# ellipticCK

Complementary complete elliptic integral of the first kind

## Syntax

`ellipticCK(m)`

## Description

`ellipticCK(m)` returns the complementary complete elliptic integral of the first kind.

## Input Arguments

 `m` Number, symbolic number, variable, expression, or function. This argument also can be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

## Examples

Compute the complementary complete elliptic integrals of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

`s = [ellipticCK(1/2), ellipticCK(pi/4), ellipticCK(1), ellipticCK(inf)]`
```s = 1.8541 1.6671 1.5708 NaN```

Compute the complete elliptic integrals of the first kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, `ellipticCK` returns unresolved symbolic calls.

```s = [ellipticCK(sym(1/2)), ellipticCK(sym(pi/4)),... ellipticCK(sym(1)), ellipticCK(sym(inf))]```
```s = [ ellipticCK(1/2), ellipticCK(pi/4), pi/2, ellipticCK(Inf)]```

Use `vpa` to approximate this result with floating-point numbers:

`vpa(s, 10)`
```ans = [ 1.854074677, 1.667061338, 1.570796327, NaN]```

Differentiate these expressions involving the complementary complete elliptic integral of the first kind:

```syms m diff(ellipticCK(m)) diff(ellipticCK(m^2), m, 2)```
```ans = ellipticCE(m)/(2*m*(m - 1)) - ellipticCK(m)/(2*m - 2) ans = (2*(ellipticCE(m^2)/(2*m^2 - 2) -... ellipticCK(m^2)/(2*m^2 - 2)))/(m^2 - 1) -... (2*ellipticCE(m^2))/(m^2 - 1)^2 -... (2*ellipticCK(m^2))/(2*m^2 - 2) +... (8*m^2*ellipticCK(m^2))/(2*m^2 - 2)^2 +... (2*m*((2*m*ellipticCK(m^2))/(2*m^2 - 2) -... ellipticCE(m^2)/(m*(m^2 - 1))))/(2*m^2 - 2) -... ellipticCE(m^2)/(m^2*(m^2 - 1))```

Here, `ellipticCE` represents the complementary complete elliptic integral of the second kind.

Plot the complementary complete elliptic integral of the first kind:

```syms m ezplot(ellipticCK(m), [0.1, 5]) title('Complementary complete elliptic integral of the first kind') ylabel('ellipticCK(m)') grid on hold off ```

Call `ellipticCK` for this symbolic matrix. When the input argument is a matrix, `ellipticCK` computes the complementary complete elliptic integral of the first kind for each element.

`ellipticCK(sym([pi/6 pi/4; pi/3 pi/2]))`
```ans = [ ellipticCK(pi/6), ellipticCK(pi/4)] [ ellipticCK(pi/3), ellipticCK(pi/2)]```

collapse all

### Complementary Complete Elliptic Integral of the First Kind

The complementary complete elliptic integral of the first kind is defined as K'(m) = K(1–m), where K(m) is the complete elliptic integral of the first kind:

$K\left(m\right)=F\left(\frac{\pi }{2}|m\right)=\underset{0}{\overset{\pi /2}{\int }}\frac{1}{\sqrt{1-m{\mathrm{sin}}^{2}\theta }}d\theta$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as m = k2 = sin2α.

### Tips

• `ellipticK` returns floating-point results for numeric arguments that are not symbolic objects.

• For most symbolic (exact) numbers, `ellipticCK` returns unresolved symbolic calls. You can approximate such results with floating-point numbers using the `vpa` function.

• If `m` is a vector or a matrix, then `ellipticCK(m)` returns the complementary complete elliptic integral of the first kind, evaluated for each element of `m`.

## References

[1] Milne-Thomson, L. M. "Elliptic Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

Get trial now