Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

oobLoss

Class: ClassificationBaggedEnsemble

Out-of-bag classification error

Syntax

L = oobloss(ens)
L = oobloss(ens,Name,Value)

Description

L = oobloss(ens) returns the classification error for ens computed for out-of-bag data.

L = oobloss(ens,Name,Value) computes error with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A classification bagged ensemble, constructed with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. oobLoss uses only these learners for calculating loss.

Default: 1:NumTrained

'lossfun'

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

  • The following lists available loss functions. Specify one using its corresponding character vector.

    ValueDescription
    'binodeviance'Binomial deviance
    'classiferror'Classification error
    'exponential'Exponential
    'hinge'Hinge
    'logit'Logistic
    'mincost'Minimal expected misclassification cost (for classification scores that are posterior probabilities)
    'quadratic'Quadratic

    'mincost' is appropriate for classification scores that are posterior probabilities. Bagged ensembles return posterior probabilities as classification scores by default.

  • Specify your own function using function handle notation.

    Suppose that n be the number of observations in X and K be the number of distinct classes (numel(ens.ClassNames), ens is the input model). Your function must have this signature

    lossvalue = lossfun(C,S,W,Cost)
    where:

    • The output argument lossvalue is a scalar.

    • You choose the function name (lossfun).

    • C is an n-by-K logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in ens.ClassNames.

      Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other elements of row p to 0.

    • S is an n-by-K numeric matrix of classification scores. The column order corresponds to the class order in ens.ClassNames. S is a matrix of classification scores, similar to the output of predict.

    • W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes them to sum to 1.

    • Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) - eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

    Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see Classification Loss.

Default: 'classiferror'

'mode'

Character vector representing the meaning of the output L:

  • 'ensemble'L is a scalar value, the loss for the entire ensemble.

  • 'individual'L is a vector with one element per trained learner.

  • 'cumulative'L is a vector in which element J is obtained by using learners 1:J from the input list of learners.

Default: 'ensemble'

Output Arguments

L

Classification loss of the out-of-bag observations, a scalar. L can be a vector, or can represent a different quantity, depending on the name-value settings.

Examples

expand all

Load Fisher's iris data set.

load fisheriris

Grow a bag of 100 classification trees.

rng(1) % For reproducibility
ens = fitensemble(meas,species,'Bag',100,'Tree','type','classification');

Estimate the out-of-bag classification error.

L = oobLoss(ens)
L =

    0.0533

Definitions

expand all

Was this topic helpful?