This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Run-Time Parameters

About Run-Time Parameters

You can create internal representations of external S-function dialog box parameters called run-time parameters. Every run-time parameter corresponds to one or more dialog box parameters and can have the same value and data type as its corresponding external parameters or a different value or data type. If a run-time parameter differs in value or data type from its external counterpart, the dialog parameter is said to have been transformed to create the run-time parameter. The value of a run-time parameter that corresponds to multiple dialog parameters is typically a function of the values of the dialog parameters. The Simulink® engine allocates and frees storage for run-time parameters and provides functions for updating and accessing them, thus eliminating the need for S-functions to perform these tasks.

Run-time parameters facilitate the following kinds of S-function operations:

  • Computed parameters

    Often the output of a block is a function of the values of several dialog parameters. For example, suppose a block has two parameters, the volume and density of some object, and the output of the block is a function of the input signal and the mass of the object. In this case, the mass can be viewed as a third internal parameter computed from the two external parameters, volume and density. An S-function can create a run-time parameter corresponding to the computed weight, thereby eliminating the need to provide special case handling for weight in the output computation. See Creating Run-Time Parameters from Multiple S-Function Parameters for more information.

  • Data type conversions

    Often a block needs to change the data type of a dialog parameter to facilitate internal processing. For example, suppose that the output of the block is a function of the input and a dialog parameter and the input and dialog parameter are of different data types. In this case, the S-function can create a run-time parameter that has the same value as the dialog parameter but has the data type of the input signal, and use the run-time parameter in the computation of the output.

  • Code generation

    During code generation, the Simulink Coder™ product writes all run-time parameters automatically to the model.rtw file, eliminating the need for the S-function to perform this task via an mdlRTW method.

The sfcndemo_runtime Simulink model contains four example S-functions that create run-time parameters.

Creating Run-Time Parameters

In a Level-2 MATLAB® S-function, you create run-time parameters associated with all the tunable dialog parameters. Use the run-time object's AutoRegRuntimePrms method in the PostPropagationSetup callback method to register the block's run-time parameters. For example:


In a C S-function, you can create run-time parameters in a number of ways. The following sections describe different methods for creating run-time parameters in a C S-function.

Creating Run-Time Parameters All at Once

Use the SimStruct function ssRegAllTunableParamsAsRunTimeParams in mdlSetWorkWidths to create run-time parameters corresponding to all tunable parameters. This function requires that you pass it an array of names, one for each run-time parameter. The Simulink Coder product uses these names as the names of the parameters during code generation. The S-function sfun_runtime1.c shows how to create run-time parameters all at once.

This approach to creating run-time parameters assumes that there is a one-to-one correspondence between an S-function run-time parameters and its tunable dialog parameters. This might not be the case. For example, an S-function might want to use a computed parameter whose value is a function of several dialog parameters. In such cases, the S-function might need to create the run-time parameters individually.

Creating Run-Time Parameters Individually

To create run-time parameters individually, the S-function mdlSetWorkWidths method should

  1. Specify the number of run-time parameters it intends to use, using ssSetNumRunTimeParams.

  2. Use ssRegDlgParamAsRunTimeParam to register a run-time parameter that corresponds to a single dialog parameter, even if there is a data type transformation, or ssSetRunTimeParamInfo to set the attributes of a run-time parameter that corresponds to more than one dialog parameter.

The following example uses ssRegDlgParamAsRunTimeParam and is taken from the S-function sfun_runtime3.c. This example creates a run-time parameter directly from the dialog parameter and with the same data type as the first input port's signal.

static void mdlSetWorkWidths(SimStruct *S)
    /* Get data type of input to use for run-time parameter */
    DTypeId      dtId         = ssGetInputPortDataType(S, 0);

    /* Define name of run-time parameter */
    const char_T *rtParamName = "Gain";

    ssSetNumRunTimeParams(S, 1); /* One run-time parameter */
    if (ssGetErrorStatus(S) != NULL) return;
    ssRegDlgParamAsRunTimeParam(S, GAIN_IDX, 0, rtParamName, dtId);
#endif /* MDL_SET_WORK_WIDTHS */

The next example uses ssSetRunTimeParamInfo and is taken from the S-function sfun_runtime2.c.

static void mdlSetWorkWidths(SimStruct *S)
    ssParamRec p; /* Initialize an ssParamRec structure */
    int        dlgP = GAIN_IDX; /* Index of S-function parameter */

    /* Configure run-time parameter information */             = "Gain";
    p.nDimensions      = 2;
    p.dimensions       = (int_T *) mxGetDimensions(GAIN_PARAM(S));
    p.dataTypeId       = SS_DOUBLE;
    p.complexSignal    = COMPLEX_NO;             = (void *)mxGetPr(GAIN_PARAM(S));
    p.dataAttributes   = NULL;
    p.nDlgParamIndices = 1;
    p.dlgParamIndices  = &dlgP;
    p.transformed      = false;
    p.outputAsMatrix   = false;   
    /* Set number of run-time parameters */
    if (!ssSetNumRunTimeParams(S, 1)) return;

    /* Set run-time parameter information */
    if (!ssSetRunTimeParamInfo(S, 0, &p)) return;

The S-function sfun_runtime2.c defines the parameters GAIN_IDX and GAIN_PARAM as follows, prior to using these parameters in mdlSetWorkWidths.

#define GAIN_IDX  1
#define GAIN_PARAM(S) ssGetSFcnParam(S,GAIN_IDX)

Creating Run-Time Parameters from Multiple S-Function Parameters

Use the ssSetRunTimeParamInfo function in mdlSetWorkWidths to create run-time parameters as a function of multiple S-function parameters. For example, consider an S-function with two S-function parameters, density and volume. The S-function inputs a force (F) and outputs an acceleration (a). The mdlOutputs method calculates the force using the equation F=m*a, where the mass (m) is the product of the density and volume.

The S-function sfun_runtime4.c implements this example using a single run-time parameter to store the mass. The S-function begins by defining the run-time parameter data type, as well as variables associated with volume and density.

typedef real_T RunTimeDataType;

#define VOL_IDX  0
#define VOL_PARAM(S) ssGetSFcnParam(S,VOL_IDX)

#define DEN_IDX   1
#define DEN_PARAM(S) ssGetSFcnParam(S,DEN_IDX)

The mdlSetWorkWidths method then initializes the run-time parameter, as follows.

static void mdlSetWorkWidths(SimStruct *S)
    ssParamRec p; /* Initialize an ssParamRec structure */
    int               dlg[2]; /* Stores dialog indices */
    real_T vol      = *mxGetPr(VOL_PARAM(S));
    real_T den      = *mxGetPr(DEN_PARAM(S));
    RunTimeDataType   *mass;
    /* Initialize dimensions for the run-time parameter as a
     * local variable. The Simulink engine makes a copy of this
     * information to store in the run-time parameter. */
    int_T  massDims[2] = {1,1};
    /* Allocate memory for the run-time parameter data. The S-function
     * owns this memory location. The Simulink engine does not copy the data.*/
    if ((mass=(RunTimeDataType*)malloc(1)) == NULL) {
        ssSetErrorStatus(S,"Memory allocation error");

    /* Store the pointer to the memory location in the S-function 
     * userdata. Since the S-function owns this data, it needs to
     * free the memory during mdlTerminate */
    ssSetUserData(S, (void*)mass);
    /* Call a local function to initialize the run-time 
     * parameter data. The Simulink engine checks that the data is not
     * empty so an initial value must be stored. */
    calcMass(mass, vol, den);

    /* Specify mass as a function of two S-function dialog parameters */
    dlg[0] = VOL_IDX;
    dlg[1] = DEN_IDX;
    /* Configure run-time parameter information. */             = "Mass";
    p.nDimensions      = 2;
    p.dimensions       = massDims;
    p.dataTypeId       = RUN_TIME_DATA_TYPE;
    p.complexSignal    = COMPLEX_NO;             = mass;
    p.dataAttributes   = NULL;
    p.nDlgParamIndices = 2;
    p.dlgParamIndices  = &dlg
    p.transformed      = RTPARAM_TRANSFORMED;
    p.outputAsMatrix   = false;
    /* Set number of run-time parameters  */
    if (!ssSetNumRunTimeParams(S, 1)) return;

    /* Set run-time parameter information */
    if (!ssSetRunTimeParamInfo(S,0,&p)) return;

The local function calcMass updates the run-time parameter value in mdlSetWorkWidths and in mdlProcessParameters, when the values of density or volume are tuned.

/* Function: calcMass ==============================================
 * Abstract:
 *      Local function to calculate the mass as a function of volume
 *      and density.
static void calcMass(RunTimeDataType *mass, real_T vol, real_T den)
  *mass = vol * den;

The mdlOutputs method uses the stored mass to calculate the force.

/* Function: mdlOutputs ==========================================
 * Abstract:
 *   Output acceleration calculated as input force divided by mass.   
static void mdlOutputs(SimStruct *S, int_T tid)
    real_T *y1              = ssGetOutputPortRealSignal(S,0);
    InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
    RunTimeDataType *mass   = 
        (RunTimeDataType *)((ssGetRunTimeParamInfo(S,0))->data);
     * Output acceleration = force / mass
     y1[0] = (*uPtrs[0]) / *mass;

Lastly, the mdlTerminate method frees the memory allocated for the run-time parameter in mdlSetWorkWidths.

/* Function: mdlTerminate ==========================================
 * Abstract:
 *      Free the user data.
static void mdlTerminate(SimStruct *S)
    /* Free memory used to store the run-time parameter data*/
   RunTimeDataType *mass = ssGetUserData(S);
    if (mass != NULL) {

To run the example, open the Simulink model:

Updating Run-Time Parameters

Whenever you change the values of S-function dialog parameters during simulation, the Simulink engine invokes the S-function mdlCheckParameters method to validate the changes. If the changes are valid, the engine invokes the S-function mdlProcessParameters method at the beginning of the next time step. This method should update the S-function run-time parameters to reflect the changes in the dialog parameters.

In a Level-2 MATLAB S-function, update the run-time parameters using the AutoUpdateRuntimePrms method in the ProcessParameters callback method. For example:


In a C S-function, update the run-time parameters using the method appropriate for how the run-time parameters were created, as described in the following sections.

Updating All Parameters at Once

In a C MEX S-function, if there is a one-to-one correspondence between the S-function tunable dialog parameters and the run-time parameters, i.e., the run-time parameters were registered using ssRegAllTunableParamsAsRunTimeParams, the S-function can use the SimStruct function ssUpdateAllTunableParamsAsRunTimeParams to accomplish this task. This function updates each run-time parameter to have the same value as the corresponding dialog parameter. See sfun_runtime1.c for an example.

Updating Parameters Individually

If there is not a one-to-one correspondence between the S-function dialog and run-time parameters or the run-time parameters are transformed versions of the dialog parameters, the mdlProcessParameters method must update each parameter individually. Choose the method used to update the run-time parameter based on how it was registered.

If you register a run-time parameter using ssSetRunTimeParamInfo, the mdlProcessParameters method uses ssUpdateRunTimeParamData to update the run-time parameter, as shown in sfun_runtime2.c. This function updates the data field in the parameter's attributes record, ssParamRec, with a new value. You cannot directly modify the ssParamRec, even though you can obtain a pointer to the ssParamRec using ssGetRunTimeParamInfo.

If you register a run-time parameter using ssRegDlgParamAsRunTimeParam, the mdlProcessParameters method uses ssUpdateDlgParamAsRunTimeParam to update the run-time parameter, as is shown in sfun_runtime3.c.

Updating Parameters as Functions of Multiple S-Function Parameters

If you register a run-time parameter as a function of multiple S-function parameters, the mdlProcessParameters method uses ssUpdateRunTimeParamData to update the run-time parameter.

The S-function sfun_runtime4.c provides an example. In this example, the mdlProcessParameters method calculates a new value for the run-time parameter and passes the value to the pointer of the run-time parameter's memory location, which was allocated during the call to mdlSetWorkWidths. The mdlProcessParameters method then passes the updated run-time parameter's pointer to ssUpdateRunTimeParamData.

Tuning Run-Time Parameters

Tuning a dialog parameter tunes the corresponding run-time parameter during simulation and in code generated only if the dialog parameter meets the following conditions:

  • The S-function marks the dialog parameter as tunable, using ssSetSFcnParamTunable.

  • The dialog parameter is a MATLAB array of values with a data type supported by the Simulink product.

Note that you cannot tune a run-time parameter whose value is a cell array or structure.

Accessing Run-Time Parameters

You can easily access run-time parameters from the S-function code. In order to access run-time parameter data, choose one of the following methods based on the data type.

  • If the data is of type double:

    real_T *dataPtr = (real_T *) ssGetRunTimeParamInfo(S, #)->data;
  • If the parameter is complex, the real and imaginary parts of the data are interleaved. For example, if a user enters the following:

    K = [1+2i, 3+4i; 5+6i, 7+8i]

    the matrix that is generated is

    K = 
        1+2i     3+4i
        5+6i     7+8i

    The memory for this matrix is laid out as

    [1, 2, 5, 6, 3, 4, 7, 8]

    To access a complex run-time parameter from the S-function code:

    for (i = 0; i<width; i++)
    real_T realData = dataPtr[(2*i)];
    real_T imagData = dataPtr[(2*i)+1];

    Note:   Matrix elements are written out in column-major format. Real and imaginary values are interleaved.

See Also

Was this topic helpful?