Mutual Inductor

Mutual inductor in electrical systems


Electrical Elements


The Mutual Inductor block models a mutual inductor, described with the following equations:





V1Voltage across winding 1
V2Voltage across winding 2
I1Current flowing into the + terminal of winding 1
I2Current flowing into the + terminal of winding 2
L1, L2Winding self-inductances
MMutual inductance
kCoefficient of coupling, 0 < k < 1

This block can be used to represent an AC transformer. If inductance and mutual inductance terms are not important in a model, or are unknown, you can use the Ideal Transformer block instead.

The two electrical networks connected to the primary and secondary windings must each have their own Electrical Reference block.

Dialog Box and Parameters

Parameters Tab

Inductance L1

Self-inductance of the first winding. The default value is 10 H.

Inductance L2

Self-inductance of the second winding. The default value is 0.1 H.

Coefficient of coupling

Coefficient of coupling, which defines the mutual inductance. The parameter value should be greater than zero and less than 1. The default value is 0.9.

Variables Tab

Use the Variables tab in the block dialog box (or the Variables section in the block Property Inspector) to set the priority and initial target values for the block variables prior to simulation. For more information, see Set Priority and Initial Target for Block Variables.


The block has four electrical conserving ports. Polarity is indicated by the + and – signs. Ports labeled +1 and –1 are connected to the primary winding. Ports labeled +2 and –2 are connected to the secondary winding.

Introduced in R2007a

Was this topic helpful?