Note: This page has been translated by MathWorks. Please click here

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Multivariate linear regression

`beta = mvregress(X,Y)`

`beta = mvregress(X,Y,Name,Value)`

```
[beta,Sigma]
= mvregress(___)
```

```
[beta,Sigma,E,CovB,logL]
= mvregress(___)
```

returns
the estimated coefficients for a multivariate normal regression of
the `beta`

= mvregress(`X`

,`Y`

)* d*-dimensional responses in

`Y`

on
the design matrices in `X`

.

returns
the estimated coefficients using additional options specified by one
or more name-value pair arguments. For example, you can specify the
estimation algorithm, initial estimate values, or maximum number of
iterations for the regression.`beta`

= mvregress(`X`

,`Y`

,`Name,Value`

)

[1] Little, Roderick J. A., and Donald B.
Rubin. *Statistical Analysis with Missing Data*.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 2002.

[2] Meng, Xiao-Li, and Donald B. Rubin. "Maximum
Likelihood Estimation via the ECM Algorithm." *Biometrika*.
Vol. 80, No. 2, 1993, pp. 267–278.

[3] Sexton, Joe, and A. R. Swensen. "ECM
Algorithms that Converge at the Rate of EM." *Biometrika*.
Vol. 87, No. 3, 2000, pp. 651–662.

[4] Dempster, A. P., N. M. Laird, and D. B.
Rubin. "Maximum Likelihood from Incomplete Data via the EM
Algorithm." *Journal of the Royal Statistical Society*.
Series B, Vol. 39, No. 1, 1977, pp. 1–37.

Was this topic helpful?