L = oobloss(ens)
L = oobloss(ens,Name,Value)
returns
the classification error for L
= oobloss(ens
)ens
computed for outofbag
data.
computes
error with additional options specified by one or more L
= oobloss(ens
,Name,Value
)Name,Value
pair
arguments. You can specify several namevalue pair arguments in any
order as Name1,Value1,…,NameN,ValueN
.

A classification bagged ensemble, constructed with 
Specify optional commaseparated pairs of Name,Value
arguments.
Name
is the argument
name and Value
is the corresponding
value. Name
must appear
inside single quotes (' '
).
You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN
.

Indices of weak learners in the ensemble ranging from Default:  

Loss function, specified as the commaseparated pair consisting
of
For more details on loss functions, see Classification Loss. Default:  

Character vector representing the meaning of the output
Default: 

Classification
loss of the outofbag observations, a scalar. 
Bagging, which stands for "bootstrap
aggregation", is a type of ensemble learning. To bag a weak
learner such as a decision tree on a dataset, fitensemble
generates
many bootstrap replicas of the dataset and grows decision trees on
these replicas. fitensemble
obtains each bootstrap
replica by randomly selecting N
observations out
of N
with replacement, where N
is
the dataset size. To find the predicted response of a trained ensemble, predict
take
an average over predictions from individual trees.
Drawing N
out of N
observations
with replacement omits on average 37% (1/e) of
observations for each decision tree. These are "outofbag" observations.
For each observation, oobLoss
estimates the outofbag
prediction by averaging over predictions from all trees in the ensemble
for which this observation is out of bag. It then compares the computed
prediction against the true response for this observation. It calculates
the outofbag error by comparing the outofbag predicted responses
against the true responses for all observations used for training.
This outofbag average is an unbiased estimator of the true ensemble
error.
Classification loss functions measure the predictive inaccuracy of classification models. When comparing the same type of loss among many models, lower loss indicates a better predictive model.
Suppose that:
L is the weighted average classification loss.
n is the sample size.
For binary classification:
y_{j} is the observed class label. The software codes it as –1 or 1 indicating the negative or positive class, respectively.
f(X_{j}) is the raw classification score for observation (row) j of the predictor data X.
m_{j} = y_{j}f(X_{j}) is the classification score for classifying observation j into the class corresponding to y_{j}. Positive values of m_{j} indicate correct classification and do not contribute much to the average loss. Negative values of m_{j} indicate incorrect classification and contribute to the average loss.
For algorithms that support multiclass classification (that is, K ≥ 3):
y_{j}^{*} is
a vector of K – 1 zeros, and a 1 in the
position corresponding to the true, observed class y_{j}.
For example, if the true class of the second observation is the third
class and K = 4, then y^{*}_{2} =
[0 0 1 0]′. The order of the classes corresponds to the order
in the ClassNames
property of the input model.
f(X_{j})
is the length K vector of class scores for observation j of
the predictor data X. The order of the scores corresponds
to the order of the classes in the ClassNames
property
of the input model.
m_{j} = y_{j}^{*}′f(X_{j}). Therefore, m_{j} is the scalar classification score that the model predicts for the true, observed class.
The weight for observation j is w_{j}. The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,
$$\sum _{j=1}^{n}{w}_{j}}=1.$$
The supported loss functions are:
Binomial deviance, specified using 'LossFun','binodeviance'
.
Its equation is
$$L={\displaystyle \sum _{j=1}^{n}{w}_{j}\mathrm{log}\left\{1+\mathrm{exp}\left[2{m}_{j}\right]\right\}}.$$
Exponential loss, specified using 'LossFun','exponential'
.
Its equation is
$$L={\displaystyle \sum _{j=1}^{n}{w}_{j}\mathrm{exp}\left({m}_{j}\right)}.$$
Classification error, specified using 'LossFun','classiferror'
.
It is the weighted fraction of misclassified observations, with equation
$$L={\displaystyle \sum _{j=1}^{n}{w}_{j}}I\left\{{\widehat{y}}_{j}\ne {y}_{j}\right\}.$$
$${\widehat{y}}_{j}$$ is the class label corresponding to the class with the maximal posterior probability. I{x} is the indicator function.
Hinge loss, specified using 'LossFun','hinge'
.
Its equation is
$$L={\displaystyle \sum}_{j=1}^{n}{w}_{j}\mathrm{max}\left\{0,1{m}_{j}\right\}.$$
Logit loss, specified using 'LossFun','logit'
.
Its equation is
$$L={\displaystyle \sum _{j=1}^{n}{w}_{j}\mathrm{log}\left(1+\mathrm{exp}\left({m}_{j}\right)\right)}.$$
Minimal cost, specified using 'LossFun','mincost'
.
The software computes the weighted minimal cost using this procedure
for observations j = 1,...,n:
Estimate the 1byK vector of expected classification costs for observation j
$${\gamma}_{j}=f{\left({X}_{j}\right)}^{\prime}C.$$
f(X_{j})
is the column vector of class posterior probabilities for binary and
multiclass classification. C is the cost matrix
the input model stores in the property Cost
.
For observation j, predict the class label corresponding to the minimum, expected classification cost:
$${\widehat{y}}_{j}=\underset{j=1,\mathrm{...},K}{\mathrm{min}}\left({\gamma}_{j}\right).$$
Using C, identify the cost incurred (c_{j}) for making the prediction.
The weighted, average, minimum cost loss is
$$L={\displaystyle \sum _{j=1}^{n}{w}_{j}{c}_{j}}.$$
Quadratic loss, specified using 'LossFun','quadratic'
.
Its equation is
$$L={\displaystyle \sum _{j=1}^{n}{w}_{j}{\left(1{m}_{j}\right)}^{2}}.$$
This figure compares some of the loss functions for one observation over m (some functions are normalized to pass through [0,1]).
loss
 oobEdge
 oobMargin
 oobPredict