Note: This page has been translated by MathWorks. Please click here

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Chebyshev Type I filter design

`[b,a] = cheby1(n,Rp,Wp)`

`[b,a] = cheby1(n,Rp,Wp,ftype)`

`[z,p,k] = cheby1(___)`

`[A,B,C,D] = cheby1(___)`

`[___] = cheby1(___,'s')`

`[`

designs
a lowpass, highpass, bandpass, or bandstop Chebyshev Type I
filter, depending on the value of `b,a`

] = cheby1(`n`

,`Rp`

,`Wp`

,`ftype`

)`ftype`

and the
number of elements of `Wp`

. The resulting bandpass
and bandstop designs are of order 2`n`

.

**Note:** See Limitations for information about numerical issues that affect
forming the transfer function.

`[`

designs
a lowpass, highpass, bandpass, or bandstop digital Chebyshev Type I filter and returns its zeros, poles, and gain. This
syntax can include any of the input arguments in previous syntaxes.`z,p,k`

] = cheby1(___)

Chebyshev Type I filters are equiripple in the passband and monotonic in the stopband. Type I filters roll off faster than Type II filters, but at the expense of greater deviation from unity in the passband.

`cheby1`

uses a five-step algorithm:

It finds the lowpass analog prototype poles, zeros, and gain using the function

`cheb1ap`

.It converts the poles, zeros, and gain into state-space form.

If required, it uses a state-space transformation to convert the lowpass filter to a highpass, bandpass, or bandstop filter with the desired frequency constraints.

For digital filter design, it uses

`bilinear`

to convert the analog filter into a digital filter through a bilinear transformation with frequency prewarping. Careful frequency adjustment enables the analog filters and the digital filters to have the same frequency response magnitude at`Wp`

or`w1`

and`w2`

.It converts the state-space filter back to transfer function or zero-pole-gain form, as required.

Was this topic helpful?