Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

LagParameterName

Parameter specifying time lag for dose

Description

LagParameterName is a property of a RepeatDose or ScheduleDose object.

Specify the name of a parameter object that is:

  • Scoped to a model

  • Constant, that is, its ConstantValue property is true

The parameter specifies the length of time it takes for the dose to reach its target after being introduced.

Characteristics

Applies toObjects: RepeatDose, ScheduleDose
Data typeCharacter vector
Data values

Name of a parameter object or empty. Default is an empty character vector.

The parameter object must be:

  • Scoped to a model

  • Constant, that is, have a ConstantValue property set to true

AccessRead/write

Examples

expand all

This example shows how to estimate the time lag before a bolus dose was administered and the duration of the dose using a one-compartment model.

Load a sample data set.

load lagDurationData.mat

Plot the data.

plot(data.Time,data.Conc,'x')
xlabel('Time (hour)')
ylabel('Conc (milligram/liter)')

Convert to groupedData.

gData = groupedData(data);
gData.Properties.VariableUnits = {'hour','milligram/liter'};

Create a one-compartment model.

pkmd                    = PKModelDesign;
pkc1                    = addCompartment(pkmd,'Central');
pkc1.DosingType         = 'Bolus';
pkc1.EliminationType    = 'linear-clearance';
pkc1.HasResponseVariable = true;
model                   = construct(pkmd);
configset               = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Add two parameters that represent the time lag and duration of a dose. The lag parameter specifies the time lag before the dose is administered. The duration parameter specifies the length of time it takes to administer a dose.

lagP = addparameter(model,'lagP');
lagP.ValueUnits = 'hour';
durP = addparameter(model,'durP');
durP.ValueUnits = 'hour';

Create a dose object. Set the LagParameterName and DurationParameterName properties of the dose to the names of the lag and duration parameters, respectively.

dose                = sbiodose('dose');
dose.TargetName     = 'Drug_Central';
dose.StartTime      = 0;
dose.Amount         = 10;
dose.AmountUnits    = 'milligram';
dose.TimeUnits      = 'hour';
dose.LagParameterName = 'lagP';
dose.DurationParameterName = 'durP';

Map the model species to the corresponding data.

responseMap = {'Drug_Central = Conc'};

Specify the lag and duration parameters as parameters to estimate. Log-transform the parameters. Initialize them to 2 and set the upper bound and lower bound.

paramsToEstimate    = {'log(lagP)','log(durP)'};
estimatedParams     = estimatedInfo(paramsToEstimate,'InitialValue',2,'Bounds',[1 5]);

Perform parameter estimation.

fitResults = sbiofit(model,gData,responseMap,estimatedParams,dose,'fminsearch')
fitResults = 

  OptimResults with properties:

                   ExitFlag: 1
                     Output: [1x1 struct]
                  GroupName: One group
                       Beta: [2x4 table]
         ParameterEstimates: [2x4 table]
                          J: [11x2 double]
                       COVB: [2x2 double]
           CovarianceMatrix: [2x2 double]
                          R: [11x1 double]
                        MSE: 0.0024
                        SSE: 0.0213
                    Weights: []
              LogLikelihood: 18.7511
                        AIC: -33.5023
                        BIC: -32.7065
                        DFE: 9
    EstimatedParameterNames: {'lagP'  'durP'}
             ErrorModelInfo: [1x3 table]
         EstimationFunction: 'fminsearch'

Display the result.

fitResults.ParameterEstimates
plot(fitResults)
ans =

  2x4 table

     Name     Estimate    StandardError    Bounds
    ______    ________    _____________    ______

    'lagP'    1.986       0.0051568        1    5
    'durP'    1.527        0.012956        1    5

Was this topic helpful?