# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English version of the page.

To view all translated materials including this page, select Japan from the country navigator on the bottom of this page.

# hamming

Hamming window

## Syntax

``w = hamming(L)``
``w = hamming(L,sflag)``

## Description

example

````w = hamming(L)` returns an `L`-point symmetric Hamming window.```
````w = hamming(L,sflag)` returns a Hamming window using the window sampling specified by `sflag`.```

## Examples

collapse all

Create a 64-point Hamming window. Display the result using `wvtool`.

```L = 64; wvtool(hamming(L))```

## Input Arguments

collapse all

Window length, specified as a positive integer.

Data Types: `single` | `double`

Window sampling, specified as one of the following:

• `'symmetric'` — Use this option when using windows for filter design.

• `'periodic'` — This option is useful for spectral analysis because it enables a windowed signal to have the perfect periodic extension implicit in the discrete Fourier transform. When `'periodic'` is specified, `hamming` computes a window of length L + 1 and returns the first L points.

Data Types: `char`

## Output Arguments

collapse all

Hamming window, returned as a column vector.

## Algorithms

The following equation generates the coefficients of a Hamming window are computed from the :

`$w\left(n\right)=\begin{array}{cc}0.54-0.46\mathrm{cos}\left(2\pi \frac{n}{N}\right),& 0\le n\le N\end{array}.$`

The window length L = N + 1.

## References

[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice Hall, 1999.