Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

resubMargin

Class: ClassificationEnsemble

Classification margins by resubstitution

Syntax

margin = resubMargin(ens)
margin = resubMargin(ens,Name,Value)

Description

margin = resubMargin(ens) returns the classification margin obtained by ens on its training data.

margin = resubMargin(ens,Name,Value) calculates margins with additional options specified by one or more Name,Value pair arguments.

Input Arguments

ens

A classification ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. resubMargin uses only these learners for calculating margin.

Default: 1:NumTrained

Output Arguments

margin

A numeric column-vector of length size(ens.X,1) containing the classification margins.

Examples

Find the resubstitution margins for an ensemble that classifies the Fisher iris data:

load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
margin = resubMargin(ens);
[min(margin) mean(margin) max(margin)]

ans =
   -0.5674    3.2486    4.6245

Definitions

expand all

Was this topic helpful?