rfckt.seriesrlc class

Package: rfckt

Series RLC component


h = rfckt.seriesrlc
h = rfckt.seriesrlc('R',Rvalue,'L',Lvalue,'C',Cvalue)


Use the seriesrlc class to represent a component as a resistor, inductor, and capacitor connected in series.

The series RLC network object is a 2-port network as shown in the following circuit diagram.

h = rfckt.seriesrlc returns a series RLC network object whose properties all have their default values. The default object is equivalent to a pass-through 2-port network, i.e., the resistor, inductor, and capacitor are each replaced by a short circuit.

h = rfckt.seriesrlc('R',Rvalue,'L',Lvalue,'C',Cvalue) returns a series RLC network object, h, based on the specified resistance (R), inductance (L), and capacitance (C) values. Properties that you do not specify retain their default values, allowing you to specify a network of a single resistor, inductor, or capacitor.


AnalyzedResultComputed S-parameters, noise figure, OIP3, and group delay values
CCapacitance value
LInductance value
NameObject name
nPortNumber of ports
RResistance value


analyzeAnalyze circuit object in frequency domain
calculateCalculate specified parameters for circuit object
circleDraw circles on Smith chart
extractExtract array of network parameters from data object
listformatList valid formats for specified circuit object parameter
listparamList valid parameters for specified circuit object
loglogPlot specified circuit object parameters using log-log scale
plotPlot specified circuit object parameters on X-Y plane
plotyyPlot specified object parameters with y-axes on both left and right sides
polarPlot specified circuit object parameters on polar coordinates
semilogxPlot specified circuit object parameters using log scale for x-axis
semilogyPlot specified circuit object parameters using log scale for x-axis
smithPlot specified circuit object parameters on Smith chart
writeWrite RF data from circuit or data object to file


expand all

Frequency Response of an LC Resonator

This example creates a series LC resonator and examines its frequency response. It first creates the circuit object and then uses the analyze method to calculate its frequency response. Finally, it plots the results � first, the magnitude in decibels (dB):

h = rfckt.seriesrlc('L',4.7e-5,'C',2.2e-10);
ax = gca;
ax.XScale = 'log';

The example then plots the phase, in degrees:

ax = gca;
ax.XScale = 'log';


Ludwig, Reinhold and Pavel Bretchko, RF Circuit Design: Theory and Applications, Prentice-Hall, 2000.

Was this topic helpful?