# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

# coefTest

Class: CompactLinearModel

Linear hypothesis test on linear regression model coefficients

## Syntax

```p = coefTest(mdl) p = coefTest(mdl,H) p = coefTest(mdl,H,C) [p,F] = coefTest(mdl,___) [p,F,r] = coefTest(mdl,___) ```

## Description

`p = coefTest(mdl)` computes the p-value for an F test that all coefficient estimates in `mdl` are zero, except for the intercept term.

`p = coefTest(mdl,H)` performs an F test that H × B = 0, where B represents the coefficient vector.

`p = coefTest(mdl,H,C)` performs an F test that H × B = C.

```[p,F] = coefTest(mdl,___)``` returns the F test statistic, `F`, using any of the previous syntaxes.

```[p,F,r] = coefTest(mdl,___)``` returns the numerator degrees of freedom, `r`, for the test.

## Input Arguments

expand all

Linear model object, specified as a full `LinearModel` object constructed using `fitlm` or `stepwiselm`, or a compacted `CompactLinearModel` object constructed using `compact`.

Hypothesized model coefficients, specified as a numeric matrix with one column for each coefficient in the model. If `H` is an input, then the output `p` is the p-value for an F test that H × B = 0, where B represents the coefficient vector.

Hypothesized value for testing the null hypothesis, specified as a numeric vector with the same number of rows as `H`. When `C` is an input, the output `p` is the p-value for an F test that H × B = C, where B represents the coefficient vector.

## Output Arguments

expand all

p-value of the F test, returned as a numeric value in the range [0,1].

Value of the test statistic for the F test, returned as a numeric value.

Numerator degrees of freedom for the F test, returned as a positive integer. The F statistic has `r` degrees of freedom in the numerator and `mdl.DFE` degrees of freedom in the denominator.

## Examples

expand all

Fit a linear regression model of mileage as a function of the weight, weight squared, and model year from the `carsmall` data set. Test the coefficients to see if all should be zero.

Load the data and make a table, where the model year is an ordinal variable.

```load carsmall tbl = table(MPG,Weight); tbl.Year = ordinal(Model_Year); mdl = fitlm(tbl,'MPG ~ Year + Weight + Weight^2'); ```

Test the model for significant differences from a constant model.

```p = coefTest(mdl) ```
```p = 5.5208e-41 ```

The returned -value indicates that the fitted model contains more than the intercept term.

Test the `Weight^2` coefficient in a linear model of mileage as a function of the weight, weight squared, and model year.

Load the data and make a table, where the model year is an ordinal variable.

```load carsmall tbl = table(MPG,Weight); tbl.Year = ordinal(Model_Year); mdl = fitlm(tbl,'MPG ~ Year + Weight + Weight^2'); ```

Test the significance of the `Weight^2` coefficient. To do so, find the coefficient corresponding to `Weight^2`.

```mdl.CoefficientNames ```
```ans = 1x5 cell array {'(Intercept)'} {'Weight'} {'Year_76'} {'Year_82'} {'Weight^2'} ```

`Weight^2` is the fifth (final) coefficient.

Test the significance of the `Weight^2` coefficient.

```p = coefTest(mdl,[0 0 0 0 1]) ```
```p = 0.0022 ```

expand all

## Alternatives

The values of commonly used test statistics are available in the `mdl.Coefficients` table.

`anova` provides a test for each model term.