Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

risk

Class: classregtree

Node risks

classregtree will be removed in a future release. See fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

r = risk(t)
r = risk(t,nodes)

Description

r = risk(t) returns an n-element vector r of the risk of the nodes in the tree t, where n is the number of nodes. The risk r(i) for node i is the node error e(i) (computed by nodeerr) weighted by the node probability p(i) (computed by nodeprob).

r = risk(t,nodes) takes a vector nodes of node numbers and returns the risk values for the specified nodes.

Examples

Create a classification tree for Fisher's iris data:

load fisheriris;

t = classregtree(meas,species,...
                 'names',{'SL' 'SW' 'PL' 'PW'})
t = 
Decision tree for classification
1  if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2  class = setosa
3  if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4  if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5  class = virginica
6  if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7  class = virginica
8  class = versicolor
9  class = virginica

view(t)

e = nodeerr(t);
p = nodeprob(t);
r = risk(t);

r
r =
    0.6667
         0
    0.3333
    0.0333
    0.0067
    0.0067
    0.0133
         0
         0

e.*p
ans =
    0.6667
         0
    0.3333
    0.0333
    0.0067
    0.0067
    0.0133
         0
         0

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.

Was this topic helpful?