Note: This page has been translated by MathWorks. Please click here

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Model three coupled inductors for circuit envelope analysis

Elements

The Three-Winding Transformer block models three coupled inductors within the RF Blockset™ circuit envelope simulation environment. For an introduction to RF simulation, see the example, Simulate High Frequency Components.

The block implements the relations

$$\begin{array}{c}{v}_{1}(t)={L}_{1}\frac{d}{dt}\left[{i}_{1}(t)\right]+{M}_{12}\frac{d}{dt}\left[{i}_{2}(t)\right]+{M}_{13}\frac{d}{dt}\left[{i}_{3}(t)\right]\\ {v}_{2}(t)={M}_{12}\frac{d}{dt}\left[{i}_{1}(t)\right]+{L}_{2}\frac{d}{dt}\left[{i}_{2}(t)\right]+{M}_{23}\frac{d}{dt}\left[{i}_{3}(t)\right]\\ {v}_{3}(t)={M}_{13}\frac{d}{dt}\left[{i}_{1}(t)\right]+{M}_{23}\frac{d}{dt}\left[{i}_{2}(t)\right]+{L}_{3}\frac{d}{dt}\left[{i}_{3}(t)\right]\\ {M}_{pq}={K}_{pq}\sqrt{{L}_{p}{L}_{q}}\end{array}$$

*L*_{1},*L*_{2}, and*L*_{3}represent inductances.*M*represents the mutual inductance between the_{pq}*p*th and*q*th inductors, with coefficient of coupling*K*._{pq}*v*_{1}(*t*),*v*_{2}(*t*), and*v*_{3}(*t*) represent the voltage across the terminals of the inductors at time*t*.*i*_{1}(*t*),*i*_{2}(*t*), and*i*_{3}(*t*) represent the current through the inductors at time*t*. The block uses standard dot notation to indicate the direction of positive current flow relative to a positive voltage.

RF
Blockset current and voltage signals consist of in-phase
(*I _{k}*) and quadrature (

$$\begin{array}{c}i(t)={\displaystyle \sum _{\left\{{f}_{k}\right\}}\left({i}_{{I}_{k}}(t)+j\cdot {i}_{{Q}_{k}}(t)\right){e}^{j(2\pi {f}_{k})t}}\\ v(t)={\displaystyle \sum _{\left\{{f}_{k}\right\}}\left({v}_{{I}_{k}}(t)+j\cdot {v}_{{Q}_{k}}(t)\right){e}^{j(2\pi {f}_{k})t}}\end{array}$$

**Inductance L1**Specify the inductance of the first inductor,

*L*_{1}, as a scalar value greater than or equal to`0`

. Specify the units of the inductance from the corresponding drop-down list. The default value of this parameter is`1e-6`

`H`

.**Inductance L2**Specify the inductance of the second inductor,

*L*_{2}, as a scalar value greater than or equal to`0`

. Specify the units of the inductance from the corresponding drop-down list. The default value of this parameter is`1e-6`

`H`

.**Inductance L3**Specify the inductance of the third inductor,

*L*_{3}, as a scalar value greater than or equal to`0`

. Specify the units of the inductance from the corresponding drop-down list. The default value of this parameter is`1e-6`

`H`

.**Coefficient of coupling K12**Specify the coefficient of coupling for the mutual inductance of the first and second inductors,

*K*_{12}, as a scalar value between`0`

and`1`

, inclusive. The default value of this parameter is`0.9`

.**Coefficient of coupling K13**Specify the coefficient of coupling for the mutual inductance of the first and third inductors,

*K*_{13}, as a scalar value between`0`

and`1`

, inclusive. The default value of this parameter is`0.9`

.**Coefficient of coupling K23**Specify the coefficient of coupling for the mutual inductance of the second and third inductors,

*K*_{23}, as a scalar value between`0`

and`1`

, inclusive. The default value of this parameter is`0.9`

.

The minimum nonzero inductance value that the RF
Blockset environment
recognizes is `1e-18`

`H`

. During simulation, the block
uses a value of `1e-18`

`H`

for any inductance and mutual
inductance values specified between `0`

and `1e-18`

`H`

.

Was this topic helpful?