULA arrays and `5`

for
UCA arrays (default) | integer greater than or equal to 2The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to 2.

To enable this parameter, set **Geometry** to `ULA`

or `UCA`

.

`Element spacing (m)`

— Spacing between array elements`0.5`

for ULA arrays and `[0.5,0.5]`

for
URA arrays (default) | positive scalar for ULA or URA arrays | 2-element vector of positive values for URA arraysSpacing between adjacent array elements:

ULA — specify the spacing between two adjacent elements in the array as a positive scalar.

URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If

**Element spacing (m)**is a scalar, the row and column spacings are equal. If**Element spacing (m)**is a vector, the vector has the form`[SpacingBetweenArrayRows,SpacingBetweenArrayColumns]`

.

To enable this parameter, set **Geometry** to `ULA`

or `URA`

.

`Array axis`

— Linear axis direction of ULA`y`

(default) | `x`

| `z`

Linear axis direction of ULA, specified as `y`

, `x`

,
or `z`

. All ULA array elements are uniformly
spaced along this axis in the local array coordinate system.

To enable this parameter, set **Geometry** to `ULA`

.
This parameter is also enabled when the block supports only ULA arrays.

`Array size`

— Dimensions of URA array`[2,2]`

(default) | positive integer | 1-by-2 vector of positive integersDimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

If

**Array size**is a 1-by-2 vector, the vector has the form`[NumberOfArrayRows,NumberOfArrayColumns]`

.If

**Array size**is an integer, the array has the same number of elements in each row and column.

For a URA, array elements are indexed from top to bottom
along a column, and continuing to the next columns from left to right.
In this figure, the **Array size** value of `[3,2]`

creates
an array having three rows and two columns.

To enable this parameter, set **Geometry** to `URA`

.

`Element lattice`

— Lattice of URA element positions`Rectangular`

(default) | `Triangular`

Lattice of URA element positions, specified as `Rectangular`

or `Triangular`

.

`Rectangular`

— Aligns all the elements in row and column directions.`Triangular`

— Shifts the even-row elements of a rectangular lattice toward the positive row-axis direction. The displacement is one-half the element spacing along the row dimension.

To enable this parameter, set **Geometry** to `URA`

.

`Array normal`

— Array normal direction`x`

for URA arrays
or `z`

for UCA arrays (default) | `y`

Array normal direction, specified as `x`

, `y`

,
or `z`

.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element boresight directions point along the array normal direction.

Array Normal Parameter Value | Element Positions and Boresight Directions |
---|---|

`x` | Array elements lie in the yz-plane. All
element boresight vectors point along the x-axis. |

`y` | Array elements lie in the zx-plane. All
element boresight vectors point along the y-axis. |

`z` | Array elements lie in the xy-plane. All
element boresight vectors point along the z-axis. |

To enable this parameter, set **Geometry**to `URA`

or `UCA`

.

`Radius of UCA (m)`

— UCA array radius0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

To enable this parameter, set **Geometry** to `UCA`

.

`Element positions (m)`

— Positions of conformal array elements`[0;0;0]`

(default) | 3-by-Positions of the elements in a conformal array, specified as
a 3-by-*N* matrix of real values, where *N* is
the number of elements in the conformal array. Each column of this
matrix represents the position `[x;y;z]`

of an array
element in the array local coordinate system. The origin of the local
coordinate system is *(0,0,0)*. Units are in meters.

To enable this parameter set **Geometry** to ```
Conformal
Array
```

.

**Data Types: **`double`

`Element normals (deg)`

— Direction of conformal array element normal vectors`[0;0]`

| 2-by-1 column vector | 2-by-Direction of element normal vectors in a conformal array, specified
as a 2-by-1 column vector or a 2-by-*N* matrix. *N* indicates
the number of elements in the array. If the parameter value is a matrix,
each column specifies the normal direction of the corresponding element
in the form `[azimuth;elevation]`

with respect to
the local coordinate system. The local coordinate system aligns the
positive *x*-axis with the direction normal to the
conformal array. If the parameter value is a 2-by-1 column vector,
the same pointing direction is used for all array elements.

You can use the **Element positions (m)** and **Element
normals (deg)** parameters to represent any arrangement in
which pairs of elements differ by certain transformations. The transformations
can combine translation, azimuth rotation, and elevation rotation.
However, you cannot use transformations that require rotation about
the normal direction.

To enable this parameter, set **Geometry** to ```
Conformal
Array
```

.

**Data Types: **`double`

`Taper`

— Array element tapers1 (default) | complex scalar | complex-valued row vector

Specify element tapering as a complex-valued scalar or a complex-valued
1-by-*N* row vector. In this vector, *N* represents
the number of elements in the array.

Also known as *element weights*, tapers
multiply the array element responses. Tapers modify both amplitude
and phase of the response to reduce sidelobes or steer the main response
axis.

If **Taper** is a scalar, the same weight is
applied to each element. If **Taper** is a vector,
a weight from the vector is applied to the corresponding sensor element.
The number of weights must match the number of elements of the array.

**Data Types: **`double`

`Source of transmit array motion`

— Specify the source of the transmitting array motion parameters`Property`

(default) | `Input port`

Source of transmitting array motion parameters, specified as `Property`

or ```
Input
port
```

.

When you select

`Property`

, specify the array location and orientation using the**Position of the transmit array (m)**and**Orientation of the transmit array**parameters. The array is stationary.When you select

`Input port`

, specify the array location, velocity, and orientation using the`TxPos`

,`TxVel`

, and`TxAxes`

input ports of the block.

**Data Types: **`char`

`Position of the transmit array (m)`

— Position of transmitting array`[0;0;0]`

(default) | real-valued 3-by-1 vectorThe position of the transmitting array phase center, specified
as a real-valued, 3-by-1 vector in Cartesian form `[x;y;z]`

with
respect to the global coordinate system. Units are in meters.

To enable this parameter, set the **Source of transmit
array motion** parameter to `Property`

.

**Data Types: **`double`

`Orientation of the transmit array`

— Set the orientation of transmitting array axes`eye(3,3)`

(default) | real-valued 3-by-3 orthonormal matrixThe orientation of transmitting array, specified as a real-valued,
3-by-3 orthonormal matrix. The matrix specifies the directions of
the three axes that define the local coordinate system of the array
with respect to the global coordinate system. The columns of the array
correspond to the *x*, *y*, and *z* axes,
respectively.

To enable this parameter, set the **Source of transmit
array motion** parameter to `Property`

.

**Data Types: **`double`

`Source of receive array motion`

— Specify the source of the receiving array motion parameters`Property`

(default) | `Input port`

Source of receiving array motion parameters, specified as `Property`

or ```
Input
port
```

.

When you select

`Property`

, specify the array location and orientation using the**Position of the receive array (m)**and**Orientation of the receive array**parameters. The array is stationary.When you select

`Input port`

, specify the array location, velocity, and orientation using the`RxPos`

,`RxVel`

, and`RxAxes`

input ports of the block.

**Data Types: **`char`

`Position of the receive array (m)`

— Position of receiving array`[physconst('LightSpeed' )/1e5; 0;0]`

(default) | real-valued 3-by-1 vectorThe position of the receiving array phase center, specified
as a real-valued, 3-by-1 vector in Cartesian form `[x;y;z]`

with
respect to the global coordinate system. Units are in meters.

To enable this parameter, set the **Source of receive
array motion** parameter to `Property`

.

**Data Types: **`double`

`Orientation of the receive array`

— Set the orientation of receiving array axes`eye(3,3)`

(default) | real-valued 3-by-3 orthonormal matrixThe orientation of receiving array, specified as a real-valued,
3-by-3 orthonormal matrix. The matrix specifies the directions of
the three axes that define the local coordinate system of the array
with respect to the global coordinate system. The columns of the array
correspond to the *x*, *y*, and *z* axes,
respectively.

To enable this parameter, set the **Source of receive
array motion** parameter to `Property`

.

**Data Types: **`double`

`Scatterer specification`

— Specify source of scatterer parameters`Auto`

(default) | `Property`

| `Input port`

The source of scatterer parameters, specified as `Auto`

, `Property`

,
or `Input port`

.

When you set this parameter to

`Auto`

, all scatterer positions and coefficients are randomly generated. Scatterer velocities are zero. The generated positions are contained within the region set by the**Boundary of scatterer positions**parameter. Set the number of scatterers using the**Number of scatterers**parameter.When you set this property to

`Property`

, set the scatterer positions using the**Positions of scatterers (m)**parameter. Set the scattering coefficients using the**Scattering coefficients**parameter. Scatterer velocities are zero.When you set this parameter to

`Input port`

, you specify the scatterer positions, velocities, and scattering coefficients using the`ScatPos`

,`ScatVel`

, and`ScatCoef`

block input ports.

**Data Types: **`char`

`Number of scatterers`

— Number of scatterers`1`

(default) | nonnegative integerThe number of scatterers, specified as a nonnegative integer.

To enable this property, set the **Scatterer specification** parameter
to `Auto`

.

**Data Types: **`double`

`Boundary of scatterer positions`

— Constrain scatterer positions within a boundary`[0,1000]`

(default) | 1-by-2 real-valued vector | 3-by-2 real-valued matrixThe boundary scatterer positions, specified as a 1-by-2 real-valued
row vector or a 3-by-2 real-valued matrix. If the boundary is a 1-by-2
row vector, the vector contains the minimum and maximum, ```
[minbdry
maxbdry]
```

, for all three dimensions. If the boundary is a
3-by-2 matrix, the matrix specifies boundaries in all three dimensions
in the form ```
[x_minbdry x_maxbdry;y_minbdry y_maxbdry; z_minbdry
z_maxbdry]
```

.

To enable this property, set the **Scatterer specification** parameter
to `Auto`

.

**Data Types: **`double`

`Positions of scatterers (m)`

— Positions of scatterers`[physconst('LightSpeed' )*5e-6;0;0]`

(default) | real-valued 3-by-The positions of the scatterers, specified as real-valued 3-by-*N _{s}* matrix.

`[x;y;z]`

with respect
to the global coordinate system. Units are in meters.To enable this property, set the **Scatterer specification** parameter
to `Property`

.

**Data Types: **`double`

`ScattererCoefficient`

— Scattering coefficients`1`

(default) | complex-valued 1-by-Scattering coefficients, specified as a complex-valued 1-by-*N _{s}* vector.

To enable this property, set the **Scatterer specification** parameter
to `Property`

.

**Data Types: **`double`

**Complex Number Support: **Yes

Was this topic helpful?

You can also select a location from the following list:

- Canada (English)
- United States (English)

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)