Note: This page has been translated by MathWorks. Please click here

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Salient-pole synchronous machine with fundamental parameterization

Machines / Synchronous Machine (Salient Pole)

The Synchronous Machine Salient Pole (fundamental) block models a salient-pole synchronous machine using fundamental parameters.

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation

$${\theta}_{e}(t)=N{\theta}_{r}(t),$$

where:

is the electrical angle.*θ*_{e}is the number of pole pairs.*N*is the rotor angle.*θ*_{r}

Park's transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. Park's transformation is defined by

$${P}_{s}=\frac{2}{3}\left[\begin{array}{ccc}\mathrm{cos}{\theta}_{e}& \mathrm{cos}({\theta}_{e}-\frac{2\pi}{3})& \mathrm{cos}({\theta}_{e}+\frac{2\pi}{3})\\ -\mathrm{sin}{\theta}_{e}& -\mathrm{sin}({\theta}_{e}-\frac{2\pi}{3})& -\mathrm{sin}({\theta}_{e}+\frac{2\pi}{3})\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\end{array}\right].$$

Park's transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by

$${e}_{d}=\frac{1}{{\omega}_{base}}\frac{\text{d}{\psi}_{d}}{\text{d}t}-{\Psi}_{q}{\omega}_{r}-{R}_{a}{i}_{d},$$

${e}_{q}=\frac{1}{{\omega}_{base}}\frac{\text{d}{\psi}_{q}}{\text{d}t}+{\Psi}_{d}{\omega}_{r}-{R}_{a}{i}_{q},$

and

$${e}_{0}=\frac{1}{{\omega}_{base}}\frac{d{\Psi}_{0}}{dt}-{R}_{a}{i}_{0},$$

where:

,*e*_{d}, and*e*_{q}are the*e*_{0}-axis,*d*-axis, and zero-sequence stator voltages, defined by*q*$$\left[\begin{array}{c}{e}_{d}\\ {e}_{q}\\ {e}_{0}\end{array}\right]={P}_{s}\left[\begin{array}{c}{v}_{a}\\ {v}_{b}\\ {v}_{c}\end{array}\right].$$

,*v*_{a}, and*v*_{b}are the stator voltages measured from port ~ to neutral port n.*v*_{c}is the per-unit base electrical speed.*ω*_{base},*ψ*_{d}, and*ψ*_{q}are the*ψ*_{0}-axis,*d*-axis, and zero-sequence stator flux linkages.*q*is the per-unit rotor rotational speed.*ω*_{r}is the stator resistance.*R*_{a},*i*_{d}, and*i*_{q}are the*i*_{0}-axis,*d*-axis, and zero-sequence stator currents, defined by*q*$$\left[\begin{array}{c}{i}_{d}\\ {i}_{q}\\ {i}_{0}\end{array}\right]={P}_{s}\left[\begin{array}{c}{i}_{a}\\ {i}_{b}\\ {i}_{c}\end{array}\right].$$

,*i*_{a}, and*i*_{b}are the stator currents flowing from port ~ to port n.*i*_{c}

The rotor voltage equations are defined by

$${e}_{fd}=\frac{1}{{\omega}_{base}}\frac{d{\Psi}_{fd}}{dt}+{R}_{fd}{i}_{fd},$$

$${e}_{1d}=\frac{1}{{\omega}_{base}}\frac{d{\Psi}_{1d}}{dt}+{R}_{1d}{i}_{1d}=0,$$

and

$${e}_{1}{}_{q}=\frac{1}{{\omega}_{base}}\frac{d{\Psi}_{1q}}{dt}+{R}_{1q}{i}_{1q}=0,$$

where:

is the field voltage.*e*_{fd}, and*e*_{1d}are the voltages across the*e*_{1q}-axis damper winding 1 and*d*-axis damper winding 1. They are equal to 0.*q*,*ψ*_{fd}, and*ψ*_{1d}are the magnetic fluxes linking the field circuit,*ψ*_{1q}-axis damper winding 1, and*d*-axis damper winding 1.*q*,*R*_{fd}, and*R*_{1d}are the resistances of rotor field circuit,*R*_{1q}-axis damper winding 1, and*d*-axis damper winding 1.*q*,*i*_{fd}, and*i*_{1d}are the currents flowing in the field circuit,*i*_{1q}-axis damper winding 1, and*d*-axis damper winding 1.*q*

The saturation equations are defined by

$${\psi}_{ad}={\psi}_{d}+{L}_{l}{i}_{d},$$

$${\psi}_{aq}={\psi}_{q}+{L}_{l}{i}_{q},$$

$${\psi}_{at}=\sqrt{{\psi}_{ad}^{2}+{\psi}_{aq}^{2}},$$

$${K}_{s}=1$$ (If saturation is disabled),

${K}_{s}=f\left({\psi}_{at}\right)$ (If saturation is enabled),

and

${L}_{ad}={K}_{s}*{L}_{adu},$

where:

is the*ψ*_{ad}-axis air-gap or mutual flux linkage.*d*is the*ψ*_{aq}-axis air-gap or mutual flux linkage.*q*is the air-gap flux linkage.*ψ*_{at}is the saturation factor.*K*_{s}is the unsaturated mutual inductance of the stator*L*_{adu}-axis.*d*is the mutual inductance of the stator*L*_{ad}-axis.*d*

The saturation factor function, f, is calculated from the per-unit open-circuit lookup table as:

${L}_{ad}=\frac{d{\psi}_{at}}{d{i}_{fd}},$

${V}_{ag}=g({i}_{fd}),$

and

${L}_{ad}=\frac{dg({i}_{fd})}{d{i}_{fd}}=\frac{d{V}_{ag}}{d{i}_{fd}},$

where:

is the per-unit air-gap voltage.*V*_{ag}

In per-unit,

${K}_{s}=\frac{{L}_{ad}}{{L}_{adu}},$

and

${\psi}_{at}={V}_{ag}$

can be rearranged to

${K}_{s}=f({\psi}_{at}).$

The stator flux linkage equations are defined by

$${\Psi}_{d}=-({L}_{ad}+{L}_{l}){i}_{d}\text{}+{L}_{ad}{i}_{fd}+{L}_{ad}{i}_{1d},$$

$$\Psi q=-({L}_{aq}+{L}_{l}){i}_{q}\text{}+{L}_{aq}{i}_{1q},$$

and

$${\Psi}_{0}=-{L}_{0}{i}_{0},$$

where:

is the stator leakage inductance.*L*_{l}and*L*_{ad}are the mutual inductances of the stator*L*_{aq}-axis and*d*-axis.*q*

The rotor flux linkage equations are defined by

$${\psi}_{fd}={L}_{ffd}{i}_{fd}+{L}_{f1d}{i}_{1d}-{L}_{ad}{i}_{d},$$

$${\psi}_{1d}={L}_{f1d}{i}_{fd}+{L}_{11d}{i}_{1d}-{L}_{ad}{i}_{d},$$

and

$${\psi}_{1q}={L}_{11q}{i}_{1q}-{L}_{aq}{i}_{q},$$

where:

,*L*_{ffd}, and*L*_{11d}are the self-inductances of the rotor field circuit,*L*_{11q}-axis damper winding 1, and*d*-axis damper winding 1.*q*is the rotor field circuit and*L*_{f1d}-axis damper winding 1 mutual inductance. They are defined by the following equations.*d*$${L}_{ffd}={L}_{ad}+{L}_{fd}$$

$${L}_{f1d}={L}_{ffd}-{L}_{fd}$$

$${L}_{11d}={L}_{f1d}+{L}_{1d}$$

$${L}_{11q}={L}_{aq}+{L}_{1q}$$

These equations assume that per-unit mutual inductance * L_{12q}* =

The rotor torque is defined by

$${T}_{e}={\Psi}_{d}{i}_{q}-{\Psi}_{q}{i}_{d}.$$

You can perform plotting and display actions using the **Power
Systems** menu on the block context menu.

Right-click the block and, from the **Power
Systems** menu, select an option:

**Display Base Values**displays the machine per-unit base values in the MATLAB^{®}Command Window.**Display Associated Base Values**displays associated per-unit base values in the MATLAB Command Window.**Display Associated Initial Conditions**displays associated initial conditions in the MATLAB Command Window.**Plot Open-Circuit Saturation (pu)**plots air-gap voltage,, versus field current,*V*_{ag}, both measured in per-unit, in a MATLAB figure window. The plot contains three traces:*i*_{fd}Unsaturated:

**Stator d-axis mutual inductance (unsaturated), Ladu**you specifySaturated:

**Per-unit open-circuit lookup table (Vag versus ifd)**you specifyDerived: Open-circuit lookup table (per-unit) derived from the

**Per-unit open-circuit lookup table (Vag versus ifd)**you specify. This data is used to calculate the saturation factor,, versus magnetic flux linkage,*K*_{s}, characteristic.*ψ*_{at}

**Plot Saturation Factor (pu)**plots saturation factor,, versus magnetic flux linkage,*K*_{s}, both measured in per-unit, in a MATLAB figure window using the present machine parameters. This parameter is derived from other parameters that you specify:*ψ*_{at}**Stator d-axis mutual inductance (unsaturated), Ladu****Per-unit field current saturation data, ifd****Per-unit air-gap voltage saturation data, Vag**

**Rated apparent power**Rated apparent power. The default value is

`300e6`

`V*A`

.**Rated voltage**RMS rated line-line voltage. The default value is

`24e3`

`V`

.**Rated electrical frequency**Nominal electrical frequency at which rated apparent power is quoted. The default value is

`60`

`Hz`

.**Number of pole pairs**Number of machine pole pairs. The default value is

`10`

.**Specify field circuit input required to produce rated terminal voltage at no load by**Choose between

`Field circuit voltage`

and`Field circuit current`

. The default value is`Field circuit current`

.**Field circuit current**This parameter is visible only when

**Specify field circuit input required to produce rated terminal voltage at no load by**is set to`Field circuit current`

. The default value is`1000`

`A`

.**Field circuit voltage**This parameter is visible only when

**Specify field circuit input required to produce rated terminal voltage at no load by**is set to`Field circuit voltage`

. The default value is`216.54`

V.

**Stator d-axis mutual inductance (unsaturated), Ladu**Unsaturated stator

-axis mutual inductance,*d*. If*L*_{adu}**Magnetic saturation representation**is set to`None`

, this is equivalent to the stator-axis mutual inductance,*d*. The default value is*L*_{ad}`0.9`

pu.**Stator q-axis mutual inductance, Laq**Stator

-axis mutual inductance, Laq. The default value is*q*`0.55`

pu.**Stator zero-sequence inductance, L0**Stator zero-sequence inductance, L0. The default value is

`0.15`

pu.**Stator leakage inductance, Ll**Stator leakage inductance. The default value is

`0.15`

pu.**Stator resistance, Ra**Stator resistance. The default value is

`0.011`

pu.**Rotor field circuit inductance, Lfd**Rotor field circuit inductance. The default value is

`0.2571`

pu.**Rotor field circuit resistance, Rfd**Rotor field circuit resistance. The default value is

`0.0006`

pu.**Rotor d-axis damper winding 1 inductance, L1d**Rotor

-axis damper winding 1 inductance. The default value is*d*`0.2`

pu.**Rotor d-axis damper winding 1 resistance, R1d**Rotor

-axis damper winding 1 resistance. The default value is*d*`0.0354`

pu.**Rotor q-axis damper winding 1 inductance, L1q**Rotor

-axis damper winding 1 inductance. The default value is*q*`0.2567`

pu.**Rotor q-axis damper winding 1 resistance, R1q**Rotor

-axis damper winding 1 resistance. The default value is*q*`0.0428`

pu.

**Magnetic saturation representation**Block magnetic saturation representation. Options are:

`None`

`Per-unit open-circuit lookup table (Vag versus ifd)`

The default value is

`None`

.**Per-unit field current saturation data, ifd**The field current,

, data populates the air-gap voltage,*i*_{fd}, versus field current,*V*_{ag}, lookup table. This parameter is only visible when you set*i*_{fd}**Magnetic saturation representation**to`Per-unit open-circuit lookup table (Vag versus ifd)`

. This parameter must contain a vector with at least five elements. The default value is`[0.00, 0.48, 0.76, 1.38, 1.79]`

pu.**Per-unit air-gap voltage saturation data, Vag**The air-gap voltage,

, data populates the air-gap voltage,*V*_{ag}, versus field current,*V*_{ag}, lookup table. This parameter is only visible when you set*i*_{fd}**Magnetic saturation representation**to`Per-unit open-circuit lookup table (Vag versus ifd)`

. This parameter must contain a vector with at least five elements. The default value is`[0.00 0.43 0.59 0.71 0.76]`

pu.

**Specify initialization by**Select between

`Electrical power and voltage output`

and`Mechanical and magnetic states`

. The default value is`Electrical power and voltage output`

.**Terminal voltage magnitude**Initial RMS line-line voltage. This parameter is visible only when you set

**Specify initialization by**to`Electrical power and voltage output`

. The default value is`24e3`

`V`

.**Terminal voltage angle**Initial voltage angle. This parameter is visible only when you set

**Specify initialization by**to`Electrical power and voltage output`

. The default value is`0`

`deg`

.**Terminal active power**Initial active power. This parameter is visible only when

**Specify initialization by**is set to`Electrical power and voltage output`

. The default value is`270e6`

`V*A`

.**Terminal reactive power**Initial reactive power. This parameter is visible only when you set

**Specify initialization by**to`Electrical power and voltage output`

. The default value is`0`

`V*A`

.**Initial rotor angle**Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set

**Specify initialization by**to`Mechanical and magnetic states`

. The default value is`0`

`deg`

.**Initial stator d-axis magnetic flux linkage**Stator

-axis initial flux linkage. This parameter is visible only when you set*d***Specify initialization by**to`Mechanical and magnetic states`

. The default value is`0`

pu.**Initial stator q-axis magnetic flux linkage**Stator

-axis initial flux linkage. This parameter is visible only when you set*q***Specify initialization by**to`Mechanical and magnetic states`

. The default value is`0`

pu.**Initial stator zero-sequence magnetic flux linkage**Zero-sequence initial flux linkage. This parameter is visible only when you set

**Specify initialization by**to`Mechanical and magnetic states`

. The default value is`0`

pu.**Initial field circuit magnetic flux linkage**Field circuit initial flux linkage. This parameter is visible only when you set

**Specify initialization by**to`Mechanical and magnetic states`

. The default value is`0`

pu.**Initial d-axis damper winding 1 magnetic flux linkage**The

-axis damper winding 1 initial flux linkage. This parameter is visible only when you set*d***Specify initialization by**to`Mechanical and magnetic states`

. The default value is`0`

pu.**Initial q-axis damper winding 1 magnetic flux linkage**The

-axis damper winding 1 initial flux linkage. This parameter is visible only when you set*q***Specify initialization by**to`Mechanical and magnetic states`

. The default value is`0`

pu.**Initial q-axis damper winding 2 magnetic flux linkage**The

-axis damper winding 2 initial flux linkage. This parameter is visible only when you set*q***Specify initialization by**to`Mechanical and magnetic states`

. The default value is`0`

pu.

The block has the following ports:

`fd+`

Electrical conserving port corresponding to the field winding positive terminal

`fd-`

Electrical conserving port corresponding to the field winding negative terminal

`R`

Mechanical rotational conserving port associated with the machine rotor

`C`

Mechanical rotational conserving port associated with the machine case

`pu`

Physical signal vector port associated with the machine per-unit measurements. The vector elements are:

`pu_fd_Efd`

`pu_fd_Ifd`

`pu_torque`

`pu_velocity`

`pu_ed`

`pu_eq`

`pu_e0`

`pu_id`

`pu_iq`

`pu_i0`

`~`

Expandable three-phase port associated with the stator windings

`n`

Electrical conserving port associated with the neutral point of the wye winding configuration

[1] Kundur, P. *Power System Stability and Control.* New
York, NY: McGraw Hill, 1993.

[2] Lyshevski, S. E. *Electromechanical Systems,
Electric Machines and Applied Mechatronics.* Boca Raton,
FL: CRC Press, 1999.

Synchronous Machine Measurement | Synchronous Machine Model 2.1 (fundamental) | Synchronous Machine Model 2.1 (standard) | Synchronous Machine Round Rotor (fundamental) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Salient Pole (standard)

Was this topic helpful?