Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

gevpdf

Generalized extreme value probability density function

Syntax

Y = gevpdf(X,k,sigma,mu)

Description

Y = gevpdf(X,k,sigma,mu) returns the pdf of the generalized extreme value (GEV) distribution with shape parameter k, scale parameter sigma, and location parameter, mu, evaluated at the values in X. The size of Y is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the wblpdf function, then -w has a type III extreme value distribution and 1/w has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k1, and the variance is not finite when k1/2. The GEV distribution has positive density only for values of X such that k*(X-mu)/sigma > -1.

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.

Introduced before R2006a

Was this topic helpful?