Accelerating the pace of engineering and science

Documentation Center

• Trial Software

ProbDistUnivParam class

Superclasses: ProbDistParametric

Object representing univariate parametric probability distribution

Description

A ProbDistUnivParam object represents a univariate parametric probability distribution. You create this object by using the constructor (ProbDistUnivParam) and supplying parameter values, or by using the fitdist function to fit the distribution to data.

Construction

 ProbDistUnivParam Construct ProbDistUnivParam object

Methods

 cdf Return cumulative distribution function (CDF) for ProbDist object icdf Return inverse cumulative distribution function (ICDF) for ProbDistUnivParam object iqr Return interquartile range (IQR) for ProbDistUnivParam object mean Return mean of ProbDistUnivParam object median Return median of ProbDistUnivParam object paramci Return parameter confidence intervals of ProbDistUnivParam object pdf Return probability density function (PDF) for ProbDist object random Generate random number drawn from ProbDist object std Return standard deviation of ProbDistUnivParam object var Return variance of ProbDistUnivParam object
 Note:   Some of the above methods are inherited from the ProbDistParametric class.

Properties

 Note:   The above properties are inherited from the ProbDistParametric class.
 Note:   Parameter values are also properties. For example, if you create PD, a univariate parametric probability distribution object that represents a normal distribution, then PD.mu and PD.sigma are properties that give the values of the mu and sigma parameters.

Copy Semantics

Value. To learn how this affects your use of the class, see Copying Objects in the MATLAB® Programming Fundamentals documentation.

References

[1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 1, Hoboken, NJ: Wiley-Interscience, 1993.

[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience, 1994.