Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Fourier and Inverse Fourier Transforms

This page shows the workflow for Fourier and inverse Fourier transforms in Symbolic Math Toolbox™. For simple examples, see fourier and ifourier. Here, the workflow for Fourier transforms is demonstrated by calculating the deflection of a beam due to a force. The associated differential equation is solved by the Fourier transform.

Fourier Transform Definition

The Fourier transform of f(x) with respect to x at w is

F(w)=f(x)eiwxdx.

The inverse Fourier transform is

f(x)=12πF(w)eiwxdw.

Concept: Using Symbolic Workflows

Symbolic workflows keep calculations in the natural symbolic form instead of numeric form. This approach helps you understand the properties of your solution and use exact symbolic values. You only substitute symbolic variables for numeric values when you require a numeric result or you cannot continue symbolically. For details, see Choose Symbolic or Numeric Arithmetic. Typically, the steps are:

  1. Declare equations.

  2. Solve equations.

  3. Substitute values.

  4. Plot results.

  5. Analyze results.

Calculate Beam Deflection Using Fourier Transform

Define Equations

Fourier transform can be used to solve ordinary and partial differential equations. For example, you can model the deflection of an infinitely long beam resting on an elastic foundation under a point force. A corresponding real-world example is railway tracks on a foundation. The railway tracks are the infinitely long beam while the foundation is elastic.

Let

  • E be the elasticity of the beam (or railway track).

  • I be the second moment of area of the cross-section of the beam.

  • k be the spring stiffness of the foundation.

The differential equation is

d4ydx4+kEIy=1EIδ(x), <x<.

Define the function y(x) and the variables. Assume E, I, and k are positive.

syms Y(x) w E I k f
assume([E I k] > 0)

Assign units to the variables by using symunit.

u = symunit;
Eu = E*u.Pa;    % Pascal
Iu = I*u.m^4;   % meter^4
ku = k*u.N/u.m^2;  % Newton/meter^2
X = x*u.m;
F = f*u.N/u.m;

Define the differential equation.

eqn = diff(Y,X,4) + ku/(Eu*Iu)*Y == F/(Eu*Iu)
eqn(x) =
diff(Y(x), x, x, x, x)*(1/[m]^4) + ((k*Y(x))/(E*I))*([N]/([Pa]*[m]^6)) == ...
            (f/(E*I))*([N]/([Pa]*[m]^5))

Represent the force f by the Dirac delta function δ(x).

eqn = subs(eqn,f,dirac(x))
eqn(x) =
diff(Y(x), x, x, x, x)*(1/[m]^4) + ((k*Y(x))/(E*I))*([N]/([Pa]*[m]^6)) ==...
           (dirac(x)/(E*I))*([N]/([Pa]*[m]^5))

Solve Equations

Calculate the Fourier transform of eqn by using fourier on both sides of eqn. The Fourier transform converts differentiation into exponents of w.

eqnFT = fourier(lhs(eqn)) == fourier(rhs(eqn))
eqnFT =
w^4*fourier(Y(x), x, w)*(1/[m]^4) + ((k*fourier(Y(x), x, w))/(E*I))*([N]/([Pa]*[m]^6)) == (1/(E*I))*([N]/([Pa]*[m]^5))

Isolate fourier(Y(x),x,w) in the equation.

eqnFT = isolate(eqnFT, fourier(Y(x),x,w))
eqnFT =
fourier(Y(x), x, w) == (1/(E*I*w^4*[Pa]*[m]^2 + k*[N]))*[N]*[m]

Calculate Y(x) by calculating the inverse Fourier transform of the right side. Simplify the result.

YSol = ifourier(rhs(eqnFT));
YSol = simplify(YSol)
YSol =
((exp(-(2^(1/2)*k^(1/4)*abs(x))/(2*E^(1/4)*I^(1/4)))*sin((2*2^(1/2)*k^(1/4)*abs(x) +...
 pi*E^(1/4)*I^(1/4))/(4*E^(1/4)*I^(1/4))))/(2*E^(1/4)*I^(1/4)*k^(3/4)))*[m]

Check that YSol has the correct dimensions by substituting YSol into eqn and using the checkUnits function. checkUnits returns logical 1 (true), meaning eqn now has compatible units of the same physical dimensions.

checkUnits(subs(eqn,Y,YSol))
ans = 
  struct with fields:

    Consistent: 1
    Compatible: 1

Separate the expression from the units by using separateUnits.

YSol = separateUnits(YSol)
YSol =
(exp(-(2^(1/2)*k^(1/4)*abs(x))/(2*E^(1/4)*I^(1/4)))*sin((2*2^(1/2)*k^(1/4)*abs(x) + pi*E^(1/4)*I^(1/4))/(4*E^(1/4)*I^(1/4))))/(2*E^(1/4)*I^(1/4)*k^(3/4))

Substitute Values

Use the values E = 106 Pa, I = 10-3 m4, and k = 106 N/m2. Substitute these values into YSol and convert to floating point by using vpa with 16 digits of accuracy.

values = [1e6 1e-3 1e5];
YSol = subs(YSol,[E I k],values);
YSol = vpa(YSol,16)
YSol =
0.0000158113883008419*exp(-2.23606797749979*abs(x))*sin(2.23606797749979*abs(x) + 0.7853981633974483)

Plot Results

Plot the result by using fplot.

fplot(YSol)
xlabel('x')
ylabel('Deflection y(x)')

Analyze Results

The plot shows that the deflection of a beam due to a point force is highly localized. The deflection is greatest at the point of impact and then decreases quickly. The symbolic result enables you to analyze the properties of the result, which is not possible with numeric results.

Notice that YSol is a product of terms. The term with sin shows that the response is vibrating oscillatory behavior. The term with exp shows that the oscillatory behavior is quickly damped by the exponential decay as the distance from the point of impact increases.

Was this topic helpful?