Fourier, chirp-Z, DCT, Hilbert, cepstrum, Walsh-Hadamard

Signal Processing Toolbox™ provides functions that let you compute widely used forward and inverse transforms, including the fast Fourier transform (FFT), the discrete cosine transform (DCT), and the Walsh-Hadamard transform. Extract signal envelopes and estimate instantaneous frequencies using the analytic signal based on the Hilbert-transform. Investigate magnitude-phase relationships, estimate fundamental frequencies, and detect spectral periodicity using the cepstrum. Compute discrete Fourier transforms using the second-order Goertzel algorithm.


fft Fast Fourier transform
ifft Inverse fast Fourier transform
fftshift Shift zero-frequency component to center of spectrum
dftmtx Discrete Fourier transform matrix
fft2 2-D fast Fourier transform
ifft2 2-D inverse fast Fourier transform
czt Chirp Z-transform
envelope Signal envelope
goertzel Discrete Fourier transform with second-order Goertzel algorithm
hilbert Discrete-time analytic signal using Hilbert transform
dct Discrete cosine transform (DCT)
idct Inverse discrete cosine transform
fwht Fast Walsh-Hadamard transform
ifwht Inverse Fast Walsh-Hadamard transform
cceps Complex cepstral analysis
icceps Inverse complex cepstrum
rceps Real cepstrum and minimum phase reconstruction
abs Absolute value (magnitude)
angle Phase angle
bitrevorder Permute data into bit-reversed order
digitrevorder Permute input into digit-reversed order

Was this topic helpful?