Documentation |
Transform lowpass analog filters to bandpass
[bt,at] = lp2bp(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)
lp2bp transforms analog lowpass filter prototypes with a cutoff angular frequency of 1 rad/s into bandpass filters with desired bandwidth and center frequency. The transformation is one step in the digital filter design process for the butter, cheby1, cheby2, and ellip functions.
lp2bp can perform the transformation on two different linear system representations: transfer function form and state-space form. In both cases, the input system must be an analog filter prototype.
[bt,at] = lp2bp(b,a,Wo,Bw) transforms an analog lowpass filter prototype given by polynomial coefficients into a bandpass filter with center frequency Wo and bandwidth Bw. Row vectors b and a specify the coefficients of the numerator and denominator of the prototype in descending powers of s.
$$\frac{B(s)}{A(s)}=\frac{b(1){s}^{n}+\cdots +b(n)s+b(n+1)}{a(1){s}^{m}+\cdots +a(m)s+a(m+1)}$$
Scalars Wo and Bw specify the center frequency and bandwidth in units of rad/s. For a filter with lower band edge w1 and upper band edge w2, use Wo = sqrt(w1*w2) and Bw = w2-w1.
lp2bp returns the frequency transformed filter in row vectors bt and at.
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw) converts the continuous-time state-space lowpass filter prototype in matrices A, B, C, D shown below
$$\begin{array}{l}\dot{x}=Ax+Bu\\ y=Cx+Du\end{array}$$
into a bandpass filter with center frequency Wo and bandwidth Bw. For a filter with lower band edge w1 and upper band edge w2, use Wo = sqrt(w1*w2) and Bw = w2-w1.
The bandpass filter is returned in matrices At, Bt, Ct, Dt.