# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English version of the page.

To view all translated materials including this page, select Japan from the country navigator on the bottom of this page.

# sos2zp

Convert digital filter second-order section parameters to zero-pole-gain form

## Syntax

```[z,p,k] = sos2zp(sos) [z,p,k] = sos2zp(sos,g) ```

## Description

`sos2zp` converts a second-order section representation of a given digital filter to an equivalent zero-pole-gain representation.

`[z,p,k] = sos2zp(sos)` returns the zeros `z`, poles `p`, and gain `k` of the system given by `sos` in second-order section form. The second-order section format of H(z) is given by

`$H\left(z\right)=\prod _{k=1}^{L}{H}_{k}\left(z\right)=\prod _{k=1}^{L}\frac{{b}_{0k}+{b}_{1k}{z}^{-1}+{b}_{2k}{z}^{-2}}{1+{a}_{1k}{z}^{-1}+{a}_{2k}{z}^{-2}}.$`

`sos` is an L-by-6 matrix that contains the coefficients of each second-order section in its rows.

`$\text{sos}=\left[\begin{array}{cccccc}{b}_{01}& {b}_{11}& {b}_{21}& 1& {a}_{11}& {a}_{21}\\ {b}_{02}& {b}_{12}& {b}_{22}& 1& {a}_{12}& {a}_{22}\\ ⋮& ⋮& ⋮& ⋮& ⋮& ⋮\\ {b}_{0L}& {b}_{1L}& {b}_{2L}& 1& {a}_{1L}& {a}_{2L}\end{array}\right].$`

Column vectors `z` and `p` contain the zeros and poles of the transfer function H(z).

`$H\left(z\right)=k\frac{\left(z-{z}_{1}\right)\left(z-{z}_{2}\right)\cdots \left(z-{z}_{n}\right)}{\left(p-{p}_{1}\right)\left(p-{p}_{2}\right)\cdots \left(p-{p}_{m}\right)}$`

where the orders n and m are determined by the matrix `sos`.

`[z,p,k] = sos2zp(sos,g)` returns the zeros `z`, poles `p`, and gain `k` of the system given by `sos` in second-order section form with gain `g`.

`$H\left(z\right)=g\prod _{k=1}^{L}{H}_{k}\left(z\right).$`

## Examples

collapse all

Compute the zeros, poles, and gain of a simple system in second-order section form.

```sos = [1 1 1 1 0 -1; -2 3 1 1 10 1]; [z,p,k] = sos2zp(sos)```
```z = -0.5000 + 0.8660i -0.5000 - 0.8660i 1.7808 + 0.0000i -0.2808 + 0.0000i ```
```p = -1.0000 1.0000 -9.8990 -0.1010 ```
```k = -2 ```

## Algorithms

`sos2zp` finds the poles and zeros of each second-order section by repeatedly calling `tf2zp`.