Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Feature Transformation

Feature transformation is a group of methods that create new features (predictor variables). The methods are useful for dimension reduction when the transformed features have a descriptive power that is more easily ordered than the original features. In this case, less descriptive features can be dropped from consideration when building models.

Feature transformation methods are contrasted with the methods presented in Feature Selection, where dimension reduction is achieved by computing an optimal subset of predictive features measured in the original data.

The methods presented in this section share some common methodology. Their goals, however, are essentially different:

Was this topic helpful?