Documentation 
Extract continuoustime linear statespace model around operating point
argout = linmod2('sys', x, u); argout = linmod2('sys', x, u, para);
sys  Name of the Simulink^{®} system from which the linear model is extracted. 
x, u  State (x) and the input (u) vectors. If specified, they set the operating point at which the linear model is extracted. When a model has model references using the Model block, you must use the Simulink structure format to specify x. To extract the x structure from the model, use the following command: x = Simulink.BlockDiagram.getInitialState('sys'); You can then change the operating point values within this structure by editing x.signals.values. If the state contains different data types (for example, 'double' and 'uint8'), then you cannot use a vector to specify this state. You must use a structure instead. In addition, you can only specify the state as a vector if the state data type is 'double'. 
para  A threeelement vector of optional arguments:

argout  linmod, dlinmod, and linmod2 return statespace representations if you specify the output (lefthand) side of the equation as follows:

linmod2 computes a linear statespace model by perturbing the model inputs and model states, and uses an advanced algorithm to reduce truncation error.
linmod2 obtains linear models from systems of ordinary differential equations described as Simulink models. Inputs and outputs are denoted in Simulink block diagrams using Inport and Outport blocks.
By default, the system time is set to zero. For systems that are dependent on time, you can set the variable para to a twoelement vector, where the second element is used to set the value of t at which to obtain the linear model.
The ordering of the states from the nonlinear model to the linear model is maintained. For Simulink systems, a string variable that contains the block name associated with each state can be obtained using
[sizes,x0,xstring] = sys
where xstring is a vector of strings whose ith row is the block name associated with the ith state. Inputs and outputs are numbered sequentially on the diagram.
For singleinput multioutput systems, you can convert to transfer function form using the routine ss2tf or to zeropole form using ss2zp. You can also convert the linearized models to LTI objects using ss. This function produces an LTI object in statespace form that can be further converted to transfer function or zeropolegain form using tf or zpk.
The default algorithms in linmod and dlinmod handle Transport Delay blocks by replacing the linearization of the blocks with a Pade approximation. For more information, see Linearizing Models.