Fixed Orifice with Fluid Inertia

Fixed hydraulic orifice accounting for flow inertia




The Fixed Orifice with Fluid Inertia block models a hydraulic fixed orifice and accounts for the fluid inertia, in addition to the static pressure loss.

Fluid inertia plays a noticeable role in orifices with a large ratio of orifice length to the orifice hydraulic diameter (L / DH) and in sharp-edged short orifices when the rate of change of flow rate (fluid acceleration) is relatively large.

The orifice is based on the following equations:








qVolumetric flow rate
pTotal pressure differential
pinInertial pressure drop
prResistive pressure drop
pcrMinimum pressure for turbulent flow
CDFlow discharge coefficient
AOrifice passage area
LOrifice length
DHOrifice hydraulic diameter
ρFluid density
νFluid kinematic viscosity
ReInstantaneous Reynolds number
RecrCritical Reynolds number

Connections A and B are conserving hydraulic ports associated with the orifice inlet and outlet, respectively. The block positive direction is from port A to port B. This means that the flow rate is positive if it flows from A to B, and the pressure differential is determined as p=pApB.

Dialog Box and Parameters

Orifice area

Cross-sectional area of the orifice. The default value is 1e-4 m^2.

Orifice length

Total length of the orifice. Generally, increase the geometrical length of the orifice up to 2 · 0.8 · DH (where DH is the orifice hydraulic diameter) to take into account the added volumes of fluid on both sides of the orifice. The default value is 0.01 m.

Flow discharge coefficient

Semi-empirical parameter for orifice capacity characterization. The coefficient affects the resistive pressure drop in the orifice. The default value is 0.6.

Critical Reynolds number

The maximum Reynolds number for laminar flow. The transition from laminar to turbulent regime is assumed to take place when the Reynolds number reaches this value. The default value is 10.

Initial flow rate

Flow rate through the orifice at the start of simulation. This parameter specifies the initial condition for use in computing the block's state at the beginning of a simulation run. For more information, see Initial Conditions Computation. The default value is 0.

Global Parameters

Parameters determined by the type of working fluid:

  • Fluid density

  • Fluid kinematic viscosity

Use the Hydraulic Fluid block or the Custom Hydraulic Fluid block to specify the fluid properties.


The block has the following ports:


Hydraulic conserving port associated with the orifice inlet.


Hydraulic conserving port associated with the orifice outlet.

Introduced in R2013a

Was this topic helpful?