Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Manipulator Algorithms

Inverse kinematics and dynamics for rigid body tree robot representations

These Robotics System Toolbox™ algorithms support workflows related to articulated robots. Define your robot model using the RigidBodyTree class, which is made up of rigid bodies as structural elements and joints for attachment and motion. This robot representation contains kinematic constraints and dynamics properties. You can perform inverse kinematics and dynamics calculations on this robot model. If you have a robot description as a URDF file, you can import it using importrobot.

Functions

expand all

importrobotImport rigid body tree model from URDF file or text
addBodyAdd a body to robot
addSubtreeAdd subtree to robot
addVisualAdd visual geometry data to rigid body
clearVisualClear all visual geometries
getBodyGet robot body handle by name
removeBodyRemove body from robot
replaceBodyReplace body on robot
replaceJointReplace joint on body
showShow robot model in a figure
showdetailsShow details of robot model
subtreeCreate subtree from robot model
getTransformGet transform between body frames
randomConfigurationGenerate random configuration of robot
homeConfigurationGet home configuration of robot
showShow robot model in a figure
centerOfMassCenter of mass position and Jacobian
externalForceCompose external force matrix relative to base
forwardDynamicsJoint accelerations given joint torques and states
geometricJacobianGeometric Jacobian for robot configuration
gravityTorqueJoint torques that compensate gravity
inverseDynamicsRequired joint torques for given motion
massMatrixJoint-space mass matrix
velocityProductJoint torques that cancel velocity-induced forces

Classes

expand all

robotics.RigidBodyTreeCreate tree-structured robot
robotics.RigidBodyCreate a rigid body
robotics.JointCreate a joint
robotics.InverseKinematicsCreate inverse kinematic solver
robotics.GeneralizedInverseKinematicsCreate multiconstraint inverse kinematics solver
robotics.OrientationTargetCreate constraint on relative orientation of body
robotics.PositionTargetCreate constraint on relative position of body
robotics.PoseTargetCreate constraint on relative pose of body
robotics.AimingConstraintCreate aiming constraint for pointing at a target location
robotics.CartesianBoundsCreate constraint to keep body origin inside Cartesian bounds
robotics.JointPositionBoundsCreate constraint on joint positions of robot model

Blocks

Forward DynamicsJoint accelerations given joint torques and states
Inverse DynamicsRequired joint torques for given motion
Get JacobianGeometric Jacobian for robot configuration
Get TransformGet transform between body frames
Gravity TorqueJoint torques that compensate gravity
Joint Space Mass MatrixJoint-space mass matrix for robot configuration
Velocity Product TorqueJoint torques that cancel velocity-induced forces

Topics

Rigid Body Tree Robot Model

Model structure and specific components of a rigid body tree robot model

Build a Robot Step by Step

This example goes through the process of building a robot step by step, showing you the different robot components and how functions are called to build it.

Inverse Kinematics Algorithms

Description of inverse kinematics solver algorithms and solver parameters

2-D Path Tracing With Inverse Kinematics

Trace A 2-D Circular Path Using A Robot Manipulator

Solve Inverse Kinematics for a Four-Bar Linkage

This example shows how to solve inverse kinematics for a four-bar linkage, a simple planar closed-chain linkage.

Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics

This example shows how to send commands to robotic manipulators in MATLAB®.

Robot Dynamics

Robot dynamics is the relationship between the forces acting on a robot and the resulting motion of the robot.

Control LBR Manipulator Motion Through Joint Torque Commands

Given a set of desired joint configuration waypoints and a torque-controlled manipulator, this example shows how to implement the computed-torque controller using the inverseDynamics function.

Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks

This example shows you how to use Simulink® with Robotics System Toolbox™ manipulator algorithm blocks to achieve safe trajectory tracking control for a simulated robot running in Simscape™ Multibody™.

Was this topic helpful?