This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Single-Acting Hydraulic Cylinder

Hydraulic actuator exerting force in one direction


Hydraulic Cylinders


The Single-Acting Hydraulic Cylinder block models a device that converts hydraulic energy into mechanical energy in the form of translational motion. Hydraulic fluid pumped under pressure into the cylinder chamber forces the piston to move and exert force on the cylinder rod. Single-acting cylinders transfer force and motion in one direction only. Use an external device, such as a spring, weight, or another opposite installed cylinder, to move the rod in the opposite direction.

The model of the cylinder is built of Simscape™ Foundation library blocks. The schematic diagram of the model is shown below.

Connections R and C are mechanical translational conserving ports corresponding to the cylinder rod and cylinder clamping structure, respectively. Connection A is a hydraulic conserving port associated with the cylinder inlet. The physical signal output port P provides rod displacement, calculated as follows:

xpst = x0 + xp


xpstRod displacement output by the physical signal port
x0Initial distance between piston and cap
xpRod displacement with respect to its initial position

The energy through port A is directed to the Translational Hydro-Mechanical Converter block. The converter transforms hydraulic energy into mechanical energy and accounts for the fluid compressibility in the cylinder chamber. The rod motion is limited with the mechanical Translational Hard Stop block in such a way that the rod can travel only between cylinder caps. The piston position is conveyed to the physical signal port P.

The block directionality is adjustable and can be controlled with the Cylinder orientation parameter.

Basic Assumptions and Limitations

  • No leakage, internal or external, is taken into account.

  • No loading on piston rod, such as inertia, friction, spring, and so on, is taken into account. If necessary, you can easily add them by connecting an appropriate building block to cylinder port R.


Piston area

Effective piston area. The default value is 0.001 m^2.

Piston stroke

Piston maximum travel between caps. The default value is 0.1 m.

Initial distance between piston and cap

The distance between the piston and cap at the beginning of simulation. This value cannot exceed the piston stroke. The default value is 0, which corresponds to the fully retracted position.

Dead volume

Fluid volume that remains in the chamber after the rod is fully retracted. The default value is 1e-4 m^3.

Chamber initial pressure

Pressure in the cylinder chamber at the beginning of simulation. The default value is 0.

Specific heat ratio

Gas-specific heat ratio for the Hydraulic Piston Chamber block. The default value is 1.4.

Contact stiffness

Specifies the elastic property of colliding bodies for the Translational Hard Stop block. The greater the value of the parameter, the less the bodies penetrate into each other, the more rigid the impact becomes. Lesser value of the parameter makes contact softer, but generally improves convergence and computational efficiency. The default value is 1e6 N/m.

Contact damping

Specifies dissipating property of colliding bodies for the Translational Hard Stop block. At zero damping, the impact is close to an absolutely elastic one. The greater the value of the parameter, the more energy dissipates during an interaction. Keep in mind that damping affects slider motion as long as the slider is in contact with the stop, including the period when slider is pulled back from the contact. For computational efficiency and convergence reasons, MathWorks recommends that you assign a nonzero value to this parameter. The default value is 150 N*s/m.

Cylinder orientation

Specifies cylinder orientation with respect to the globally assigned positive direction. The cylinder can be installed in two different ways, depending upon whether it exerts force in the positive or in the negative direction when pressure is applied at its inlet. If pressure applied at port A exerts force in negative direction, set the parameter to Acts in negative direction. The default value is Acts in positive direction.

 Restricted Parameters

Global Parameters

Parameter determined by the type of working fluid:

  • Fluid bulk modulus

Use the Hydraulic Fluid block or the Custom Hydraulic Fluid block to specify the fluid properties.


The block has the following ports:


Hydraulic conserving port associated with the cylinder inlet.


Mechanical translational conserving port associated with the cylinder rod.


Mechanical translational conserving port associated with the cylinder clamping structure.


Physical signal output port that outputs rod extension.

Introduced in R2006a

Was this topic helpful?