Accelerating the pace of engineering and science

# Documentation Center

• Trial Software

# cond

Condition number of matrix

cond(A)
cond(A,P)

## Description

cond(A) returns the 2-norm condition number of matrix A.

cond(A,P) returns the P-norm condition number of matrix A.

## Input Arguments

 A Symbolic matrix. P One of these values 1, 2, inf, or 'fro'. cond(A,1) returns the 1-norm condition number.cond(A,2) or cond(A) returns the 2-norm condition number.cond(A,inf) returns the infinity norm condition number.cond(A,'fro') returns the Frobenius norm condition number.Default: 2

## Examples

Compute the 2-norm condition number of the inverse of the 3-by-3 magic square A:

```A = inv(sym(magic(3)));
condN2 = cond(A)```
```condN2 =
(5*3^(1/2))/2```

Use vpa to approximate the result with 20-digit accuracy:

`vpa(condN2, 20)`
```ans =
4.3301270189221932338```

Compute the 1-norm condition number, the Frobenius condition number, and the infinity condition number of the inverse of the 3-by-3 magic square A:

```A = inv(sym(magic(3)));
condN1 = cond(A, 1)
condNf = cond(A, 'fro')
condNi = cond(A, inf)```
```condN1 =
16/3

condNf =
(285^(1/2)*391^(1/2))/60

condNi =
16/3```

Use vpa to approximate these condition numbers with 20-digit accuracy:

```vpa(condN1, 20)
vpa(condNf, 20)
vpa(condNi, 20)```
```ans =
5.3333333333333333333

ans =
5.5636468855119361059

ans =
5.3333333333333333333```

Compute the condition numbers of the 3-by-3 Hilbert matrix H approximating the results with 30-digit accuracy:

```H = sym(hilb(3));
condN2 = vpa(cond(H), 30)
condN1 = vpa(cond(H, 1), 30)
condNf = vpa(cond(H, 'fro'), 30)
condNi = vpa(cond(H, inf), 30)```
```condN2 =
524.056777586060817870782845928 +...
1.42681147881398269481283800423e-38*i

condN1 =
748.0

condNf =
526.158821079719236517033364845

condNi =
748.0```

Hilbert matrices are classic examples of ill-conditioned matrices.

expand all

### Condition Number of a Matrix

Condition number of a matrix is the ratio of the largest singular value of that matrix to the smallest singular value. The P-norm condition number of the matrix A is defined as norm(A,P)*norm(inv(A),P), where norm is the norm of the matrix A.

### Tips

• Calling cond for a numeric matrix that is not a symbolic object invokes the MATLAB® cond function.