Documentation

This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.

cond

Condition number of matrix

Syntax

cond(A)
cond(A,P)

Description

cond(A) returns the 2-norm condition number of matrix A.

cond(A,P) returns the P-norm condition number of matrix A.

Input Arguments

A

Symbolic matrix.

P

One of these values 1, 2, inf, or 'fro'.

  • cond(A,1) returns the 1-norm condition number.

  • cond(A,2) or cond(A) returns the 2-norm condition number.

  • cond(A,inf) returns the infinity norm condition number.

  • cond(A,'fro') returns the Frobenius norm condition number.

Default: 2

Examples

Compute the 2-norm condition number of the inverse of the 3-by-3 magic square A:

A = inv(sym(magic(3)));
condN2 = cond(A)
condN2 =
(5*3^(1/2))/2

Use vpa to approximate the result with 20-digit accuracy:

vpa(condN2, 20)
ans =
4.3301270189221932338

Compute the 1-norm condition number, the Frobenius condition number, and the infinity condition number of the inverse of the 3-by-3 magic square A:

A = inv(sym(magic(3)));
condN1 = cond(A, 1)
condNf = cond(A, 'fro')
condNi = cond(A, inf)
condN1 =
16/3
 
condNf =
(285^(1/2)*391^(1/2))/60
 
condNi =
16/3

Use vpa to approximate these condition numbers with 20-digit accuracy:

vpa(condN1, 20)
vpa(condNf, 20)
vpa(condNi, 20)
ans =
5.3333333333333333333
 
ans =
5.5636468855119361059
 
ans =
5.3333333333333333333

Compute the condition numbers of the 3-by-3 Hilbert matrix H approximating the results with 30-digit accuracy:

H = sym(hilb(3));
condN2 = vpa(cond(H), 30)
condN1 = vpa(cond(H, 1), 30)
condNf = vpa(cond(H, 'fro'), 30)
condNi = vpa(cond(H, inf), 30)
condN2 =
524.056777586060817870782845928 +...
1.42681147881398269481283800423e-38i
 
condN1 =
748.0
 
condNf =
526.158821079719236517033364845
 
condNi =
748.0

Hilbert matrices are classic examples of ill-conditioned matrices.

More About

collapse all

Condition Number of a Matrix

Condition number of a matrix is the ratio of the largest singular value of that matrix to the smallest singular value. The P-norm condition number of the matrix A is defined as norm(A,P)*norm(inv(A),P), where norm is the norm of the matrix A.

Tips

  • Calling cond for a numeric matrix that is not a symbolic object invokes the MATLAB® cond function.

Introduced in R2012b

Was this topic helpful?