This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.


Class: ProbDistUnivParam

Construct ProbDistUnivParam object


PD = ProbDistUnivParam(DistName, Params)


PD = ProbDistUnivParam(DistName, Params) creates PD, a ProbDistUnivParam object, which represents a probability distribution. This distribution is defined by the parametric distribution specified by DistName, with parameters specified by the numeric vector Params.


ProbDistUnivParam will be removed in a future release. To create and fit probability distribution objects, use makedist and fitdist instead.

Input Arguments


A character vector specifying a distribution. Choices are:

  • 'beta'

  • 'binomial'

  • 'birnbaumsaunders'

  • 'exponential'

  • 'extreme value' or ev'

  • 'gamma'

  • 'generalized extreme value' or 'gev'

  • 'generalized pareto' or 'gp'

  • 'inversegaussian'

  • 'logistic'

  • 'loglogistic'

  • 'lognormal'

  • 'nakagami'

  • 'negative binomial' or 'nbin'

  • 'normal'

  • 'poisson'

  • 'rayleigh'

  • 'rician'

  • 'tlocationscale'

  • 'weibull' or 'wbl'

For more information on these parametric distributions, see Distribution Reference.


Numeric vector of distribution parameters. The number and type of parameters depends on the distribution you specify with DistName. For information on parameters for each distribution type, see Distribution Reference.

Output Arguments


An object in the ProbDistUnivParam class, which is derived from the ProbDist class. It represents a parametric probability distribution.


  1. Create an object representing a normal distribution with a mean of 100 and a standard deviation of 10.

    pd = ProbDistUnivParam('normal',[100 10])
    pd = 
    normal distribution
        mu = 100
        sigma = 10
  2. Generate a 4-by-5 matrix of random values from this distribution.

    ans =
      105.3767  103.1877  135.7840  107.2540   98.7586
      118.3389   86.9231  127.6944   99.3695  114.8970
       77.4115   95.6641   86.5011  107.1474  114.0903
      108.6217  103.4262  130.3492   97.9503  114.1719


[1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 1, Hoboken, NJ: Wiley-Interscience, 1993.

[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience, 1994.

Introduced in R2009a

Was this topic helpful?