Documentation

resubLoss

Class: ClassificationTree

Classification error by resubstitution

Syntax

L = resubLoss(tree)
L = resubLoss(tree,Name,Value)
L = resubLoss(tree,'Subtrees',subtreevector)
[L,se] = resubLoss(tree,'Subtrees',subtreevector)
[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector)
[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector)
[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value)

Description

L = resubLoss(tree) returns the resubstitution loss, meaning the loss computed for the data that fitctree used to create tree.

L = resubLoss(tree,Name,Value) returns the loss with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

L = resubLoss(tree,'Subtrees',subtreevector) returns a vector of classification errors for the trees in the pruning sequence subtreevector.

[L,se] = resubLoss(tree,'Subtrees',subtreevector) returns the vector of standard errors of the classification errors.

[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector) returns the vector of numbers of leaf nodes in the trees of the pruning sequence.

[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector) returns the best pruning level as defined in the TreeSize name-value pair. By default, bestlevel is the pruning level that gives loss within one standard deviation of minimal loss.

[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value) returns loss statistics with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

expand all

tree

A classification tree constructed by fitctree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

'LossFun' — Loss function'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

  • The following lists available loss functions. Specify one using its corresponding character vector.

    ValueDescription
    'binodeviance'Binomial deviance
    'classiferror'Classification error
    'exponential'Exponential
    'hinge'Hinge
    'logit'Logistic
    'mincost'Minimal expected misclassification cost (for classification scores that are posterior probabilities)
    'quadratic'Quadratic

    'mincost' is appropriate for classification scores that are posterior probabilities. Classification trees return posterior probabilities as classification scores by default (see predict).

  • Specify your own function using function handle notation.

    Suppose that n be the number of observations in X and K be the number of distinct classes (numel(tree.ClassNames)). Your function must have this signature

    lossvalue = lossfun(C,S,W,Cost)
    where:

    • The output argument lossvalue is a scalar.

    • You choose the function name (lossfun).

    • C is an n-by-K logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in tree.ClassNames.

      Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other elements of row p to 0.

    • S is an n-by-K numeric matrix of classification scores. The column order corresponds to the class order in tree.ClassNames. S is a matrix of classification scores, similar to the output of predict.

    • W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes them to sum to 1.

    • Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) - eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

    Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see Classification Loss.

Name,Value arguments associated with pruning subtrees:

'Subtrees' — Pruning level0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most max(tree.PruneList). 0 indicates the full, unpruned tree and max(tree.PruneList) indicates the completely pruned tree (i.e., just the root node).

If you specify 'all', then ClassificationTree.resubLoss operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using 0:max(tree.PruneList).

ClassificationTree.resubLoss prunes tree to each level indicated in Subtrees, and then estimates the corresponding output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree using prune.

Example: 'Subtrees','all'

'TreeSize' — Tree size'se' (default) | 'min'

Tree size, specified as the comma-separated pair consisting of 'TreeSize' and one of the following character vectors:

  • 'se'loss returns the highest pruning level with loss within one standard deviation of the minimum (L+se, where L and se relate to the smallest value in Subtrees).

  • 'min'loss returns the element of Subtrees with smallest loss, usually the smallest element of Subtrees.

Output Arguments

L

Classification loss, a vector the length of Subtrees. The meaning of the error depends on the values in Weights and LossFun.

se

Standard error of loss, a vector the length of Subtrees.

NLeaf

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of Subtrees.

bestlevel

A scalar whose value depends on TreeSize:

  • TreeSize = 'se'loss returns the highest pruning level with loss within one standard deviation of the minimum (L+se, where L and se relate to the smallest value in Subtrees).

  • TreeSize = 'min'loss returns the element of Subtrees with smallest loss, usually the smallest element of Subtrees.

Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When comparing the same type of loss among many models, lower loss indicates a better predictive model.

Suppose that:

  • L is the weighted average classification loss.

  • n is the sample size.

  • For binary classification:

    • yj is the observed class label. The software codes it as –1 or 1 indicating the negative or positive class, respectively.

    • f(Xj) is the raw classification score for observation (row) j of the predictor data X.

    • mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding to yj. Positive values of mj indicate correct classification and do not contribute much to the average loss. Negative values of mj indicate incorrect classification and contribute to the average loss.

  • For algorithms that support multiclass classification (that is, K ≥ 3):

    • yj* is a vector of K – 1 zeros, and a 1 in the position corresponding to the true, observed class yj. For example, if the true class of the second observation is the third class and K = 4, then y*2 = [0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of the input model.

    • f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.

    • mj = yj*f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true, observed class.

  • The weight for observation j is wj. The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

    j=1nwj=1.

The supported loss functions are:

  • Binomial deviance, specified using 'LossFun','binodeviance'. Its equation is

    L=j=1nwjlog{1+exp[2mj]}.

  • Exponential loss, specified using 'LossFun','exponential'. Its equation is

    L=j=1nwjexp(mj).

  • Classification error, specified using 'LossFun','classiferror'. It is the weighted fraction of misclassified observations, with equation

    L=j=1nwjI{y^jyj}.

    y^j is the class label corresponding to the class with the maximal posterior probability. I{x} is the indicator function.

  • Hinge loss, specified using 'LossFun','hinge'. Its equation is

    L=j=1nwjmax{0,1mj}.

  • Logit loss, specified using 'LossFun','logit'. Its equation is

    L=j=1nwjlog(1+exp(mj)).

  • Minimal cost, specified using 'LossFun','mincost'. The software computes the weighted minimal cost using this procedure for observations j = 1,...,n:

    1. Estimate the 1-by-K vector of expected classification costs for observation j

      γj=f(Xj)C.

      f(Xj) is the column vector of class posterior probabilities for binary and multiclass classification. C is the cost matrix the input model stores in the property Cost.

    2. For observation j, predict the class label corresponding to the minimum, expected classification cost:

      y^j=minj=1,...,K(γj).

    3. Using C, identify the cost incurred (cj) for making the prediction.

    The weighted, average, minimum cost loss is

    L=j=1nwjcj.

  • Quadratic loss, specified using 'LossFun','quadratic'. Its equation is

    L=j=1nwj(1mj)2.

This figure compares some of the loss functions for one observation over m (some functions are normalized to pass through [0,1]).

True Misclassification Cost

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair when you create the classifier using the fitctree method. Cost(i,j) is the cost of classifying an observation into class j if its true class is i. By default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

Expected Misclassification Cost

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected (average) cost of classifying the observation into each of the K classes. CE(n,k) is

i=1KP^(i|Xnew(n))C(k|i),

where

  • K is the number of classes.

  • P^(i|Xnew(n)) is the posterior probability of class i for observation Xnew(n).

  • C(k|i) is the true misclassification cost of classifying an observation as k when its true class is i.

Examples

expand all

Compute the In-Sample Classification Error

Compute the resubstitution classification error for the ionosphere data.

load ionosphere
tree = fitctree(X,Y);
L = resubLoss(tree)
L =

    0.0114

Examine the Classification Error for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-sample performance is to prune a tree (or restrict its growth) so that in-sample and out-of-sample performance are satisfactory.

Load Fisher's iris data set. Partition the data into training (50%) and validation (50%) sets.

load fisheriris
n = size(meas,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices
idxVal = idxTrn == false;                  % Validation set logical indices

Grow a classification tree using the training set.

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));

View the classification tree.

view(Mdl,'Mode','graph');

The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as displayed). Level 3 is just the root node (i.e., no splits).

Examine the training sample classification error for each subtree (or pruning level) excluding the highest level.

m = max(Mdl.PruneList) - 1;
trnLoss = resubLoss(Mdl,'SubTrees',0:m)
trnLoss =

    0.0267
    0.0533
    0.3067

  • The full, unpruned tree misclassifies about 2.7% of the training observations.

  • The tree pruned to level 1 misclassifies about 5.3% of the training observations.

  • The tree pruned to level 2 (i.e., a stump) misclassifies about 30.6% of the training observations.

Examine the validation sample classification error at each level excluding the highest level.

valLoss = loss(Mdl,meas(idxVal,:),species(idxVal),'SubTrees',0:m)
valLoss =

    0.0369
    0.0237
    0.3067

  • The full, unpruned tree misclassifies about 3.7% of the validation observations.

  • The tree pruned to level 1 misclassifies about 2.4% of the validation observations.

  • The tree pruned to level 2 (i.e., a stump) misclassifies about 30.7% of the validation observations.

To balance model complexity and out-of-sample performance, consider pruning Mdl to level 1.

pruneMdl = prune(Mdl,'Level',1);
view(pruneMdl,'Mode','graph')

Was this topic helpful?