Accelerating the pace of engineering and science

# ncfcdf

Noncentral F cumulative distribution function

## Syntax

p = ncfcdf(x,nu1,nu2,delta)
p = ncfcdf(x,nu1,nu2,delta,'upper')

## Description

p = ncfcdf(x,nu1,nu2,delta) computes the noncentral F cdf at each value in x using the corresponding numerator degrees of freedom in nu1, denominator degrees of freedom in nu2, and positive noncentrality parameters in delta. nu1, nu2, and delta can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of p. A scalar input for x, nu1, nu2, or delta is expanded to a constant array with the same dimensions as the other inputs.

p = ncfcdf(x,nu1,nu2,delta,'upper') returns the complement of the noncentral F cdf at each value in x, using an algorithm that more accurately computes the extreme upper tail probabilities.

The noncentral F cdf is

$F\left(x|{\nu }_{1},{\nu }_{2},\delta \right)=\sum _{j=0}^{\infty }\left(\frac{{\left(\frac{1}{2}\delta \right)}^{j}}{j!}{e}^{\frac{-\delta }{2}}\right)I\left(\frac{{\nu }_{1}\cdot x}{{\nu }_{2}+{\nu }_{1}\cdot x}|\frac{{\nu }_{1}}{2}+j,\frac{{\nu }_{2}}{2}\right)$

where I(x|a,b) is the incomplete beta function with parameters a and b.

## Examples

expand all

### Compute Noncentral F Distribution cdf

Compare the noncentral F cdf with δ = 10 to the F cdf with the same number of numerator and denominator degrees of freedom (5 and 20 respectively).

```x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x,p,'-',x,p1,'-')```