Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

edge

Class: CompactClassificationDiscriminant

Classification edge

Syntax

E = edge(obj,X,Y)
E = edge(obj,X,Y,Name,Value)

Description

E = edge(obj,X,Y) returns the classification edge for obj with data X and classification Y.

E = edge(obj,X,Y,Name,Value) computes the edge with additional options specified by one or more Name,Value pair arguments.

Input Arguments

obj

Discriminant analysis classifier of class ClassificationDiscriminant or CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in obj.

Y

Class labels, with the same data type as exists in obj. The number of elements of Y must equal the number of rows of X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

'weights'

Observation weights, a numeric vector of length size(X,1). If you supply weights, edge computes the weighted classification edge.

Default: ones(size(X,1))

Output Arguments

E

Edge, a scalar representing the weighted average value of the margin.

Examples

Compute the classification edge and margin for the Fisher iris data, trained on its first two columns of data, and view the last 10 entries:

load fisheriris
X = meas(:,1:2);
obj = fitcdiscr(X,species);
E = edge(obj,X,species)

E =
    0.4980

M = margin(obj,X,species);
M(end-10:end)

ans =
    0.6551
    0.4838
    0.6551
   -0.5127
    0.5659
    0.4611
    0.4949
    0.1024
    0.2787
   -0.1439
   -0.4444

The classifier trained on all the data is better:

obj = fitcdiscr(meas,species);
E = edge(obj,meas,species)

E =
    0.9454

M = margin(obj,meas,species);
M(end-10:end)

ans =
    0.9983
    1.0000
    0.9991
    0.9978
    1.0000
    1.0000
    0.9999
    0.9882
    0.9937
    1.0000
    0.9649

Definitions

expand all

Extended Capabilities

Was this topic helpful?