Documentation

This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

pdf

Probability density functions

Syntax

``y = pdf('name',x,A)``
``y = pdf('name',x,A,B)``
``y = pdf('name',x,A,B,C)``
``y = pdf('name',x,A,B,C,D)``
``y = pdf(pd,x)``

Description

example

````y = pdf('name',x,A)` returns the probability density function (pdf) for the one-parameter distribution family specified by `'name'`, evaluated at the values in `x`. `A` contains the parameter value for the distribution.```

example

````y = pdf('name',x,A,B)` returns the pdf for the two-parameter distribution family specified by `'name'`, evaluated at the values in `x`. `A` and `B` contain the parameter values for the distribution.```
````y = pdf('name',x,A,B,C)` returns the pdf for the three-parameter distribution family specified by `'name'`, evaluated at the values in `x`. `A`, `B`, and `C` contain the parameter values for the distribution.```
````y = pdf('name',x,A,B,C,D)` returns the pdf for the four-parameter distribution family specified by `'name'`, evaluated at the values in `x`. `A`, `B`, `C`, and `D` contain the parameter values for the distribution.```

example

````y = pdf(pd,x)` returns the probability density function of the probability distribution object, `pd`, evaluated at the values in `x`.```

Examples

collapse all

Create a standard normal distribution object with the mean equal to 0 and the standard deviation equal to 1.

```mu = 0; sigma = 1; pd = makedist('Normal',mu,sigma); ```

Define the input vector x to contain the values at which to calculate the pdf.

```x = [-2 -1 0 1 2]; ```

Compute the pdf values for the standard normal distribution at the values in x.

```y = pdf(pd,x) ```
```y = 0.0540 0.2420 0.3989 0.2420 0.0540 ```

Each value in y corresponds to a value in the input vector x. For example, at the value x equal to 1, the corresponding pdf value y is equal to 0.2420.

Alternatively, you can compute the same pdf values without creating a probability distribution object. Use the `pdf` function, and specify a standard normal distribution using the same parameter values for and .

```y2 = pdf('Normal',x,mu,sigma) ```
```y2 = 0.0540 0.2420 0.3989 0.2420 0.0540 ```

The pdf values are the same as those computed using the probability distribution object.

Create a Poisson distribution object with the rate parameter, , equal to 2.

```lambda = 2; pd = makedist('Poisson',lambda); ```

Define the input vector x to contain the values at which to calculate the pdf.

```x = [0 1 2 3 4]; ```

Compute the pdf values for the Poisson distribution at the values in x.

```y = pdf(pd,x) ```
```y = 0.1353 0.2707 0.2707 0.1804 0.0902 ```

Each value in y corresponds to a value in the input vector x. For example, at the value x equal to 3, the corresponding pdf value in y is equal to 0.1804.

Alternatively, you can compute the same pdf values without creating a probability distribution object. Use the `pdf` function, and specify a Poisson distribution using the same value for the rate parameter, .

```y2 = pdf('Poisson',x,lambda) ```
```y2 = 0.1353 0.2707 0.2707 0.1804 0.0902 ```

The pdf values are the same as those computed using the probability distribution object.

Input Arguments

collapse all

Probability distribution name, specified as one of the following.

`name`DistributionInput Parameter AInput Parameter BInput Parameter CInput Parameter D
`'Beta'`Beta Distributiona: first shape parameterb: second shape parameter
`'Binomial'`Binomial Distributionn: number of trialsp: probability of success for each trial
`'BirnbaumSaunders'`Birnbaum-Saunders Distributionβ: scale parameterγ: shape parameter
`'Burr'`Burr Type XII Distributionα: scale parameterc: first shape parameterk: second shape parameter
`'Chisquare'`Chi-Square Distributionν: degrees of freedom
`'Exponential'`Exponential Distributionμ: mean
`'Extreme Value'`Extreme Value Distributionμ: location parameterσ: scale parameter
`'F'`F Distributionν1: numerator degrees of freedomν2: denominator degrees of freedom
`'Gamma'`Gamma Distributiona: shape parameterb: scale parameter
`'Generalized Extreme Value'`Generalized Extreme Value Distributionk: shape parameterσ: scale parameterμ: location parameter
`'Generalized Pareto'`Generalized Pareto Distributionk: tail index (shape) parameterσ: scale parameterμ: threshold (location) parameter
`'Geometric'`Geometric Distributionp: probability parameter
`'HalfNormal'`Half-Normal Distributionμ: location parameterσ: scale parameter
`'Hypergeometric'`Hypergeometric Distributionm: size of the populationk: number of items with the desired characteristic in the populationn: number of samples drawn
`'InverseGaussian'`Inverse Gaussian Distributionμ: scale parameterλ: shape parameter
`'Logistic'`Logistic Distributionμ: meanσ: scale parameter
`'LogLogistic'`Loglogistic Distributionμ: log meanσ: log scale parameter
`'Lognormal'`Lognormal Distributionμ: log meanσ: log standard deviation
`'Nakagami'`Nakagami Distributionμ: shape parameterω: scale parameter
`'Negative Binomial'`Negative Binomial Distributionr: number of successesp: probability of success in a single trial
`'Noncentral F'`Noncentral F Distributionν1: numerator degrees of freedomν2: denominator degrees of freedomδ: noncentrality parameter
`'Noncentral t'`Noncentral t Distributionν: degrees of freedomδ: noncentrality parameter
`'Noncentral Chi-square'`Noncentral Chi-Square Distributionν: degrees of freedomδ: noncentrality parameter
`'Normal'`Normal Distributionμ: mean σ: standard deviation
`'Poisson'`Poisson Distributionλ: mean
`'Rayleigh'`Rayleigh Distributionb: scale parameter
`'Rician'`Rician Distributions: noncentrality parameterσ: scale parameter
`'Stable'`Stable Distributionα: first shape parameterβ: second shape parameterγ: scale parameterδ: location parameter
`'T'`Student's t Distributionν: degrees of freedom
`'tLocationScale'`t Location-Scale Distributionμ: location parameterσ: scale parameterν: shape parameter
`'Uniform'`Uniform Distribution (Continuous)a: lower endpoint (minimum)b: upper endpoint (maximum)
`'Discrete Uniform'`Uniform Distribution (Discrete)n: maximum observable value
`'Weibull'`Weibull Distributiona: scale parameterb: shape parameter

Values at which to evaluate the pdf, specified as a scalar value, or an array of scalar values.

• If `x` is a scalar value, and if you specify distribution parameters `A`, `B`, `C`, or `D` as arrays, then `cdf` expands `x` into a constant array of the same size as the parameters.

• If `x` is an array, and if you specify distribution parameters `A`, `B`, `C`, or `D` as arrays, then `x`, `A`, `B`, `C`, and `D` must all be the same size.

Example: `[0.1,0.25,0.5,0.75,0.9]`

Data Types: `single` | `double`

First probability distribution parameter, specified as a scalar value, or an array of scalar values.

If `x` and `A` are arrays, they must be the same size. If `x` is a scalar, then `cdf` expands it into a constant matrix the same size as `A`. If `A` is a scalar, then `cdf` expands it into a constant matrix the same size as `x`.

Data Types: `single` | `double`

Second probability distribution parameter, specified as a scalar value, or an array of scalar values.

If `x`, `A`, and `B` are arrays, they must be the same size. If `x` is a scalar, then `cdf` expands it into a constant matrix the same size as `A` and `B`. If `A` or `B` are scalars, then `cdf` expands them into constant matrices the same size as `x`

Data Types: `single` | `double`

Third probability distribution parameter, specified as a scalar value, or an array of scalar values.

If `x`, `A`, `B`, and `C` are arrays, they must be the same size. If `x` is a scalar, then `cdf` expands it into a constant matrix the same size as `A`, `B`, and `C`. If any of `A`, `B` or `C` are scalars, then `cdf` expands them into constant matrices the same size as `x`.

Data Types: `single` | `double`

Fourth probability distribution parameter, specified as a scalar value, or an array of scalar values.

If `x`, `A`, `B`, `C`, and `D` are arrays, they must be the same size. If `x` is a scalar, then `cdf` expands it into a constant array the same size as `A`, `B`, `C`, and `D`. If any of `A`, `B` , `C`, or `D` are scalars, then `cdf` expands them into constant matrices the same size as `x`.

Data Types: `single` | `double`

Probability distribution, specified as a probability distribution object created using one of the following.

 `makedist` Create a probability distribution object using specified parameter values. `fitdist` Fit a probability distribution object to sample data. `dfittool` Fit a probability distribution object to sample data using the interactive Distribution Fitting app. `paretotails` Create a Pareto tails object. `gmdistribution` Create a Gaussian mixture distribution object.

Output Arguments

collapse all

Probability density function of the specified probability distribution, returned as an array.