This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Using Units in Physics

Use units to perform physics calculations in both SI and Imperial units. Compute with units the terminal velocity of a falling paratrooper by modeling the deacceleration of velocity due to drag.


Imagine that a paratrooper is dropped from an airplane. Assume there are only two forces acting on the paratrooper, the gravitational force and an opposing drag force from the parachute.

The net force acting acting on the paratrooper can be expressed as :




  • is the paratrooper's mass

  • g is the acceleration due to gravity

  • is the paratrooper's velocity

  • is the drag constant

Define and Solve the Differential Equation

Define the differential equation describing the balance of forces.

syms g m c_d
syms v(t)
eq = m*diff(v(t),t) + m*g == c_d*v(t)^2
eq = 

Assume that the parachute opens immediately at so that the equation eq is valid for all values of . Solve the differential equation analytically using dsolve with the initial condition .

velocity = simplify(dsolve(eq, v(0) == 0))
velocity = 

Find Units of Drag Constant

Find the units of the drag constant in SI units. The units of Force are Newton or expressed in SI base units are . Since they are equivalent they have a unit conversion factor of 1.

u = symunit;
ans = 

Since the drag force must have the same physical dimension in Newton as the gravitational force , the physical dimension of can be solved for.

syms drag_units_SI
drag_units_SI = simplify(solve(drag_units_SI * (u.m / u.s)^2 == u.N))
drag_units_SI = 

Estimate the terminal velocity


  • Paratrooper's mass

  • Acceleration due to gravity

  • Drag coefficient

Substitute these values into the velocity equation and simplify the result.

vel_SI = subs(velocity,[g,m,c_d],[9.81*u.m/u.s^2, 70*, 40*drag_units_SI])
vel_SI = 

vel_SI = simplify(vel_SI)
vel_SI = 

Compute a numerical approximation to 3 significant digits.

vel_SI = vpa(vel_SI)
vel_SI = 

The paratrooper soon approaches a constant velocity when the gravitational force is balanced by the drag force. This is called terminal velocity and occurs when the drag force from the parachute is roughly equivalent to the gravitational force, and there is no further acceleration. Find the terminal velocity by using limit as .

vel_term_SI = limit(vel_SI, t, Inf)
vel_term_SI = 

Rewrite Velocity Using Imperial units

Finally, we rewrite the velocity function from SI units to Imperial units.

vel_Imperial = rewrite(vel_SI,u.ft)
vel_Imperial = 

Rewrite the terminal velocity.

vel_term_Imperial = rewrite(vel_term_SI,u.ft)
vel_term_Imperial = 

Plot Velocity Over Time

To plot deacceleration, we measure the time t in seconds and replace t by t = T s, where T is a dimensionless symbolic variable.

syms T
vel_SI = subs(vel_SI, t, T*u.s)
vel_SI = 

vel_Imperial = rewrite(vel_SI, u.ft)
vel_Imperial = 

Separate the expression from the units by using separateUnits. Plot the expression using fplot. Convert the units to strings for use as plot labels using symunit2str .

[data_SI, units_SI] = separateUnits(vel_SI);
[data_Imperial, units_Imperial] = separateUnits(vel_Imperial);

We see that the paratrooper's velocity approaches its steady state when . Show how the velocity approaches terminal velocity by plotting the velocity over the range .

fplot(data_SI,[0 2])
title('Deacceleration in SI Units')
xlabel('Time in s')
ylabel(['Velocity in ' symunit2str(units_SI)])
fplot(data_Imperial,[0 2])
title('Deacceleration in Imperial Units')
xlabel('Time in s')
ylabel(['Velocity in ' symunit2str(units_Imperial)])

© 2016 The MathWorks, Inc.

Was this topic helpful?