Note:
The use of 
sigwin.gausswin
creates a handle to a Gaussian
window object for use in spectral analysis and FIR filtering by the
window method. Object methods enable workspace import and ASCII file
export of the window values.
The following equation defines the Gaussian window of length N
:
$$w(x)={e}^{{\scriptscriptstyle \frac{1}{2}}({\alpha}^{2}{x}^{2}/{M}^{2})},\text{\hspace{1em}}M\le x\le M$$
where M=(N1)/2
and x
is
a linearly spaced vector of length N
.
Equating $$\alpha $$ with the usual standard deviation of a Gaussian value, $$\sigma $$, note:
$$\alpha =\frac{(N1)}{2\sigma}$$
H = sigwin.gausswin
returns a Gaussian
window object H
of length 64 and dispersion parameter alpha
of
2.5.
H = sigwin.gausswin(
returns
a Gaussian window object Length
)H
of length Length
and
dispersion parameter alpha
of 2.5. Length
requires
a positive integer. Entering a positive noninteger value for Length
rounds
the length to the nearest integer. Entering a 1 for Length
results
in a window with a single value of 1.
H = sigwin.gausswin(
returns
a Gaussian window object with dispersion parameter Length
,Alpha
)alpha
. alpha
requires
a nonnegative real number and is inversely proportional to the standard
deviation of a Gaussian value.

Gaussian window length. The window length requires a positive
integer. Entering a positive noninteger value for 

Width of Gaussian window. 
generate  Generates Gaussian window 
info  Display information about Gaussian window object 
winwrite  Save Gaussian window in ASCII file 
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB^{®} Programming Fundamentals documentation.
Compare two Gaussian windows with different alpha
values:
H = sigwin.gausswin(64,4); H1 = sigwin.gausswin(64,2.5); % Plot comparison fwvt = wvtool(H,H1); legend(get(fwvt,'currentaxes'),'\alpha=4','\alpha=2.5')
The main lobe is wider for alpha = 4
but
the window, with alpha = 4
, demonstrates reduced
sidelobe energy.
Harris, Fredric J. "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform." Proceedings of the IEEE^{®}. Vol. 66, January 1978, pp. 51–83.