Documentation |
mar = meanMargin(B,X,Y)
mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...)
mar = meanMargin(B,X,Y) computes average classification margins for predictors X given true response Y. The Y can be either a numeric vector, character matrix, cell array of strings, categorical vector or logical vector. meanMargin averages the margins over all observations (rows) in X for each tree. mar is a matrix of size 1-by-NTrees, where NTrees is the number of trees in the ensemble B. This method is available for classification ensembles only.
mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...) specifies optional parameter name/value pairs:
'mode' | String indicating how meanMargin computes errors. If set to 'cumulative' (default), is a vector of length NTrees where the first element gives mean margin from trees(1), second column gives mean margins from trees(1:2) etc, up to trees(1:NTrees). If set to 'individual', mar is a vector of length NTrees, where each element is a mean margin from each tree in the ensemble . If set to 'ensemble', mar is a scalar showing the cumulative mean margin for the entire ensemble . |
'trees' | Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element gives mean margin from trees(1), the second element gives mean margin from trees(1:2) etc. |
'treeweights' | Vector of tree weights. This vector must have the same length as the 'trees' vector. meanMargin uses these weights to combine output from the specified trees by taking a weighted average instead of the simple nonweighted majority vote. You cannot use this argument in the 'individual' mode. |