This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Fundamental Friction Clutch

Friction clutch with kinetic and static-limit friction torques as inputs




This block represents a friction clutch, a mechanism that transmits rotational power through friction. The clutch contains two friction plate sets, each rigidly connected to a driveshaft, that come into contact to engage. Once in contact, the plates experience frictional torques that enable power to flow between the driveshafts.

The clutch can be bidirectional or unidirectional. A bidirectional clutch can slip in the positive and negative directions. A unidirectional clutch can slip only in the positive direction. The slip direction is positive if the follower shaft spins faster than the base shaft and negative if it spins slower. The block defines the slip velocity as the difference



  • ω is the slip velocity.

  • ωF is the angular velocity of the follower driveshaft.

  • ωB is the angular velocity of the base driveshaft.

Clutch States

The clutch can be in three states:

  • Locked — Real clutch state in which the friction plates spin as a unit. A locked clutch has one rotational degree of freedom. It experiences no power losses due to friction.

  • Unlocked — Real clutch state in which the friction plates slip with respect to each other. An unlocked clutch has two rotational degrees of freedom. It experiences power losses equal to the product of the slip velocity and the kinetic friction torque.

  • Wait — Virtual clutch state that maintains the motion of the previous state while testing for locking and unlocking. The clutch degrees of freedom and power losses depend on the previous clutch state.

The schematic shows the conditions under which the clutch is locked and unlocked. The clutch is generally locked if the torque it transfers lies between its static friction torque limits and the magnitude of the slip velocity is smaller than its velocity tolerance. The clutch unlocked otherwise.

In the schematic:

  • τ is the torque transferred between the clutch plates.

  • τS- and τS+ are the static friction torque limits.

  • τK is the kinetic friction torque between the clutch plates.

  • ωTol is the slip velocity tolerance of the clutch.

  • ω is the slip velocity between the clutch plates.

The block identifies the clutch state through physical signal port M using values -1, 0, and +1. The table summarizes the correspondence between the states and the output values.

State Value
Unlocked Forward or Wait Forward+1
Unlocked Reverse or Wait Reverse-1
Locked or Unlocked Initial State0

State Transitions

At the start of simulation, the clutch is in one of two states—locked or initial unlocked. The initial unlocked state is unique in that it lacks a direction of motion. The clutch remains in this state until the clutch slip velocity becomes nonzero. The clutch then transitions to the appropriate state—unlocked reverse or unlocked forward—according to the schematic.

During simulation, the clutch tests various dynamic conditions to determine the appropriate state transitions, if any. The schematic shows the possible transitions, their dynamic conditions, and the resulting states. If the clutch is unidirectional, the schematic reduces to the right half. The variable α is the slip acceleration between the clutch plates.

Modeling Thermal Effects

You can model the effects of heat flow and temperature change through an optional thermal conserving port. By default, the thermal port is hidden. To expose the thermal port, right-click the block in your model and, from the context menu, select Simscape > Block choices. Select a variant that includes a thermal port. Specify the associated thermal parameters for the component.



Rotational conserving ports associated with the driving shaft


Rotational conserving ports associated with the driven shaft


Physical signal input port for the kinetic friction torque


Physical signal input port for the upper static friction torque limit


Physical signal input port for the lower static friction torque limit


Physical signal output port for the clutch slip velocity


Physical signal output port for the clutch state


Thermal conserving port. The thermal port is optional and is hidden by default. To expose the port, select a variant that includes a thermal port.



Slip directions the clutch allows between its plates. A bidirectional clutch allows positive and negative slip velocities. A unidirectional clutch allows only positive slip velocities. The default setting is Bidirectional.

The unidirectional clutch is equivalent to a friction clutch connected in parallel to a one-way clutch that disengages only when the slip velocity becomes positive. To model a unidirectional clutch with slip in the negative direction, reverse the base and follower port connections.

Clutch velocity tolerance

Slip velocity below which the clutch can lock. The clutch locks if, after falling below the clutch velocity tolerance, the kinetic friction torque is nonzero and the transferred torque is between the static friction torque limits. The default value is 0.001 rad/s.

Initial state

Clutch state at the start of simulation. The clutch can be in one of two states, locked and unlocked. A locked clutch constrains the base and follower shafts to spin at the same velocity, that is, as a single unit. An unlocked clutch allows the two shafts to spin at different velocities, resulting in slip between the clutch plates. The default setting is Unlocked.

A clutch that starts simulation unlocked lacks a direction of motion. For this reason, after checking that the unlocked state is valid, the block automatically determines the appropriate direction of motion based on the driveline dynamics. Based on the direction of motion, the clutch then transitions to an unlocked-reverse or unlocked-forward state.

Thermal mass

Thermal energy required to change the component temperature by a single degree. The greater the thermal mass, the more resistant the component is to temperature change. The default value is 25 kJ/K.

This parameter is only visible if you select a thermal variant for the block.

Initial temperature

Component temperature at the start of simulation. The initial temperature influences the starting meshing or friction losses by altering the component efficiency according to an efficiency vector that you specify. The default value is 300 K.

This parameter is only visible if you select a thermal variant for the block.

Was this topic helpful?