Fit probability distribution object to data

creates
the probability distribution object with additional options specified
by one or more name-value pair arguments. For example, you can indicate
censored data or specify control parameters for the iterative fitting
algorithm.`pd`

= fitdist(`x`

,`distname`

,`Name,Value`

)

`[`

creates
probability distribution objects by fitting the distribution specified
by `pdca`

,`gn`

,`gl`

]
= fitdist(`x`

,`distname`

,'By',`groupvar`

)`distname`

to the data in `x`

based
on the grouping variable `groupvar`

. It returns
a cell array of fitted probability distribution objects, `pdca`

,
a cell array of group labels, `gn`

, and a cell
array of grouping variable levels, `gl`

.

The Distribution Fitting app opens a graphical user interface
for you to import data from the workspace and interactively fit a
probability distribution to that data. You can then save the distribution
to the workspace as a probability distribution object. Open the Distribution
Fitting app using `dfittool`

, or
click Distribution Fitting on the Apps tab.

[1] Johnson, N. L., S. Kotz, and N. Balakrishnan. *Continuous
Univariate Distributions*. Vol. 1, Hoboken, NJ: Wiley-Interscience,
1993.

[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. *Continuous
Univariate Distributions*. Vol. 2, Hoboken, NJ: Wiley-Interscience,
1994.

[3] Bowman, A. W., and A. Azzalini. *Applied
Smoothing Techniques for Data Analysis*. New York: Oxford
University Press, 1997.

Was this topic helpful?