# Documentation

### This is machine translation

Translated by
Mouse over text to see original. Click the button below to return to the English verison of the page.

# wblpdf

Weibull probability density function

## Syntax

`Y = wblpdf(X,A,B)`

## Description

`Y = wblpdf(X,A,B)` computes the Weibull pdf at each of the values in `X` using the corresponding scale parameter, `A` and shape parameter, `B`. `X`, `A`, and `B` can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The parameters in `A` and `B` must be positive.

The Weibull pdf is

`$f\left(x|a,b\right)=\frac{b}{a}{\left(\frac{x}{a}\right)}^{b-1}{e}^{-{\left(x/a\right)}^{b}}.$`

Some references refer to the Weibull distribution with a single parameter. This corresponds to `wblpdf` with `A` = `1`.

## Examples

The exponential distribution is a special case of the Weibull distribution.

```lambda = 1:6; y = wblpdf(0.1:0.1:0.6,lambda,1) y = 0.9048 0.4524 0.3016 0.2262 0.1810 0.1508 y1 = exppdf(0.1:0.1:0.6,lambda) y1 = 0.9048 0.4524 0.3016 0.2262 0.1810 0.1508```

## References

[1] Devroye, L. Non-Uniform Random Variate Generation. New York: Springer-Verlag, 1986.