Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

gammain

Input reflection coefficient of 2-port network

Syntax

coefficient = gammain(s_params,z0,zl)
coefficient = gammain(hs,zl)

Description

coefficient = gammain(s_params,z0,zl) calculates the input reflection coefficient of a 2-port network. s_params is a complex 2-by-2-by-M array, representing M 2-port S-parameters. z0 is the reference impedance Z0; its default value is 50 ohms. zl is the load impedance Zl; its default value is also 50 ohms. coefficient is an M-element complex vector.

coefficient = gammain(hs,zl) calculates the input reflection coefficient of the 2-port network represented by the S-parameter object hs.

Examples

collapse all

Calculate the input reflection coefficients at each index of an S-parameter array.

  ckt = read(rfckt.amplifier,'default.s2p');
  s_params = ckt.NetworkData.Data;
  z0 = ckt.NetworkData.Z0;
  zl = 100;
  coefficient = gammain(s_params,z0,zl)
coefficient =

  -0.7247 - 0.4813i
  -0.7323 - 0.4707i
  -0.7397 - 0.4601i
  -0.7470 - 0.4495i
  -0.7542 - 0.4389i
  -0.7612 - 0.4284i
  -0.7682 - 0.4179i
  -0.7750 - 0.4075i
  -0.7817 - 0.3972i
  -0.7883 - 0.3870i
  -0.7947 - 0.3769i
  -0.8012 - 0.3668i
  -0.8076 - 0.3569i
  -0.8140 - 0.3471i
  -0.8203 - 0.3374i
  -0.8265 - 0.3276i
  -0.8325 - 0.3179i
  -0.8384 - 0.3081i
  -0.8440 - 0.2982i
  -0.8493 - 0.2881i
  -0.8544 - 0.2779i
  -0.8590 - 0.2675i
  -0.8632 - 0.2571i
  -0.8671 - 0.2466i
  -0.8708 - 0.2361i
  -0.8742 - 0.2256i
  -0.8776 - 0.2150i
  -0.8808 - 0.2044i
  -0.8840 - 0.1938i
  -0.8873 - 0.1832i
  -0.8907 - 0.1725i
  -0.8942 - 0.1620i
  -0.8980 - 0.1515i
  -0.9018 - 0.1410i
  -0.9056 - 0.1305i
  -0.9094 - 0.1199i
  -0.9129 - 0.1093i
  -0.9162 - 0.0987i
  -0.9191 - 0.0879i
  -0.9216 - 0.0770i
  -0.9236 - 0.0659i
  -0.9250 - 0.0548i
  -0.9258 - 0.0437i
  -0.9262 - 0.0326i
  -0.9262 - 0.0215i
  -0.9259 - 0.0104i
  -0.9254 + 0.0007i
  -0.9249 + 0.0119i
  -0.9243 + 0.0231i
  -0.9237 + 0.0344i
  -0.9234 + 0.0457i
  -0.9232 + 0.0571i
  -0.9230 + 0.0686i
  -0.9228 + 0.0800i
  -0.9227 + 0.0915i
  -0.9224 + 0.1031i
  -0.9220 + 0.1148i
  -0.9215 + 0.1265i
  -0.9208 + 0.1384i
  -0.9198 + 0.1504i
  -0.9185 + 0.1625i
  -0.9171 + 0.1748i
  -0.9158 + 0.1871i
  -0.9144 + 0.1995i
  -0.9129 + 0.2120i
  -0.9112 + 0.2246i
  -0.9090 + 0.2373i
  -0.9065 + 0.2502i
  -0.9033 + 0.2632i
  -0.8994 + 0.2764i
  -0.8947 + 0.2898i
  -0.8893 + 0.3033i
  -0.8833 + 0.3169i
  -0.8765 + 0.3304i
  -0.8692 + 0.3439i
  -0.8611 + 0.3573i
  -0.8523 + 0.3708i
  -0.8428 + 0.3843i
  -0.8326 + 0.3978i
  -0.8217 + 0.4113i
  -0.8101 + 0.4248i
  -0.7986 + 0.4389i
  -0.7875 + 0.4538i
  -0.7765 + 0.4692i
  -0.7651 + 0.4849i
  -0.7528 + 0.5007i
  -0.7393 + 0.5162i
  -0.7242 + 0.5313i
  -0.7068 + 0.5457i
  -0.6870 + 0.5590i
  -0.6641 + 0.5710i
  -0.6385 + 0.5844i
  -0.6108 + 0.6008i
  -0.5811 + 0.6183i
  -0.5495 + 0.6348i
  -0.5162 + 0.6485i
  -0.4815 + 0.6576i
  -0.4457 + 0.6606i
  -0.4090 + 0.6560i
  -0.3717 + 0.6426i
  -0.3339 + 0.6192i
  -0.2924 + 0.5899i
  -0.2464 + 0.5591i
  -0.1988 + 0.5262i
  -0.1526 + 0.4909i
  -0.1100 + 0.4527i
  -0.0733 + 0.4109i
  -0.0443 + 0.3649i
  -0.0243 + 0.3136i
  -0.0149 + 0.2558i
  -0.0169 + 0.1898i
  -0.0292 + 0.1241i
  -0.0494 + 0.0672i
  -0.0772 + 0.0173i
  -0.1122 - 0.0269i
  -0.1534 - 0.0664i
  -0.1999 - 0.1020i
  -0.2502 - 0.1340i
  -0.3027 - 0.1630i
  -0.3554 - 0.1892i
  -0.4058 - 0.2128i
  -0.4519 - 0.2286i
  -0.4937 - 0.2324i
  -0.5316 - 0.2260i
  -0.5662 - 0.2113i
  -0.5979 - 0.1904i
  -0.6271 - 0.1654i
  -0.6541 - 0.1384i
  -0.6792 - 0.1116i
  -0.7029 - 0.0875i
  -0.7255 - 0.0683i
  -0.7459 - 0.0520i
  -0.7631 - 0.0349i
  -0.7774 - 0.0169i
  -0.7892 + 0.0015i
  -0.7989 + 0.0202i
  -0.8068 + 0.0391i
  -0.8134 + 0.0578i
  -0.8192 + 0.0761i
  -0.8247 + 0.0937i
  -0.8303 + 0.1105i
  -0.8353 + 0.1266i
  -0.8391 + 0.1422i
  -0.8417 + 0.1572i
  -0.8433 + 0.1718i
  -0.8443 + 0.1861i
  -0.8448 + 0.1999i
  -0.8449 + 0.2134i
  -0.8450 + 0.2266i
  -0.8450 + 0.2395i
  -0.8454 + 0.2523i
  -0.8458 + 0.2648i
  -0.8459 + 0.2770i
  -0.8458 + 0.2890i
  -0.8454 + 0.3006i
  -0.8447 + 0.3120i
  -0.8437 + 0.3232i
  -0.8423 + 0.3341i
  -0.8407 + 0.3447i
  -0.8387 + 0.3552i
  -0.8365 + 0.3654i
  -0.8340 + 0.3754i
  -0.8312 + 0.3850i
  -0.8282 + 0.3944i
  -0.8251 + 0.4035i
  -0.8218 + 0.4124i
  -0.8184 + 0.4210i
  -0.8149 + 0.4296i
  -0.8114 + 0.4380i
  -0.8080 + 0.4464i
  -0.8046 + 0.4547i
  -0.8012 + 0.4629i
  -0.7978 + 0.4709i
  -0.7944 + 0.4789i
  -0.7909 + 0.4867i
  -0.7874 + 0.4943i
  -0.7839 + 0.5019i
  -0.7803 + 0.5094i
  -0.7768 + 0.5168i
  -0.7731 + 0.5242i
  -0.7695 + 0.5315i
  -0.7658 + 0.5387i
  -0.7621 + 0.5458i
  -0.7584 + 0.5529i
  -0.7546 + 0.5598i
  -0.7509 + 0.5667i
  -0.7471 + 0.5735i
  -0.7432 + 0.5802i
  -0.7393 + 0.5869i
  -0.7354 + 0.5934i
  -0.7315 + 0.5999i

Algorithms

gammain uses the formula

Γin=S11+(S12S21)ΓL1S22ΓL

where

ΓL=ZlZ0Zl+Z0

Introduced before R2006a

Was this topic helpful?