Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English version of the page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

# fpdf

F probability density function

## Syntax

```Y = fpdf(X,V1,V2) ```

## Description

`Y = fpdf(X,V1,V2)` computes the F pdf at each of the values in `X` using the corresponding numerator degrees of freedom `V1` and denominator degrees of freedom `V2`. `X`, `V1`, and `V2` can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. `V1` and `V2` parameters must contain real positive values, and the values in `X` must lie on the interval `[0 Inf]`.

The probability density function for the F distribution is

`$y=f\left(x|{\nu }_{1},{\nu }_{2}\right)=\frac{\Gamma \left[\frac{\left({\nu }_{1}+{\nu }_{2}\right)}{2}\right]}{\Gamma \left(\frac{{\nu }_{1}}{2}\right)\Gamma \left(\frac{{\nu }_{2}}{2}\right)}{\left(\frac{{\nu }_{1}}{{\nu }_{2}}\right)}^{\frac{{\nu }_{1}}{2}}\frac{{x}^{\frac{{\nu }_{1}-2}{2}}}{{\left[1+\left(\frac{{\nu }_{1}}{{\nu }_{2}}\right)x\right]}^{\frac{{\nu }_{1}+{\nu }_{2}}{2}}}$`

## Examples

```y = fpdf(1:6,2,2) y = 0.2500 0.1111 0.0625 0.0400 0.0278 0.0204 z = fpdf(3,5:10,5:10) z = 0.0689 0.0659 0.0620 0.0577 0.0532 0.0487```