This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.


Class: classregtree

Cut types

classregtree will be removed in a future release. See fitctree, fitrtree, ClassificationTree, or RegressionTree instead.


c = cuttype(t)
c = cuttype(t,nodes)


c = cuttype(t) returns an n-element cell array c indicating the type of cut at each node in the tree t, where n is the number of nodes. For each node i, c{i} is:

  • 'continuous' — If the cut is defined in the form x < v for a variable x and cut point v.

  • 'categorical' — If the cut is defined by whether a variable x takes a value in a set of categories.

  • '' — If i is a leaf node.

cutvar returns the cut points for 'continuous' cuts, and cutcategories returns the set of categories.

c = cuttype(t,nodes) takes a vector nodes of node numbers and returns the cut types for the specified nodes.


Create a classification tree for car data:

load carsmall

t = classregtree([MPG Cylinders],Origin,...
                 'names',{'MPG' 'Cyl'},'cat',2)
t = 
Decision tree for classification
 1  if Cyl=4 then node 2 elseif Cyl in {6 8} then node 3 else USA
 2  if MPG<31.5 then node 4 elseif MPG>=31.5 then node 5 else USA
 3  if Cyl=6 then node 6 elseif Cyl=8 then node 7 else USA
 4  if MPG<21.5 then node 8 elseif MPG>=21.5 then node 9 else USA
 5  if MPG<41 then node 10 elseif MPG>=41 then node 11 else Japan
 6  if MPG<17 then node 12 elseif MPG>=17 then node 13 else USA
 7  class = USA
 8  class = France
 9  class = USA
10  class = Japan
11  class = Germany
12  class = Germany
13  class = USA

c = cuttype(t)
c = 


[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.

Was this topic helpful?