# Documentation

## Differentiation

This example shows how to find first and second derivatives using Symbolic Math Toolbox™.

### First Derivatives: Finding Local Minima and Maxima

Computing the first derivative of an expression helps you find local minima and maxima of that expression. Before creating a symbolic expression, declare symbolic variables:

```syms x ```

By default, solutions that include imaginary components are included in the results. Here, consider only real values of `x` by setting the assumption that `x` is real:

```assume(x, 'real') ```

As an example, create a rational expression (i.e., a fraction where the numerator and denominator are polynomial expressions).

```f = (3*x^3 + 17*x^2 + 6*x + 1)/(2*x^3 - x + 3) ```
``` f = (3*x^3 + 17*x^2 + 6*x + 1)/(2*x^3 - x + 3) ```

Plotting this expression shows that the expression has horizontal and vertical asymptotes, a local minimum between -1 and 0, and a local maximum between 1 and 2:

```ezplot(f) grid ```

To find the horizontal asymptote, compute the limits of `f` for `x` approaching positive and negative infinities. The horizontal asymptote is `y = 3/2`:

```lim_left = limit(f, x, -inf) lim_right = limit(f, x, inf) ```
``` lim_left = 3/2 lim_right = 3/2 ```

Add this horizontal asymptote to the plot:

```hold on plot(xlim, [lim_right lim_right], 'LineStyle', '-.', 'Color', [0.25 0.25 0.25]) ```

To find the vertical asymptote of `f`, find the poles of `f`:

```pole_pos = poles(f, x) ```
``` pole_pos = - 1/(6*(3/4 - (241^(1/2)*432^(1/2))/432)^(1/3)) - (3/4 - (241^(1/2)*432^(1/2))/432)^(1/3) ```

Add the vertical asymptote to the plot:

```plot([pole_pos pole_pos], ylim, 'LineStyle', '-.', 'Color', [0.25 0.25 0.25]) ```

Approximate the exact solution numerically by using the `double` function:

```double(pole_pos) ```
```ans = -1.2896 ```

Now find the local minimum and maximum of `f`. If a point is a local extremum (either minimum or maximum), the first derivative of the expression at that point is equal to zero. Compute the derivative of `f` using `diff`:

```g = diff(f, x) ```
``` g = (9*x^2 + 34*x + 6)/(2*x^3 - x + 3) - ((6*x^2 - 1)*(3*x^3 + 17*x^2 + 6*x + 1))/(2*x^3 - x + 3)^2 ```

To find the local extrema of `f`, solve the equation `g == 0`:

```g0 = solve(g, x) ```
``` g0 = ((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)) - ((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - 15/68 ((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)) + ((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - 15/68 ```

Approximate the exact solution numerically by using the `double` function:

```double(g0) ```
```ans = -0.1892 1.2860 ```

The expression `f` has a local maximum at `x = 1.286` and a local minimum at `x = -0.189`. Obtain the function values at these points using `subs`:

```f0 = subs(f,x,g0) ```
``` f0 = (3*(((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - ((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)) + 15/68)^3 - 17*(((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - ((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)) + 15/68)^2 - ((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6) + ((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) + 11/34)/(((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)) + 2*(((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - ((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)) + 15/68)^3 - ((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - 219/68) -(((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6) + 17*(((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)) + ((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - 15/68)^2 + 3*(((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)) + ((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - 15/68)^3 + ((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - 11/34)/(((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)) - 2*(((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)) + ((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - 15/68)^3 + ((337491*6^(1/2)*((3*3^(1/2)*178939632355^(1/2))/9826 + 2198209/9826)^(1/2))/39304 + (2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/578 - 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2) - (361*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/2))/289)^(1/2)/(6*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/6)*((2841*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(1/3))/1156 + 9*((3^(1/2)*178939632355^(1/2))/176868 + 2198209/530604)^(2/3) + 361/289)^(1/4)) - 219/68) ```

Approximate the exact solution numerically by using the `double` function on the variable `f0`:

```double(f0) ```
```ans = 0.1427 7.2410 ```

Add point markers to the graph at the extrema:

```plot(g0, f0, 'ok') ```

### Second Derivatives: Finding Inflection Points

Computing the second derivative lets you find inflection points of the expression. The most efficient way to compute second or higher-order derivatives is to use the parameter that specifies the order of the derivative:

```h = diff(f, x, 2) ```
``` h = (18*x + 34)/(2*x^3 - x + 3) - (2*(6*x^2 - 1)*(9*x^2 + 34*x + 6))/(2*x^3 - x + 3)^2 - (12*x*(3*x^3 + 17*x^2 + 6*x + 1))/(2*x^3 - x + 3)^2 + (2*(6*x^2 - 1)^2*(3*x^3 + 17*x^2 + 6*x + 1))/(2*x^3 - x + 3)^3 ```

To find inflection points of `f`, solve the equation `h = 0`. Here, use the numeric solver `vpasolve` to calculate floating-point approximations of the solutions:

```h0 = vpasolve(h, x) ```
``` h0 = 0.57871842655441748319601085860196 1.8651543689917122385037075917613 - 0.46088831805332057449182335801198 + 0.47672261854520359440077796751805i - 0.46088831805332057449182335801198 - 0.47672261854520359440077796751805i - 1.4228127856020972275345064554049 + 1.8180342567480118987898749770461i - 1.4228127856020972275345064554049 - 1.8180342567480118987898749770461i ```

The expression `f` has two inflection points: `x = 1.865` and `x = 0.579`. Note that `vpasolve` also returns complex solutions. Discard those:

```h0(imag(h0)~=0) = [] ```
``` h0 = 0.57871842655441748319601085860196 1.8651543689917122385037075917613 ```

Add markers to the plot showing the inflection points:

```plot(h0, subs(f,x,h0), '*k') ```